
Cryptanalysis of Simpira

Christoph Dobraunig, Maria Eichlseder, and Florian Mendel

Graz University of Technology, Austria
maria.eichlseder@iaik.tugraz.at

Abstract. Simpira is a recently proposed family of permutations, based
on the AES round function. The design includes recommendations for
using the Simpira permutations in block ciphers, hash functions, or au-
thenticated ciphers. The security analysis is based on computer-aided
bounds for the minimum number of active S-boxes. We show that the
underlying assumptions of independence, and thus the derived bounds,
are incorrect. For family member Simpira-4, we provide differential trails
with only 40 (instead of 75) active S-boxes for the recommended 15
rounds. Based on these trails, we propose full-round collision attacks on
the proposed Simpira-4 Davies-Meyer hash construction, with complex-
ity 282.62 for the recommended full 15 rounds (truncated 256-bit hash
value), and complexity 2110.16 for 16 rounds (full 512-bit hash value).
These attacks violate the designers’ security claims that there are no
structural distinguishers below 2128.

Keywords: Simpira · permutation-based cryptography · cryptanalysis
· hash functions · collisions

1 Introduction

Simpira is a recently proposed family of permutations designed by Gueron and
Mouha [1]. The design goal is to provide very efficient permutations for arbi-
trarily large input sizes of b · 128 bits, b ∈ N+, while taking advantage of the
Intel AES-NI instruction set for optimized software implementations. To achieve
these goals, Simpira plugs the AES round function into a generalized Feistel
construction with provable security properties. Additionally, the designers pro-
vide computer-aided bounds for the minimum number of active S-boxes, and
argue that these bounds provide security against a wide range of attack vectors.
A number of application scenarios are suggested for the Simpira permutations,
including Even-Mansour block cipher constructions, or a keyless Davies-Meyer
variant with feedforward for hash functions with limited-length inputs.

Our contribution. We show that the underlying assumptions of independence,
and thus the derived bounds on the minimum number of active S-boxes, are
incorrect. We focus our analysis on family member Simpira-4 with its 512-bit
state, but similar observations also apply to other family members with larger
state sizes. For Simpira-4, we provide differential trails with only 40 (instead



of 75) active S-boxes for the recommended 15 rounds. Based on these trails,
we propose full-round collision attacks on the proposed Simpira-4 Davies-Meyer
hash construction. For 16 rounds of the permutation, we obtain collisions for the
full 512-bit hash output with complexity 2110.16. We also adapt the attack to the
originally recommended 15 rounds, providing 2nd-order collisions and truncated
collisions. We consider several truncation variants, and obtain, among others,
collisions on truncated 384-bit output with complexity 2110.16, or collisions on the
256-bit output with complexity 282.62 – the details depend on the implemented
truncation variant. These attacks violate the designers’ security claims that there
are no structural distinguishers below 2128.

Outline. We first describe the Simpira family of permutations in Sect. 2. We
then propose our attacks in Sect. 3, beginning with an iterative truncated differ-
ential trail with fewer S-boxes than expected in Sect. 3.1. In Sect. 3.2, we select
the bitwise differences of our truncated trail to obtain an 8-round differential
trail with probability 2−110.16. Based on this trail, we propose a collision attack
on the 16-round Simpira-4 hash construction in Sect. 3.3. Finally, in Sect. 3.4,
we adapt our attack to the recommended 15-round design.

2 Description of Simpira

Simpira is a family of permutations designed by Gueron and Mouha [1]. By using
the AES round function in a generalized Feistel construction, it can be adapted
to any input size of b · 128 bits, b ∈ N+. We refer to Simpira family members as
Simpira-b.

2.1 F -Function

The Feistel update function F = Fc,b applies two rounds of AES, where the
Simpira family member b and the round counter c define the round constants.
Like for AES, the 128-bit intermediate state of F is represented as a 4×4-matrix
of bytes, labelled s0, . . . , s15:

S =

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

s14

s15

.

We also refer to the value at byte position si in state S as S[i].
The operations SubBytes, ShiftRows, and MixColumns are defined identically

to AES, whereas AddConstant adds counters that define an invocation counter
and the value b:

– SubBytes (SB): Applies the 8-bit AES S-box S to each of the 16 state bytes.
– ShiftRows (SR): Rotates row i of the state, 0 ≤ i ≤ 3, by i bytes to the left.



