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INTRODUCTION 
 
Previous studies have shown that inoculation of whole 

maize with a strain L.buchneri reduce the yeast count and 
improve the aerobic stability (Driehuis et al., 1996). 
Inoculation with L. buchneri does not influence the primary 
fermentation (conversion of sugars into acids), but induce a 
secondary fermentation in which part of lactic acid present 
in silage is converted to acetic acid and 1,2-propanediol 
(Driehuis et al., 1999; Oude Elferink et al., 1998). There are 
indications that 1,2 propanediol can be further converted to 
1-propanol and propionic acid (Driehuis et al., 1998). The 
increase in acetic (and propionic) acid lead to a reduced 
survival of yeasts during the anaerobic ensilage phase and 
growth inhibition of yeasts and moulds during the aerobic 
phase (Driehuis et al., 1998,1999; Oude Elferink et al., 
1998). However, extra sugar can enhance growth of yeast 
under anaerobic condition in high DM grass silage (Guan et 

al., 2001) and sweet sorghum silage (Schmidt et al., 1997), 
there is still no data available in respect to the effects of 
extra sugar influencing the fermentation characteristics of 
whole maize crop silage with L. buchneri. Therefore the 
objectives of this study were to determine the influence of 
residual sugar on anaerobic yeast growth and on the 
fermentation of lactic acid by L. buchneri in whole crop 
maize silage.  

 
MATERIAL AND METHODS 

 
Experimental procedure 

The whole crop maize (variety LG2181) was harvested 
through a precision-chop forage harvester. The yield of 
maize was c. 18 ton/ha. The intended inoculation level for L. 
buchneri was 106 cfu g-1, the suspension were applied using 
a pressure sprayer while mixing in a concrete mixer. 
Laboratory silos were airtight 1-L capacity glass jars (c.  
0.5 kg per jar), which were stored in the dark at 20°C. There 
were 14 jars per treatment and two jars on day 2, 7, 14, 28, 
56 or three jars each treatment on day 91 post ensiling were 
opened, one 30 g silage sample per jar was taken and add 
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270 g demineralized water, and then blend 5 min with 
stomacher for measuring the pH, microbiological 
enumeration and fermentative products. 

There were a total of six treatments used in this 
experiment as follow: added 25 g de-mineralised water per 
kg chopped maize serving as control (con), 37.5 g glucose 
solution containing 12.5 g glucose (g1), 75 g glucose 
solution containing 25 g glucose (g2), 25 g L. buchneri 
suspension intended for 106 cfu L. buchneri per g maize 
(L.b.), 12.5 g glucose kg-1+L. buchneri 106 cfu g-1 (g1+L.b), 
and 25.0 glucose g kg-1+L. buchneri 106 cfu g-1. 

 
Analytical procedure 

The maize samples taken from control and treated only 
with L. buchneri at day o were analyzed for pH, lactobacilli, 
total lactic acid bacteria (LAB), yeast and mould, but only 
sample from the control also for measuring DM, crude 
protein (CP), neutral detergent fiber (NDF), acid detergent 
fiber (ADF) and water soluble carbohydrate (WSC). All 
silage samples were subject to analyze for pH, DM, ethanol 
and volatile fatty acids (VFA), lactic acid, sugar and the 
numbers of LAB, lactobacilli, yeast and mould. Dry matter, 
CP, NDF, ADF, WSC and ash were determined as described 
by van Vuuren et al. (1993). Bacteria counts, pH and 
concentrations of lactic acid, VFA and ethanol were 
determined in extracts of samples of maize or silage, 
prepared as described by Spoelstra (1983). Lactic acid was 
determined as described by Spoelstra (1983). VFA and 
ethanol were determined by gas chromatography, using 
Hewlett Packard 5730A equipment, a 25 m medium bore 
capillary column (Chrompack CP-Sil-5CB) and helium as 
carrier gas. Lactobacilli were enumerated on double layered 
poured plates of Rogosa SL Agar (Difco) acidified with 
glacial acetic acid to pH 5.4, incubated 3 days at 30°C. 
Lactic acid bacteria (LAB) were enumerated on doubled 
layered pour plates of Rogosa SL Agar (Difco) adjusted 
with sodium hydroxide to pH 6.2 containing 100 mg L-1 
cycloheximide, incubated 3 days at 30°C. Yeast and mould 
were enumerated on double layered pour plates of Malt 

