
On the Key Dependent Message Security of
the Fujisaki-Okamoto Constructions ⋆

Fuyuki Kitagawa1,2, Takahiro Matsuda2,
Goichiro Hanaoka2, and Keisuke Tanaka1

1 Tokyo Institute of Technology, Tokyo, Japan
{kitagaw1,keisuke}@is.titech.ac.jp

2 National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
{t-matsuda,hanaoka-goichiro}@aist.go.jp

Abstract. In PKC 1999, Fujisaki and Okamoto showed how to convert any public key encryption
(PKE) scheme secure against chosen plaintext attacks (CPA) to a PKE scheme which is secure against
chosen ciphertext attacks (CCA) in the random oracle model. Surprisingly, the resulting CCA secure
scheme has almost the same efficiency as the underlying CPA secure scheme. Moreover, in J. Cryptology
2013, they proposed the more efficient conversion by using the hybrid encryption framework.
In this work, we clarify whether these two constructions are also secure in the sense of key dependent
message security against chosen ciphertext attacks (KDM-CCA security), under exactly the same as-
sumptions on the building blocks as those used by Fujisaki and Okamoto. Specifically, we show two
results: Firstly, we show that the construction proposed in PKC 1999 does not satisfy KDM-CCA se-
curity generally. Secondly, on the other hand, we show that the construction proposed in J. Cryptology
2013 satisfies KDM-CCA security.

Keywords: public key encryption, key dependent message security, chosen ciphertext security.

⋆ An extended abstract of this paper appears in the proceedings of PKC 2016. This is the full version.

Table of Contents

1 Introduction . 3
1.1 Background and Motivation . 3
1.2 Our Results . 3
1.3 Outline of the Paper . 4
1.4 Related Work . 5

2 Preliminaries . 5
2.1 Notations . 5
2.2 Public Key Encryption . 6
2.3 Symmetric Key Encryption . 8

3 Fujisaki-Okamoto Construction (PKC’99) Does Not Satisfy KDM Security in General . . . 9
4 KDM-CCA Security of Fujisaki-Okamoto Construction (J. Cryptology’13) 11
5 Overview of Our Techniques . 12
6 KDM-CPA Security of Hybrid Encryption . 15
7 Proof of Theorem 4 . 21
A The proof of Lemma 1 . 29
B The Definitions of IND-CPA security and IND-CCA security for Public Key Encryption . 31
C Proofs of Lemmas 7, 9, and 10 . 31

1 Introduction

1.1 Background and Motivation

Security against chosen ciphertext attacks (CCA) has been considered as a desirable security notion
for public key encryption (PKE) schemes. In order to take adversaries who mount active attacks
into consideration, it is desirable that PKE schemes satisfy CCA security. Moreover, since CCA
security implies non-malleability [18, 7], it is considered that CCA security is strong enough for many
applications. Therefore, many standardization bodies for public key cryptography judge whether
they include a PKE scheme or not mainly based on whether the scheme satisfies CCA security [28].

On these backgrounds, it has been widely studied how to construct a practical CCA secure PKE
scheme [10, 19–21, 26]. Among them, the constructions proposed by Fujisaki and Okamoto [19, 21]
are one of the most famous constructions. In [19], Fujisaki and Okamoto showed how to convert any
PKE scheme secure against chosen plaintext attacks (CPA) to a PKE scheme which is CCA secure
in the random oracle model. Surprisingly, the resulting CCA secure scheme has almost the same
efficiency as the underlying CPA secure scheme. Moreover, in [21], they proposed the more efficient
conversion by using the hybrid encryption framework. EPOC (Efficient PrObabilistiC public-key
encryption) that is one of the concrete instantiations of [19, 21] has been included by IEEE p1363a
[1], as it has high practicality, and moreover, its security can be strictly analyzed.

CCA security has been considered as a standard security notion, but it has recently come to
light that there are many situations where even CCA security may not guarantee confidentiality of
communication. One typical example is situations where secret keys are encrypted in the system.
It is known that there is an encryption scheme which is totally insecure when an adversary can get
an encryption of secret keys, even though the scheme satisfies CCA security [16].

Black, Rogaway, and Shrimpton [11] introduced a security notion called key dependent message
(KDM) security which guarantees confidentiality even in the situation of encrypting secret keys.
(Around the same time, Camenisch and Lysyanskaya [15] independently formalized a similar notion
called circular security.) It is widely known that when an encryption scheme is used as a building
block of complicated systems, encrypting secret keys can often occur. Hard disk encryption systems
(e.g., BitLocker [11]) and anonymous credential systems [15] are known as such examples. In addi-
tion, from the perspective of symbolic cryptography, KDM security is also important [2, 3]. From
these facts, we consider that KDM security against chosen ciphertext attacks, that is, KDM-CCA
security is one of the desirable security notions for practical encryption schemes.

Since CCA security is regarded as a desirable security notion, the security of standardized PKE
schemes has been analyzed only in the sense of CCA security. Therefore, it is not clear whether these
schemes remain secure even when an adversary can get an encryption of secret keys. In modern
society where encryption schemes can be used as a building block of complicated systems, and can
encrypt secret keys, it is very important to clarify whether standardized schemes are secure also in
the sense of KDM-CCA security.

1.2 Our Results

Based on this motivation, in this paper, we clarify whether the constructions proposed by Fujisaki
and Okamoto [19, 21] satisfy KDM-CCA security 3 under exactly the same assumptions on the

3 When we refer to “KDM security”, unless stated otherwise, we mean KDM security with respect to any polynomial
time computable functions. For the details, see Remark after Definition 4 in Section 2.2.

building blocks as those used in [19, 21], and show two results. 4 Firstly, we show that the construc-
tion of [19] (which we call FO1) does not satisfy KDM-CCA security generally. Secondly, on the
other hand, we show that the construction of [21] (which we call FO2) satisfies KDM-CCA security.
More specifically, we prove the following two theorems.

Theorem 1 (Informal). Assume that there exists an IND-CPA secure and smooth PKE scheme.
Then, there exists an IND-CPA secure and smooth PKE scheme Π such that the PKE scheme
FO1 does not satisfy KDM-CPA security in the random oracle model, where FO1 is constructed by
applying the conversion of [19] to Π.

Theorem 2 (Informal). Let Π be a OW-CPA secure and smooth PKE scheme, Σ be a OT-CPA
secure symmetric key encryption scheme, and FO2 be the PKE scheme which is constructed by
applying the conversion of [21] to Π and Σ. Then, FO2 satisfies KDM-CCA security in the random
oracle model.

We note that smoothness is a security notion for PKE schemes introduced by Bellare et al. [9],
and essentially equivalent to γ-uniformity which is used in [19, 21]. We review the definition of
smoothness in Section 2.

We think it is theoretically very interesting that the construction of [19] does not necessarily
satisfy KDM-CCA security, and on the other hand, that of [21] satisfies KDM-CCA security, even
though these two constructions are closely related. In addition, due to Theorem 2, we can construct
various practical KDM-CCA secure PKE schemes in the random oracle model, by applying the
construction of [21] to existing OW-CPA secure PKE schemes and OT-CPA secure symmetric key
encryption (SKE) schemes.

The standardized PKE schemes EPOC-1 and EPOC-2 are respectively instantiated by applying
the conversion of [19] and [21] to the PKE scheme proposed by Okamoto and Uchiyama [27]. We
note that the counter-example we show in the proof of Theorem 1 does not capture the PKE scheme
of [27]. Therefore, it is not the case that Theorem 1 states that EPOC-1 is insecure in the sense
of KDM security. On the other hand, due to Theorem 2, we can immediately see that EPOC-2 is
KDM-CCA secure in the random oracle model.

1.3 Outline of the Paper

In Section 1.4, we review the previous works on KDM secure PKE schemes. In Section 2, we review
the definitions of the primitives and the security notions that we use in this paper. Then, in Section
3, we prove Theorem 1. In the subsequent sections, we tackle Theorem 2. Our idea for proving
Theorem 2 is simple, but the proof of Theorem 2 might look somewhat complicated. Thus, after
reviewing the construction of FO2 and showing the statement of the main theorem about FO2 in
Section 4, in Section 5, we first explain the difficulty which we encounter when trying to prove
the KDM security of a hybrid encryption scheme whose key derivation function is regarded as a
random oracle. Moreover, in order to help the reader understand the proof of Theorem 2, in Section
6, we also show that the hybrid encryption scheme whose key derivation function is a random oracle
satisfies KDM-CPA security in the random oracle model, if the underlying PKE scheme and SKE
scheme satisfy OW-CPA security and OT-CPA security, respectively. Since the construction can
roughly be seen as a simplification of FO2, we believe the proof is relatively easy to understand
than that of Theorem 2. Finally, in Section 7, we prove Theorem 2.
4 Actually, the construction of [21] is based on that of [20]. In this work, we concentrate on the construction of [21].

1.4 Related Work

Backes et al. [6] showed that RSA-OAEP is secure in the sense of KDM security in the random
oracle model. More specifically, they defined a security notion called adKDM security which takes
adaptive corruptions and arbitrary active attacks into consideration, and showed that OAEP is
adKDM secure in the random oracle model if the underlying trapdoor permutation satisfies partial
domain one-wayness. Recently, Davies and Stam [17] studied KDM security of hybrid encryption in
the random oracle model. (Since the construction treated in [17] is associated with the construction
of FO2, we later refer to their work in detail in Section 5.)

Boneh et al. [12] constructed the first KDM secure PKE scheme in the standard model under the
decisional Diffie-Hellman (DDH) assumption. Their scheme is KDM secure relative to the family
of affine functions (affine-KDM secure, for short) which is a comparatively simple function family.
Informally, a PKE scheme is said to be KDM secure relative to a function family F if the scheme
remains secure even when an adversary can get an encryption of f(sk), where sk is the secret
key and f is an arbitrary function belonging to F . Also, affine-KDM secure schemes were later
constructed under the learning with errors (LWE) [5], quadratic residuosity (QR) [13], decisional
composite residuosity (DCR) [13, 25], and learning parity with noise (LPN) [5] assumptions.

Boneh et al.’s scheme is KDM secure only in the CPA setting, and thus how to construct a
KDM-CCA secure scheme remained open. Camenisch et al. [14] later showed how to construct a
KDM-CCA secure scheme using a KDM-CPA secure scheme and a non-interactive zero-knowledge
(NIZK) proof system for NP languages as building blocks. Recently, Hofheinz [22] showed the
first construction of a circular-CCA secure scheme whose security can be directly proved based on
number theoretic assumptions.

Applebaum [4] showed how to construct a PKE scheme which is KDM secure relative to func-
tions computable by a-priori bounded polynomial time, based on a PKE scheme which is KDM
secure relative to a simple function family called projection functions. We note that the result of
Applebaum works in both of the CPA and the CCA settings. Bellare et al. [8] showed a similar re-
sult that works only in the CPA setting but is more efficient than Applebaum’s. Recently, Kitagawa
et al. [23] also showed a more efficient result than Applebaum’s, which works in the CCA setting.
In addition, Kitagawa et al. [24] showed how to expand the plaintext space of a PKE scheme which
is KDM secure relative to projection functions, without using any other assumption.

2 Preliminaries

In this section we define some notations and cryptographic primitives.

2.1 Notations

x
r←− X denotes choosing an element from a finite set X uniformly at random, and y ← A(x; r)

denotes assigning y to the output of an algorithm A on an input x and a randomness r. When
there is no need to write the randomness clearly, we omit it and simply write y ← A(x). For strings
x and y, x∥y denotes the concatenation of x and y. λ denotes a security parameter. A function
f(λ) is a negligible function if f(λ) tends to 0 faster than 1

λc for every constant c > 0. We write
f(λ) = negl(λ) to denote f(λ) being a negligible function. PPT stands for probabilistic polynomial
time. [ℓ] denotes the set of integers {1, · · · , ℓ}. MSBn(x) denotes the first n bits of x. ∅ denotes the
empty set.

2.2 Public Key Encryption

In this subsection we define public key encryption (PKE).

Definition 1 (Public key encryption). A PKE scheme Π is a three tuple (KG,Enc,Dec) of
PPT algorithms.

– The key generation algorithm KG, given a security parameter 1λ, outputs a public key pk and a
secret key sk.

– The encryption algorithm Enc, given a public key pk and a message m ∈M, outputs a ciphertext
c, whereM is the plaintext space of Π.

– The decryption algorithm Dec, given a secret key sk and a ciphertext c, outputs a message
m̃ ∈ {⊥} ∪M. This algorithm is deterministic.

Correctness We require Dec(sk ,Enc(pk ,m)) = m for every m ∈M and (pk , sk)← KG(1λ).

Next, we define one-wayness against chosen plaintext attacks (OW-CPA security) for PKE
schemes. KDM security, which we define in this subsection, considers situations where there are
many users, and thus KDM security is defined via a security game where there are many keys and
an adversary can make many challenge queries. Therefore, for our purpose, it is useful to consider
the following one-wayness in the multi-user setting. Specifically, we use a security notion which we
call List-OW-CPA security. In the security game of List-OW-CPA security, there are many keys,
and an adversary can make multiple encryption queries and outputs a list of candidate plaintexts
in the final phase.

Definition 2 (List-OW-CPA security). Let Π be a PKE scheme whose message space is M,
and ℓ be the number of keys. We define the List-OW-CPA game between a challenger and an
adversary A as follows.

Initialization First, the challenger generates ℓ key pairs (pk j , sk j)← KG(1λ)(j = 1, · · · , ℓ). Then,
the challenger sends (pk1, · · · , pkℓ) to A. Finally, the challenger sets Lenc = ∅.
A may make polynomially many encryption queries.

Encryption queries j ∈ [ℓ], where j is an index of a key. The challenger generates m
r←−M and

computes c← Enc(pk j ,m). Then, the challenger adds m to Lenc and returns c to A.
Final phase A outputs Lans which is a set of plaintexts. (We require the size of Lans to be bounded

by some polynomial of λ.)

In this game, we define the advantage of the adversary A as follows.

Advlowcpa
Π,A,ℓ (λ) = Pr[Lenc ∩ Lans ̸= ∅]

We say that Π is List-OW-CPA secure if for any PPT adversary A and polynomial ℓ = ℓ(λ), we

have Advlowcpa
Π,A,ℓ (λ) = negl(λ).