– MixColumns (MC): Multiplies each byte column of the state by the MDS-
matrix M over K = F2[α]/(α8 + α4 + α3 + α+ 1),

M =


α α+ 1 1 1
1 α α+ 1 1
1 1 α α+ 1

α+ 1 1 1 α

 =


02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02


– AddConstant (AC): In the cth invocation of F for Simpira-b, xors the following

round constant Cc,b to the state:

Cc,b =

c0 b0 0 0
c1 b1 0 0
c2 b2 0 0
c3 b3 0 0

.

In the remaining paper, we focus on Simpira-4, so b0 = 04 and b1 = b2 =
b3 = 00. Also, since the number of invocations of F is limited to 30 in
Simpira-4, c1 = c2 = c3 = 00. This constant is only added in the first of the
two AES rounds of F , while the second round adds 0.

To refer to intermediate states of F for an input S, we use the following notation:

S
SB7−→ SSB1 SR7−→ SSR1 MC7−−→ SMC1 AC7−−→ SAC SB7−→ SSB2 SR7−→ SSR2 MC7−−→ SMC2 = F (S) .

2.2 Round Function and Permutation

The permutation Simpira-b keeps a state of b · 128 bits. The generalized Feistel
round function for b ≥ 4, where b 6= 6, 8, is illustrated in Fig. 1. The final output
of Simpira-b for b ≥ 4, b 6= 6, 8, is the state after 6b− 9 such rounds. Note that
if the number of rounds is not a multiple of b, the state words are output in a
permuted order to allow for more efficient implementations [2].

F F · · ·⊕ ⊕

Fig. 1. Round function of Simpira-b for b ≥ 4, b 6= 6, 8.

In case of Simpira-4, we denote the 4 state words before round i ≥ 1 by
SA
i , S

B
i , S

C
i , S

D
i , so the state update rule corresponds to

SA
i+1 = F2i−1,4(SA

i )⊕ SB
i ,

SB
i+1 = F2i,4(SD

i )⊕ SC
i ,

SC
i+1 = SD

i ,

SD
i+1 = SA

i .



The recommended number of rounds for Simpira-4 is 15, with output words
(SB

16, S
C
16, S

D
16, S

A
16) [2].

2.3 Permutation-based Hashing

Simpira’s designers identify several application areas for the Simpira permu-
tation, such as block ciphers via an Even-Mansour construction. One particu-
lar suggested application is permutation-based hashing for short inputs, where
“short” means the state size of any Simpira variant. The proposal is to use
a single-block, keyless Davies-Meyer-like construction with a feed-forward, and
compute the hash h(x) of x as

h(x) = Simpira-b(x)⊕ x.

This approach provides an efficident construction for hashing inputs of limited
length, which is required by many applications, such as Lamport signatures.

3 Collision Attacks on Simpira-4 Hash

In this section, we consider the variants Simpira-b where b ≥ 4, b 6= 6, 8. We
will focus in particular on Simpira-4, but the basic observations also apply to
the larger Simpira variants with the same construction approach. We show that
the number of rounds recommended by the designers is not sufficient to obtain a
secure permutation. In particular, we provide collisions for full-round Simpira-4
when used in the hash mode suggested by the designers.

3.1 Differential Trail with 40 Active S-Boxes over 15 Rounds

The analysis performed by Simpira’s designers [1] relies on two basic bounds:
full bit diffusion, and minimum number of active S-boxes. The recommended
number of rounds for each variant is selected as 3 times the number of rounds
necessary to prove full bit diffusion and a minimum number of 25 (differentially
or linearly) active S-boxes. While the proofs for full bit diffusion are based on
generic results on the underlying generalized Feistel construction by Yanagihara
and Iwata [4], the bounds for active S-boxes were obtained with a Mixed-Integer
Linear Programming (MILP) model. For Simpira-4, both full bit diffusion and
at least 25 active S-boxes are claimed to be provided by 5 rounds of the round
function. For the full number of 15 rounds, this method would imply at least 75
active S-boxes.