Extract Agar (MEA) acidified by lactic acid to pH 3.5, 
incubated 3 days at 30°C. Aerobic stability of silage were 
determined by incubation at 20°C of 0.3 kg lots in insulated 
containers with holes lids and bottoms to allow air to enter 
and carbon dioxide to escape. Temperature was measured 
continually by a thermocouple placed in the center of 
material, coupled to data taker. Aerobic stability was 
defined as the time needed to increase the temperature 1°C 
above ambient temperature. 

 
Statistical analysis   

The statistical analysis included one-way analysis of 
variance and Duncan’s multiple range test; these were 
performed by ANOVA using the GLM procedure of the 
Statistix as a randomized complete block design. 

 
RESULTS 

 
Composition of maize before ensiling 

The chemical composition and the epiphytic bacteria 
number of LAB, Lactobacilli, yeast and mould of the pre-
ensiled maize crop are given in table 1. The treatment with 
inoculant showed a slight higher the LAB and lactobacilli, 
lower yeast than control maize. 

 
Developments of pH and WSC consumption in course of 
ensilage 

Figure 1 and figure 2 present the development of pH 
and WSC consumption during the ensiling of maize 
respectively. Rates of pH-drop were very fast for all silages 
possessing pH value c. 4.3 or below 4 at day 2 and 7 
respectively, no difference occurred among treatments 
before day 28. After day 28 the pH for silages inoculated by 
L. buchneri with or without sugar tended to increase 
especially for treated only with L. buchneri, resulting in 
higher (p<0.01) finial pH than uninoculated silages. 
Compared with control silage, supplementing only sugar at 
ensiling didn’t significantly affect (p>0.05) pH of silages. 
Inoculation by L. buchneri. increased the final pH, 

Table 1. Chemical analyses and epiphytic bacteria of the fresh maize at ensiling 
Items Con g1 g2 L.b L.b+g1 L.b+g2 
DM, g kg-1 DM 290 299.5 299.8 291.7 303.3 302.2 
WSC, g kg-1 DM 85.7 116.1 138.8 88 113.2 132.9 
N, g kg-1 DM 10.3 - - 10.1 - - 
NDF, g kg-1 DM 462.9 - - 456.5 - - 
ADF, g kg-1 DM 222.1 - - 243.3 - - 
LAB, log10 cfu g-1 5.99 - - 6.2 - - 
Lactobacilli, log10 cfu g-1 5.64 - - 6.2 - - 
Yeast, log10 cfu g-1 4.7 - - 4.3 - - 
Mould, log10 cfu g-1   3.7 - - 3.6 - - 
-: Not determinated. 
Inoculant containing L. buchneri supply: 9.5×107 cfu on medium of Rogosa 6.2. 
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simultaneously in combination with added sugar had lower 
(p<0.01) pH than that of inoculated silage. Additionally 
more effect was observed with high sugar addition, 
indicating the added sugar inhibiting the activity of       
L. buchneri which make the slight rise of pH. Water soluble 
sugar change shows that nearly the same sugar amount left 
in silages at 14 days until the end of ensilage (figure 2), 
indicating added extra sugars were fermented into ethanol 
instead of lactic acid, confirmed by fermentation products 
(data not shown). 

 
Dry matter loss 

As shown in figure 3, the added sugar significantly 
(p<0.01) increased DM loss, and the more intensive effect 
was observed with increasing sugar inclusion. L. buchneri 
enhanced (p<0.01) DM loss further at different sugar 
existence. Data from sugar consumption suggested that all 
added sugars were nearly consumed that resulted in the 
similar amount of sugar left in all the final silages, in line 
with the changes of DM loss. 