A OW-CPA secure PKE scheme Π is also List-OW-CPA secure. Formally, the following lemma
holds. We provide the definition of OW-CPA security and the proof of Lemma 1 in Appendix A.

Lemma 1. Let Π be a OW-CPA secure PKE scheme. Then, Π is also List-OW-CPA secure.

Next, we define KDM-CPA security and KDM-CCA security for PKE schemes.

Definition 3 (KDM-CPA security). Let Π be a PKE scheme and ℓ be the number of keys. We
define the KDM-CPA game between a challenger and an adversary A as follows. In the following,
sk denotes (sk1, · · · , sk ℓ).

Initialization First, the challenger chooses a challenge bit b
r←− {0, 1}. Next, the challenger gen-

erates ℓ key pairs (pk j , sk j)← KG(1λ)(j = 1, · · · , ℓ) and sends (pk1, · · · , pk ℓ) to A.
A may adaptively make polynomially many KDM queries.

KDM queries (j, f), where j is a key index and f is a function. Here, f needs to be efficiently
computable. If b = 1 then the challenger returns c← Enc(pk j , f(sk)); If b = 0 then the challenger

returns c← Enc(pk j , 0
|f(·)|).

Final phase A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as follows.

Advkdmcpa
Π,A,ℓ (λ) = |Pr[b = b′]− 1

2
|

We say that Π is KDM-CPA secure if for any PPT adversary A and polynomial ℓ = ℓ(λ), we

have Advkdmcpa
Π,A,ℓ (λ) = negl(λ).

By permitting the adversary to make decryption queries, we can analogously define KDM-CCA
security.

Definition 4 (KDM-CCA security). Let Π be a PKE scheme and ℓ be the number of keys.
We define the KDM-CCA game between a challenger and an adversary A in the same way as the
KDM-CPA game except that A is allowed to adaptively make decryption queries. In the initialization
step of the KDM-CCA game, the challenger first runs in the same way as the KDM-CPA game,
and then, prepares the KDM query list Lkdm into which pairs of the form (j, c) will be stored, where
j is an index and c is a ciphertext, and which is initially empty. When A makes a KDM query
(j, f), the challenger computes the answer c and adds (j, c) to Lkdm. A is not allowed to make a
decryption query (j, c) which is contained in Lkdm.

Decryption queries (j, c) /∈ Lkdm, where j is a key index and c is a ciphertext. For this query,
the challenger returns m← Dec(sk j , c).

In this game, we define the advantage Advkdmcca
Π,A,ℓ (λ) of the adversary A analogously to that in

the KDM-CPA game. Then, Π is said to be KDM-CCA secure if for any PPT adversary A and
polynomial ℓ = ℓ(λ), we have Advkdmcca

Π,A,ℓ (λ) = negl(λ).

Remarks. Black et al. [11] first defined KDM security. In their paper, they made an assumption
that functions which the adversary queries in the security game are length-regular. A function f
is said to be length-regular if the output length of f(sk) does not depend on the value of sk, and
thus we can uniquely determine the length of f(sk) only from f . In this paper, we also impose the
length-regularity of functions which the adversary queries in the security game.

In the KDM-CPA game and KDM-CCA game in the random oracle model, the adversary is
allowed to make hash queries to the random oracle. Moreover, it is more appropriate to permit a
function which the adversary queries as a KDM query (KDM function) to access to the random
oracle, in order to capture more various situations. Actually, Black et al. used the definition which

allows KDM functions to access to the random oracle. Therefore, similarly to the definition of Black
et al., we allow a KDM function to access to the random oracle.

We also note that IND-CPA security is a special case of KDM-CPA security. More specifically,
we can define IND-CPA security by restricting functions an adversary can query as a KDM query
in the KDM-CPA game to all of constant functions. Similarly, IND-CCA security is a special case
of KDM-CCA security. We provide the ordinary definitions of IND-CPA security and IND-CCA
security in Appendix B

Usually, KDM security is defined with respect to a function family F . F-KDM security is
defined by restricting KDM functions used by an adversary to functions belonging to F . In this
paper, unless stated otherwise, we allow an adversary to query arbitrary function computable in
polynomial-time in the security game, and we omit to write a function family.

Next, we review a security notion for PKE schemes called smoothness [9]. Informally, a PKE
scheme is said to be smooth if the number of possible ciphertexts is super-polynomially large for any
message. We note that many known PKE schemes secure in the sense of indistinguishability have
smoothness unconditionally, but it is not the case that every IND-CPA or IND-CCA secure PKE
scheme is smooth. However, we can easily transform any non-smooth PKE scheme to a smooth one.
Fujisaki and Okamoto [19, 21] proved the security of their scheme via a property called γ-uniformity.
γ-uniformity is a slightly stronger security notion than smoothness in the sense that it considers
maximum also over all public keys, but these two notions are essentially the same.

Definition 5 (Smoothness [9]). Let Π be a PKE scheme. For λ ∈ N, we define Smth as follows.

Smth(λ) = E(pk ,sk)←KG(1λ)

[
max
m,c′

Pr
c←Enc(pk ,m)

[c = c′]

]
We say that Π is smooth if we have Smth(λ) = negl(λ).

We note that Definition 5 is essentially equivalent to the security notion defined via the following
game played by a challenger and an adversary A.

Initialization The challenger generates ℓ key pairs (pk j , sk j) ← KG(1λ)(j = 1, · · · , ℓ) and sends
((pk1, sk1), · · · , (pk ℓ, skℓ)) to A.

Final phase A outputs (j,m, c′), and the challenger computes c← Enc(pkj ,m).

In this game, we define the advantage of the adversary A as follows.

Advsmth
Π,A,ℓ(λ) = Pr[c = c′]

Then, it is straightforward to see that for any computationally unbounded adversary A and
polynomial ℓ = ℓ(λ), we have Advsmth

Π,A,ℓ(λ) ≤ ℓ · Smth(λ). Therefore, if Smth(λ) is negligible, so is

Advsmth
Π,A,ℓ(λ) for any computationally unbounded adversary A and polynomial ℓ = ℓ(λ).

2.3 Symmetric Key Encryption

In this subsection we define symmetric key encryption (SKE).

Definition 6 (Symmetric key encryption). A SKE scheme Σ is a two tuple (E,D) of PPT
algorithms.

– The encryption algorithm E, given a key K ∈ {0, 1}λ and a message m ∈M, outputs a ciphertext
c, whereM is the plaintext space of Σ.

– The decryption algorithm D, given a key K and a ciphertext c, outputs a message m̃ ∈ {⊥}∪M.
This algorithm is deterministic.

Correctness We require D(K,E(K,m)) = m for every m ∈M and K ∈ {0, 1}λ.

Next, we review the definition of indistinguishability against one-time chosen plaintext attacks
(OT-CPA security) for SKE schemes.

Definition 7 (OT-CPA security). Let Σ be a SKE scheme whose message space is M. We
define the OT-CPA game between a challenger and an adversary A as follows.

Initialization First the challenger chooses a challenge bit b
r←− {0, 1}. Next the challenger generates

a key K
r←− {0, 1}λ and sends 1λ to A.

Challenge A selects two messages m0 and m1 of equal length, and sends them to the challenger.
Then the challenger returns c← E(K,mb).

Final phase A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as follows.

AdvotcpaΣ,A (λ) = |Pr[b = b′]− 1

2
|

We say that Σ is OT-CPA secure if for any PPT adversary A, we have AdvotcpaΣ,A (λ) = negl(λ).

3 Fujisaki-Okamoto Construction (PKC’99) Does Not Satisfy KDM Security
in General

Fujisaki and Okamoto [19] showed how to transform any IND-CPA secure (and smooth) PKE
scheme to an IND-CCA secure one by using a random oracle. The resulting scheme has almost
the same efficiency as the underlying scheme. In this section, although their construction satisfies
IND-CCA security, we show that their construction generally does not satisfy KDM security. In
the following, we first review the construction of [19], and then we show our negative result.

Let Π = (KG,Enc,Dec) be a PKE scheme, and H : {0, 1}∗ → {0, 1}n be a hash function, where
n = n(λ) is a polynomial. Then, we construct a PKE scheme FO1 = (KGFO1,EncFO1,DecFO1) as
described in Fig. 1. Here, we assume that the plaintext space of Π is {0, 1}∗, and thus that of FO1

is also {0, 1}∗. In addition, let the randomness spaces of Enc and EncFO1 be both {0, 1}n.
In the above construction, Fujisaki and Okamoto showed that if Π is IND-CPA secure and

smooth, and H is a random oracle, then FO1 is IND-CCA secure in the random oracle model.
However, as mentioned above, we show that FO1 does not satisfy KDM-CPA security generally
under the same assumptions. Formally, we show the following theorem.

Theorem 3. Assume that there exists an IND-CPA secure and smooth PKE scheme. Then, there
exists an IND-CPA secure and smooth PKE scheme Π such that FO1 does not satisfy KDM-CPA
security in the random oracle model.

KGFO1(1
λ) :

(pk , sk)← KG(1λ)
return (pk , sk)

EncFO1(pk ,m) :
r ← {0, 1}n
R← H(m∥r)
c← Enc(pk ,m∥r;R)
return c

DecFO1(sk , c) :
m∥r ← Dec(sk , c)
if m∥r = ⊥
return ⊥

else
R← H(m∥r)
if c ̸= Enc(pk,m∥r;R)
return ⊥

else
return m

Fig. 1. The construction [19] of an IND-CCA secure PKE scheme FO1 = (KGFO1,EncFO1,DecFO1) from a PKE scheme
Π = (KG,Enc,Dec) which is IND-CPA secure and smooth, and a hash function H.

KG(1λ) :

sk
r←− {0, 1}s

(p̂k, ŝk)← K̂G(1λ; sk)

pk ← p̂k
return (pk, sk)

Enc(pk ,m) :

c← Ênc(pk,m)

(pk′, sk′)← K̂G(1λ;MSBs(m))
if pk = pk′

return 1∥c
else
return 0∥c

Dec(sk, p∥c) :
(p̂k, ŝk)← K̂G(1λ; sk)

m← D̂ec(ŝk, c)
return m

Fig. 2. The construction of a PKE scheme Π = (KG,Enc,Dec) which is IND-CPA secure and smooth but not

KDM-CPA secure from an IND-CPA secure and smooth PKE scheme Π̂ = (K̂G, Ênc, D̂ec).

Proof of Theorem 3. This proof consists of two steps. In the first step, using any IND-CPA secure
and smooth PKE scheme, we construct a PKE scheme which is still IND-CPA secure and smooth,
but insecure in the sense of KDM security. Then, in the second step, we show that the PKE scheme
which is constructed by applying the conversion of [19] to the PKE scheme we construct in the first
step, also does not satisfy KDM-CPA security. In the following, we start with the first step.

Let Π̂ = (K̂G, Ênc, D̂ec) be any IND-CPA secure and smooth PKE scheme. Without loss of gen-

erality, we assume that the plaintext space of Π̂ is {0, 1}∗, and the randomness space of K̂G is {0, 1}s
for some polynomial s = s(λ). Then, using Π̂, we construct a PKE scheme Π = (KG,Enc,Dec) as
described in Fig. 2.

It is clear that if Π̂ is IND-CPA secure and smooth, then Π satisfies the same security notions.
The reason is as follows. In the IND-CPA game regarding Π, since a PPT adversary can find the
randomness that was used to run K̂G with negligible probability, when the challenger generates the
challenge ciphertext, Enc outputs a ciphertext whose first bit is 1 with negligible probability. Thus,
if Π̂ satisfies IND-CPA, then so is Π. Moreover, regardless of the plaintext, a ciphertext output by
Enc includes a ciphertext output by Ênc itself, and thus Π is smooth if so is Π̂. On the other hand,
Π does not satisfy KDM-CPA security. In order to show it, we consider the following adversary A
which attacks the KDM-CPA security of Π. For simplicity, we consider the case where only one
key pair exists. On input pk, A queries the identity function id, gets the answer p∥c, and outputs
b′ = p. Let b be the challenge bit in the KDM-CPA game between the challenger and A. Then, we
can estimate the advantage of A as follows.

Advkdmcpa
Π,A,1 (λ) =

1

2
|Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]|

=
1

2
|Pr[p = 1|b = 1]− Pr[p = 1|b = 0]|

Here, let sk be the secret key corresponding to pk. Then, sk is chosen from {0, 1}s at random and

pk = p̂k, where (p̂k, ŝk) = K̂G(1λ; sk). In addition, let m1 = sk and m0 = 0s. Then, we note that
for any b ∈ {0, 1}, the probability that p equals 1 is the same as the probability that pk = pk′ holds,

where (pk′, sk′) = K̂G(1λ;mb). We note that these probabilities are taken over the choice of sk. When
b = 1, it is straightforward that pk = pk′ always holds, and thus we have Pr[p = 1|b = 1] = 1. On the
other hand, when b = 0, pk = pk′ occurs only with negligible probability. The reason is as follows.
If pk = pk′ holds, by the correctness of Π̂, D̂ec(sk′, Ênc(pk,m)) = m holds for any m ∈ {0, 1}∗.
Therefore, if pk = pk′ holds with non-negligible probability, an adversary can break the IND-CPA
security of Π̂ by generating (pk′, sk′) ← K̂G(1λ; 0s) and decrypting the challenge ciphertext using
sk′. This is a contradiction, and thus we have Pr[p = 1|b = 0] = negl(λ). From these, we have

Advkdmcpa
Π,A,1 (λ) = 1

2(1− negl(λ)), and we see that Π does not satisfy KDM-CPA security.