The bound is derived under the assumption that all F -function inputs are
processed independently. For example, if the F -functions were indeed indepen-
dent, the 4-round differential trail illustrated in Fig. 2 would contain 20 inde-
pendently active S-boxes. Since the trail is iterative, and adds 5 active S-boxes
per round, this trail also demonstrates the tightness of the 15-round bound.

However, for all instances of Simpira-b with b ≥ 4, b 6= 6, 8, this independence
is violated by the generalized Feistel construction, and the particular definition



R
1 SB

SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

SA
1 SB

1 SC
1 SD

1

R
3 SB

SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

SA
3 SB

3 SC
3 SD

3

R
2 SB

SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

SA
2 SB

2 SC
2 SD

2

R
4 SB

SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

SA
4 SB

4 SC
4 SD

4

SA
5 SB

5 SC
5 SD

5

Fig. 2. Iterative 4-round trail for Simpira-4 with 10 independently active S-boxes.

of F . Consider, for example, the inputs to the active F -functions in rounds 1
and 2, SA

1 and SD
2 . The input values to the two F -functions are identical. Recall

the definition of F = Fc,b, in our case F1,4 and F3,4. The only difference between
F1,4 and F3,4 is the round-constant addition at the end of the first AES round.
This means that the inputs and outputs of the S-boxes of the first AES round
must be identical, i.e., SA,MC1

1 = SD,MC1
2 . The round constant only differs in

state byte s0, so this means the S-box transitions in the second AES round will
also be identical except in s0. In fact, the outputs SA,MC2

1 of F1,4 an SD,MC2
2 of

F3,4 will have identical values except for the first column.
Considering the 4-round trail of Fig. 2, this means that the entire output

difference of F3,4 will be identical to that of F1,4 for free, as illustrated in Fig. 3.
Note that s0 is not active in the second AES round, and the differential behaviour
of MixColumns is independent of the absolute values of s0. Consequently, if we
fix all full-state differences to the same bitwise difference pattern, all single-byte
differences to the same difference pattern, and all columnwise differences to the
same difference pattern, the actual cost of the iterative trail of Fig. 2 is equivalent
to only 5 active S-boxes per 2 rounds, or 40 S-boxes overall for the recommended
15 rounds (about half as many as suggested by the MILP-based bound). In fact,
the MILP model can be adapted to take this into account (by counting only
the activity of the left-hand F -functions, and only S-box s0 for the right-hand
F -functions, except in the first round). With this modification, it is easy to prove
that 40 active S-boxes is a tight bound for 25 rounds. The minimum number of
rounds to achieve at least 25 active S-boxes is then 9, instead of 5.



SB SR MC AC

c

SB

c

SR

c

MC

c
c
c
c

Fig. 3. Trail for the F -function with 5 active S-boxes.

3.2 Collision Attack on 8 Rounds

We now want to use this iterative differential trail of Fig. 2 to find collisions for
the permutation-based hash construction suggested for Simpira permutations.
Recall that in this short-input Davies-Meyer construction, the b ·128-bit message
is used as input to the Simpira permutation, and finally added as a feed-forward
to the permutation output to produce the (untruncated) b · 128-bit hash value.
Our trail is incidentally very well suited to produce collisions for this feed-forward
construction. Observe that if we fix all state differences to the same patterns as
discussed in Sect. 3.1, the feed-forward will cancel out the message difference for
free for any number of rounds that is a multiple of b = 4.

To optimize the complexity of the collision attack, we need to fix the bitwise
difference patterns suitably. Recall that the AES S-box has maximum differential
probability 4

256 = 2−6. For each nonzero input difference, there is exactly one
output difference with this probability (and vice versa), while the other prob-
abilities are either 2

256 = 2−7 or 0. We can easily choose difference patterns so
that all S-box transitions have this optimal probability (at least for uniformly
random round constants). For example, if we fix the one-byte input difference to
75, the trail illustrated in Fig. 4 satisfies our requirements. The probability of
the differential for the F -function is then at least 2−30. Overall, the probability
of such an 8-round trail is at least 2−30·4 = 2−120, and the resulting complexity
for finding the 512-bit collision is at most 2120.


