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INTRODUCTION 
 
Several traits of importance in animal breeding are 

recorded with discrete categories. The records of some of 
these traits interested are measured by ordered categories 
like litter size, calving ease, conformation and type score or 
binary like return rate, stillbirth, etc. We postulate that these 
traits were also correlated with each other and with the 
other continuous traits. Analysis of such variables can be 
performed based on the threshold model conception (Wright, 
1934). Some studies (Gianola, 1982; Harville and Mee, 
1984; Gianola and Foulley, 1983 and Foulley et al., 1983) 
showed a theoretical prospectives of threshold methodology. 
Gianola and Fernando (1986) proposed the Bayesian 
approach as a conceptual strategy to solve problems arising 
in animal breeding with respect to nonlinear merit functions 
and models. The usefulness of Bayesian statistics via Gibbs 
sampling (GS) (Gelman and Gelman, 1984) is not required 
the numerical integration of complicated density functions 
by taking the repeated samples from the posterior 
distributions. Sorensen et al. (1995) described the 
methodology of Bayesian inference in univariate threshold 
model to implement a GS algorithm. Wang et al. (1997) 
extended the work of Sorensen et al. (1995) to one multiple 
ordered categorical trait and one continuous trait with all 
possible missing patterns of data from a Bayesian 
perspective. They estimated one threshold ( 3t ) because the 

simulated data used were generated with four categories in 
a categorical trait and fixed to 01 =t , fixedt =2  or 
possibly, residual variance=1. VanTassell et al. (1998) again 
extended Sorensen et al. (1995) and Wang et al. (1997) 
showed algorithms to generalized multi-trait animal model 
for categorical variables that have binomial or multinomial 
outcomes and for any combination of categorical and 
continuous traits. They used standard or alternate 
parameterization referred by Sorensen et al. (1995) of the 
thresholds and residual variance on their programs 
(MTGSAM) to guarantee identifiable. That is, “Standard” 
parameterization ( 0,1 =it  and residual variance of 1) was 

assumed for binary data and the alternative ( 0,1 =it  and 

1,2 =it ) was assumed for at least three categories with 

unknown residual variance (Sorensen et al., 1995). Lee et al. 
(2002) proposed the other parameterization of thresholds. 
They suggested that rescaling method on thresholds was 
needed to sustain the properties of distribution of 
underlying variables and guarantee identifiable. However, 
there is still some obstacle to overcome. Main problem is 
biased estimates for (co) variance components, especially, 
in binary trait model under the Bayesian inference. Moreno 
et al. (1997) examined on biased inference about variance 
components in the binary threshold model. They suggested 
an iterative bootstrap method for correcting the bias 
problems. Luo et al. (2001) tried to implement GS for a 
multiple-trait Bayesian model with linear, binary, and 
categorical traits and described Monte-Carlo errors with 
respect to the frequentist properties. They concluded that 
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the animal model was improper for analysis of categorical 
traits using a threshold model and the Gibbs sampler when 
using one categorical and one continuous trait.  

The objective of this study is to investigate the bias for 
heritabilities and genetic correlations in a Bayesian 
prospective with any combinations of continuous, ordered 
categorical, and binary multiple traits under an animal 
model. 

 
METERIALS AND METHODS 

 
Models and prior distributions  

Assuming multiple traits with binary, multi-categories 
and/or continuous observations, m  dichotomous or 
polychotomous random variables without missing traits are 
observed for each record j(j=1,2,…,n). The vector of 
observed variables can be the expression of the 
corresponding vector which consisted of underlying 
continuous variables (

ijU ) with unknown threshold vector 

( it ) corresponding to the traits. Let the observed random 
vectors denote 0

iy , i=1,…,k with (y1…ym) for categorical 
traits and (Um+1,…,Uk) for continuous traits, 
interchangeably for notational convenience. Now we 
consider the following model  
 

,iiii eZaXU ++= β  for (i=1,…,k)    (1) 
 
where 

iU  is a vector of the thi  observed continuous (or 
underlying) variables, 

iβ  is a vector of fixed effects, 
ia  is 

a vector of random effects, 
ie  is a vector of residuals, and 

X and Z are matrices associated with effects. Let ijt  be the 
thj  threshold on thi  categorical trait. Then, a mixed model 

for the observed continuous and underlying liability 
variables can be θWU = , where ( )′′′= a,βθ  and 

[ ]ZXW = . Furthermore, the conditional probability of 
U  given θ  and R regardless of proper or improper were  
 

   
 
 
 
 
 
,Where                                   (2) 
 
The traditional model assumptions can be achieved in 

Bayesian model by putting the prior distributions 
appropriately. We refer to the works by VanTasell et al. 
(1998) for assuming the prior distributions of location 
parameters, variance components and thresholds to non-
informatives. 

