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Photophoresis of an Aerosol Sphere in a Spherical Cavity
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This study examines the quasisteady photophoretic motion of a spherical aerosol particle with
arbitrary thermal conductivity and surface properties, located at the center of a spherical cavity and
exposed to a radiative flux. Assuming a smail Knudsen number, the fluid flow is described by a
continuum model with a temperature jump, thermal creep, and frictional slip on the solid surfaces.
In the limit of the small Peclet and Reynolds numbers, appropriate equations of conservation of
energy and momentum are solved for the system and the photophoretic velocity of the particle is
obtained in closed form. The normalized photophoretic mobility increases with the relative
conductivity of the particle. The boundary effect of the cavity wall on the photophoresis of an aerosol

particle is generally quite significant in appropriate situations. In practical aerosol systems, the

boundary effect on photophoresis is much weaker than on gravitational field driven motion.

Keywords: photophoresis, aerosol sphere, boundary effect.

1. Introduction

A small particle, when suspended in a gaseous
medium and exposed to an intense light beam,
migrates parallel to the direction of the light.
This phenomenon, a direct result of the uneven
heating of the light absorbing particle (and
therefore, its adjacent gas molecules), was
termed photophoresis by its discoverer,
Ehrenhaft, around 1910 [1, 2]. The photophoretic

(or thermophoretic) effect can be partly

explained by using the kinetic theory of gases [3].

The higher-energy molecules in the hot region of
the gas impinge on the particle with greater
momentum than molecules from the cold region,
thus causing the particle to migrate in the

direction opposite to the surface temperature
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gradient. The photophoretic force on an aerosol
particle can thus be directed either toward
(negative photophoresis) or away from (positive
photophoresis) the light source, depending on the
If the

particle is opaque and the incident light energy is

optical characteristics of the particle.

absorbed and dissipated directly on its front

surface,  positive  photophoresis  results.

if the light beam
transmitted and focused internally (e.g. the rear

Conversely, is partially

surface), the direction of the motion may differ.
has

numerous particulate materials in the diameter

Photophoresis been observed for

range between 108 and 193 m, and at
pressures from above 1 atm to below 1 torr,
under illumination intensities comparable with
[2].

investigations are relevant to various fields,

sunlight Consequently, photophoresis

including cloud physics, aerosol science, and

environmental engineering. For example,

measurements of the photophoretic force or the

reversal point from positive to negative
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photophoresis as the photophoretic spectroscopy
is elaborated can be used to determine the
physical properties (e.g. the complex refractive
index) and chemical composition of aerosol
particles {4]. The photophoretic phenomena of
aerosol particles subjected to coherent light
beams have been applied to the development of
laser atmospheric monitoring methods [5].  This
endeavor found that, because of the effect of
both positive and negative photophoresis,
stratospheric aerosol particles may rise against
gravity while others fall considerably more
rapidly than they would under gravity alone [6].
Considering that radiative transfer can account
for approximately 95% of the total heat flux in
pulverized-coal furnaces, the driving force for
photophoresis of small particles in combustion
environments can be significantly greater than
that for thermophoresis [7].

Assuming a small Knudsen number (;/,,
where , denotes the radius of the particle and
| Tepresents the mean free path of the
surrounding gas molecules), a small Reynolds
number, and a small Peclet number, as well as
allowing for the effects of temperature jump,
thermal slip, and hydrodynamic slip at the
gas-particle interface, Reed [8] and Mackowski
[7] obtained the photophoretic velocity of an
aerosol sphere illuminated by an intense light

beam as

© _ _ 26 Il
3(1+2C, 1/ a) 2k +k, +2k,Clla)p T,

M

Here, ; denotes the intensity of the incident
light (incoming illumination energy flux); o>
7 and j represent the density, viscosity, and
thermal conductivity of the gas, respectively; g

is the thermal conductivity of the particle; T,
denotes the absolute temperature of the bulk gas;
Jy represents the so-called photophoretic
asymmetry factor [9] defined by Eq. (26), which
can be either positive (negative photophoresis) or

negative (positive photophoresis); and Cy» Cyp»
and C, ae dimensionless  coefficients
accounting for the thermal slip, temperature
jump, and frictional slip phenomena, respectively,
at the particle surface, and must be determined
experimentally for each gas-solid system. A set
of reasonable kinetic-theory values for complete
thermal and momentum accommodations
appears to be c, =117, ¢, =218, and
Cp =1.14 [10]. The extension of Eq. (1) to the
photophoretic velocity of a circular cylindrical
particle normal to its axis has recently been
derived [11].