00 00 00 75

00 00 00 00

00 00 00 00

00 00 00 00

 SB7−→


00 00 00 fe

00 00 00 00

00 00 00 00

00 00 00 00


SR
MC
AC7−−→


00 00 00 e7

00 00 00 fe

00 00 00 fe

00 00 00 19

 SB7−→


00 00 00 f7

00 00 00 d8

00 00 00 d8

00 00 00 b7

 SR
MC7−−→


b7 d8 73 f5

b7 73 ab f7

c2 ab d8 f7

75 d8 d8 02


2−6 2−6·4

Fig. 4. Trail for the F -function with probability 2−30

Note that we are actually not interested in the probability of the trail within
the F -function, but just in the input-output differential (fixed 1-byte difference
to fixed 16-byte difference). The probability of this differential is typically higher
than that of the trail, since several different trails can contribute to the same
differential. In the case of 2-round AES, Keliher and Sui [3] proved that for a
random round constant, the probability of the differential in Fig. 4 is actually
2−30 + 74× 2−35 ≈ 2−28.272.



If we consider additionally that the round constant is not random, but in our
case fixed to (00, 00, 00, 00)> for the relevant state bytes, the transition probabil-
ities can increase even further. For example, the differential in Fig. 5 is satisfied
with probability 22 ·2−32 ≈ 2−27.54. With this differential, the probability of the
8-round trail is increased to 24·27.54 = 2−110.16.


00 00 00 40

00 00 00 00

00 00 00 00

00 00 00 00

 SB7−→


00 00 00 ??

00 00 00 00

00 00 00 00

00 00 00 00


SR
MC
AC7−−→


00 00 00 ??

00 00 00 ??

00 00 00 ??

00 00 00 ??

 SB7−→


00 00 00 2b

00 00 00 61

00 00 00 61

00 00 00 cd

 SR
MC7−−→


cd 61 a3 56

cd a3 c2 2b

4c c2 61 2b

81 61 61 7d


22 · 2−32 ≈ 2−27.54

Fig. 5. Differential for F -function with probability 2−27.54

3.3 Collision Attack on 16 Rounds

Since the permutation involves no round keys, we can try to satisfy the condi-
tions for some active F -functions with message modification. We will try to find
messages (or rather, initial structures for intermediate Simpira states) such that
the conditions for several rounds are satisfied for free, and append the previous
8-round trails of Sect. 3.2 to be satisfied probabilistically. We first propose a
simple initial structure covering 6 rounds, and then improve it to satisfy all con-
ditions over 8 rounds, thus extending the previous 8-round trail to a 16-round
trail with the same differential probability.

Initial structure for 6 rounds. It is sufficient to set the 4 bytes x1, x6, x11, x12
of a state SA

i to a suitable assignment in order to follow the trail for this F -
function deterministically. We will refer to these 4 bytes as the diagonal in the
following, and to a valid assignment as a valid diagonal. We can reuse one pre-
computed valid diagonal for all necessary diagonals.

We want to fix the values of the diagonals in SA
1 , SA

3 , and SA
5 to our valid

diagonal. Observe that SA
1 = SC

3 , and SA
3 = SC

5 . Thus, by fixing the diagonals
of SA

5 and SC
5 , we have already satisfied 2 F -trails. The remaining 12 + 16 + 12

bytes of SA
5 , S

B
5 , S

C
5 can be filled arbitrarily, which will immediately determine

the value of SD
3 and thus SD,MC2

3 . If we now set the diagonal of SC
3 to our valid

diagonal, and fill its remaining 12 bytes with arbitrary values, we completely
determine SD

5 (via SB
4 , SA

4 ), and thus complete the state after 4 rounds. By
varying the 52 arbitrary byte values, we can obtain the necessary 2110.16 candi-
dates to satisfy the 8-round trail. The approach is illustrated in rounds 1–6 of
Fig. 6, where and mark the 52 arbitrary bytes.



Improved initial structure for 8 rounds by matching diagonals. With
some additional effort, we can find initial structures that also satisfy the F -trail
in round 7. We will again initialize the values of SA

5 , S
B
5 , S

C
5 , S

C
3 as in the previous

6-round initial structure. However, we can use the 12 + 12 arbitrary bytes of SA
5

and SC
5 to obtain a valid diagonal in SA

7 . This will provide us with a 16-round
collision attack with the same computational complexity as the 8-round trail in
Sect. 3.2.