  
Changes in microbiological composition during ensilage 

Figure 4, figure5 and figure6 show the changes in the 

bacteria numbers during the ensiling. Lactobacilli count 
increased sharply and reached the peaks at day 2 post- 
ensiling for all silages, then tended to reduce slowly for the 
control and silage treated only with sugar. However, for the 
silages inoculated with L. buchneri kept the same count and 
even though somewhat increase after 2 weeks until the end 
of trial. Lactobacilli counts in silages of 91 days varied 
from 7.76 to 9.23 (log cfu g-1), they were not influenced by 
added sugar. Inoculation with L. buchneri increased 
(p<0.01) Lactobacilli counts, but added sugar impaired the 
function of L. buchneri. The count of yeast increased 
rapidly after ensiling and reached the peaks at day 7, then 
tended to decrease. Yeast counts for all silages after day 56 
were below 2 until the end of trial. Yeast altering showed 
that added sugar increased significantly (p<0.01) the yeast 
counts, whereas L. buchneri reduced the yeast count, and 
added sugar nearly eliminating the inhibition of L. buchneri 
on yeast. Mould reduced significantly after ensiling and 
kept very low throughout the whole ensilage.   

.  
Chemical composition of silages after 91 days 

Table 2 presents the fermentative products, LAB, yeast, 
mould and aerobic stability measured at 91 days ensilage. 
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Figure 1. Development of pH in maize silages with
different treatments during the whole ensiling. 
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Figure 2. Water soluble carbohydrate (WSC, g kg-1 DM)
changes in maize silages with different treatments during 
the whole ensiling. 

0

10

20

30

40

50

60

0 2 7 142128 3542 49 56 637077 91

D
ry

 m
at

te
r l

os
s

con
g1
g2
Lb
g1+Lb
g2+Lb

0

10

20

30

40

50

60

0 2 7 142128 3542 49 56 637077 91

D
ry

 m
at

te
r l

os
s

con
g1
g2
Lb
g1+Lb
g2+Lb

Figure 3. Dry matter loss (g kg–1 DM) in maize silages 
with different treatments during the whole ensiling. 
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The concentration of lactic acid varied from 34.85 to 95.9 g 
(kg DM)-1 and increased (p<0.01) with addition of extra 
sugar at ensiling. Silages inoculated by L. buchneri only or 
in combination with sugar addition contained less (p<0.01) 
lactic acid than the correspondent silages without 
inoculation with L. buchneri, contributing the higher finial 
pH due to partial lactic acid was fermented into acetic acid 
and other products. In comparison with control, ethanol 
production is about 3 or 6 fold higher due to addition   
12.5 or 25 g glucose at ensiling, showing that ethanol 
concentration doubled if added double amount of glucose. 
Similar results in inoculated silages were found, which 
seems that ethanol formation was independently on 
L.buchneri. The added sugar resulted in less acetic acid 
concentration (p<0.01) than control, but inoculation with 
L.buchneri increased (p<0.01) acetic acid than 
correspondent uninoculated silages at different sugar levels. 
No butyric acid and propionic acid were found in 
uninoculted silages, however silages inoculated with 
L.buchneri were observed in propionic acid, 1-propanol and 
butyric acid. On the basis of inoculation of L. buchneri, 
added extra sugar reduced the production of propionic acid, 
butyric acid and 1-propanol (p<0.01), indicating that extra 
sugar suppressed the activity of L. buchneri. 

Lactobacilli counts in silages of 91 days varied from 
7.76 to 9.23 (log cfu g-1), they were not influenced by added 
sugar. Inoculation with L. buchneri increased (p<0.01) 
Lactobacilli counts, but added sugar impaired the function 
of L.buchneri. The count of both yeast and mould were less 
than 2 (log cfu g-1), indicated that they were not observed in 
silages at day 91 post-ensiling. 

 
Aerobic stability 

All the silages ensiled under anaerobic silos were stable 
upon exposure to air, longer than 280 h (table 2), showing 
that aerobic stability was not influenced by the added extra 
sugar and inoculation of L.buchner under anaerobic 
condition. 