Next, we construct a PKE scheme FO1 = (KGFO1,EncFO1,DecFO1) by applying the conversion in
Fig. 1 to the above Π, and show that FO1 also does not satisfy KDM-CPA security. Let (pk, sk) be a
key pair output by KGFO1. Here, a key pair of FO1 is a key pair of Π itself. Namely, sk is randomly
chosen from {0, 1}s and pk = p̂k, where (p̂k, ŝk) ← K̂G(1λ; sk). Then, for any m ∈ {0, 1}s, the
probability that the first bit of the result of EncFO1(pk,m) equals 1 is the same as the probability

that pk = pk′ holds, where (pk′, sk′) = K̂G(1λ;MSBs(m∥r)) = K̂G(1λ;m) and r is a randomness
generated in EncFO1. These probabilities are over the choice of the random oracle H, (pk, sk), and
r ∈ {0, 1}n. Thus, if m = sk, the first bit of EncFO1(pk,m; r) always equals 1. One the other hand,
if m does not depend on sk, similarly to the first step, the first bit of EncFO1(pk,m; r) equals 1 only
with negligible probability. From these, FO1 does not satisfy KDM-CPA security. □ (Theorem 3)

4 KDM-CCA Security of Fujisaki-Okamoto Construction (J. Cryptology’13)

Fujisaki and Okamoto [21] showed how to construct an IND-CCA secure PKE scheme in the random
oracle model (which we call FO2) using a OW-CPA secure PKE scheme and a OT-CPA secure
SKE scheme. In this work, we show that FO2 also satisfies KDM-CCA security in the random
oracle model, under exactly the same assumptions on the building blocks as those used in [21].
Our idea for proving it is simple, but the proof might look somewhat complicated. Thus, in this
section, we first review the construction of FO2 and show the statement of the main theorem about
FO2. Then, in Section 5, we explain the difficulty which we encounter when trying to prove the
KDM-CCA security of FO2. (Moreover, in order to help the reader understand the proof of the
KDM-CCA security of FO2, in Section 6, we also show that the hybrid encryption scheme whose
key derivation function is a random oracle satisfies KDM-CPA security in the random oracle model,
if the underlying PKE scheme and SKE scheme satisfy OW-CPA security and OT-CPA security,
respectively.) Finally, in Section 7, we prove the main theorem about FO2. Below, we review the
construction of FO2.

Let Π = (KG,Enc,Dec) be a PKE scheme and Σ = (E,D) be a SKE scheme. Here, we assume
that the message space and the randomness space of Π are {0, 1}λ and {0, 1}n, respectively, where
n = n(λ) is a polynomial. Moreover, we also assume that the message space and the key space of Σ
are {0, 1}∗ and {0, 1}λ, respectively. In addition, let H : {0, 1}∗×{0, 1}∗ → {0, 1}n and G : {0, 1}∗ →
{0, 1}λ be hash functions. Then, we construct a PKE scheme FO2 = (KGFO2,EncFO2,DecFO2) as
described in Fig. 3. Here, we note that the message space of FO2 is {0, 1}∗.

[21] showed that, by regarding H and G as random oracles, if Π is OW-CPA secure and smooth,
and Σ is OT-CPA secure, then FO2 satisfies IND-CCA security in the random oracle model. As

KGFO2(1
λ) :

(pk , sk)← KG(1λ)
return (pk , sk)

EncFO2(pk ,m) :

r
r←− {0, 1}λ

K
r←− G(r)

d← E(K,m)
R← H(r, d)
c← Enc(pk , r;R)
return (c, d)

DecFO2(sk, (c, d)) :
r ← Dec(sk , c)
if r = ⊥ or c ̸= Enc(pk, r;H(r, d))
return ⊥

else
K ← G(r)
m← D(K, d)
return m

Fig. 3. The construction [21] of a PKE scheme FO2 = (KGFO2,EncFO2,DecFO2) from a PKE scheme Π = (KG,Enc,Dec)
and a SKE scheme Σ = (E,D).

mentioned earlier, we show that FO2 satisfies KDM-CCA security, even though we require exactly
the same assumptions for building blocks as those used in [21]. Formally, our main result on FO2

is captured by the following theorem.

Theorem 4. Let Π be a PKE scheme which is OW-CPA secure and smooth, Σ be a OT-CPA se-
cure SKE scheme, and H and G be random oracles. Then, FO2 is a PKE scheme which is KDM-CCA
secure in the random oracle model.

We show the proof of this theorem in Section 7.

5 Overview of Our Techniques

In this section, we explain where the difficulty lies and how we overcome it when showing the
KDM-CCA security of FO2.

The difficulty. FO2 has a somewhat complicated structure at first glance. However, it can roughly
be seen as a hybrid encryption scheme Πhyb which has the following encryption algorithm Enchyb.

Enchyb(pk,m; r) = (Enc(pk, r),E(G(r),m))

Here, similarly to FO2, Π = (KG,Enc,Dec) and Σ = (E,D) are a OW-CPA secure PKE scheme and
a OT-CPA secure SKE scheme, respectively, and G is a random oracle. The difficulty that lies in
the security proof of the KDM-CCA security of FO2, is almost the same as that of the KDM-CPA
security of Πhyb. Therefore, for simplicity, we explain the difficulty we encounter when showing the
KDM-CPA security of Πhyb in the case where only one key pair (pk, sk) exists. In the following,
we call a function an adversary queries as a KDM query in the security game a KDM function. In
addition, we call an answer to a KDM query a challenge ciphertext, and randomness r encapsulated
by Enc a proto-key.

We first consider a simple case, that is, the case where KDM functions cannot access to the
random oracle G. In this case, an adversary who does not query a proto-key r to G cannot distinguish
(Enc(pk, r),E(G(r), f(sk))) and (Enc(pk, r),E(G(r), 0|f(·)|)) due to the randomness of outputs of G
and the OT-CPA security of Σ, where f is a KDM function. Thus, all we have to consider is whether
the adversary can query the proto-key r to G, but it is unlikely because of the OW-CPA security
of Π. From these, in this case, we can easily see that Πhyb is KDM-CPA secure.

However, in the case where KDM functions can access to the random oracle G, there is a problem.
The problem is that an adversary who makes multiple KDM queries can get an encryption of a

Game [b = 1] Game [hybrid] Game [b = 0]

1st Enchyb(pk, f
G
1 (sk)) Enchyb(pk, 0

|f1(·)|) Enchyb(pk, 0
|f1(·)|)

2nd Enchyb(pk, f
G
2 (sk)) Enchyb(pk, f

G
2 (sk)) Enchyb(pk, 0

|f2(·)|)

Fig. 4. The ordinary sequence of games. ”1st” and ”2nd” indicate the answers to the first and second KDM queries
from A, respectively.

proto-key r which was used to compute a past challenge ciphertext. In order to take a closer look
at this problem, we consider the reduction from the KDM-CPA security of Πhyb to the OT-CPA
security of Σ. For simplicity, we consider an adversary A who makes only two KDM queries in the
KDM-CPA game of Πhyb. Let f1 and f2 be the KDM functions that A sends, and b the challenge
bit between the challenger and A. Then, consider the sequence of games as described in Fig. 4.

Game [b = 1] and Game [b = 0] correspond to the KDM-CPA game when b = 1 and b = 0,
respectively. If the behavior of A does not change non-negligibly between Game [b = 1] and Game
[b = 0], then we can conclude that Πhyb is KDM-CPA secure. In order to show this by using the
OT-CPA security of Σ, we typically consider a hybrid game Game [hybrid], and we show that
the behavior of A does not change between Game[b = 1] and Game [hybrid], and between Game
[hybrid] and Game [b = 0].

Then, we try to construct an adversary B who simulates Game [b = 1] or Game [hybrid] for
A according to the value of the challenge bit between B and the challenger of the OT-CPA game
regarding Σ. B first generates (pk, sk) using KG and sends pk to A. B simulates G by lazy sampling.
For the first KDM query f1 from A, B first makes the challenge query (fG

1 (sk), 0
|f1(·)|) and gets

the answer d1. Then, B generates a proto-key r1, computes c1 ← Enc(pk, r1), and returns (c1, d1)
to A. In addition, B let the value of G(r1) be the value of the key of Σ that the challenger used to
compute d1. We note that B does not know the actual value of the key of Σ. Here, suppose that A
sends the following KDM function f2 as the second KDM query. fG

2 (sk) computes r1 = Dec(sk, c1),
and then computes G(r1) and returns the value. Then, in order to compute the value of fG

2 (r1),
B needs the value of G(r1). However, B does not know the actual value of G(r1), and thus cannot
compute fG

2 (sk) correctly. Thus, B fails a simulation of Games for A if A queries such a second
KDM query.

The approach of Davies and Stam [17]. Davies and Stam [17] studied KDM security for hybrid
encryption where the key derivation function (KDF) is regarded as a random oracle, and pointed
out the above problem. 5 Then, they overcame the problem and showed that if a PKE scheme
satisfies OW-CCA security and a SKE scheme satisfies OT-CCA security, the hybrid encryption
scheme satisfies KDM-CCA security in the random oracle model.

They approached the above problem by introducing a new security notion for SKE schemes
that they call prior key dependent message security (PKDM security). Informally, PKDM security
guarantees that an encryption scheme can securely encrypt a message which depends only on keys
of the scheme used to generate past ciphertexts. In other words, confidentiality of a ciphertext of a
PKDM secure scheme under a key Ki holds even if an adversary can get an encryption of the form
E(Ki, f(K1, · · · ,Ki−1)), where K1, · · · ,Ki−1 are keys used so far and f is an arbitrary function.
Davies and Stam showed that PKDM-CCA security is equivalent to OT-CCA security, and they

5 Davies and Stam actually treated a hybrid encryption scheme constructed from a SKE scheme and a key encap-
sulation mechanism (KEM).

Game [b = 1] Game [reverse] Game [b = 0]

1st Enchyb(pk, f
G
1 (sk)) Enchyb(pk, f

G
1 (sk)) Enchyb(pk, 0

|f1(·)|)

2nd Enchyb(pk, f
G
2 (sk)) Enchyb(pk, 0

|f2(·)|) Enchyb(pk, 0
|f2(·)|)

Fig. 5. The sequence of games which replace the challenge ciphertexts in the “reverse order”.

overcame the above problem by reducing the KDM-CCA security of the hybrid encryption scheme
to the PKDM-CCA security of the SKE scheme.

To accomplish this task, their reduction algorithm has to convert a KDM function of the secret
keys of the PKE scheme to that of the keys of the SKE scheme. Here, in the KDM-CCA game
which the reduction algorithm simulates, there exists a random oracle. On the other hand, in the
PKDM-CCA game which the reduction algorithm actually plays, there does not exist a random
oracle. Therefore, Davies and Stam used the technique of replacing the random oracle with a pseu-
dorandom functions (PRF) when conducting the above conversion of KDM functions. Therefore,
their security bound has a PRF term even though the construction does not include a PRF. In
addition, they stated that it is difficult to prove its KDM-CCA security without using PKDM
security or a PRF.

Our approach. Both our work and [17] study the KDM-CCA security of the hybrid encryption
scheme whose KDF is regarded as a random oracle. However, there is a big difference between our
work and [17]. The difference is that the building blocks of [17] already satisfy CCA security. On
the other hand, the building blocks of FO2 that we treat satisfy only CPA security. In order to
prove the KDM-CCA security of FO2 even though the building blocks satisfy only CPA security,
similarly to Fujisaki and Okamoto [21], we have to use smoothness [9]. (As mentioned in Section
2, smoothness is essentially the same notion as γ-uniformity.) In addition, the construction of FO2

contains two random oracles, and one of them is used to generate a randomness for the encryption
algorithm of the PKE scheme. Thus, it looks difficult to replace both of two random oracles with
a PRF, and thus, to directly use the proof technique used in [17]. Therefore, we try to prove the
KDM-CCA security of FO2 by a proof technique which is different from that of [17], especially a
technique without using PKDM security or a PRF. Below, we give our main idea using Πhyb.

As earlier, we consider an adversary A for the KDM-CPA security of Πhyb who makes a KDM
query only twice. Our idea is to replace the challenge ciphertexts in “the reverse order”. Namely,
we consider the sequence of games as described in Fig. 5.

Then, we can avoid the problem that we explained above. We try to construct an adversary B
who simulates Game [b = 1] or Game [reverse] for A according to the value of the challenge bit
between B and the challenger of the OT-CPA game regarding Σ. B first generates (pk, sk) using KG
and sends pk to A. For the first KDM query f1 from A, B generates a proto-key r1 and a key K1

of Σ, and returns (Enc(pk, r1),E(K1, f
G
1 (sk))). In addition, B defines the value of G(r1) as K1 by

itself. For the second KDM query f2 from A, B makes the challenge query (fG
2 (sk), 0

|f2(·)|) and gets
the answer d2. Then, B generates a proto-key r2, computes c2 ← Enc(pk, r2), and returns (c2, d2)
to A. Since B defines the value of G(r1) by itself, B can simulate G for f2 and compute fG

2 (sk)
correctly even if f2 calls G.

Then, we in turn try to construct an adversary B′ who simulates Game [reverse] or Game [b = 0]
for A according to the value of the challenge bit between B′ and the challenger of the OT-CPA
game regarding Σ. B′ also generates (pk, sk) using KG and sends pk to A. For the first KDM query
f1 from A, B′ first makes the challenge query (fG

1 (sk), 0
|f1(·)|) and gets the answer d1. Then, B′

generates a proto-key r1, computes c1 ← Enc(pk, r1), and returns (c1, d1) to A. Here, B′ let the
value of G(r1) be the value of the key of Σ that the challenger used to compute d1, and thus B does
not know the value of G(r1). However, in this case, B′ does not need the value of G(r1) to respond
to the second KDM query because the answer to this query is an encryption of 0|f2(·)|, and thus B′
does not have to compute fG

2 (sk) actually. We note that since KDM functions are length regular,
B′ can know |f2(·)| without computing fG

2 (sk). Therefore, we can overcome the problem that KDM
functions may refer to past proto-keys by replacing the challenge ciphertexts in the reverse order.

When we prove the KDM-CCA security of FO2, we have to take the OW-CPA security and
smoothness of the building block PKE scheme into consideration, and then we use the identical-
until-bad technique and the deferred analysis technique. Hence, in this case, whether a KDM
function is computed actually or not is very sensitive, but by dividing the bad events into smaller
pieces than Davies and Stam, we are able to complete the proof.

In the next section, as a warming up, we prove the KDM-CPA security of Πhyb before proving
the KDM-CCA security of FO2.

6 KDM-CPA Security of Hybrid Encryption

In this section, we treat a hybrid encryption scheme whose KDF is regarded as a random oracle. In
the above framework, we show that if the PKE scheme is OW-CPA secure, and the SKE scheme
is OT-CPA secure, then the hybrid encryption scheme is KDM-CPA secure in the random oracle
model. As mentioned earlier, since the construction of [21] can roughly be seen as a hybrid en-
cryption scheme whose KDF is a random oracle, the security proof we show in this section will
give a good intuition for the security proof that shows the construction of [21] satisfies KDM-CCA
security we give in Section 4.