Our goal is to obtain a match between the diagonals of SD,MC2
5 and SA,MC2

6 ,
as illustrated in Fig. 6. If these two diagonals sum to zero, the diagonal of SA

7

will take the exact same value as that of SC
5 , which is the valid diagonal. For this

purpose, we want to initialize part of the initial structure to generate random
values in SA,MC2

6 , and independently a different part of the initial structure, to

independently get random values in SD,MC2
5 . Then, any match between the two

corresponds to an initial structure that satisfies 4 F -trails.

Assume that SC
3 and SB

5 are already fixed to some arbitrary constants (with

the valid diagonal in SC
3 ). We first use the free bytes of SA

5 to randomize SA,MC2
6 .

Any complete assignment of SA
5 will directly determine SA,MC2

6 via SA,MC2
5 and

SA
6 . We can assume the values are distributed reasonably close to uniformly

random, since the values are processed by 4 AES rounds, and only 4 input bytes
are fixed.

Independently, we can vary the 12 bytes of SC
5 to randomize the diagonal

of SD,MC2
5 . To see the independence of the values in SA

5 , consider the diago-

nal of SA,MC2
4 . Its values will always be identical to that of SD,MC2

5 , except for
the first column, which is influenced by the round constant and will be consid-
ered separately in a moment. Since the diagonals of SA

5 and SC
3 are fixed and

predetermined, these values can further be traced back right to SD,MC2
3 . Thus,

knowing the diagonal of SD,MC2
3 is equivalent to knowing the target diagonal of

SD,MC2
5 (except for 1 byte in s1). This equivalent diagonal is derived easily from

SC
5 , again by 4 AES rounds via SD

4 , S
D,MC2
4 , SC

4 .

Evaluating the missing match byte SD,MC2
5 [1]. Now we still need to ac-

count for the missing byte s1. Fortunately, with some minor modifications of our
guessing strategy, this value can also be computed directly from SD,MC2

3 . Instead
of varying all 12 arbitrary bytes of SA

5 to produce our matching candidates, we
will keep the first column (bytes s0, s2, s3) fixed. In fact, for simplicity, we will
set them to the exact same values as the first column of SC

3 :

SA
5 [0, . . . , 3] = SC

3 [0, . . . , 3].

This implies that the values of bytes s0, . . . , s3, s6, s11, s12 (first column and

diagonal) must be identical between SD,MC2
3 and SA,MC2

4 . By partially inverting
the last few steps of F , we can also easily verify that this means that

SD,AC
3 [0] = SA,AC

4 [0].



R
1 SB

SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

SA
1 SB

1 SC
1 SD

1

R
3 SB

SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

SA
3 SB

3 SC
3 SD

3

R
5 SB

SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

SA
5 SB

5 SC
5 SD

5

R
7 SB

SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

SA
7 SB

7 SC
7 SD

7

R
2 SB

SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

SA
2 SB

2 SC
2 SD

2

R
4 SB

SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

SA
4 SB

4 SC
4 SD

4

R
6 SB

SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

SA
6 SB

6 SC
6 SD

6

R
8 SB

SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

SA
8 SB

8 SC
8 SD

8

?
?
?

?

?
?
?

?

SA
9 SB

9 SC
9 SD

9

· · · 8 rounds, probability 2−110.16 · · ·

SA
17 SB

17 SC
17 SD

17

Fig. 6. 16-round collision attacks on Simpira-4 hash using 8-round initial structure.
fixed difference, valid diagonal, arbitrary bytes, matching inputs, ? match



To determine our target value s1 in SD,MC2
5 , consider a differential view of

the intermediate variables in the computations F (SA
4 ) and F (SD

5 ). The input
values are identical, but a difference in s0 is introduced by AddConstant. We are
interested in how this difference ∆SAC propagates to our target byte in ∆SMC2.
Since we only introduced a single-byte difference before the final MixColumns,
we get

∆SMC2[1] = 01 ·∆SSB2[0]

= S
(
SA,AC
4 [0]

)
⊕ S

(
SA,AC
4 [0]⊕∆SAC[0]

)
.