In numerous applications of photophoresis,
aerosol particles are not isolated and will move
in the presence of neighboring particles and/or
boundaries. For example, the mechanism and
rate of deposition of photophoretic particles on
surfaces are of practical interest. Consequently,
examining the behavior of a particle under
photophoretic forces when in the proximity of
rigid boundaries is relatively important.
However, the boundary effects on the
photophoretic motion of aerosol particles remain
unexplored. This work aims to obtain insights
into the boundary effects on the photophoresis of
an aerosol particle inside a small pore. This
type of problem is difficult to solve because of
the complexity of actual system geometry. To
overcome the mathematical complexities
involved in the problem of a sphere in a cylinder
(which is a widely used model for particles in
pores), the photophoresis of a spherical particle
situated at the center of a spherical cavity is
examined.  Although the geometry of the
spherical cavity is an idealized abstraction of a
real system, the analytical results obtained for
this geometry agree closely with available
expressions for boundary effects on the partition
coefficient [12, 13], settling velocity [14, 15],
and electrophoretic mobility {16, 17] of a

spherical particle in a cylindrical pore. The
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spherical symmetry in this model system allows
a precise analytical solution to be obtained, and
the analytical results demonstrate that the
boundary effects on the photophoresis of an
aerosol particle can be significant in most
situations.

2. Analysis

This section considers the quasisteady
photophoretic motion of a sphelzical particle with
radius , and arbitrary thermal conductivity and
surface properties in a concentric spherical cavity
(or pore) with radius 4 filled with a gaseous
medium, as illustrated in Fig. 1. An incident
light is imposed on the particle in the ,
direction with intensity ; and the photophoretic
velocity of the particle is Ue,,» Where ¢
denotes the unit vector in the positive ,
direction.  The Knudsen numbers ;;, and
/(b -a) are assumed to be sufficiently small
that the fluid flow is in the continuum regime
and the Knudsen layers adjacent to the solid
The fluid is
allowed to slip, both thermally and frictionally,

surfaces are not overlapping.

and the temperature may jump on the solid
surfaces. The origin of the spherical coordinate
system (- 9 4) 1s set at the center of the
particle. This investigation aims to determine
the correction to Eq. (1) for the particle owing to
the presence of the cavity.

The Peclet number of this axisymmetric
problem is assumed to be small. Consequently,
the equation of energy governing the temperature
distribution T(r,0) for the fluid of constant
thermal conductivity j is the Laplace equation,
virT =9 (a<r<by (2)
The temperature distribution T, (r,0) inside the
radiation-absorbing particle is described by

1
V== 00n0)  (r<a), 3)
p

Fig. 1 . Geometrical sketch for the photophoretic motion of
a spherical particle in a concentric spherical cavity.

where kp denotes the thermal conductivity of
the particle and O(r,0) denotes the volumetric
thermal energy generation rate resulting from
local radiation absorption. For a plane
monochromatic wave, the source function
O(r,0) 1s related to the electric field E(r,6)
inside the particle according to the theory of
Lorenz-Mie [7, 18],

_4nuk I |E(r,0)) 4rvxl

o(r.0)
Ao |Eg|? Ao

B(,6)- (4

Here, ,, and 4 denote the real and imaginary
parts of the complex refractive index
(N =vp+ix) of the particle, E, Tepresents the
incident electric field strength, Ao is the
wavelength of the incident radiation, B(¢,0)
denotes the dimensionless electric field
distribution function, and C=rla.

The boundary conditions at the particle
surface (; =, ) require that the normal heat
fluxes be continuous and a temperature jump
occur which is proportional to the normal
temperature gradient [3]. Furthermore, the fluid
temperature at the cavity wall approaches the
bulk-gas temperature Ty which is a constant.
Thus,
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8T an
r=a: k—=k a9 5
or P o 2
T-T, _ctlﬂ (5b)

or
r=0: Tp is finite, (6)
r:b; T-_—'TO, (7)

where (. is the temperature jump coefficient
about the particle surface.

A sufficiently general solution to Egs. (2)
and (3) is

T=T, +— Z A =22 P (cos6) ®

T, T0+7c—Z[B " +8,(0)P,(cosb)s ©

P n=0

where

2rvka

Sn(o= 1
0
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w7 72 [ B, 0)P, (cosO) sind 6 di) (1)

P, denotes the Legendre polynomial of order

n>ad J-g/p.
immediately satisfies boundary conditions (6)

A solution of this form

and (7), and the unknown coefficients A, and
B, ar determined using the boundary
conditions at the particle surface.
Applying boundary conditions (5a) and (5b)
on the surface of the particle to Egs. (8) and (9)
obtains the following:
A = nS, ()-8, ,(11)
ak* + (41 40k CY+n(l—k" +k7CPy A2
B, =

S, A e n a4k st - A2+ A2 e+ 1)]5(12)
k" + D14k Cy+ (L= k" + k7 Chy 22

where
K=k, lk, (13a)
Ct=Clla, (13b)

and the prime on g (/) means differentiation
with respect to /. Notably the dimensionless

parameter k*C: denotes the relative resistance

caused by the temperature jump on the particle
surface with respect to heat conduction inside the
particle.