We also note that the security proof we give in this section has the following meaning. Black et
al. [11] showed a PKE scheme which they conjectured satisfies KDM-CPA security in the random
oracle model when they introduced the notion of KDM security. The construction can be seen as
a hybrid encryption scheme whose KDF is a random oracle. In addition, the construction uses a
trapdoor permutation as a OW-CPA secure PKE scheme and computes a SKE part by bitwise
XOR, which meets OT-CPA security. However, they did not give a formal security proof. Here, we
note that the framework we treat in this section captures a PKE scheme by Black et al., and thus
the security proof we give in this section can be seen as a formal security proof which shows that
the construction of [11] satisfies KDM-CPA security in the random oracle model.

Davies and Stam [17] also studied KDM security for hybrid encryption. They treated the same
construction as we treat in this section, and they showed that if the KEM scheme satisfies OW-CCA
security and the SKE scheme satisfies OT-CCA security, then the hybrid encryption scheme satisfies
KDM-CCA security in the random oracle model. As mentioned in Section 5, in order to complete
the security proof, they introduced a security notion for SKE schemes that they call PKDM-CCA
security which is equivalent to OT-CCA security. In addition, in one of the steps in a sequence of
games, they replace the random oracle with a PRF in order to reduce the KDM-CCA security of the
hybrid encryption scheme to the PKDM-CCA security of the SKE scheme. Therefore, their security
bound has a PRF term even though the construction does not include a PRF. They stated that,
by using the same technique, the KDM-CPA security of the construction by Black et al. can be
proven, and in addition, it is difficult to prove its KDM-CPA security without using PKDM security
or a PRF. However, the security proof we show in this section uses neither of them. Namely, our
security proof is a formal security proof for Black et al.’s construction which is totally different

KGhyb(1
λ) :

(pk , sk)← KG(1λ)
return (pk , sk)

Enchyb(pk ,m) :

r
r←− {0, 1}λ

c← Enc(pk, r)
K ← G(r)
d← E(K,m)
return (c, d)

Dechyb(sk , (c, d)) :
r ← Dec(sk, c)
if r = ⊥
return ⊥

else
K ← G(r)
m← D(K, d)
return m

Fig. 6. The construction of a PKE scheme Πhyb = (KGhyb,Enchyb,Dechyb) from a PKE scheme Π = (KG,Enc,Dec), a
SKE scheme Σ = (E,D), and a hash function G.

from that of Davies and Stam, and arguably more natural and simpler. In the following, we first
give the details of the construction we treat in this section, and then show our security proof.

Let Π = (KG,Enc,Dec) be a PKE scheme, Σ = (E,D) be a SKE scheme, and G: {0, 1}λ →
{0, 1}λ be a hash function. Then, we construct a PKE scheme Πhyb = (KGhyb,Enchyb,Dechyb) as
described in Fig. 6. We assume that the message space of Σ is {0, 1}∗, and thus the message space
of Πhyb is also {0, 1}∗. We also assume that the message space of Π and the key space of Σ are
both {0, 1}λ. Then we show the following theorem.

Theorem 5. Let Π be a OW-CPA secure PKE scheme, Σ be a OT-CPA secure SKE scheme, and
G be a random oracle. Then, Πhyb is a PKE scheme which is KDM-CPA secure in the random
oracle model.

Proof of Theorem 5. We prove this theorem via a sequence of games. Let A be an adversary that
attacks the KDM-CPA security of Πhyb in the random oracle model, and makes at most qe KDM
queries, where qe is a polynomial of λ. Let ℓ be a polynomial of λ and denote the number of keys.
As we mentioned just after Definition 3, similarly to Black et al. [11], we assume that a function
which A queries as a KDM query can access to the random oracle, and is length-regular. We note
that since KDM functions can access to the random oracle, it makes security proof simple to clearly
distinguish the entries of the hash list used to compute KDM functions and those used to make a
challenge ciphertext. Thus, we divide the random oracle into multiple random oracles, which is a
technique used by Davies and Stam [17]. Namely, in our sequence of games, there are three random
oracles even though the construction of Πhyb contains only one random oracle. Now, consider the
following sequence of games.

Game 0 This is the KDM-CPA game in the random oracle model regarding Πhyb. In the original
KDM-CPA game regarding Πhyb, there exists only one random oracle G. However, to define the
subsequent games, we consider three random oracles G, G∗, and GG∗. Moreover, random oracles
are implemented by lazy sampling. More specifically, random oracles run as follows.
– G maintains the list LG which stores query/answer pairs so far, and runs as follows. If some

value r is queried to G, then G first checks whether there is an entry of the form (r,K) in
LG. If so, G returns K. Otherwise, G returns a fresh random value K over {0, 1}λ and adds
(r,K) to LG.

– G∗ also maintains the query/answer pairs list LG∗ , and runs in the same way as G.
– Similarly to G and G∗, GG∗ is implemented by lazy sampling. However, GG∗ does not have

its own list. When GG∗ samples a fresh random value, GG∗ adds a new entry to LG. In
addition, GG∗ runs by referring to both lists of LG and LG∗ .

[KDM](j, f)

m1 ← fGG∗
(sk)

m0 ← 0|m1|

r
r←− {0, 1}λ

c← Enc(pk j , r)
K ← G∗(r)
d← E(K,mb)
return (c, d)

G(r):
if (r,K) ∈ LG ∪ LG∗

return K
else

K
r←− {0, 1}λ

add (r,K) to LG

return K

G∗(r):
if (r,K) ∈ LG ∪ LG∗

return K
else

K
r←− {0, 1}λ

add (r,K) to LG∗

return K

Fig. 7. The manner the challenger responds to a KDM query, and the behaviors of G and G∗ in Game 0. We note
that GG∗ runs exactly the same way as G in Game 0.

G∗(r):

K
r←− {0, 1}λ

add (r,K) to LG∗

return K

Fig. 8. The behavior of G∗ in Game
1

G(r):
if (r,K) ∈ LG

return K
else

K
r←− {0, 1}λ

add (r,K) to LG

return K

Fig. 9. The behavior of G in Game 2

[KDM](j, f)

r
r←− {0, 1}λ

c← Enc(pk j , r)
K ← G∗(r)

d← E(K, 0|f(·)|)
return (c, d)

Fig. 10. The manner the challenger
responds to a KDM query in Game 3

In addition, in this game, G and G∗ are synchronized. Namely, G and G∗ refer to not only their
own list but also the list of the other one. Then, we note that the difference between this game
and the original KDM-CPA game is only conceptual. In this game, random oracles are called
at the following three cases.
– (1) When A makes a hash query.
– (2) When the challenger computes a hash value to respond to a KDM query which A makes.
– (3) When a function which A sends to the challenger as a KDM query accesses to the

random oracles.
G is used when (1), G∗ is used when (2), and GG∗ is used when (3). See Fig. 7 for how KDM
queries are answered, and how G, G∗, and GG∗ behave in Game 0.

Game 1 Same as Game 0, except for the behavior of G∗. In this game, G∗ runs without referring
to LG. Moreover, every time G∗ is given an input r ∈ {0, 1}λ, G∗ generates a fresh random value
K over {0, 1}λ. Then, G∗ outputs K after adding (r,K) to LG∗ even if there already exists an
entry whose first component is r in LG∗ . We note that G and GG∗ still refer to LG∗ in this game.
When G and GG∗ refer to LG∗ , if there are multiple entries whose first components are identical,
then G and GG∗ adopt the entry which was added first. See Fig. 8 for how G∗ behaves in Game
1.

Game 2 Same as Game 1, except that G runs without referring to LG∗ . Here, we note that GG∗

still refers to both LG and LG∗ . See Fig. 9 for how G behaves in Game 2.
Game 3 Same as Game 2, except that if A makes a KDM query (j, f), then the challenger com-

putes a ciphertext whose plaintext is 0|f(·)|. See Fig. 10.

The above completes the description of the games.
We define the following events in Game i (i = 0, · · · , 3).

SUCi: A succeeds in guessing the challenge bit, that is, b = b′ occurs.
COLi: When the challenger generates r

r←− {0, 1}λ to respond to a KDM query from A, there exists
an entry whose first component is r in LG ∪ LG∗ .

BHQi: When A queries r to G, there exists an entry in LG∗ whose first component is r. We call such
a hash query a “bad hash query”.

Then, using the above events, we can estimate Advkdmcpa
Πhyb,A,ℓ(λ) as Lemma 2 stated below.

Lemma 2. We can estimate Advkdmcpa
Πhyb,A,ℓ(λ) as follows:

Advkdmcpa
Πhyb,A,ℓ(λ) ≤ Pr[COL1] + |Pr[BHQ2]− Pr[BHQ3]|+ Pr[BHQ3] + |Pr[SUC2]− Pr[SUC3]| (1)

Proof of Lemma 2. As mentioned above, the difference between Game 0 and the original KDM-CPA
game is only conceptual, and thus we have Advkdmcpa

Πhyb,A,ℓ(λ) = |Pr[SUC0] −
1
2 |. By using the triangle

inequality, we get the following inequality.

|Pr[SUC0]−
1

2
| ≤

2∑
k=0

|Pr[SUCk]− Pr[SUCk+1]|+ |Pr[SUC3]−
1

2
|

Game 0 and Game 1 become different games only in the case when the challenger generates
r

r←− {0, 1}λ, there already exists an entry whose first component is r in LG∪LG∗ . Therefore, we can
see that Game 0 and Game 1 are identical unless the event COL0 (resp. COL1) occurs in Game 0 (resp.
Game 1), and thus we have |Pr[SUC0] − Pr[SUC1]| ≤ Pr[COL1]. Next, the only difference between
Game 1 and Game 2 is how the challenger responds to a bad hash query from A. In other words,
Game 1 and Game 2 are identical unless the event BHQ1 (resp. BHQ2) occurs in Game 1 (resp. Game
2), and thus we have |Pr[SUC1]−Pr[SUC2]| ≤ Pr[BHQ2]. Moreover, in Game 3, the challenger always
responds to a KDM query (j, f) from A makes by returning an encryption of 0|f(·)| regardless of the
value of the challenge bit b. Therefore, in Game 3, the choice of the challenge bit and the behavior
of A are independent, and thus |Pr[SUC3]− 1

2 | = 0. Therefore, we get the following inequality.

Advkdmcpa
Πhyb,A,ℓ(λ) ≤ Pr[COL1] + Pr[BHQ2] + |Pr[SUC2]− Pr[SUC3]| (2)

In addition, we have Pr[BHQ2] ≤ |Pr[BHQ2] − Pr[BHQ3]| + Pr[BHQ3]. By using this inequality in the
inequality (2), we get the inequality (1). □ (Lemma 2)

Below, we show that each term of the right side of the inequality (1) is negligible.

Lemma 3. Pr[COL1] = negl(λ).

Proof of Lemma 3. Since A is a PPT algorithm, there is a polynomial of λ which is the upper bound
of the number of total entries in LG ∪ LG∗ . Let Q denote this upper bound. Then, the probability
that when the challenger generates r

r←− {0, 1}λ to respond to a KDM query from A, there is an
entry of the form (r, ·) in LG ∪ LG∗ is at most Q

2λ
. A makes a KDM query at most qe times, and qe

is a polynomial. Therefore, we have Pr[COL1] ≤ Q·qe
2λ

= negl(λ). □ (Lemma 3)

Lemma 4. Let Σ be OT-CPA secure. Then |Pr[SUC2] − Pr[SUC3]| = negl(λ) and |Pr[BHQ2] −
Pr[BHQ3]| = negl(λ).

Proof of Lemma 4. Using the adversary A that attacks Πhyb, we construct two adversaries BSUC
and BBHQ both of which attack the OT-CPA security of Σ. We first describe BSUC below.

Initialization On input security parameter 1λ, BSUC selects t
r←− [qe] and b

r←− {0, 1}. Then, BSUC
generates ℓ key pairs of Π (pkj , skj) ← KG(1λ)(j = 1, · · · , ℓ) and sends (pk1, · · · , pkℓ) to A.
Finally, BSUC sets sk = (sk1, · · · , skℓ) and Lkdm = LG = LG∗ = ∅.

Hash queries For a hash query r from A, BSUC first checks whether there is an entry of the form
(r,K) in LG. If so, BSUC returns K. Otherwise, BSUC generates K

r←− {0, 1}λ, adds (r,K) to LG,
and returns K to A.

KDM queries For the i-th KDM query (j, f) from A, BSUC responds as follows.
– In the case i < t, BSUC first computes m1 ← fGG∗

(sk) and m0 ← 0|m1|. Since BSUC correctly
forms LG and LG∗ up to this point, when f calls GG∗, BSUC can simulate it for f . Next,
BSUC generates r

r←− {0, 1}λ and K
r←− {0, 1}λ, and adds (r,K) to LG∗ . Then, BSUC computes

c← Enc(pk j , r) and d← E(K,mb). Finally, BSUC returns (c, d) to A.
– In the case i = t, BSUC first computes m1 ← fGG∗

(sk) and m0 ← 0|m1|. Since BSUC correctly
forms LG and LG∗ up to this point, when f calls GG∗, BSUC can simulate it for f . Next,
BSUC sends (m0,mb) as a challenge query to the challenger to get the answer d. Then, BSUC
generates r

r←− {0, 1}λ and computes c← Enc(pk j , r). Finally, BSUC returns (c, d) to A.
– In the case i > t, BSUC generates r

r←− {0, 1}λ and K
r←− {0, 1}λ. Next, BSUC computes

c← Enc(pk j , r) and d← E(K, 0|f(·)|). Then, BSUC returns (c, d) to A.
Final phase When A terminates with output b′, BSUC outputs βSUC = 1 if b = b′. Otherwise, BSUC

outputs βSUC = 0.

BBHQ runs in exactly the same way as BSUC except for how to determine the final output bit
βBHQ. BBHQ determines βBHQ as follows. BBHQ initially sets βBHQ = 0. When A queries r to G, BBHQ first
responds in the same manner as BSUC. In addition, BBHQ checks whether the query is a bad hash
query or not. Namely, BBHQ checks whether there exists an entry in LG∗ whose first component is
r. If so, BBHQ set βBHQ = 1. When A terminates with output b′, BBHQ outputs βBHQ.