Conditional posterior distributions and Gibbs sampling 
To implement Gibbs sampling with the conditional 

posterior distributions, we will use a minus subscript to 
delete an appropriate element from a matrix or a vector. For 
example, 

iU −
 will be denoted the vector U  with 

iU  
deleted. Similarly and 

ijU −
 be denoted U  with 

ijU  

deleted.  
Under Model (1), according to the work by VanTassell 

et al. (1998), the underlying liability variable of thj  

observation for ith categorical trait given θ , ijY , it , ijU −  

and R  can be drawn from a truncated normal distribution 
(TN) as follow: 
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of W  on  (2). 
Conditionally, thresholds for ith categorical trait can be 

drawn from a uniform distribution given by Sorensen et al. 
(1995). 

Location parameters ( ( )′′′= a,βθ ) given i−θ ,G , R , 
and U  were sampled from a multivariate normal 
distribution for the traits within effects with means and 
variances as:  

 

( )( )11,ˆ~,,,| −−
− ′ iiikii xRxMVNURa βββ    (4) 

 
( ) ),ˆ(~,,,,| 1111 −−−−

− +′ iiiiikiii AGzRzaMVNURGaa β  (5) 
 

where )ˆ(ˆ
ii aβ  is a 1×k  vector for the estimates of ith 

level of fixed (random) effect. The more details for 
estimating location parameters can be referred to the note 
by Sorensen (1996). Dispersion parameters were sampled 
from inverted Wishart distributions (IW) assuming the flat 
prior distributions as follow: 

)(~,,,,| ak SSIWyUtRG θ       (6) 
 

)(~,,,,| ek SSIWyUtGR θ       (7) 
 
where )( ea SSSS  is the sum of squares for genetic 
(residual) effects. More details were described on 
Sorensen’s (1996) note. 
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Liability 
According to (3), underlying liabilities can be generated 

with two possibilities as follow: 
Step by step method (ESTEP) : The distributions on (3) 

can be stated in terms of the residual iijijij wUe θ′−=  

because of a one-to-one relationship with the liability given 
the fixed and random effects. Then residual effects for thi  
trait on thj  observation were generated with taking into 
account of thresholds for each trait by (3).  

( )iiiiiiiiiiiiittjijij

ttjj

ttj

rrrrerrTNeee

rrrrerrTNee

rTNe

ii ,1:1
1

1:1,1:11:1,1:1
1

1:1,1:11:1,,,11

12
1

1121221
1

1112,12

11,1

,~,,|

),(~|

),0(~

1

,212

,111

−
−

−−−−
−

−−−−

−−

−

−

−

−

−

λλ

λλ

λλ

Λ

Μ

  (8) 

 
Full method (EFULL) : Residual terms of underlying 

liabilities were generated as follow: 
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where iiii WUe −−−− −= θ  and 
iU−

 is the information 
gotten from previous round or previous step within same 
round. That is, 

Now, underlying liability for ith categorical trait can be 

iiij ew +′θ  on equation of (8) or (9). 

 
Parameterizations 

The Gibbs sampler for thresholds and residual variances 
were constrained or reparameterized as follow: 

Standard parameterization (ST) : Standard 
parameterization was following the works by Wang et al. 
(1997) and Korsgaard et al. (1999). That is, on binary traits, 
thresholds were fixed to zero and residual variances of 1’s. 
On three-category trait, the first and second thresholds were 
fixed to zero and one, respectively. Likewise, on five-
categories trait, two thresholds were fixed to zero and one, 
and the other two thresholds were sampled from uniform 
distributions. The Gibbs samplers of residual covariances 
between binary and multiple category(ies) or linear trait 
were rescaled a method extended the work by Korsgaard et 
al. (1999) with taking into account for correlated traits. 

Constrains and rescaling thresholds (RT) : The 
thresholds sampled regardless of binary or multiple 
categorical traits was(were) rescaled without restriction for 
residual variances as follow: 

ieiijij ttt σ/)( 1
* −= , for j = 1,…,Ci-1, where ieσ  is 

standard deviation for residual effect of  thi  categorical 

trait and iC  is the number of categories for thi  
categorical trait. 