With knowledge of the solution for
temperature distribution, the flow field can now
be found. The fluid surrounding the particle is
assumed to be incompressible and Newtonian.
Meanwhile, owing to the low Reynolds number,
the fluid motion caused by the photophoretic
migration of the particle is governed by the
quasisteady fourth-order differential equation for
axisymmetric creeping flows,

E4w = E2(E*¥) =0, (14)

where y(r,g) 18 the Stokes stream function.
In spherical coordinates, the Stokesian operator
E2 is given by

a2 smH 0 1

5 (

2
E¢=—"_
6r2 2 06 sinf 060

) (15)

The stream function  is related to the , and

g components of the velocity field by

v, =— 21 Qli, (16a)
r®sing 00

0 = 1 9:},—. (16b)
rsiné or

Owing to the thermal and frictional slip
velocities along the solid-fluid interface, the
boundary conditions for the fluid velocity on the
particle surface are [19]
r=a: v,=Ucos@, (17a)
LGl

pTy 08

are the frictional and

. C
vp = —U51n0+%lrrg (17b)

Here, (C and
thermal slip coefficients, respectively, around the
surface of the particle, while - represents the

shear stress for the fluid flow,

o vg, 1ov,
T,p=n[r—()+— ,
ro =11 8r(r r 00

and 7 denotes the photophoretic velocity of

(13)

the particle to be determined. The derivative

oT/06 along the particle surface can be
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evaluated using the temperature distribution
given by Eq. (8). The validity of the expression
for the thermal slip velocity in Eq. (17b) is based
on the assumption that the fluid temperature is
only slightly nonuniform on the length scale of
Notably, the slip-flow

boundary condition is not only applicable in the

the particle radius.

continuum regime (I/a <<1), but also appears
valid even for some cases in the molecular flow
regime ( I/a>1)- Generally, the slip condition
becomes increasingly important for small
particles. Meanwhile, at the isothermal cavity
wall, the boundary conditions for the fluid are
r=b: v, =0, (19a)
vy =—M1r9, (19b)
n
where ém denotes the frictional slip coefficient
around the surface of the wall.
A solution to Eq. (14) suitable for satisfying
boundary conditions on the spherical surfaces is

[15]

¥ =(Cr~'+ Dr+ Er? + Fr*)sin? 0, (20)

where the constants (¢, p, E, and g are

determined based on Egs. (8), (16), (17) and (19).

The procedure is straightforward, with the result

C=a’w{2(1+3C) - 1-3C)A U

) (1a)
+34[2(1+3C ) - 30+ 2C )4 + 2,

D=-3aw{2[(1+2C5 )1+ 3Ch) - (1-3Cm)1~ 260 (21b)
+ 420+ 3Ch) - 52% + 30 =280 W,
E=of[9(1+2Cn )1 +2Ch)A - 545 40 -3Co)(1 -3¢0 (21c)

+34[3(1+ 2002 - 523 + 201 - 3CE)AC Wy,

F=-3a"20{[(1+2C;)A° - (1- 26550

(21d)
+ AA 301- 260040 +2(1-3¢2 )0 Wy,
where
*
Cm=Cpl/a, (22a)
Con=Cnlla, (22b)

V- 2Csn I
3ka 0
which is a characteristic migration velocity of the

1-2%, 23)

particle, and
@=[8(1+3Cq)(1 +3Cn) ~18(1+ 2C1 )1 + 26 )4 + 2043 (24)
= 18(1 = 2C 1 = 26p)A° +8(1-3Cpm )1 - 3G )27

Based on the above solution, the components of
the fluid velocity in this axisymmetric flow (with
vy =0) can be calculated using Eq. (16).