Let β be the challenge bit in the OT-CPA game between the challenger and BSUC. Then, we can
describe the advantage of BSUC as follows.

AdvotcpaΣ,BSUC(λ) =
1

2
|Pr[βSUC = 1|β = 1]− Pr[βSUC = 1|β = 0]|

=
1

2
|
∑
k∈[qe]

Pr[βSUC = 1 ∧ t = k|β = 1]−
∑
k∈[qe]

Pr[βSUC = 1 ∧ t = k|β = 0]|

Here, for any k ∈ [qe], we have the following two equalities.

Pr[βSUC = 1 ∧ t = k|β = 1] = Pr[t = k|β = 1]Pr[βSUC = 1|β = 1 ∧ t = k]

Pr[βSUC = 1 ∧ t = k|β = 0] = Pr[t = k|β = 0]Pr[βSUC = 1|β = 0 ∧ t = k]

We note that t is chosen from [qe] uniformly at random and independently of β. Hence, for all
k ∈ [qe], we have Pr[t = k|β = 1] = Pr[t = k|β = 0] = 1

qe
. Moreover, for every k ∈ [qe − 1], in the

cases β = 1∧ t = k and β = 0∧ t = k+1, B responds to KDM queries from A in exactly the same
way. In the above two cases, the only difference is whether B computes fGG∗

(sk) to responds to the
(k+ 1)-th KDM query from A. Due to this difference, in the above two cases, how LG is formed is

different. However, since A cannot see the contents of LG, this does not affect the behavior of A.
Therefore, we have Pr[βSUC = 1|β = 1∧ t = k] = Pr[βSUC = 1|β = 0∧ t = k+ 1] for any k ∈ [qe − 1].
From these, we have the following equality.

AdvotcpaΣ,BSUC(λ) =
1

2qe
|Pr[βSUC = 1|β = 1 ∧ t = qe]− Pr[βSUC = 1|β = 0 ∧ t = 1]|

Since BBHQ runs in exactly the same way as BSUC except for how to determine the final output
bit, all of the above arguments also hold for BBHQ. Therefore, we also have the following equality.

AdvotcpaΣ,BBHQ(λ) =
1

2qe
|Pr[βBHQ = 1|β = 1 ∧ t = qe]− Pr[βBHQ = 1|β = 0 ∧ t = 1]|

We note that, until A makes the t-th KDM query, BSUC correctly forms LG and LG∗ , and thus
BSUC can compute KDM functions up to this point. On the other hand, BSUC cannot simulate the
t-th entry of LG∗ because BSUC is simulating the security game for A so that the second component
of the t-th entry of LG∗ is the value of the key the challenger generates, and thus BSUC does not
know it. Therefore, when responding to the subsequent KDM queries, BSUC cannot compute KDM
functions correctly. However, since BSUC only needs the output length of KDM functions to respond
to the (t + 1)-th and subsequent KDM queries, and KDM functions are length regular, BSUC need
not compute f . Then, we see that when β = 1 ∧ t = qe, BSUC perfectly simulates Game 2 for A.
On the other hand, when β = 0 ∧ t = 1, BSUC perfectly simulates Game 3 for A. We note that t is
information-theoretically hidden from the view of A, the choice of t does not affect the behavior of
A. Here, this argument also holds for BBHQ.

In addition, BSUC outputs 1 only when A succeeds in guessing b, that is, b = b′ occurs, and BBHQ
outputs 1 only when A makes a bad hash query. Therefore, we have the following four equalities.

Pr[βSUC = 1|β = 1 ∧ t = qe] = Pr[SUC2] , Pr[βSUC = 1|β = 0 ∧ t = 1] = Pr[SUC3]

Pr[βBHQ = 1|β = 1 ∧ t = qe] = Pr[BHQ2] , Pr[βBHQ = 1|β = 0 ∧ t = 1] = Pr[BHQ3]

Therefore, we get the following equalities.

AdvotcpaΣ,BSUC(λ) =
1

2qe
|Pr[SUC2]− Pr[SUC3]|

AdvotcpaΣ,BBHQ(λ) =
1

2qe
|Pr[BHQ2]− Pr[BHQ3]|

Since Σ is OT-CPA secure and qe is a polynomial of λ, we see that |Pr[SUC2] − Pr[SUC3]| =
2qe ·AdvotcpaΣ,BSUC(λ) = negl(λ) and |Pr[BHQ2]−Pr[BHQ3]| = 2qe ·AdvotcpaΣ,BBHQ(λ) = negl(λ). □ (Lemma 4)

Lemma 5. Let Π be OW-CPA secure. Then Pr[BHQ3] = negl(λ).

Proof of Lemma 5. Using the adversary A that attacks Πhyb, we construct the following adversary
B that attacks the List-OW-CPA security of Π. We note that since Π is OW-CPA secure, by
Lemma 1, Π is also List-OW-CPA secure.

Initialization On input (pk1, · · · , pkℓ), B sends (pk1, · · · , pkℓ) to A, and sets LG = Lans = ∅.
Hash queries For a hash query r from A, B first checks whether there is an entry of the form

(r,K) in LG. If so, B returns K. Otherwise, B generates K
r←− {0, 1}λ, adds (r,K) to LG and r

to Lans, and returns K to A.

KDM queries For the a KDM query (j, f) from A, B responds as follows. B first queries j to the
challenger as an encryption query and gets the answer c. Then, B generates K

r←− {0, 1}λ and
computes d← E(K, 0|f(·)|). Then B returns (c, d) to A.

Final phase When A terminates with output b′, B outputs Lans.

In the List-OW-CPA game, the challenger maintains the list Lenc which stores plaintexts of
the challenge ciphertexts. Then, the advantage of B is Pr[Lenc ∩ Lans ̸= ∅]. It is straightforward
to see that B perfectly simulates Game 3 for A. If A queries r as a G query, B adds r to Lans, In
addition, in Game 3, a new entry is added to LG only when A makes a G query. Therefore, we can
write Lans = {r|(r, ·) ∈ LG}. Here, (r, ·) ∈ LG indicates that there exists an entry in LG whose first
component is r.

On the other hand, every time A makes a KDM query (j, f), B sends j to the challenger as
an encryption query and gets the answer c. Here, let c be an encryption of r. Then, by the above
encryption query from B, the challenger adds r to Lenc. On the other hand, in Game 3, the hash
value of r is computed using G∗ at this point, and thus an entry of the form (r, ·) is added to LG∗ .
Therefore, Lenc can be seen as the set of the first components of the entries in LG∗ in Game 3.
(Actually, B does not make LG∗ by itself, but it is not needed for B to simulate Game 3 for A.)
From these, we see that Lenc∩Lans ̸= ∅ holds if the event BHQ3 occurs in Game 3 which B simulates
for A. Therefore, we can see that Advlowcpa

Π,B,ℓ (λ) ≥ Pr[BHQ3]. Since Π is List-OW-CPA secure, we see
that Pr[BHQ3] = negl(λ). □ (Lemma 5)

From the inequality (1) and Lemmas 3 to 5, we have Advkdmcpa
Πhyb,A,ℓ(λ) = negl(λ). Since the choice

of ℓ and A is arbitrary, Πhyb is KDM-CPA secure in the random oracle model. □ (Theorem 5)

7 Proof of Theorem 4

In this section, we show the formal proof of Theorem 4. We prove this theorem via a sequence of
games. Some steps of this proof are similar to the proof of Theorem 5. Therefore, we recommend
the reader to first read it.

Let A be an adversary that attacks the KDM-CCA security of FO2 in the random oracle model,
and makes at most qe KDM queries and qd decryption queries, where qe and qd are polynomials
of λ. Let ℓ be a polynomial of λ and denote the number of keys. Similarly to Black et al. [11], we
assume that a function which A queries as a KDM query can access to the random oracles, and
is length-regular. In this proof, similarly to the proof of Theorem 5, we divide the random oracle
into multiple random oracles according to its role. it makes security proof simple. Namely, in our
sequence of games, there are six random oracles even though the construction of FO2 contains only
two random oracles. Now, consider the following sequence of games.

Game 0 This is the KDM-CCA game in the random oracle model regarding FO2. See Fig. 11 for
how KDM queries and decryption queries are answered, and how random oracles behave in
Game 0.

In the original KDM-CCA game regarding FO2, there exist only two random oracles H and
G. However, to define the subsequent games, we consider six random oracles H, H∗, HH∗, G,
G∗, and GG∗. Moreover, random oracles are implemented by lazy sampling. More specifically,
random oracles run as follows.

[KDM] (j, f)

m1 ← fHH∗,GG∗
(sk)

m0 ← 0|f(·)|

r
r←− {0, 1}λ, K ← G∗(r)

d← E(K,mb)
R← H∗(r, d)
c← Enc(pkj , r;R)
add (j, c, d) to Lkdm

return (c, d)

[Decryption] (j, c, d) /∈ Lkdm

r ← Dec(skj , c)
if r = ⊥ or
c ̸= Enc(pk j , r;HH

∗(r, d))
return ⊥

else
K ← GG∗(r)
return m← D(K, c)

H(r, d):
if ((r, d), R) ∈ LH ∪ LH∗

return R
else

R
r←− {0, 1}n

add ((r, d), R) to LH

return R

G(r):
if (r,K) ∈ LG ∪ LG∗

return K
else

K
r←− {0, 1}λ

add (r,K) to LG

return K

H∗(r, d):
if ((r, d), R) ∈ LH ∪ LH∗

return R
else

R
r←− {0, 1}n

add ((r, d), R) to LH∗

return R

G∗(r):
if (r,K) ∈ LG ∪ LG∗

return K
else

K
r←− {0, 1}λ

add (r,K) to LG∗

return K

Fig. 11. The manner the challenger responds to a KDM query and a decryption query, and the behavior of H, H∗,
G, and G∗ in Game 0. We note that in Game 0, HH∗ and GG∗ run in exactly the same way as H and G, respectively.

– H maintains the list LH which stores query/answer pairs so far, and runs as follows. If some
value (r, d) is queried to H, H first checks whether there is an entry of the form ((r, d), R)
in LH. If so, H returns R. Otherwise, H returns a fresh random value R and adds ((r, d), R)
to LH.

– H∗, G, and G∗ also maintain the query/answer pairs list LH∗ , LG, and LG∗ , respectively, and
run in the same way as H.

– Similarly to the other random oracles, HH∗ and GG∗ are implemented by lazy sampling.
However, HH∗ and GG∗ do not have their own list. When HH∗ samples a fresh random
value, HH∗ adds a new entry to LH, and when GG∗ samples a fresh random value, GG∗ adds
a new entry to LG. In addition, HH∗ runs by referring to both lists LH and LH∗ , and GG∗

runs by referring to both lists LG and LG∗ .
Moreover, in this game, H and H∗ are synchronized. Namely, H and H∗ refer to not only their
own list but also the list of the other one. Similarly, G and G∗ are synchronized. In this game,
random oracles are called at the following four cases.
– (1) When A makes a hash query.
– (2) When the challenger computes a hash value to respond to a KDM query from A.
– (3) When a function which A sends to the challenger as a KDM query accesses to the

random oracles.
– (4) When the challenger computes a hash value to respond to a decryption query from A.
H and G are used when (1), H∗ and G∗ are used when (2), and HH∗ and GG∗ are used when
(3) and (4). Then, we note that the difference between this game and the original KDM-CCA
game is only conceptual.

Game 1 Same as Game 0, except for the behaviors of H∗ and G∗. In this game, H∗ runs without
referring to LH. Moreover, every time H∗ is given an input (r, d) ∈ {0, 1}λ×{0, 1}∗, H∗ generates
a uniformly random value R over {0, 1}n. Then, H∗ outputs R after adding ((r, d), R) to LH∗

even if there already exists an entry whose first component is (r, d) in LH∗ . We note that H and
HH∗ still refer to LH∗ in this game. When H and HH∗ refer to LH∗ , if there are multiple entries
whose first components are identical, then H and HH∗ adopt the entry which was added first.

H∗(r, d):

R
r←− {0, 1}n

add ((r, d), R) to LH∗

return R

G∗(r):

K
r←− {0, 1}λ

add (r,K) to LG∗

return K

Fig. 12. The behavior of H∗ and G∗ in Game
1.

H(r, d):
if ((r, d), R) ∈ LH

return R
else

R
r←− {0, 1}n

add ((r, d), R) to LH

return R

G(r):
if (r,K) ∈ LG

return K
else

K
r←− {0, 1}λ

add (r,K) to LG

return K

Fig. 13. The behavior of H and G in Game 2.

[Decryption](j, c, d) /∈ Lkdm

if ∃((r, d), R) ∈ LH ∪ LH∗

s.t. c = Enc(pkj , r;R)
K ← GG∗(r)
m← D(K, d)
return m

else return ⊥

Fig. 14. The manner the challenger responds to a de-
cryption query in Game 3.

[Decryption](j, c, d) /∈ Lkdm

if ∃((r, d), R) ∈ LH

s.t. c = Enc(pkj , r;R)
K ← G(r)
m← D(K, d)
return m

else return ⊥

Fig. 15. The manner the challenger responds to a de-
cryption query in Game 4.

G, G∗, and GG∗ run analogously to H, H∗, and HH∗, respectively. See Fig. 12 for how H∗ and G∗

behave in Game 1.
Game 2 Same as Game 1, except that H runs without referring to LH∗ , and G runs without

referring to LG∗ . Here, we note that HH∗ still refers to both LH and LH∗ , and GG∗ also refers
to both LG and LG∗ . See Fig. 13 for how H and G behave in Game 2.

Game 3 Same as Game 2, except that if A makes a decryption query, then the challenger responds
as described in Fig. 14. We note that, due to this change, the challenger can respond to a
decryption query without using the secret keys in this and subsequent games.

Game 4 Same as Game 3, except that if A makes a decryption query, the challenger refers to only
LH instead of LH∪LH∗ when checking the validity of the ciphertext from A, and uses G instead
of GG∗ to compute the answer. See Fig. 15.

Game 5 Same as Game 4, except that if A makes a KDM query (j, f), the challenger always
returns a ciphertext whose plaintext is 0|f(·)|. See Fig. 16.

The above completes the description of the games.
We define the following events in Game i (i = 0, · · · , 5).

SUCi: A succeeds in guessing the challenge bit, that is, b = b′ occurs.