 
Simulation study 

Data were simulated using the following 3-trait linear 
model: 

ijkikijijk eaCGy ++=  for i = 1,…,3 

where 
ijky  is the observation in thj  contemporary group 

in animal thk  on thi  trait; 
ijCG  is the thj  

contemporary group effect on thi  trait; ika  is the thk  
animal genetic effect; and 

ijke  is the random residual. The 

random effects were distributed as: 
 

( )AGNa ⊗0,0~ , ( )nRNe Ι⊗0,0~  
 
where A is the numerator relationship matrix and ⊗ is 
kronecker product. We assumed as: 
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The base population consisted of 10 sires and     

1,000 dams. Mating within each generation was random, 
and 10% males and 90% females were randomly selected 
for each next generation. A total of 5 generations of animals 
with 10 contemporary groups (CGs) per generation were 
generated. Each animal randomly pertained to a CG of   
10 CGs on each generation. Animals were randomly mated 
on every generation and selected 10% males and 90% 
females. The value of every record was discretized to 2 
categories using 1 on standard scale. Likewise, for 3-, 4- 
and 5-categorical traits, (1,2), (0,1,2) and (0,1,2,3) on 
standard scale were used, respectively. Variance-covariance 
components and their parameters by GS with ESTEP were 
compared with EFULL in two threshold models. One is a 
three categorical trait model with one binary, one 3-
categorical and one 5-categorical trait (235) (Model 1) and 
the other is multiple categorical trait model with two binary 
and one linear trait (22L) (Model 2). Furthermore, the other 
three different models with EFULL were setup and 
implemented ST and RT algorithms as: two binary and one 
4-category model (224) (Model 3), one binary, one three-
category and one linear model (23L) (Model 4), one three-
category, one five-category, and one linear model (35L) 
(Model 5). Five replicates for Gibbs sampling on each 
model were carried out. Finally, 11,127 animals from 220 
sires with 10,272 records were generated (table 1). 
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RESULTS  
 

Analysis of gibbs samples 
1,000 cycles were apparently enough to assume “burn-

in” in each model and replicate. Nevertheless, 1,000 Gibbs 
samples which were retained every 10th cycles after 15,000 
cycles were discarded as “burn-in” period were used to 
calculate statistics of the posterior distributions of 
dispersion parameters. Mixing rate as percentage of Monte-
Carlo standard deviations in the posterior means and the 
number of effective samples, which were calculated using a 
time series method provided by Geyer (1992), were 
presented. As considering the mixing rate by traits, the 
worst mixing rate in linear model with GS was shown at 
genetic correlations between highly correlated traits. For 
example in present study, correlation between binary trait 
and three-categorical trait (

)23(gr ) was shown the worst 

mixing rate in all model considered. This characteristic was 
also shown in the general pattern although the amounts of 
mixing rates were depended on models. 

 
Comparison of parameters 

 Parameter estimates by Gibbs samplers were compared 

to estimates by REML in linear models (table 2). Means of 
the posterior heritabilities and genetic correlations by GS in 
the model with all continuous traits were a good agreement 
with estimates by REML and indicated good mixing rates 
for all parameters. This implied these distributions to be 
proper.  

In Model 1 and Model 2, there were no differences for 
heritability estimates even though the marginal posterior 
distributions for covariance components should be different 
due to different algorithms. For example, on ESTEP, 
residual correlations between categorical traits were much 
biased downward and genetic correlations would be slightly 
inflated consequently (table 3 and 4). These phenomenon 
might look like uncorrelated for residual effects among 
categorical traits. Otherwise, residual correlation between 
categorical trait and continuous trait were unbiased and 
close to “true” value (table 4). These results indicated that 
underlying values had to be generated with taken into 
account for the fully conditional posterior distribution in a 
multiple threshold model.  

For two binary and one 4-categorical traits model 
(Model 3) with RT parameterization, the distributions of 
thresholds would be inflated slightly and showed in a good 
mixing rate if comparing ST method in same model. 
However, the distributions of thresholds should be highly 
peaked. We could not find out any difference for mixing 
rates of posterior heritabilities and genetic (residual) 
correlations between two different parameterizations (ST vs 
RT). Otherwise, the posterior heritabilities for binary traits 
should be different between ST and RT parameteriation. 
Heritability estimates with ST parameterization, restriction 
on residual variance of 1, showed 3-7% biased upward on 
binary traits (table 4). The posterior genetic correlations 
between two binary traits or binary and categorical trait was 
slightly inflated on standard parameterization (ST). The 
reason might be caused from inflation for the distributions 
of genetic covariances due to deflation for the distributions 
of residual covariances between both binary traits or binary 
and categorical trait. Otherwise, with RT parameterization, 
parameter estimates (heritabilities, genetic and residual 
correlations) from the posterior means were close to “true” 
values. In this case, variance-covariance matrix sampled 
from inverted Wishart distribution without any restriction 
was the approximated polygenic matrix and might be well 
defined as inverted Wishart distribution. In the Bayesian 
properties, RT parameterization ( ieiijij ttt σ/)( 1

* −= ) is 

identifiable with respect to scaling and location and this 
parameterization was in the agreement with the work by 
Wang et al. (1997).  

