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Abstract

We consider the question of whether average-case PPAD hardness can be based on standard
cryptographic assumptions, such as the existence of one-way functions or public-key encryption.
This question is particularly well-motivated in light of new devastating attacks on obfuscation
candidates and their underlying building blocks, which are currently the only known source for
average-case PPAD hardness.

Central in the study of obfuscation-based PPAD hardness is the sink-of-verifiable-line
(SVL) problem, an intermediate step in constructing hard-on-average instances of the PPAD-
complete problem source-or-sink. Within the framework of black-box reductions we prove the
following results:

• Average-case PPAD hardness (and even average-case SVL hardness) does not imply any
form of cryptographic hardness (not even one-way functions).

• Average-case SVL hardness cannot be based either on standard cryptographic assumptions
or on average-case PPAD hardness (and is thus not essential for PPAD hardness).

• Any attempt for basing the average-case hardness of source-or-sink on standard crypto-
graphic assumptions must result in instances with a nearly-exponential number of solutions.

Taken together, our results imply that while it may still be possible to base average-case PPAD
hardness on standard cryptographic assumptions, any black-box attempt must significantly de-
viate from the obfuscation-based approach: It cannot go through the SVL problem, and it must
result in source-or-sink instances with a nearly-exponential number of solutions.
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1 Introduction

In recent years there has been increased interest in the computational complexity of finding a Nash
equilibrium. Towards this end, Papadimitriou defined the complexity class PPAD, which consists of
all search problems that are polynomial-time reducible to the source-or-sink problem [Pap94].1

Papadimitriou showed that the problem nash of finding a Nash equilibrium is reducible to source-
or-sink, and thus belongs to PPAD. He also conjectured that there exists a reduction in the opposite
direction. This was ultimately proved by Daskalakis, Goldberg and Papadimitriou [DGP09] and by
Chen, Deng and Teng [CDT09]. To support the belief that nash may indeed be hard it thus became
sufficient to place a conjectured computationally-hard problem within the class PPAD.

Currently, no natural PPAD-complete problem is known to admit a subexponential-time al-
gorithm. At the same time, however, we do not know how to generate instances that defeat
known heuristics for these problems (see [HPV89] for explicit worst-case hard instances of com-
puting Brouwer fixed points and [SvS04] for nash). This leaves us in an intriguing state of affairs,
in which we know of no efficient algorithms with provable worst-case guarantees, but we are yet to
systematically rule out the possibility that known heuristic algorithms perform well on the average.

A natural approach for arguing hardness on the average would be to reduce from problems that
originate from cryptography. Working in the realm of cryptography has at least two advantages.
First of all, it enables us to rely on well-studied problems that are widely conjectured to be average-
case hard. Secondly, and no less importantly, cryptography supplies us with frameworks for reasoning
about average-case hardness. On the positive direction, such frameworks are highly suited for
designing and analyzing reductions between average-case problems. On the negative direction, in
some cases it is possible to reason when and why natural reductions will not exist [Rud88, IR89].

Up until recently not much progress has been made in relating between cryptography and PPAD
hardness. This has changed as a result of developments in the study of obfuscation [BGI+01,
GGH+13], a strong cryptographic notion with connections to the hardness of source-or-sink.
As shown by Bitansky, Paneth and Rosen [BPR15] the task of breaking sub-exponentially secure
indistinguishability obfuscation can be reduced to solving source-or-sink. Beyond giving the first
extrinsic evidence of PPAD hardness, the result of Bitansky et al. also provided the first method
to sample potentially hard-on-average source-or-sink instances. Their result was subsequently
strengthened by Garg, Pandey and Srinivasan, who based it on indistinguishability obfuscation with
polynomial hardness [GPS15].

Generally speaking, indistinguishability obfuscation has revealed to be an exceptionally powerful
primitive, with numerous far reaching applications. However, its existence is far from being a well-
established cryptographic assumption, certainly not nearly as well-established as the existence of
one-way functions or public-key encryption. Recently, our confidence in existing indistinguishability
obfuscation candidates has somewhat been shaken, following a sequence of devastating attacks on
both candidate obfuscators and on their underlying building blocks (see, for example, [BGH+15,
CGH+15, CHL+15, CLR15, HJ15, MF15, CFL+16, CJL16, MSZ16]). It thus became natural to ask:

Can average-case PPAD hardness be based on standard cryptographic assumptions?

By standard cryptographic assumptions we are in general referring to “pre-obfuscation” type of
primitives, such as the existence of one-way functions or public-key cryptography. As mentioned
above, such assumptions are currently by far more well-established than indistinguishability obfus-
cation, and basing average-case PPAD hardness on them would make a much stronger case.

1The name end-of-line is more commonly used in the literature, however source-or-sink is more accurately
descriptive [BCE+95].
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For all we know PPAD hardness may be based on the existence of one-way functions. However, if
for some reason it turned out that PPAD hardness implies, say, public-key encryption then this would
indicate that answering the above question might require developing radically new techniques. This
is because we currently do not know how to base public-key encryption on one-way functions, and
in fact cannot do so using black-box techniques [IR89]. More generally, the stronger the implication
of PPAD hardness is, the more difficult it may be to base PPAD hardness on standard assumptions.
This leads us to the following second question:

Does average-case PPAD hardness imply any form of cryptographic hardness?