COLi: When the challenger generates r ← {0, 1}λ to respond to a KDM query from A, there exists
an entry of the form (r, ·) in LG ∪ LG∗ , or there exists an entry of the form ((r, ·), ·) in LH.

BHQi: When A queries r to G or queries (r, d) to H, there exists an entry of the form (r, ·) in LG∗ .
We call such a hash query a “bad hash query”.

[KDM](j, f)

r
r←− {0, 1}λ

K ← G∗(r)

d← E(K, 0|f(·)|)
R← H∗(r, d)
c← Enc(pk j , r;R)
add (j, c, d) to Lkdm

return (c, d)

Fig. 16. The manner the challenger responds to a KDM query in Game 5.

In addition, we define the following two events related to decryption queries.

SMTHi: A makes a decryption query (j, c, d) /∈ Lkdm which satisfies the following two conditions,
where Dec(skj , c) = r : There does not exist an entry of the form ((r, d), ·) in LH ∪ LH∗ , and
c = Enc(pk, r;HH∗(r, d)) holds.

BDQi: A makes a decryption query (j, c, d) /∈ Lkdm which satisfies the following condition: There
exists an entry ((r, d), R) ∈ LH∪LH∗ which satisfies c = Enc(pkj , r;R), and for such r, (r, ·) ∈ LG∗

holds. Here, (r, ·) ∈ LG∗ indicates that there exists an entry in LG∗ whose first component is r.
We call such a decryption query a “bad decryption query”.

Using the above events, we can estimate Advkdmcca
FO2,A,ℓ(λ) as Lemma 6 stated below.

Lemma 6. We can estimate Advkdmcca
FO2,A,ℓ(λ) as follows:

Advkdmcca
FO2,A,ℓ(λ) ≤ Pr[COL1] + 2Pr[SMTH3] + |Pr[SUC4]− Pr[SUC5]|

+|Pr[BHQ4]− Pr[BHQ5]|+ 2|Pr[BDQ4]− Pr[BDQ5]|+ Pr[BHQ5] + 2Pr[BDQ5] (3)

Proof of Lemma 6. As mentioned above, the difference between Game 0 and the original KDM-CCA
game is only conceptual, and thus we have Advkdmcca

FO2,A,ℓ(λ) = |Pr[SUC0] −
1
2 |. By using the triangle

inequality, we get the following inequality.

|Pr[SUC0]−
1

2
| ≤

4∑
k=0

|Pr[SUCk]− Pr[SUCk+1]|+ |Pr[SUC5]−
1

2
|

We note that, in Game 5, the challenger always responds to a KDM query (j, f) from A by returning
an encryption of 0|f(·)| regardless of the value of the challenge bit. Therefore, in Game 5, the choice
of the challenge bit and the behavior of A are independent, and thus |Pr[SUC5]− 1

2 | = 0. Below, we
estimate |Pr[SUCk]− Pr[SUCk+1]|(k = 0, 1, 2, 3, 4).

Game 0 and Game 1 are identical games unless when the challenger generates r
r←− {0, 1}λ,

there already exists an entry whose first component is r in LH∪LG∪LG∗ . We note that if LG∗ does
not have such an entry, the same is true for LH∗ . Therefore, we can see that Game 0 and Game
1 are identical unless the event COL0 (resp. COL1) occurs in Game 0 (resp. Game 1), and thus we
have |Pr[SUC0]− Pr[SUC1]| ≤ Pr[COL1].

Next, the only difference between Game 1 and Game 2 is how the challenger responds to a bad
hash query from A. In other words, Game 1 and Game 2 are identical unless the event BHQ1 (resp.
BHQ2) occurs in Game 1 (resp. Game 2), and thus we have |Pr[SUC1]− Pr[SUC2]| ≤ Pr[BHQ2].

Moreover, Game 2 and Game 3, and Game 3 and Game 4 are identical games except for how the
challenger responds to a decryption query which satisfies the condition we stated in the definition
of events SMTHi and BDQi, respectively. In other words, Game 2 and Game 3 are identical unless
the event SMTH2 (resp. SMTH3) occurs in Game 2 (resp. Game 3), and Game 3 and Game 4 are
identical unless the event BDQ3 (resp. BDQ4) occurs in Game 3 (resp. Game 4). Therefore, we have
|Pr[SUC2]−Pr[SUC3]| ≤ Pr[SMTH3] and |Pr[SUC3]−Pr[SUC4]| ≤ Pr[BDQ4]. Then, we get the following
inequality.

Advkdmcca
FO2,A,ℓ(λ) ≤ Pr[COL1] + Pr[BHQ2] + Pr[SMTH3] + Pr[BDQ4] + |Pr[SUC4]− Pr[SUC5]| (4)

In addition, Pr[BHQ2] ≤
∑4

k=2 |Pr[BHQk]−Pr[BHQk+1]|+Pr[BHQ5] holds. By considering analogously
to the above argument, we get |Pr[BHQ2] − Pr[BHQ3]| ≤ Pr[SMTH3] and |Pr[BHQ3] − Pr[BHQ4] ≤
Pr[BDQ4]. Therefore, the following inequality holds.

Pr[BHQ2] ≤ Pr[SMTH3] + Pr[BDQ4] + |Pr[BHQ4]− Pr[BHQ5]|+ Pr[BHQ5]

Moreover, we have Pr[BDQ4] ≤ |Pr[BDQ4]− Pr[BDQ5]|+ Pr[BDQ5]. By using these inequalities in the
inequality (4), we get the inequality (3). □ (Lemma 6)

Below, we show the following lemmas that state each term of the right side of the inequality
(3) is negligible.

Lemma 7. Pr[COL1] = negl(λ).

Lemma 8. Let Π be smooth. Then Pr[SMTH3] = negl(λ).

Lemma 9. Let Σ be OT-CPA secure. Then |Pr[SUC4]−Pr[SUC5]| = negl(λ), |Pr[BHQ4]−Pr[BHQ5]| =
negl(λ), and |Pr[BDQ4]− Pr[BDQ5]| = negl(λ).

Lemma 10. Let Π be OW-CPA secure. Then Pr[BHQ5] = negl(λ).

Lemma 11. Let Π be OW-CPA secure. Then Pr[BDQ5] = negl(λ).

The proofs of Lemmas 7, 9, and 10 are almost the same as the proofs of Lemmas 3, 4, and 5
that we show in the proof of Theorem 5, respectively. Therefore, we omit here and provide them
in Appendix C.

Proof of Lemma 8. We first define the following event for every i ∈ [qd].

SMTHi3 : In Game 3, the i-th decryption query (j, c, d) made by A satisfies the following two condi-
tions, where Dec(skj , c) = r: (1) There does not exist an entry of the form ((r, d), ·) in LH∪LH∗ ,
and (2) c = Enc(pkj , r;HH

∗(r, d)).

When the condition (1) is satisfied, the value of HH∗(r, d) is defined with a newly generated
uniformly random value. Then, the above condition (2) means that c = Enc(pkj , r;R) holds, where

R
r←− {0, 1}n. In addition, Pr[SMTH3] ≤

∑
i∈[qd] Pr[SMTH

i
3] holds. Then, using the adversary A that

attacks FO2, we construct the following adversary B that attacks the smoothness of Π.

Initialization On input ((pk1, sk1), · · · , (pkℓ, skℓ)), B first chooses b
r←− {0, 1} and t

r←− [qd]. Then,
B sends (pk1, · · · , pk ℓ) to A. Finally, B sets sk = (sk1, · · · , skℓ) and Lkdm = LH = LH∗ = LG =
LG∗ = ∅.

Hash queries If A queries (r, d) to H, B simulates H. Namely, B first checks whether there is an
entry of the form ((r, d), R) in LH. If so, B returns R to A. Otherwise, B generates R

r←− {0, 1}n,
adds ((r, d), R) to LH, and returns R to A. If A queries r to G, B simulates G analogously.

KDM queries For a KDM query (j, f) from A, B computes m1 ← fHH∗,GG∗
(sk) and m0 ← 0|m1|.

Here, B correctly forms LH, LH∗ , LG, and LG∗ through to the end, and thus if f calls HH∗ or
GG∗, B can simulate them for f . Next, B generates r

r←− {0, 1}λ, K r←− {0, 1}λ, and R
r←− {0, 1}n.

Then, B computes c ← Enc(pk j , r;R) and d ← E(K,mb), and returns (c, d) to A. Finally, B
adds (r,K) to LG∗ , ((r, d), R) to LH∗ , and (j, c, d) to Lkdm.

Decryption queries For the i-th decryption query (j, c, d) /∈ Lkdm from A, B responds as follows.

– In the case i < t, if there does not exist an entry ((r, d), R) ∈ LH which satisfies c =
Enc(pkj , r;R), B returns ⊥ to A. Otherwise, B first checks whether there is an entry of
the form (r,K) in LG ∪ LG∗ . If so, B returns m ← D(K, d) to A. Otherwise, B generates
K

r←− {0, 1}λ, adds (r,K) to LG, and returns m← D(K, d) to A.
– In the case i = t, B first computes r ← Dec(skj , c). Then, if there exists an entry of the form

((r, d), ·) in LH∪LH∗ , B aborts with output ⊥. Otherwise, B outputs (j, r, c) and terminates.

B perfectly simulates Game 3 until A makes the t-th decryption query. We note that since t
is chosen from [qd] uniformly at random and independently of A, and is information-theoretically
hidden from the view of A, the choice of t does not affect the behavior of B. When A makes the
t-th decryption query (j, c, d), B first computes r ← Dec(skj , c), and if there does not exist an
entry of the form ((r, d), ·) in LH ∪ LH∗ , B outputs (j, r, c) and terminates. Otherwise, B outputs
⊥ and terminates. We can see that B succeeds in breaking the smoothness of Π if and only if
c = Enc(pkj , r;R) holds for a fresh randomness R, which means that the event SMTHt3 occurs in
Game 3 which B simulates for A. Thus, we can estimate the advantage of B Advsmth

Π,B (λ) as follows.

Advsmth
Π,B (λ) =

∑
i∈[qd]

Pr[SMTHi3 ∧ t = i] =
∑
i∈[qd]

Pr[SMTHi3] · Pr[t = i] =
1

qd

∑
i∈[qd]

Pr[SMTHi3]

Therefore, we see that Pr[SMTH3] ≤ qd ·Advsmth
Π,B (λ). Since Π is smooth and qd is a polynomial of λ,

we have Pr[SMTH3] = negl(λ). □ (Lemma 8)

Proof of Lemma 11. First, we define the following two events.

BDQ15: In Game 5, A makes a decryption query (j, c, d) /∈ Lkdm satisfying the following condition:
There exists an entry ((r, d), R) ∈ LH which satisfies c = Enc(pkj , r;R) and (r, ·) ∈ LG∗ .

BDQ25: In Game 5, A makes a decryption query (j, c, d) /∈ Lkdm satisfying the following condition:
There exists an entry ((r, d), R) ∈ LH∗ which satisfies c = Enc(pkj , r;R). (We note that if there
is an entry of the form ((r, ·), ·) ∈ LH∗ , then there is an entry of the form (r, ·) ∈ LG∗ .)

By the definition of the events, obviously, BDQ5 = BDQ15∨BDQ25 holds, and thus we have Pr[BDQ5] ≤
Pr[BDQ15] + Pr[BDQ25]. Here, regarding BDQ25, when A makes a decryption query (j, c, d) /∈ Lkdm

satisfying the condition of BDQ25, it holds that r = r∗, R = R∗, and d = d∗ for some entry
(j∗, c∗, d∗) ∈ Lkdm, where c∗ = Enc(pkj∗ , r

∗;R∗). In addition, in this case, j ̸= j∗ also holds. The
reason is as follows. If j = j∗ holds, then c = Enc(pkj , r;R) = Enc(pkj∗ , r

∗;R∗) = c∗ holds, and
thus we have (j, c, d) = (j∗, c∗, d∗), which contradicts (j, c, d) /∈ Lkdm. Therefore, j ̸= j∗ holds. From
these, the event BDQ25 implies the following event.

BDQ2∗5: In Game 5, A makes a decryption query (j, c, d) /∈ Lkdm satisfying the following con-
dition: For some entry (j∗, c∗, d∗) ∈ Lkdm, where c∗ = Enc(pkj∗ , r

∗;R∗), it holds that c =
Enc(pkj , r

∗;R∗) and j ̸= j∗.

Here, we have Pr[BDQ25] ≤ Pr[BDQ2∗5].
Then, using the adversary A that attacks FO2, we construct the following adversary B that

attacks the List-OW-CPA security of Π. Since Π is OW-CPA secure, from Lemma 1, Π is also
List-OW-CPA secure. Here, we note that B attacks the List-OW-CPA security of Π in the case the
number of keys is ℓ− 1.

Initialization On input (pk∗1, · · · , pk∗ℓ−1), B first chooses s
r←− [ℓ] and generates (pks, sks) ←

KG(1λ). Then, for 1 ≤ j < s, B sets pkj = pk∗j , and for s < j ≤ ℓ, B sets pkj = pk∗j−1.

Finally, B sends (pk1, · · · , pkℓ) to A, and sets Lkdm = LH = LG = L1
ans = L2

ans = ∅.
Hash queries If A queries (r, d) to H, B first simulates H. Namely, B first checks whether there

is an entry of the form ((r, d), R) in LH. If so, B returns R to A. Otherwise, B generates
R

r←− {0, 1}n, adds ((r, d), R) to LH, and returns R to A. Then, B adds r to L1
ans. If A queries

r to G, B just simulates G analogously to H. (B does not add r to L1
ans in the case of G query.)

KDM queries For a KDM query (j, f) from A, B responds as follows.
– In the case j ̸= s, B first queries j if j < s and j−1 if j > s to the challenger as an encryption

query and gets the answer c. Then, B generates K
r←− {0, 1}λ and computes d← E(K, 0|f(·)|).

Finally, B adds (j, c, d) to Lkdm, and returns (c, d) to A.
– In the case j = s, B first generates r

r←− {0, 1}λ, K r←− {0, 1}λ, and R
r←− {0, 1}λ. Then,

B computes c = Enc(pkj , r;R) and d ← E(K, 0|f(·)|). Finally, B adds (j, c, d) to Lkdm, and
returns (c, d) to A.