For the one binary, one 3-categories, and one continuous 
trait threshold model (23L), the posterior mean for threshold 
on 3-categorical trait with RT was 0.978. This estimate was 
close to 1 as assuming at ST parameterization. This might 
imply that the scale of the posterior distribution for variance 
component using this method would be same to that with ST  

Table 1. Average numbers of animals, sires, contemporary 
groups (CG), and number of progeny per sire and CG in 
simulated data (5 replicates) 
 Average numbers  Average numbers
Animals 11,127 Records 10,272 

Sire 220 
Progeny per 

 sire 47 

CG 50 
Progeny per 

  CG 205 

Table 2. Statistics for heritability and genetic (residual) 
correlation estimates by REML and Gibbs sampling in 
three traits linear model (5 replicates) 
 REML Gibbs sampler 

2
1h  0.396 (0.030) (1) 0.397 (0.029) (2) 
2
2h  0.143 (0.019) 0.145 (0.021) 
2
3h  0.203 (0.014) 0.206 (0.012) 

)12(gr  -0.233 (0.058) -0.233 (0.062) 

)13(gr  0.200 (0.050) 0.202 (0.048) 

)23(gr  0.754 (0.030) 0.750 (0.037) 

)12(er  -0.150 (0.013) -0.151 (0.012) 

)13(er  0.133 (0.012) 0.132 (0.011) 

)23(er  0.220 (0.008) 0.219 (0.007) 
(1) Average of estimates by REML. 
(2) Average of the posterior means by Gibbs samples, values in 

parenthesis are empirical standard deviations. 
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parameterization. There were no differences for mixing 
rates of heritabilities, genetic and residual correlations  
between two different parameterizations (ST vs RT). 
Otherwise, the posterior heritability for binary trait with ST 

was also shown 3.6% upward biased. With RT 
parameterization, the posterior genetic and residual 
correlations as well as heritabilities regardless of the types 
of traits were close to estimates by REML.   

Table 3. Average of the posterior means (PM) and differences for heritabilities, genetic, and residual correlations between 
by REML in linear model and by Gibbs sampling in threshold animal model on the different combinations of traits using 
simulated data (5 replicates) 

235-ESTEP-ST(1) 23L-ESTEP-RT(2) 
 PM Diff PM Diff 

2
1h  0.385 (0.052) -0.011(0.037) (3) 0.394(0.051) -0.002(0.035) (3) 
2
2h  0.148 (0.012) 0.005(0.018) 0.163(0.021) 0.020(0.022) 
2
3h  0.219 (0.009) 0.016(0.008) 0.209(0.013) 0.006(0.003) 

)12(gr  -0.231 (0.096) 0.002(0.039) -0.300(0.122) -0.067(0.066) 

)13(gr  0.233 (0.100) 0.033(0.054) 0.218(0.086) 0.018(0.041) 

)23(gr  0.773 (0.070) 0.019(0.049) 0.714(0.063) -0.040(0.047) 

)12(er  -0.033 (0.012) 0.118(0.013) 0.131(0.030) 0.281(0.028) 

)13(er  0.033 (0.008) -0.100(0.005) 0.121(0.019) -0.012(0.010) 

)23(er  0.087 (0.009) -0.133(0.005) 0.215(0.017) -0.005(0.012) 
(1) ESTEP for Gibbs samples with standard parameterization in three-trait model on first trait with binary, second trait with 3-categories 

and third trait with 5-categoires. 
(2) ESTEP for Gibbs samples with standard parameterization in three-trait model on first trait with binary, second trait with 3-categories 

and third trait with linear (more details were described on text). 
(3) Difference between estimates by Gibbs samples in threshold models and estimates by REML in original linear scale, values in 

parenthesis are empirical standard deviations. 

