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INTRODUCTION 
 
Milk and dairy products are widely recognized as an 

excellent source of calcium in the diet and an adequate 
calcium intake is necessary for the maintenance of bone 
health (Miller, 1989). It has been shown that consumption 
of high concentrations of calcium in early life contributes to 
development of maximal bone density, which in turn can 
prevent osteoporosis in later life (Buttriss, 1990; Renner, 
1994). Milk has a functional role in growth of newborn 
animals, and so milk whey protein possibly have 
components that affect bone metabolism (Takada et al., 
1997). Milk proteins have two major protein groups, about 
80% casein and 20% whey protein (Fox, 1992; McIntosh et 
al., 1998). Whey is the soluble fraction of milk, rich in 
proteins, minerals and lactose that are separated from casein 
during the manufacture of cheese or casein (de la Fuente et 
al., 2002). Whey proteins in bovine milk consist of β-
lactoglobulin (β-LG), α-lactalbumin (α-LA), 
immunoglobulin (Ig), bovine serum albumin (BSA) and 
other trace elements (Fox, 1992).  

Proteolytic hydrolysates attracted lot of interest over 
several years for their potential functionality and their 
prospective uses as ingredients in food, pharmaceutical and 

cosmetic products (Chobert et al., 1988; Marshall, 1994; 
Anon, 1998). Enzymatic hydrolysates of whey proteins 
were found to influence their functional properties 
(McIntosh et al., 1998; FitzGerald and Meisel, 1999) and to 
improve their physical and chemical characteristics (Kilara, 
1985; Guo et al., 1995; Bertrand-Harb et al., 2002). Several 
biologically active peptides were identified in the enzymatic 
hydrolysates of various forms of milk protein, for example, 
opioid peptide (Drewnowski, 1992), ACE-inhibitory 
peptide (Mullally et al., 1997), antithrombotic peptide 
(Jolles et al., 1993), immunomodulatory peptide (Ragno et 
al., 1993), anticarcinogenic peptide (Gallaher and Schmidl, 
1998) and mineral carrier peptide (Reynolds, 1997; 
Oukhatar et al., 2000).  

Recently, among the biologically active peptides 
derived from milk protein, casein phosphopeptide (CPP) are 
formed in vivo following digestion of milk casein by 
gastrointestinal proteinases. CPP with phosphoseryl residual, 
which accelerates the absorption of calcium in the intestine 
have already found interesting applications in functional 
food, dairy products and pharmaceutical products as an 
additive for the therapeutical formula and prevention of 
bone disease (Meisel and Schlimme, 1996; Reynolds, 1997; 
Oukhatar et al., 2000). Also, whey protein components, α-
LA possesses a strong calcium-binding site at Lys79, Asp82, 
84, 87 and 88 (Veprintsev et al., 1999; Noyelle and van 
Deal, 2002). However, the calcium-binding ability of other 
whey protein components has still not been identified.  

The objective of this study was to isolate the calcium-
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binding protein derived from enzymatic CWP hydrolysates.  
 

MATERIALS AND METHODS 
 

Enzymes and reagents  
Fresh Holstein milk was obtained from a Gyeongsang 

National University livestock farm. Manufacture of cheddar 
cheese was performed according to the methods of 
Kosikowski (Kosikowski, 1982), and cheese whey protein 
(CWP) was separated in the cheese process. Defatted and 
demineralized CWP was prepared by ultracentrifugation 
(Supra 25K, Hanil Sci., Korea) and dialysis (Sigma Co., 
USA). After pH adjusting, CWP was heat-treated for 10 min 
at 100°C.  

Trypsin (Bovine pancreas, activity 3.3 Anson units g-1 
protein) and Neutrase 1.5 (Bacillus subtilis, activity 1.5 
Anson units g-1 protein) were from Novo Nordisk A/S 
(Bagsvaerd, Denmark), Protease S (Bacillus 
stearothermophilis, activity 10,000 units g-1 protein) and 
Papain W-40 (Carica papara L., activity 400,000 units g-1 
protein) were from Amano Enzymes (Japan). Pepsin 
(Porcine gastric mucosa, activity 0.8-2.5 units g-1 protein) 
was purchased from Sigma Chemical Co. (USA).  

BSA, TNBS (trinitrobenzensulfonic acid) and calcium 
determination kits were purchased from Sigma Chemical 
Co. (USA). All other reagents were of an analytical grade.  