Decryption queries For a decryption query (j, c, d) /∈ Lkdm from A, if j = s, B first computes
r ← Dec(sks, c), and adds r to L2

ans if r ̸= ⊥. Then, B responds in the same manner as BSUC in
the proof of Lemma 9.

Final phase When A terminates with output b′, B chooses γ
r←− {1, 2} and outputs Lγ

ans.

We see that B perfectly simulates Game 5 for A. In the initialization step, B chooses s
r←− [ℓ]

and generates (pks, sks)← KG(1λ). Since s is information-theoretically hidden from the view of A,
this does not affect the behavior of A. We note that, in the List-OW-CPA game, the challenger
maintains the list Lenc which stores plaintexts of the challenge ciphertexts. Then, it holds that
Advlowcpa

Π,B,ℓ−1(λ) = Pr[Lenc ∩ Lγ
ans ̸= ∅]. Here, γ is a randomness over {1, 2} which B chooses in the

final phase, and thus the following equality holds.

Advlowcpa
Π,B,ℓ−1(λ) =

1

2
Pr[Lenc ∩ L1

ans ̸= ∅] +
1

2
Pr[Lenc ∩ L2

ans ̸= ∅]

In the following, we first consider Pr[Lenc ∩L1
ans ̸= ∅]. When the event BDQ15 occurs in Game 5

which B simulates for A, there exists an entry ((r∗, d), R) ∈ LH which satisfies c = Enc(pkj , r
∗, R)

and (r∗, ·) ∈ LG∗ for some decryption query (j, c, d) /∈ Lkdm from A. We note that only when
A makes a H query, an entry is added to LH. Thus, ((r

∗, d), R) ∈ LH means that A has queries
(r∗, d) as a H query. Therefore, in this case, L1

ans contains r∗. Also, (r∗, ·) ∈ LG∗ means that r∗

is generated to compute the answer to a KDM query from A. (Actually, B does not make LG∗

by itself, but B need not make LG∗ to simulate Game 5 for A.) Here, let r∗ be the randomness
generated to compute the answer (c∗, d∗) to a KDM query (j∗, f) from A. In other words, let c∗ be
an encryption of r∗ under pkj∗ . Then, if j

∗ ̸= s, c∗ is computed by the challenger, and thus Lenc

contains r∗. On the other hand, if j∗ = s, c∗ is computed by B, and thus Lenc does not contain r∗.
Therefore, at least when A makes a decryption query satisfying the condition of the event BDQ15,
and j∗ ̸= s holds for the above j∗, Lenc ∩ L1

ans ̸= ∅ holds. Since s is chosen from [ℓ] uniformly at
random, and is information-theoretically hidden from the view of A, the choice of s is independent
of the behavior of A. Therefore, the probability that j∗ ̸= s holds under the condition that A
has made a decryption query satisfying the condition of BDQ15 is ℓ−1

ℓ . Moreover, since B perfectly
simulates Game 5 for A, the probability that A makes a decryption query satisfying the condition
of the event BDQ15 is Pr[BDQ15]. From these, we have Pr[Lenc ∩ L1

ans ̸= ∅] ≥ ℓ−1
ℓ Pr[BDQ15].

Next, we consider Pr[Lenc∩L2
ans ̸= ∅]. When the event BDQ2∗5 occurs in Game 5 which B simulates

for A, for some decryption query (j, c, d) /∈ Lkdm from A and some entry (j∗, c∗, d∗) ∈ Lkdm, it holds
that c = Enc(pkj , r

∗;R∗) and j ̸= j∗, where c∗ = Enc(pkj∗ , r
∗;R∗). Then, if j = s, L2

ans contains
r∗. In addition, in this case, j∗ ̸= j = s holds, and thus Lenc also contains r∗. Therefore, at least
when A makes a decryption query (j, c, d) /∈ Lkdm satisfying the condition of the event BDQ2∗5, and
j = s holds, Lenc ∩ L2

ans ̸= ∅ holds. Since the choice of s is independent of A, the probability
that j = s holds under the condition that A has made a decryption query satisfying the condition
of BDQ2∗5 is 1

ℓ . Moreover, since B perfectly simlates Game 5 for A, the probability that A makes
a decryption query satisfying the condition of the event BDQ2∗5 is Pr[BDQ2∗5]. Therefore, we get
Pr[Lenc ∩ L2

ans ̸= ∅] ≥ 1
ℓ Pr[BDQ2

∗
5].

From these, we can estimate Advlowcpa
Π,B,ℓ−1(λ) as follows.

Advlowcpa
Π,B,ℓ−1(λ) =

1

2
Pr[Lenc ∩ L1

ans ̸= ∅] +
1

2
Pr[Lenc ∩ L2

ans ̸= ∅]

≥ 1

2
· ℓ− 1

ℓ
Pr[BDQ15] +

1

2
· 1
ℓ
Pr[BDQ2∗5]

≥ 1

2ℓ
(Pr[BDQ15] + Pr[BDQ2∗5])

≥ 1

2ℓ
(Pr[BDQ15] + Pr[BDQ25]) ≥

1

2ℓ
Pr[BDQ5]

From the above, we have Pr[BDQ5] ≤ 2ℓ · Advlowcpa
Π,B,ℓ−1(λ). Since Π is List-OW-CPA secure and ℓ is a

polynomial of λ, we see that Pr[BDQ5] = negl(λ). □ (Lemma 11)

From the inequality (3) and Lemmas 7 to 11, we have Advkdmcca
FO2,A,ℓ(λ) = negl(λ). Since the choice

of ℓ and A is arbitrary, FO2 is KDM-CCA secure in the random oracle model. □ (Theorem 4)

References

1. IEEE standard specifications for public-key cryptography - amendment 1: Additional techniques. IEEE Std
1363a-2004 (Amendment to IEEE Std 1363-2000), Sept 2004.

2. M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational soundness of formal
encryption). J. Cryptology, 20(3):395, 2007.

3. P. Adão, G. Bana, J. Herzog, and A. Scedrov. Soundness and completeness of formal encryption: The cases of
key cycles and partial information leakage. Journal of Computer Security, 17(5):737–797, 2009.

4. B. Applebaum. Key-dependent message security: Generic amplification and completeness. EUROCRYPT 2011,
LNCS 6632, pp. 527–546. 2011.

5. B. Applebaum, D. Cash, C. Peikert, and A. Sahai. Fast cryptographic primitives and circular-secure encryption
based on hard learning problems. CRYPTO 2009, LNCS 5677, pp. 595–618. 2009.

6. M. Backes, M. Dürmuth, and D. Unruh. OAEP is secure under key-dependent messages. ASIACRYPT 2008,
LNCS 5350, pp. 506–523. 2008.

7. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of security for public-key
encryption schemes. CRYPTO 1998, LNCS 1462, pp. 26–45. 1998.

8. M. Bellare, V. Hoang, and P. Rogaway. Garbling schemes. IACR Cryptology ePrint Archive, 2012:265, 2012.
(The proceedings version appears in ACMCCS 2012.)

9. M. Bellare, D. Hofheinz, and E. Kiltz. Subtleties in the definition of IND-CCA: when and how should challenge
decryption be disallowed? J. Cryptology, 28(1):29–48, 2015.

10. M. Bellare and P. Rogaway. Optimal asymmetric encryption. EUROCRYPT 1994, LNCS 950, pp. 92–111. 1994.

11. J. Black, P. Rogaway, and T. Shrimpton. Encryption-scheme security in the presence of key-dependent messages.
SAC 2002, LNCS 2595, pp. 62–75. 2002.

12. D. Boneh, S. Halevi, M. Hamburg, and R. Ostrovsky. Circular-secure encryption from decision Diffie-Hellman.
CRYPTO 2008, LNCS 5157, pp. 108–125. 2008.

13. Z. Brakerski and S. Goldwasser. Circular and leakage resilient public-key encryption under subgroup indistin-
guishability - (or: Quadratic residuosity strikes back). CRYPTO 2010, LNCS 6223, pp. 1–20. 2010.

14. J. Camenisch, N. Chandran, and V. Shoup. A public key encryption scheme secure against key dependent chosen
plaintext and adaptive chosen ciphertext attacks. EUROCRYPT 2009, LNCS 5479, pp. 351–368. 2009.

15. J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable anonymous credentials with optional
anonymity revocation. EUROCRYPT 2001, LNCS 2045, pp. 93–118. 2001.

16. D. Cash, M. Green, and S. Hohenberger. New definitions and separations for circular security. PKC 2012, LNCS
7293, pp. 540–557. 2012.

17. G. Davies and M. Stam. KDM security in the hybrid framework. CT-RSA 2014, LNCS 8366, pp. 461–480. 2014.

18. D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography (extended abstract). STOC 1991, pp. 542–552.
1991.

19. E. Fujisaki and T. Okamoto. How to enhance the security of public-key encryption at minimum cost. PKC 1999,
LNCS 1560, pp. 53–68. 1999.

20. E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric encryption schemes. CRYPTO
1999, LNCS 1666, pp. 537–554. 1999.

21. E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric encryption schemes. J. Cryptology,
26(1):80–101, 2013.

22. D. Hofheinz. Circular chosen-ciphertext security with compact ciphertexts. EUROCRYPT 2013, LNCS 7881,
pp. 520–536. 2013.

23. F. Kitagawa, T. Matsuda, G. Hanaoka, and K. Tanaka. Efficient key dependent message security amplification
against chosen ciphertext attacks. ICISC 2014, LNCS 8949, pp. 84–100. 2014.

24. F. Kitagawa, T. Matsuda, G. Hanaoka, and K. Tanaka. Completeness of single-bit projection-kdm security for
public key encryption. CT-RSA 2015, LNCS 9048, pp. 201–219. 2015.

25. T. Malkin, I. Teranishi, and M. Yung. Efficient circuit-size independent public key encryption with KDM security.
EUROCRYPT 2011, pp. 507–526. 2011.

26. T. Okamoto and D. Pointcheval. REACT: rapid enhanced-security asymmetric cryptosystem transform. CT-RSA
2001, LNCS 2020, pp. 159–175. 2001.

27. T. Okamoto and S. Uchiyama. A new public-key cryptosystem as secure as factoring. EUROCRYPT 1998, LNCS
1403, pp. 308–318. 1998.

28. V. Shoup. A proposal for an ISO standard for public key encryption. IACR Cryptology ePrint Archive, 2001:112,
2001.

A The proof of Lemma 1

Here, we define OW-CPA security for PKE schemes, and then prove Lemma 1.

Definition 8 (OW-CPA security). Let Π be a PKE scheme whose message space is M. We
define the OW-CPA game between a challenger and an adversary A as follows.

Initialization First the challenger generates a key pair (pk , sk) ← KG(1λ). Then, the challenger
generates m

r←−M and c← Enc(pk ,m), and sends (pk , c) to A.
Final phase A outputs m′.

In this game, we define the advantage of the adversary A as follows.

Advowcpa
Π,A (λ) = Pr[m = m′]

We say that Π is OW-CPA secure if for any PPT adversary A, we have Advowcpa
Π,A (λ) = negl(λ).

We give the proof of Lemma 1 below.

Proof of Lemma 1. Let A be an adversary for the List-OW-CPA security of Π which makes at
most q encryption queries and outputs a list Lans that contains at most p elements. Let ℓ = ℓ(λ)
be any polynomial. Then, we define the following event Si,k for any i ∈ [q] and k ∈ [p].

Si,k: Let mi be the i-th entry of Lenc and m′k be the k-th entry of Lans. Then, mi = m′k holds.

Here, we have Advlowcpa
Π,A,ℓ (λ) ≤

∑
i∈[q]

∑
k∈[p] Pr[S

i,k].

Using A, we construct the following adversary B which attacks the OW-CPA security of Π.

Initialization On the input (pk∗, c∗), B first chooses s
r←− [ℓ] and t

r←− [q]. Then, B sets pks =
pk∗, generates ℓ − 1 key pairs (pk j , sk j) ← KG(1λ)(j = 1, · · · , s − 1, s + 1, · · · , ℓ), and sends
(pk1, · · · , pk ℓ) to A.

Encryption queries For the i-th encryption query j ∈ [ℓ] made by A, B responds as follows.

– In the case i ̸= t, B generates m
r←−M, computes c← Enc(pk j ,m), and returns c to A.

– In the case i = t, if j ̸= s, then B aborts with output ⊥. Otherwise, B returns c∗ to A.
Final phase When A outputs Lans, B first chooses u

r←− [p], where p is the number of entries in
Lans. Then, B outputs the u-th entry of Lans.

If B does not abort, B perfectly simulates the List-OW-CPA game for A. We note that s, t,
and u are chosen uniformly at random. In addition, if B does not abort, the choice of them is
information-theoretically hidden from the view of A, and thus is independent of A. When A makes
the t-th encryption query jt, if jt = s, B returns c∗ which is the challenge ciphertext for B itself.
Let c∗ be an encryption of r∗. Then, the t-th entry of Lenc in the List-OW-CPA game which B
simulates for A is r∗. In addition, in the final phase, B outputs the u-th entry of Lans output by
A. From these, for any i ∈ [q] and k ∈ [p], B succeeds in breaking the OW-CPA security of Π if
the event Si,k occurs in the List-OW-CPA game which B simulates for A, and t = i, jt = s, and
u = k hold. Therefore, we can estimate the advantage of B as follows.

Advowcpa
Π,B (λ) =

∑
i∈[q]

∑
k∈[p]

Pr[Si,k ∧ t = i ∧ s = ji ∧ u = k]

=
∑
i∈[q]

∑
k∈[q]

Pr[Si,k] · Pr[t = i] · Pr[s = ji] · Pr[u = k]

=
1

ℓpq

∑
i∈[q]

∑
k∈[p]

Pr[Si,k] ≥ 1

ℓpq
Advmowcpa

Π,A,ℓ (λ)

Since Π is OW-CPA secure, and ℓ, p, and q are polynomials of λ, we see that Advlowcpa
Π,A,ℓ (λ) ≤

ℓpq · Advowcpa
Π,B (λ) = negl(λ). □ (Lemma 1)

B The Definitions of IND-CPA security and IND-CCA security for Public
Key Encryption

Here, we review the definition of IND-CPA security and IND-CCA security for PKE schemes.

Definition 9 (IND-CPA security). Let Π be a PKE scheme. We define the IND-CPA game
between a challenger and an adversary A as follows.