The coefficient 4 in Eq. (21) can be
calculated using the definition of Eq. (11),

A1= * * _* J] * * _* ’ (25)
24k +2k°C{ +(1-K" + kT CHA

where Ji denotes the so-called photophoretic

asymmetry factOl',
Jy= 6”;:)’“1 EKB(49)§3 cos fsin 8dBd¢ s 26)

which depends on the complex refractive index
(N =v +ix) and the normalized size (2ma/ Ag)
of the particle.

represents a weighted integration of the heat

The asymmetry factor

source function over the particle volume and
defines the sign of the
photophoretic force. If J; <0, the particle
light
photophoresis), while if J;>0> the particle

and magnitude

moves towards the beam (positive
moves away from the light beam (negative
photophoresis). For a completely opaque
heat

concentrated on the illuminated part of the

spherical particle the sources  are

particle surface, namely,

cos@5(( —1) for %sag @7)

2
B(,0)= UK .

>
where —1) is a Dirac delta function which
6(¢-1)

0 0<f<

equals infinity if ¢ =1 and vanishes otherwise.
Substituting Eq. (27) into Eq. (26) results in
J; =-1/2 given that

[s@8¢-vac=r2g0)

Obviously, the range of the asymmetry factor is
-1/2<J; <1/2. According to Eq. (1), the

25
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photophoretic velocity at illumination of an

intensity comparable with the solar constant

(1,353 Wm™2) is of the order of 107

ms™.
The drag force (in the z direction) exerted

by the fluid on the particle is [15]

Because the particle is freely suspended in the
fluid, the net force exerted by the fluid on the
particle must vanish; viz., D=0. Given this
constraint, Eq. (21b) yields the photophoretic
velocity of the particle,

U=—A[20+3C,) 52 +31-2C )]

@9

[20+2C7)(1+3C,) - 2A1-3C)A-2C )TV

This result is generated from the combined
effects of particle-cavity interactions on the

temperature and fluid velocity fields.
3. Results and Discussion

The analytical solutions of the temperature
and flow fields in the sphere-in-cavity system
and of the photophoretic velocity of the particle
have been obtained above. This migration

velocity can be expressed as

U=U1= )1+ GAY 1+ 20201+ 3C) - 54 +31-2C )71

. . 30

[21+2C,)(1+3C) - 20 - 3G, - 2C) AT, G0
where

U _ 2G5 Iyl G1)

3(1+200) 2+ +2KCkpTy
which expresses the photophoretic velocity of the
particle given by Eq. (1) in the limit A =0, and
IR IEY e

I
2+k +2k C

(32)

It can be found that —1<G <1/2. For a large
particle (l/a<<1) with k >>1, G—-1,

while for k << 1, G —>1/2. Finally, when
K =a-cH, G=0.

The normalized photophoretic velocity of the
aerosol sphere, U / u©® , as calculated from Eq.
(30), is plotted versus the separation parameter,
A, in Figs. 2 and 3 for various values of the
parameters K s C: , C,*Tl , and é; .
Obviously, U / v© equals unity in the limit
A=0 and decreases monotonically with
increasing A for any given values of K R C: s
C:n, and é:n Fig. 2 illustrates the results of
U/ U©® a5 a function of A for the case of
Cr=2C and k" =100 with Cp, and Cp,
as parameters. For the case of é;=/1 Cr*n (or
ém=Cm ), as displayed in Fig. 2(a), U/U(O) is
not necessarily a monotonic function of the slip
parameters C; and é‘; for a fixed value of
A. However, for the case of é;= 0, U / u©®
decreases monotonically with increasing C:n for
a given value of A, as illustrated in Fig. 2(b).
Examining Eq. (30), reveals that this tendency
between U/ U©® and C; also exists for all
values of %" other than 100.

The sphere-in-cavity solution for a parallel
problem concerning the sedimentation of an
aerosol sphere was presented by Keh and Chang
[20]. Different from the case of photophoresis,
the normalized particle mobility predicted in the
system of sedimentation increases monotonically
with an increase in C ;] for a constant value of
A. Also, the effect of the cavity wall on the
photophoresis of the particle is much weaker
The leading
order of this boundary effect is A ° for

than that on the sedimentation.

photophoretic motion, compared with the effect
of order A for sedimentation. The reason for
the weaker boundary effect on photophoresis is
that the disturbance to the fluid velocity field
caused by a photophoretic (or thermophoretic)
particle decays faster (as r_3) than that caused
by an aerosol particle moving under the

influence of a body force (as r! )[21].
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Fig. 2(a)
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Fig. 2. Plots of the normalized photophoretic velocity for a
spherical particle located at the center of a spherical cavity
100

. * A% * Ak
with Cm as a parameter: (a) Cm =1 Cm ; (b) Cm =
0.

as a function of J4 with C: :2C:n and k*=

The analytical results of U, / U@ a5 a function
of A with
Ct* :2C;:1 =0.2 (a typical representative case)
are plotted in Fig. 3, with k* and é;] as
parameters.