 
Preparation of hydrolysates  

Hydrolysis of heated-CWP was determined from 
methods described by Adamson and Reynolds (1996). After 
heating, CWP was adjusted to pH 8.0 and pH 2.0 by the 
addition of 0.5 N NaOH and 0.5 N HCl, respectively. 
Commercial food-grade enzymes preparations, dissolved in 
distilled water, were added to the reaction mixture at the 
ratio of 1:100 (enzyme:substrate, w/w, protein basis). The 
pH of the reaction mixture was maintained at a constant 
through the continuous addition of 0.5 N NaOH using a pH-
stat (Metrohm Ltd., Herisan, Switzerland). During 
hydrolysis, samples were withdrawn after 15, 30, 60, 90, 
120, 180 and 240 min and the enzyme was inactivated by 
heating it for 10 min at 90°C. Hydrolysates were then 
removed precipitate and stored at -20°C.  

 
Determination of degree of hydrolysis (DH) and non-
protein nitrogen pattern (NPN) 

The DH for all enzymatic hydrolysates was determined 
according to Adler-Nissen (1986) and the NPN amount was 
determined by the Lowry et al. (1951) method.  

 
Sodium dodecyl sulfate polyacrylamide gel 
electrophoresis (SDS-PAGE)  

SDS-PAGE was carried out according to Laemmli 
(1970). The separating gel was 15% (w/v) acrylamide of pH 

8.8 and the stacking gel was 3% (w/v) acrylamide of pH 6.8. 
Gels were stained with 0.2% (w/v) commassie brilliant blue 
R-250 in acetic acid/methanol/H2O (1:1:5, v/v/v) and 
distained in acetic acid/methanol/H2O (1:3:6, v/v/v) 
solution.  

 
Reverse phase high performance liquid chromatography 
(RP-HPLC)  

Peptides in heated-CWP hydrolysates were analyzed by 
RP-HPLC on a Nucleosil (Nucleosil C18 5 Micron, Alltech 
Associates, Inc., USA) C18 column (250×4.6 mm), 
equilibrated with solvent A [0.1% trifluoroacetic acid (TFA) 
in H2O] and eluted with a linear gradient to solvent B (0.1% 
TFA in acetonitrile) for 40 min. Runs were conducted at 
room temperature using a Dionex HPLC system (ASI 100, 
Dionex Co., USA) at a flow rate of 1.0 ml min-1 and the 
absorbance of the column elute was monitored at 214 nm. 
The injection volume was generally 10 µl and the 
concentration of peptide material applied was 
approximately equivalent to 0.5 mg protein ml-1. All 
samples were filtered through a 0.2 µm syringe filters prior 
to application to the C18 column.  

 
Selective precipitation of calcium-binding protein  

The calcium-binding protein was precipitated from the 
tryptic hydrolysates by the addition of 10% (w/v) calcium 
chloride to reach a final concentration level of 100 mM and 
a 50% (v/v) final concentration level for ethanol. The 
suspension was centrifuged (12,000×g) and the supernatant 
discarded. The precipitate was dried and stored at -20°C.  

 
Separation of calcium-binding protein  

Separation of calcium-binding protein in tryptic 
hydrolysates was adapted from the method of Rose et al. 
(1969). DEAE-cellulose (Whatman DE 52) was 
equilibrated in 500 ml of 20 mM Tris-HCl buffer pH 7.8 
and slurry of equilibrated DEAE-cellulose was packed in a 
glass column (20×2.5 cm). The tryptic hydrolysates was 
dissolved in the same buffer (pH 7.8) and loaded, and then 
eluted by a step gradient with the same buffer containing 
0.25, 0.5, 0.75 and 1 M NaCl. The flow rate was 3 ml min-1, 
fraction volume was 15 ml tube-1 and elutes was monitored 
at 280 nm. The injection volume was 40 ml, containing 
about 200 mg of protein. Samples were filtered through 0.5 
µm syringe filters prior to application to the column.  

 
Determination of calcium contents and calcium-binding 
ability  

Calcium was quantified throughout by using specific 
calcium colorimetric determination kits. The calcium 
content of fractions was determined using an ο-
cresolphthalein complexone calcium detection reagent 
(Sigma Co., USA). One mL of the reagent was added to 10 
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µl of the sample in a disposable plastic cuvette, mixed and 
the absorbance of the solution was read at 575 nm on 
spectrophotometer (Perkin Elmer Lambda EZ 201, USA). 
The calcium content was determined by a 
calcium/phosphorous combined standard solution (0.1 mg 
ml-1). All determinations were carried out at least five times. 
Calcium concentrations were expressed in mg ml-1.  