Initialization First the challenger selects a challenge bit b
r←− {0, 1}. Next, the challenger generates

a key pair (pk, sk)← KG(1λ) and sends pk to A.
Challenge A selects two messages m0 and m1 of equal length, and sends them to the challenger.

Then the challenger returns c← Enc(pk,mb).
Final phase A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as follows.

AdvindcpaΠ,A (λ) = |Pr[b = b′]− 1

2
|

We say that Π is IND-CPA secure if for any PPT adversary A, we have AdvindcpaΠ,A (λ) = negl(λ).

By permitting the adversary to make decryption queries, we can analogously define IND-CCA
security.

Definition 10 (IND-CCA security). Let Π be a PKE scheme. We define the KDM-CCA game
between a challenger and an adversary A in the same way as the IND-CPA game except that A
is allowed to adaptively make decryption queries. Let c∗ denote the answer to the challenge query.
Then, A is not allowed to query c∗ itself as a decryption query.

Decryption queries c, where c is a ciphertext which satisfies c ̸= c∗. For this query, the challenger
returns m← Dec(sk, c).

In this game, we also define the advantage AdvindccaΠ,A (λ) of the adversary A analogously to that in
the IND-CPA game. Then, Π is said to be IND-CCA secure if for any PPT adversary A, we have
AdvindccaΠ,A (λ) = negl(λ).

C Proofs of Lemmas 7, 9, and 10

Proof of Lemma 7. Since A is a PPT algorithm, there is a polynomial of λ which is the upper
bound of the number of total entries in LH ∪ LG ∪ LG∗ . Let Q = Q(λ) denote this upper bound.
Then, the probability that when the challenger generates r

r←− {0, 1}λ to respond to a KDM query
form A, there is an entry of the form (r, ·) in LG ∪LG∗ , or there is an entry of the form ((r, ·), ·) in
LH is at most Q

2λ
. A makes a KDM query at most qe times, and qe is a polynomial of λ. Therefore,

we have Pr[COL1] ≤ Q·qe
2λ

= negl(λ). □ (Lemma 7)

Proof of Lemma 9. Using the adversary A that attacks FO2, we construct the adversaries BSUC,
BBHQ, and BBDQ all of which attack the OT-CPA security of Σ. We first describe BSUC below.

Initialization On input security parameter 1λ, BSUC first chooses t
r←− [qe]. Then, BSUC generates

ℓ key pairs (pk j , sk j) ← KG(1λ)(j = 1, · · · , ℓ) and sends (pk1, · · · , pk ℓ) to A. Finally, BSUC sets
sk = (sk1, · · · , skℓ) and Lkdm = LH = LH∗ = LG = LG∗ = ∅.

Hash queries For a hash query from A, BSUC responds in the same manner as B in the proof of
Lemma 8.

KDM queries For the i-th KDM query (j, f) from A, BSUC responds as follows.

– In the case i < t, BSUC first computes m1 ← fHH∗,GG∗
(sk) and m0 ← 0|f(·)|. Since BSUC

correctly forms LH, LH∗ , LG, and LG∗ up to this point, when f calls HH∗ and GG∗, BSUC can
simulate them for f . Next, BSUC generates r

r←− {0, 1}λ, K r←− {0, 1}λ, and R
r←− {0, 1}n. Then

BSUC computes c ← Enc(pk j , r;R) and d ← E(K,mb), and returns (c, d) to A. Finally, BSUC
adds (r,K) to LG∗ , ((r, d), R) to LH∗ , and (j, c, d) to Lkdm.

– In the case i = t, BSUC first computes m1 ← fHH∗,GG∗
(sk) and m0 ← 0|f(·)|. Since BSUC

correctly forms LH, LH∗ , LG, and LG∗ up to this point, when f calls HH∗ and GG∗, BSUC
can simulate them for f . Next, BSUC sends (m0,mb) as a challenge query to the challenger
to get the answer d. Then, BSUC generates r

r←− {0, 1}λ and R
r←− {0, 1}n, computes c ←

Enc(pk j , r;R), and returns (c, d) to A. Finally, BSUC adds (r,⊥) to LG∗ , ((r, d), R) to LH∗ ,
and (j, c, d) to Lkdm.

– In the case i > t, BSUC first generates r
r←− {0, 1}λ, K r←− {0, 1}λ, and R

r←− {0, 1}n. Then,
BSUC computes c ← Enc(pk j , r;R) and d ← E(K, 0|f(·)|), and returns (c, d) to A. Finally,
BSUC adds (r,K) to LG∗ , ((r, d), R) to LH∗ , and (j, c, d) to Lkdm.

Decryption queries For a decryption query (j, c, d) /∈ Lkdm from A, if there does not exist an
entry ((r, d), R) ∈ LH which satisfies c = Enc(pkj , r;R), BSUC returns ⊥ to A. Otherwise, BSUC
first checks whether there is an entry of the form (r,K) in LG. If so, BSUC returns m← D(K, d)
to A. Otherwise, BSUC generates K

r←− {0, 1}λ, adds (r,K) to LG, and returns m ← D(K, d) to
A.

Final phase When A terminates with output b′, BSUC outputs βSUC = 1 if b = b′. Otherwise, BSUC
outputs βSUC = 0.

BBHQ runs in exactly the same way as BSUC except for how to determine the final output bit βBHQ.
BBHQ determines βBHQ as follows. BBHQ initially sets βBHQ = 0. When A queries r to G or queries (r, d)
to H, BBHQ first responds in the same manner as BSUC. In addition, BBHQ checks whether the query
is a bad hash query or not. Namely, BBHQ checks whether there exists an entry in LG∗ whose first
component is r. If so, BBHQ sets βBHQ = 1. When A terminates with output b′, BBHQ outputs βBHQ.

BBDQ also runs in exactly the same way as BSUC except for how to determine the final output bit
βBDQ. BBDQ determines βBDQ as follows. BBDQ initially sets βBDQ = 0. When A makes a decryption query
(j, c, d) /∈ Lkdm, BBDQ first responds in the same manner as BSUC. In addition, BBDQ checks whether
the query is a bad decryption query or not. Namely, BBDQ checks whether the query satisfies the
following condition: There exists an entry ((r, d), R) ∈ LH ∪ LH∗ which satisfies c = Enc(pkj , r;R),
and if so, for such r, (r, ·) ∈ LG∗ holds. If (j, c, d) satisfies the above condition, then BBDQ sets
βBDQ = 1. When A terminates with output b′, BBDQ outputs βBDQ.

Let β be the challenge bit in the game between the challenger and BSUC. Then, the advantage
of BSUC is estimated as follows.

AdvotcpaΣ,BSUC(λ) =
1

2
|Pr[βSUC = 1|β = 1]− Pr[βSUC = 1|β = 0]|

=
1

2
|
∑
k∈[qe]

Pr[βSUC = 1 ∧ t = k|β = 1]−
∑
k∈[qe]

Pr[βSUC = 1 ∧ t = k|β = 0]|

Here, for any k ∈ [qe], we have the following two equations.

Pr[βSUC = 1 ∧ t = k|β = 1] = Pr[t = k|β = 1]Pr[βSUC = 1|β = 1 ∧ t = k]

Pr[βSUC = 1 ∧ t = k|β = 0] = Pr[t = k|β = 0]Pr[βSUC = 1|β = 0 ∧ t = k]

We note that t is chosen from [qe] uniformly at random and independently of β. Hence, for all
k ∈ [qe], we have Pr[t = k|β = 1] = Pr[t = k|β = 0] = 1

qe
. Moreover, for every k ∈ [qe−1], in the cases

β = 1∧ t = k and β = 0∧ t = k+1, BSUC responds to KDM queries from A in exactly the same way.
In the above two cases, the only difference is whether BSUC computes fHH∗,GG∗

(sk) to responds to the
(k+1)-th KDM query from A. Due to this difference, in the above two cases, the manner LH and LG

are formed is different. However, since A cannot see the contents of LH and LG, this does not affect
the behavior of A. Therefore, we have Pr[βSUC = 1|β = 1 ∧ t = k] = Pr[βSUC = 1|β = 0 ∧ t = k + 1]
for any k ∈ [qe − 1]. From these, we have the following equality.

AdvotcpaΣ,BSUC(λ) =
1

2qe
|Pr[βSUC = 1|β = 1 ∧ t = qe]− Pr[βSUC = 1|β = 0 ∧ t = 1]|

Since BBHQ and BBDQ run in exactly the same way as BSUC except for how to determine the final
output bit, all of the above arguments also hold for BBHQ and BBDQ. Therefore, we also have the
following equalities.

AdvotcpaΣ,BBHQ(λ) =
1

2qe
|Pr[βBHQ = 1|β = 1 ∧ t = qe]− Pr[βBHQ = 1|β = 0 ∧ t = 1]|

AdvotcpaΣ,BBDQ(λ) =
1

2qe
|Pr[βBDQ = 1|β = 1 ∧ t = qe]− Pr[βBDQ = 1|β = 0 ∧ t = 1]|

We note that, until A makes the t-th KDM query, BSUC correctly forms LH, LH∗ , LG, and LG∗ ,
and thus BSUC can compute KDM functions up to this point. On the other hand, BSUC cannot
simulate the t-th entry of LG∗ because B simulates the security game for A so that the second
component of the t-th entry of LG∗ is the value of the key the challenger generates, and thus BSUC
does not know it. Therefore, when responding to the subsequent KDM queries, BSUC cannot compute
KDM functions correctly. However, since BSUC only needs the output length of KDM functions to
respond to the (t + 1)-th and subsequent KDM queries, and KDM functions are length regular,
BSUC need not compute f . Then, we see that when β = 1∧ t = qe, BSUC perfectly simulates Game 4
for A. On the other hand, when β = 0∧ t = 1, BSUC perfectly simulates Game 5 for A. We note that
t is information-theoretically hidden from the view of A, and thus the choice of t does not affect
the behavior of A. Here, this argument also holds for BBHQ and BBDQ.

In addition, BSUC outputs 1 only when A succeeds in guessing b, that is, b = b′ occurs, BBHQ
outputs 1 only when A makes a bad hash query, and BBDQ outputs 1 only when A makes a bad
decryption query. Therefore, we have the following equalities.

Pr[βSUC = 1|β = 1 ∧ t = qe] = Pr[SUC4], Pr[βSUC = 1|β = 0 ∧ t = 1] = Pr[SUC5]

Pr[βBHQ = 1|β = 1 ∧ t = qe] = Pr[BHQ4], Pr[βBHQ = 1|β = 0 ∧ t = 1] = Pr[BHQ5]

Pr[βBDQ = 1|β = 1 ∧ t = qe] = Pr[BDQ4], Pr[βBDQ = 1|β = 0 ∧ t = 1] = Pr[BDQ5]

Therefore, we get the following equalities.

AdvotcpaΣ,BSUC(λ) =
1

2qe
|Pr[SUC4]− Pr[SUC5]|

AdvotcpaΣ,BBHQ(λ) =
1

2qe
|Pr[BHQ4]− Pr[BHQ5]|

AdvotcpaΣ,BBDQ(λ) =
1

2qe
|Pr[BDQ4]− Pr[BDQ5]|

Since Σ is OT-CPA secure and qe is a polynomial of λ, we see that |Pr[SUC4]−Pr[SUC5]| = negl(λ),
|Pr[BHQ4]− Pr[BHQ5]| = negl(λ), and |Pr[BDQ4]− Pr[BDQ5]| = negl(λ). □ (Lemma 9)

Proof of Lemma 10. Using the adversary A that attacks FO2, we construct the following adversary
B that attacks the List-OW-CPA security of Π. We note that since Π is OW-CPA secure, by
Lemma 1, Π is also List-OW-CPA secure.

Initialization On input (pk1, · · · , pkℓ), B sends (pk1, · · · , pkℓ) to A, and B sets Lkdm = LH =
LG = Lans = ∅.

Hash queries If A queries (r, d) to H, B simulates H. Namely, B first checks whether there is an
entry of the form ((r, d), R) in LH. If so, B returns R to A. Otherwise, B generates R

r←− {0, 1}n,
adds ((r, d), R) to LH, and returns R to A. Then, B adds r to Lans. If A queries r to G, B
simulates G analogously to H as above, and adds r to Lans.

KDM queries For a KDM query (j, f) from A, B first queries j to the challenger as an encryption
query and gets the answer c. Then, B generates K

r←− {0, 1}λ and computes d ← E(K, 0|f(·)|).
Finally, B adds (j, c, d) to Lkdm, and returns (c, d) to A.

Decryption queries For a decryption query (j, c, d) /∈ Lkdm from A, B responds in the same
manner as BSUC in the proof of Lemma 9.

Final phase When A terminates with output b′, B outputs Lans.

In the List-OW-CPA game, the challenger maintains the list Lenc which stores plaintexts of the
challenge ciphertexts. Then, the advantage of B is Pr[Lenc ∩ Lans ̸= ∅]. We see that B perfectly
simulates Game 5 for A. If A queries r as a G query or (r, d) as a H query, B adds r to Lans. In
addition, in Game 5, a new entry is added to LG and LH only when A makes a G query and H
query, respectively. Thus, we can write Lans = {r|(r, ·) ∈ LG ∨ ((r, ·), ·) ∈ LH}. (r, ·) ∈ LG (resp.
((r, ·), ·) ∈ LH) indicates that there exists an entry in LG (resp. LH) whose first component is r.

On the other hand, every time A makes a KDM query (j, f), B sends j to the challenger as
an encryption query and gets the answer c. Here, let c be an encryption of r. Then, by the above
encryption query from B, the challenger adds r to Lenc. On the other hand, in Game 5, the hash
value of r is computed using G∗ at this point, and thus an entry of the form (r, ·) is added to LG∗ .
Therefore, Lenc can be seen as the set of the first components of the entries in LG∗ in Game 5.
(Actually, B does not make LG∗ by itself, but B does not need LG∗ to simulate Game 5 for A.)
From these, we see that Lenc∩Lans ̸= ∅ holds if the event BHQ5 occurs in Game 5 which B simulates
for A. Therefore, we can see that Advlowcpa

Π,B,ℓ (λ) ≥ Pr[BHQ5]. Since Π is List-OW-CPA secure, we see
that Pr[BHQ5] = negl(λ). □ (Lemma 10)