As discussed above, a negative answer to the above question would actually be an encouraging
sign. It means that there may be hope to use standard techniques to base PPAD hardness on
standard cryptographic assumptions.

1.1 Our Contributions

Motivated by the above questions, we investigate the interplay between average-case PPAD hardness
and standard cryptographic assumptions. We consider this interplay from the perspective of black-
box reductions, the fundamental approach for capturing natural relations both among complexity
classes (e.g., [BCE+95, CIY97]) and among cryptographic primitives (e.g., [Rud88, IR89, Lub96]).

Average-case PPAD hardness does not imply cryptographic hardness. Our first result
shows that average-case PPAD hardness does not imply any form of cryptographic hardness in a
black-box manner (not even a one-way function). In fact, we prove the following more general
theorem by considering the sink-of-verifiable-line (SVL) problem, introduced by Abbot et al.
[AKV04] and further studied by Bitansky et al. [BPR15] and Garg et al. [GPS15]:

Theorem 1.1. There is no black-box construction of a one-way function from a hard-on-average
distribution of SVL instances.

Abbot et al. [AKV04] and Bitansky et al. [BPR15] showed that any hard-on-average distribution
of SVL instances can be used in a black-box manner for constructing a hard-on-average distribution
of instances to a PPAD-complete problem (specifically, instances of the source-or-sink problem).
Thus, Theorem 1.1 implies, in particular, that there is no black-box construction of a one-way
function from a hard-on-average distribution of instances to a PPAD-complete problem.

As discussed in the previous section, the fact that average-case PPAD hardness does not naturally
imply any form of cryptographic hardness may be interpreted as an encouraging sign in the pursuit
of basing average-case PPAD hardness on standard cryptographic assumptions. For example, if
average-case PPAD hardness would have implied program obfuscation, this would have indicated
that extremely strong cryptographic assumptions are likely to be essential for average-case PPAD
hardness. Similarly, if average-case PPAD hardness would have implied public-key cryptography,
this would have indicated that well-structured cryptographic assumptions are essential for average-
case PPAD hardness. The fact that average-case PPAD hardness does not naturally imply any form
of cryptographic hardness hints that it may be possible to base average-case PPAD hardness even
on the minimal (and unstructured) assumption that one-way functions exist.

Average-case SVL hardness cannot be based on public-key cryptography. The SVL
problem played a central role in the recent breakthrough of Bitansky et al. [BPR15] and Garg
et al. [GPS15] in constructing a hard-on-average distribution of instances to a PPAD-complete
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problem based on indistinguishability obfuscation. Specifically, they constructed a hard-on-average
distribution of SVL instances, and this directly implies hard-on-average distribution of source-or-
sink instances [AKV04, BPR15].

In light of this, perhaps the most natural attempt for basing average-case PPAD hardness on
standard cryptographic assumptions is to go through average-case SVL hardness as an intermediate
step. Unfortunately, we show that this approach cannot be realized based on one-way functions, and
even on injective trapdoor functions, in a black-box manner. Note that, unlike one-way functions,
injective trapdoor functions are significantly more structured, leading to a variety of public-key
primitives (e.g., public-key encryption). We prove the following theorem which, when combined with
Theorem 1.1, shows that average-case SVL hardness is essentially incomparable to the existence of
one-way functions and injective trapdoor functions.

Theorem 1.2. There is no black-box construction of hard-on-average distribution of SVL instances
from injective trapdoor functions.

More generally, although the above discussion and Theorem 1.2 focus on one-way functions and
injective trapdoor functions, our impossibility result in fact holds for a larger class of building blocks.
Specifically, it holds for any primitive that exists relative to a random function oracle or relative
to a random injective trapdoor function oracle. Thus, Theorem 1.2 holds, for example, also for
collision-resistant hash functions (which are not implied by one-way functions or injective trapdoor
functions in a black-box manner [Sim98, HHR+15]).

On basing average-case PPAD hardness on standard assumptions. The somewhat pes-
simistic view provided by Theorem 1.2 may hint that not only average-case SVL hardness cannot
be based on one-way functions or injective trapdoor functions, but also that average-case PPAD
hardness cannot be based on these primitives. We show, however, that this is not necessarily the
case by proving that the SVL problem is in fact far from representing the average-case hardness of
PPAD. Recall that Abbot et al. [AKV04] and Bitansky et al. [BPR15] showed that the SVL problem
can be efficiently reduced to the source-or-sink problem (even in the worst case), and here we
show that there is no such reduction in the opposite direction (not even an average-case one). We
prove the following theorem:

Theorem 1.3. There is no black-box construction of hard-on-average distribution of SVL instances
from a hard-on-average distribution of source-or-sink instances.

Combining Theorems 1.2 and 1.3, we deduce that there may still be hope for basing average-case
PPAD hardness even on one-way functions, but any such attempt must aim directly towards a PPAD-
complete problem, instead of going through average-case SVL hardness as an intermediate step.