Table 4. Comparison of biases for genetic parameters between using standard parameterization (ST) and parameterization
of rescaling thresholds (RT) in different combinations of traits models (average from 5 replicates) 

224(1) 23L(2) 35L(3) 
 ST RT ST RT ST RT 

2
1h  0.034 (0.026) 0.003 (0.039) 0.036(0.027) -0.002(0.042) 0.017(0.037) 0.007(0.031)
2
2h  0.065 (0.056) 0.005 (0.027) 0.002(0.021) -0.001(0.025) -0.001(0.008) 0.005(0.008)
2
3h  0.009 (0.010) 0.004 (0.008) 0.007(0.004) 0.005(0.004) 0.005(0.004) 0.004(0.003)

)12(gr  0.063 (0.073) 0.019 (0.046) 0.019(0.069) 0.029(0.041) 0.015(0.064) 0.003(0.074)

)13(gr  0.019 (0.061) 0.004 (0.061) 0.019(0.030) 0.001(0.024) 0.016(0.041) 0.019(0.045)

)23(gr  0.000 (0.073) 0.043 (0.060) 0.010(0.042) 0.036(0.058) 0.010(0.023) -0.016(0.033)

)12(er  -0.006 (0.062) 0.014 (0.041) 0.013(0.034) 0.012(0.034) 0.005(0.016) 0.010(0.021)

)13(er  -0.021 (0.017) -0.015 (0.015) -0.015(0.010) -0.009(0.009) -0.009(0.014) -0.011(0.014)

)23(er  -0.010 (0.006) -0.006 (0.010) -0.001(0.011) -0.003(0.008) -0.005(0.006) -0.003(0.004)
(1) First and second traits with binary and third trait with 4-categories. 
(2) First trait with binary, second trait with 3-categories and third trait with linear. 
(3) First trait with 3-categories, second trait with 5-categories and third trait with linear, values in parenthesis are empirical standard 

deviations. 
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As considering the mixing rate by traits, genetic 
correlation between binary trait and 3-categorical trait 
having true value of 0.775 was shown the worst mixing rate 
with both parameterizations. Residual variance for 
continuous trait was shown the best mixing rate and 
residual covariance between continuous trait and 3-
categorical trait was well defined with respect to mixing 
rate. 

For the two multi-categorical traits and one continuous 
trait threshold model (35L) (Model 5), threshold estimates 
were shown the better mixing rates with RT 
parameterization than with ST parameterization. We could 
not find out any differences for the posterior heritabilities, 
genetic and residual correlations between two different 
parameterizations (ST vs RT) although the posterior 
distributions for residual variance-covariance matrix should 
be different between two parameterizations. 

 
DISCUSSION 

 
Heritability estimates by means of the posterior 

distributions with RT parameterization were close to 
estimates by REML within 3% in each model. So we can 
interpret that these estimates were unbiased. However, 
Moreno et al. (1997) described that the sign of the bias in 
binary threshold model depends on the amount of 
information associated with either fixed effects or with 
random effects and GS can produce positively biased 
inferences when the amount of data per fixed effect is small. 
They also presented that, when fixed effects are poorly 
estimated, the bias persists even if posterior distributions 
are guaranteed to be proper and expected that, in the case of 
the animal model, the bias problems should be accentuated. 
In this study, we tried to implement binary traits analysis to 
multiple binary traits and joint analysis with binary, ordered 
categorical and linear traits and figure out bias problems on 
binary traits. In all case, the estimates of heritability were in 
a good agreement with the true values assuming that REML 
estimates were true values. One possibility for the reason of 
bias problems, the posterior distributions for residual 
covariance matrix would not be the property of inverted 
Wishart distributions anymore if an element on matrix was 
restricted, for example, residual variance of one for binary 
trait as standard parameterization. 

Genetic covariances were biased upward although 
genetic variances were unbiased with ESTEP. Moreover, 
residual covariances would be much biased. These biases 
would be originated from not taking into account of the 
fully conditional posterior distribution. The amount of bias 
is larger on binary traits than on multiple categorical traits 
and larger on categorical (binary) traits in joint analysis 
model than in threshold models. Hoeschele and Tier (1995) 
got results that significantly overestimated heritability 

under the sire model using Monte-Carlo posterior mode and 
mean in simulated data with 50 sires and 40 progeny on 
average. Our results about bias were much better than their 
results. However, further studies with several models are 
needed. 

 
CONCLUSION 

 
 Genetic parameters (heritability and genetic 

correlations) and location parameters (breeding values) 
could be estimated in multi-trait threshold model with any 
combination of binary, multiple categories and linear traits 
in Bayesian prospective. Underlying arbitrary values as 
liability scale with correlated traits should be generated with 
taken into account for correlated effects of residual. One 
possibility is that underlying values of correlated traits, 
which were generated at previous round or step, can be 
conditioned if these values were generated sequentially 
according to traits. When residual variance of one was 
restricted, heritability estimates always cause to bias. The 
alternative would be to rescale the thresholds by residual 
variance or to find the other way if possible. 
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