By using the previously established identities between F (SA
4 ) and F (SD

3 ), and
observing ∆SAC[0] = 07⊕ 0A = 0D, we finally obtain all our target match bytes

in SD,MC2
5 directly from F (SD

3 ):

SD,MC2
5 [1] = SA,MC2

4 [1]⊕∆SMC2[1]

= SA,MC2
4 [1]⊕ S

(
SA,AC
4 [0]

)
⊕ S

(
SA,AC
4 [0]⊕ 0D

)
= SD,MC2

3 [1]⊕ S
(
SD,AC
3 [0]

)
⊕ S

(
SD,AC
3 [0]⊕ 0D

)
,

SD,MC2
5 [6] = SD,MC2

3 [6],

SD,MC2
5 [11] = SD,MC2

3 [11],

SD,MC2
5 [12] = SD,MC2

3 [12].

Complexity of generating initial structures. Summarizing, we can now
generate a large number of initial structures as follows. First, fix the diagonals
in SC

3 and SC
5 to any valid diagonal. Fix all remaining bytes of SC

3 and SB
5 to

arbitrary values. Copy the valid diagonal and first column of SC
3 to SA

5 . Vary the

remaining 9 bytes of SA
5 , storing the resulting values of the diagonal of SA,MC2

6

in a list. Independently vary the 12 bytes of SC
5 , derive the diagonal of SD,MC2

5 ,
and store it in a second list. Any match between the two lists gives a valid initial
structure that follows the differential trail up to round 8.

If we only wanted one match on the 4 bytes of the diagonal, we could try
216 values each for SA

5 and SC
5 , and would expect roughly 22·16−32 = 1 match

due to the birthday effect. However, consider using 232 values each instead.
The expected number of 4-byte matches is roughly 22·32−32 = 232. Now we
evaluate the complexity for generating these 232 solutions. Computing the match
bytes requires to evaluate 2 · 2 · 232 = 234 F -functions. Since 16-round Simpira-
4 evaluates more than 16 = 24 F -functions, this corresponds to a complexity
of about 232−4 = 230 Simpira-4 evaluations. Thus, we were able to produce
solutions with amortized complexity less than 1. With this initial structure,
we obtain a 16-round collision with computational complexity about 24·27.54 =
2110.16. The memory requirements are only about 232 · 2 AES states.



3.4 Collision Attack on 15 Rounds with Truncation

In Sect. 3.3, we actually attacked more than the recommended number of 15
rounds for the Simpira-4. In the following, we discuss the applicability of the
analysis to the original 15-round design.

Permutation Distinguisher. Clearly, the 16-round trail of Fig. 6 also imme-
diately leads to a 15-round permutation distinguisher. With a computational
complexity of 2110.16, we can find pairs of inputs with a fixed input difference
such that the permutation outputs collide in 62 of 64 bytes (or in 510 of 512 bits,
since we use the 1-byte differences of Fig. 5). This property implies, for exam-
ple, second-order collisions for the hash construction with complexity 2 · 2110.16
(generic complexity at least about 2512/4 = 2128). This distinguisher violates the
security claims for Simpira-4.

Furthermore, if we impose no constraints on the active F -function in round
15 by allowing arbitrary constraints in SA,MC2

15 and thus in SA
16, we still get a

collision on at least 46 of 64 bytes (or in at least 382 of 512 bits), with a fixed
input difference. Then, only 3 active F -functions (in rounds 9, 11, and 13) need to
be satisfied probabilistically. The probability for this trail is 2−3·27.54 = 2−82.62.

Truncated Collisions. The trail no longer automatically leads to full-state
collisions for the hash construction, since the 2 active state words we get after
an odd number of rounds cannot cancel all 3 active state words at the input.
However, we can consider truncated versions of the hash construction. Since the
permutation-based Simpira-4 hash construction claims only 128-bit security, but
the state size is 512 bits, Simpira’s designers comment that “truncation of the
output of Simpira may be required [. . . ] to match the intended application”. An
obvious choice would be to truncate the state to 256 bits, so that the security
claim matches the generic bound. The details and complexity of the collision
attack then vary depending on the implementation of this truncation. Below, we
consider 3 natural choices for truncation.