The calcium-binding abilities of tryptic hydrolysate 
fractions were determined by Ion chromatography on an 
IonPac CS12A column. Runs were conducted at room 
temperature using a Dionex IC system (DX120, Dionex Co., 
USA) at a flow rate of 1.0 ml min-1 and eluted by 18 mM of 
methane-based sulfuric acid. The injection volume was 25 
µl and six cations (DIONEX P/N 43162) was used as a 
standard. All samples were filtered through a 0.2 µm 
syringe filters prior to application to the column. The 
calcium-binding abilities of tryptic hydrolysate fractions 
were expressed as mM of calcium bound to mg of protein.  

 

Protein determination  
Protein concentration in the commercial enzyme 

preparations, hydrolysates and fractions were determined by 
the dye-binding method of Bradford (1976). BSA was used 
as the standard.  

 
RESULTS AND DISCUSSION 

 
DH and NPN  

The degree of hydrolysis of heated-CWP by commercial 
enzymes is shown in Figure 1. The DH of heated-CWP 
enzymatic hydrolysates ranged from 18.0 to 37.7%, 
depending on the specificity of enzymes. The DH of all 
enzymes were rapidly increased during the 30 min of 
beginning, and then gradually increased in the latter 
reaction time. Of all the hydrolyzed enzymatic hydrolysates, 
trypsin showed the highest DH, 37.7%, by 240 min. More 
explanation is needed for that CWP has more trypsin 
specific site than other enzymes’ site (Monti and Jost, 1978).  

Figure 2 shows the NPN amount of heated-CWP during 
the hydrolysis by commercial enzymes. Trypsin showed the 
highest NPN amount. The NPN patterns of commercial 
enzymes were similar to those of DH patterns.  

 
Change of CWP during digestion in SDS-PAGE  

The electrophoretic patterns of heated-CWP by 
commercial enzymes were shown in Figure 3 and 4. Figure 
3 shows electrophoretic pattern of heated-CWP by trypsin. 
The three major bands of native CWP were observed as 
BSA, β-LG and α-LA (Figure 3, lane 2). These three bands 
were still visible after heat treatment, but they were weakly 
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Figure 1. DH (Degree of hydrolysis) of heated-CWP by 
commercial proteases. Legend: trypsin (♦), Papain W-40 (◊), 
protease S (■), neutrase 1.5 (□) and pepsin (▲). 
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Figure 2. NPN production during hydrolysis of heated-CWP by 
commercial proteases. Legend: trypsin (♦), Papain W-40 (◊), 
protease S (■), neutrase 1.5 (□) and pepsin (▲). 
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Figure 3. SDS-PAGE patterns of heated-CWP hydrolysates by 
trypsin at 50℃ for 15, 30, 60, 90, 120, 180 and 240 min (lanes 4-
10). Lane 1, Standard broad range marker (Bio-Rad, USA): 
myosin (224 kDa), β-galactosidase (112 kDa), bovine serum 
albumin (96 kDa), ovalbumin (51.5 kDa), carbonic anhydrase 
(35.3 kDa), soybean trypsin inhibitor (28.7 kDa), lysozyme (21 
kDa) and aprotinin (7.2 kDa); lane 2, Standard bovine whey 
(Sigma Co., USA); lane 3, Heated-CWP (10 min at 100°C). 
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stained (Figure 3, lane 3). This is in accordance with the 
observations of Guo et al. (1995) who reported that β-LG 
heated for 5-10 min at 90-100°C enhanced the extent of 
proteolysis by trypsin. After 120 min of hydrolysis by 
trypsin, these three bands almost disappeared (Figure 3, 
lane 8). Also, the optimum reaction time was 180 min and 
the molecular weight of peptides derived from tryptic 
hydrolysates was smaller than 7 kDa (Figure 3, lane 9). This 
result was in accordance with those of Jost and Monti 
(1977) who reported an effective increase in the percentage 
of water-soluble nitrogen in whey protein by trypsin 
hydrolysis.  

Figure 4 shows the electrophoretic patterns of heated-
CWP by other commercial enzymes except trypsin. As 
illustrated in Figure 4A, three major bands of heated-CWP 
were slightly hydrolyzed by papain W-40. These results do 
not agree with those of Otte et al. (1997) who reported rapid 
hydrolysis of β-LG by papain. By the use of protease S, 
BSA and α-LA were rapidly hydrolyzed, and β-LG was 

gradually hydrolyzed during reaction times (Figure 4B). In 
the hydrolysis by neutrase 1.5, BSA and β-LG were mostly 
not hydrolyzed, but α-LA was hydrolyzed (Figure 4C). 
BSA was quite susceptible to pepsin and was completely 
degraded within the first 15 min of hydrolysis. α-LA was 
also no longer visible in the gel after about 30 min of 
hydrolysis. But β-LG was much less affected by pepsin, 
showing only a small reduction during the hydrolysis 
(Figure 4D). These results was agreed with those of 
Schmidt and van Markwijk (1993).  