for an aerosol sphere

For a given value of A ,

1.0

U / U increases monotonically with increasing
k™. This behavior is predictable, given that the
temperature gradients on the particle surface near
a wall with a constant temperature increase with
the relative conductivity of the particle K.OA
comparison of Figs. 3(a) and 3(b) reveals that
U/ U@ increases with increasing of C‘; for
constant values of k¥ and A. Examining Eq.
(30) reveals that this trend of dependence of
U/ U@ on k" also exists for all values of
C; and Cp, .
relatively high conductivity reduces the local

Notably, a particle with a

temperature gradient (and thus, the thermal slip
effect) the the

photophoretic  velocity isolated

along particle
of
particle, U (0), is a monotonically decreasing
function of k" (and of C: and C;; ), as

predicted by Eq. (31).

surface,

an

4. Concluding Remarks

The photophoresis of a spherical particle in a
concentric spherical cavity filled with a gaseous
medium has been analyzed herein. The surface
properties, such as frictional slip coefficient, of
the particle and cavity are allowed to differ.
Based on the assumption of small Knudsen,
Peclet, and Reynolds numbers, the temperature
and fluid flow fields for this axisymmetric
motion are analytically solved and the particle
velocity is obtained in the closed-form
expression (30). This photophoretic velocity
decreases monotonically relative to its
undisturbed value with increasing ratio of
particle-to-cavity radii A and with decreasing
relative conductivity k= of the particle. The
analytical results demonstrate that the boundary
effect of the cavity wall on the photophoretic
motion of an aerosol particle can be significant in
certain circumstances. In practical aerosol
systems, the boundary effect of a particle on

photophoresis is obviously weaker than that on
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0.0
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Fig. 3(a)
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Fig. 3 Plots of the normalized photophoretic velocity for a
spherical particle located at the center of a spherical cavity
as a function of A with C: = ZC:;1 =().2 with k*
as a parameter: (a) é; =1 C; ; (b) C:ﬂ =(.

the particle motion driven by gravity.

As mentioned earlier, Eq. (30) is obtained based
on continuum model for the gas phase with a
slip-flow boundary condition on the particle
surface. For a perfect gas, the kinetic theory
predicts that the mean free path of the
gasmolecules is inversely proportional to the

pressure [22]. For example, the mean free path

1.0

of air molecules at 25 °C is approximately 67 nm
at 1 atm and is around 51 pm at 1 torr.
Therefore, the results obtained herein with
assuming a small Knudsen number can be used
for a broad range of particle sizes close to
atmospheric pressure, but are only applicable for

relatively large particles at low pressures.
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Nomenclature

a = particle radius (m)

A, , B, = coefficients in Egs. (8) and (9)

b =radius of the cavity (m)

B(.0) =
distribution function defined by Eq. (4)

C, D, E, F = coefficients in Eq. (20)
m*s~!, m2s~! 1

Cm > CAvm =

accounting for the frictional slip on the

dimensionless  electric  field

, ms °, m‘ls'l)

dimensionless coefficients

particle surface and cavity wall, respectively

C;l, é:n =Cpl/a and é'ml/a, respectively

C, = dimensionless coefficient accounting for
the thermal slip on the particle surface

C,; = dimensionless coefficient accounting for

the temperature jump on the particle surface

Ci=Cla
G = parameter defined by Eq. (32)
I = intensity of the incident light beam

(Wm™)
Jy = the photophoretic asymmetry factor of the
particle defined by Eq. (26)
k = thermal
(Wm™'K™
kp, = thermal

conductivity of the fluid

conductivity of the particle
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Wm™k1)

K =k, /k

! =mean free path of the gas molecules (m)

r = radial spherical coordinate (m)

S,(¢) = function of ¢ defined by Eq. (10)

T = temperature distribution in the fluid phase
X)

T, = temperature distribution inside the particle
X)

T, = temperature of the cavity wall (K)

U = photophoretic velocity of a particle
(ms™")

U = photophoretic velocity of an isolated
particle (m g1y

Vrs Vg, Vg = components of the fluid velocity
in spherical coordinates (m s_l)

V= characteristic velocity defined by Eq. (23)
(ms™)

z = coordinate in the direction of incident light

(m)
Greek Letters

{=rla

n = viscosity of the fluid (kgm~!s™1)

0, ¢ = angular spherical coordinates

A=alb

Ao = the wavelength of the incident light beam
(m)

v, x =real and imaginary parts of the complex
refractive index of the particle

p = density of the fluid (kg m~3)

y = Stokes stream function of the fluid flow
(m’s™")
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