Truncation Variant 1: Left/Right Half. The most intuitive choice is to
simply truncate to the right (or left) half of the final state. Consider the rightmost
256 bits. With the previous 16-round trail (Fig. 6 and 7a), the permutation of
the output words means that this conveniently corresponds to a hash output of

(SC
1 ⊕ SD

16, S
D
1 ⊕ SA

16) =
(

⊕ , ⊕
)

=
(

,
)
.

In fact, we can extend this to collisions up to the rightmost 384 bits if we just shift
our iterative trail down by 1 round, as illustrated in Fig. 7b. The probabilistic
part of the trail is then moved to rounds 1 (input SD

1 ) and rounds 10, 12, and 14
(inputs SA). For the same complexity of 2110.16, we get a 384-bit hash collision
of the output

(SB
1 ⊕ SC

16, S
C
1 ⊕ SD

16, S
D
1 ⊕ SA

16).



SA
1 SB

1 SC
1 SD

1

· · · 8 rounds initial structure + 7 rounds with probability 2−110.16 · · ·

SA
16 SB

16 SC
16 SD

16

SB
16 SC

16 SD
16 SA

16

256-bit hash (variant 1)

256-bit hash (variant 3)

(a) Truncation variants 1 and 3: 256-bit collisions with complexity 2110.16

SA
1 SB

1 SC
1 SD

1

· · · 1 round (2−27.54) + 8 rounds initial structure + 6 rounds (2−3·27.54) · · ·

SA
16 SB

16 SC
16 SD

16

SB
16 SC

16 SD
16 SA

16

384-bit hash (variant 1)

(b) Truncation variant 1: 384-bit collisions with complexity 2110.16

SA
1 SB

1 SC
1 SD

1

· · · 8 rounds initial structure + 6 rounds with probability 2−82.62 · · ·

R
1
5 SB

SR
MC

?
?
?
?

AC
SB
SR
MC

? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

SB
SR
MC

AC
SB
SR
MC

SA
15 SB

15 SC
15 SD

15

? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

SA
16 SB

16 SC
16 SD

16

? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

SB
16 SC

16 SD
16 SA

16

256-bit hash (variant 2)

(c) Truncation variant 2: 256-bit collisions with complexity 282.62

Fig. 7. Collisions for truncated 15-round Simpira-4 hash.



Truncation Variant 2: Every Second Word. Assume the truncation func-
tion selects every second word, that is, the 256-bit hash output is

(SA
1 ⊕ SB

16, S
C
1 ⊕ SD

16).

Then, we can even take advantage of the improved permutation distinguisher
with complexity 282.62, as in Fig. 7c.

Truncation Variant 3: Updated Words. In the previous truncation variants,
we took advantage of the fact that the output of one of the last round’s two F -
functions was truncated. Consequently, another good candidate for a truncation
function is to select exactly the words that the depend on the last round’s F -
outputs, SA

16 and SB
16, so the hash output is

(SA
1 ⊕ SB

16, S
D
1 ⊕ SA

16).

Nevertheless, the trail of Fig. 7a still provides hash collisions with complexity
2110.16.

Acknowledgments. We thank the Simpira designers Shay Gueron and Nicky
Mouha for verifying our results and providing useful suggestions.

References

1. Gueron, S., Mouha, N.: Simpira: A family of efficient permutations using the AES
round function. Cryptology ePrint Archive, Report 2016/122 (2016), http://ia.
cr/2016/122

2. Gueron, S., Mouha, N.: Simpira reference implementation. Private communication
(2016)

3. Keliher, L., Sui, J.: Exact maximum expected differential and linear probability for
two-round Advanced Encryption Standard. IET Information Security 1(2), 53–57
(2007), http://ia.cr/2005/321

4. Yanagihara, S., Iwata, T.: Type 1.x generalized Feistel structures. IEICE Transac-
tions 97-A(4), 952–963 (2014)

http://ia.cr/2016/122
http://ia.cr/2016/122
http://ia.cr/2005/321

	Cryptanalysis of Simpira