From the results of mentioned above, trypsin was 
observed as the most suitable enzyme to produce the 
hydrolysates for separation of calcium-binding protein from 
CWP. 

 
Reverse phase HPLC of native CWP and heated-CWP 

Figure 5 shows the chromatograms of native CWP and 
heated-CWP. In the chromatogram of native CWP, three 
major peaks were identified by means of the retention time 

Figure 4. SDS-PAGE patterns of heated-CWP hydrolysates by commercial enzymes at 50°C for 15, 30, 60, 90, 120, 180 and 240 min 
(lanes 4-10). Lane 1, Standard broad range marker (Bio-Rad, USA): myosin (224 kDa), β-galactosidase (112 kDa), bovine serum 
albumin (96 kDa), ovalbumin (51.5 kDa), carbonic anhydrase (35.3 kDa), soybean trypsin inhibitor (28.7 kDa), lysozyme (21 kDa) and 
aprotinin (7.2 kDa); lane 2, Standard bovine whey (Sigma Co., USA); lane 3, Heated-CWP (10 min at 100°C). (A) papain W-40, (B) 
protease S, (C) neutrase 1.5 and (D) pepsin. 
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of the standard as BSA (retention time=18.2 min), α-LA 
(retention time=22 min) and β-LG (retention time=23 min) 
(Figure 5A). After heat treatment (10 min at 100°C), one 
large peak and two small peaks were detected as β-LG and 
BSA and α-LA, respectively. The peaks corresponding to 
BSA and α-LA were mostly affected by heat treatment, but 
β-LG was affected a little by heat treatment (Figure 5B). 
These results show that, β-LG is resistant to heat due to the 
strong structure (two disulfide bonds and a free sulfhydryl 
group) in native β-LG. 

Figure 6 shows the chromatogram of tryptic 
hydrolysates from heated-CWP. The peaks corresponding to 
BSA, β-LG and α-LA were mostly hydrolyzed by trypsin. 
These results agreed with the SDS-PAGE results.  

 
Separation and Identification of calcium-binding 
protein  

The separation and identification of the calcium-binding 
protein from tryptic hydrolysates were shown in Figure 7 
and 8, respectively.  

Ion exchange chromatography of tryptic hydrolysates 
from heated-CWP on DEAE-cellulose formed the elution 
profiles seen in Figure 7. The first peak, a large fraction, 
came out a NaCl gradient concentrate of 0.25 M. The latter, 

small peak, was eluted to be at a NaCl gradient concentrate 
of 0.5 M. As a result of the calcium content analysis of two 
fractions, calcium-binding activity is associated with the 
large fraction peak, which occurs at a NaCl gradient 
concentration of 0.25 M. These results confirm previous 
observations (Friedlander and Norman, 1980).  

To confirm the calcium-binding ability of eluted 
fractions from ion exchange chromatography, the fractions 
were analyzed via ion chromatography in a calcium affinity 
column (Figure 8). In terms of calcium-binding ability, the 
large fraction peak bound CaCl2 much more than the small 
fraction peak was gradually increased.  

 
CONCLUSION 

 
To provide the basic information for the effect 

application conditions of CWP and the development 
possibility of calcium-binding protein derived from CWP 
hydrolysates, we hydrolyzed CWP by various commercial 
enzymes, and studied the properties of CWP hydrolysates, 

Figure 5. RP-HPLC chromatograms of native CWP (A) and
heated-CWP (B). Legend: BSA (1), α-LA (2) and β-LG (3). 

Figure 6. RP-HPLC chromatograms of heated-CWP hydrolysates 
by trypsin. Legend: BSA (1), α-LA (2) and β-LG (3). 
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Figure 7. Ion exchange chromatograms of heated-CWP 
hydrolysates by trypsin. 
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then, we separated and confirmed the calcium-binding 
protein derived from CWP hydrolysates. The DH and NPN 
amounts of tryptic hydrolysate were higher than those of 
other enzymatic hydrolysates. SDS-PAGE and RP-HPLC 
patterns showed that trypsin almost hydrolyzed BSA, β-
lactoglobulin and α-lactalbumin. The calcium-binding 
protein was isolated from the tryptic hydrolysates fraction, 
which eluted at a 0.25 M NaCl gradient concentration as a 
result of ion exchange chromatography. The results of the 
present study demonstrate that calcium-binding proteins can 
be produced by trypsin hydrolysates derived from CWP.  
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