 
DISCUSSION 

 
As expected that inclusion of extra sugar at ensiling 

enhanced the growth of yeast and produced the much higher 
ethanol at the present study. What is the source of much 
high ethanol concentration in silages treated with sugar? 
Where is the added extra sugar? The answer is that extra 
ethanol production, in comparison with control, should 
derive from the extra added sugar converted into ethanol by 
yeast, this finding can be supported by three evidences as 
below. First of all, all the silages had the same pH drop rate 
under anaerobic conditions before 14 days during this time 
the normal acidification process took place in which sugars 
were converted into lactic acid by LAB, this process almost 
finished at day 14, that means the same amount sugars were 
fermented into lactic acid, but nearly the same sugar amount 
left in silages at 14 days until the end of ensilage (figure 2), 
indicating added extra sugars were not fermented into lactic 
acid. Secondly, the concentration of ethanol in silages 
treated only with sugar at day 91 amounted c. 3 or 6 fold 
than control silage, also double ethanol production was 
observed in high sugar addition than low sugar addition that 
is completely in agreement with amount of sugar addition at 
ensiling. This finding could be confirmed by the changes of 
moles of sugar and ethanol (data not shown). Thirdly, the 
micro-organism responsible for more ethanol production in 
present silages is yeast, because during the day 0 to day 14, 
there was a big difference only in count of yeast, moreover 
by day 14 ethanol production already reached their peaks 
(data not shown), and just during the same period the yeast 
counts showed the significant difference (see yeast altering), 
on the other hand, yeasts are capable of convert the sugar 
into ethanol. All those mentioned as above coincided with 
DM loss and development of pH in silages. All the 
inoculated silages with L. buchneri were characteristiced by 
increased concentration of acetic acid, 1-propanol and 
propionic acid, slightly increased pH and DM loss, reduced 
yeast counts and increased LAB counts, which confirmed 
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Figure 5. Yeast (log10 cfu g-1) count in maize silages with
different treatments during the whole ensiling. 

Figure 6. Mould (log10 cfu g-1) count in maize silages with 
different treatments during the whole ensiling. 
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the description of typical L. buchneri treated silages 
(Driehuis et al., 1996; Driehuis et al., 1998,1999; Oude 
Elferink et al., 1998). Previous studies with pure cultures of 
L.buchneri have shown that L. buchneri is capable of 
converting lactic acid into acetic acid and 1,2-propandiol 
(Oude Elferink et al., 1998), however, sometimes propanol 
and propionic acid instead of 1,2-propanediol were detected 
(Driehuis et al., 1996,1998,1999). The developments of 
different fermentative products concentration during the 
whole ensilage suggested that there are two degradation 
pathways of lactic acid by L. buchneri, both of them begin 
to function after 14 days at the same time (data not shown). 
The first metabolism way of lactic acid is that, after 2 weeks 
(this experiment), L. buchneri started to ferment lactic acid 
into acetic acid and carbon dioxide, slight more DM loss in 
inoculated silage with L. buchneri attribute to loss of carbon 
dioxide. The second pathway is that lactic acid was 
converted into 1,2-propandiol by L. buchneri, Surprisingly, 
1-propanol and propionic acid not 1,2-propanediol was 
measures as a dominant fermentation products in the L. 
bucheneri treated maize silage, which is in line with those 
described by Driehuis et al. (1999). This suggests that 1,2-
propanediol is further degraded into 1-propanol and (or) 
propionic acid within silages. The fact that L. bucheneri is 
unable to degrade 1,2-propanediol in pure cultures or in the 
heterogeneous silages habitant (Oude Elferink et al., 2001) 
strongly indicates that other bacteria are involved in the 
further degradation of 1,2-propanediol..But how about the 
partition of lactic acid for two degradation ways that exist at 
the same time maybe should be studied further. Another 
finding in this study is that there is an antagonism between 
sugar content and function of L. buchneri, confirmed by the 

fermentative product concentration in final silages under the 
anaerobic conditions. L. buchneri shows a trace influence 
on the ethanol production, explanation is that the process of 
the conversion of sugar into ethanol by yeast took place at 
the initial stage and finished before day 14, and L. buchneri 
started to function at 2 weeks post-ensiling. As respects to 
aerobic stability, all silages ensiled under anaerobic silos are 
stable upon the exposure to air. In conclusion, the added 
sugars encourage the growth of yeast that convert all the 
extra sugar into ethanol. There is an antagonism between 
added sugar and L. buchneri.   
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