Finally, we show that any attempt for basing average-case PPAD hardness on one-way functions
(and even on injective trapdoor functions) must significantly deviate from the structure of the
source-or-sink instances that are obtained by the obfuscation-based approach. Specifically, the
source-or-sink instances resulting from that approach have exactly one solution2, and we show
that when relying on injective trapdoor functions in a black-box manner it is essential to have (at
least) a sub-exponential number of solutions. We prove the following theorem:

Theorem 1.4. There is no black-box construction of hard-on-average distribution of source-or-
sink instances over {0, 1}n with 2n

o(1)
solutions from injective trapdoor functions.

2Unless, of course, one allows for artificial manipulations of the instances to generate multiple solutions.
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Similarly to the impossibility result stated in Theorem 1.2, also the impossibility result stated in
Theorem 1.4 holds for any building block that exists relative to a random function oracle or relative
to a random injective trapdoor function oracle (e.g., collision-resistant hash functions).

1.2 Open Problems

Three natural open problems arise directly from our results.

• The strong structural barrier put forward in Theorem 1.4 stands in stark contrast to the
approach of Bitansky et al. [BPR15] and Garg et al. [GPS15]. Thus, an intriguing open
problem is either to extend our impossibility result to rule out constructions with any number
of solutions, or to circumvent our impossibility result by designing instances with an nearly-
exponential number of solutions.

• More generally, the question of circumventing black-box impossibility results by utilizing non-
black-box techniques is always fascinating. In our specific context, already the obfuscation-
based constructions of Bitansky et al. [BPR15] and Garg et al. [GPS15] involve non-black-
box techniques (e.g., they apply an indistinguishability obfuscator to a circuit that uses a
pseudorandom function).3 Thus, an exciting open problem is to circumvent our results by
utilizing non-black-box techniques while relying on standard cryptographic assumptions.

• Our impossibility results in Theorems 1.2 and 1.4 apply to any building block that exists rel-
ative to a random function oracle or relative to a random injective trapdoor function oracle.
It is not clear, however, whether similar impossibility results may apply to one-way permuta-
tions. Thus, an intriguing open problem is either to extend our impossibility results to rule
out constructions based on one-way permutations, or to circumvent our impossibility results
by designing hard-on-average instances based on one-way permutations.

One-way 

functions

Injective trapdoor 

functions

Hard-on-average 

sink-of-verifiable-line

instances

Hard-on-average 

source-or-sink 

instances

Hard-on-average 

source-or-sink 

instances with 

2𝑛
𝑜(1)

solutions 

Thm. 1.3

[AKV04,BPR15]

Figure 1: An illustration of our results. Dashed arrows correspond to known implications, and solid arrows
correspond to our separations.

3However, as recently shown by Asharov and Segev [AS15, AS16], as long as the indistinguishability obfuscator
itself is used in a black-box manner, such techniques can in fact be captured by refining the existing frameworks for
black-box separations.
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1.3 Overview of Our Approach

In this section we provide a high-level overview of the main ideas underlying our results. Each of
our results is of the form “the existence of P does not imply the existence of Q in a black-box
manner”, where each of P and Q is either a cryptographic primitive (e.g., a one-way function) or a
hard-on-average search problem (e.g., the source-or-sink problem). Intuitively, such a statement is
proved by constructing a distribution over oracles relative to which there exists an implementation
of P , but any implementation of Q can be “efficiently broken” (our formal proofs properly formalize
this intuition).

Average-case SVL hardness does not imply OWFs. Theorem 1.1 is proved by presenting a
distribution of oracles relative to which there exists a hard-on-average distribution of SVL instances,
but there are no one-way functions. An SVL instance is of the form {(Sn,Vn, L(n))}n∈N, where for
every n ∈ N it holds that Sn : {0, 1}n → {0, 1}n, Vn : {0, 1}n × [2n]→ {0, 1}, and L(n) ∈ [2n]. Such
an instance is valid if for every n ∈ N, x ∈ {0, 1}n, and i ∈ [2n], it holds that Vn(x, i) = 1 if and only
if x = Sin(0n). Intuitively, the circuit Sn can be viewed as implementing the successor function of a
directed graph over {0, 1}n that consists of a single line starting at 0n, and the circuit Vn enables
to efficiently test whether a given node x is of distance i from 0n on the line. The goal is to find the
node of distance L(n) from 0n.

We consider an oracle that is a valid SVL instance OSVL corresponding to a graph with a single
line 0n → x1 → · · · → xL(n) of length L(n) = 2n/2. The line is chosen uniformly among all lines in
{0, 1}n of length L(n) starting at 0n (and all nodes outside the line have self loops and are essentially
irrelevant). First, we show that the oracle OSVL itself is a hard-on-average SVL instance. This is
based on the following, rather intuitive, observation: Since the line 0n → x1 → · · · → xL(n) is
sparse and uniformly sampled, then any algorithm performing q = q(n) oracle queries should not
be able to query OSVL with any element on the line beyond the first q elements 0n, x1, . . . , xq−1. In
particular, for our choice of parameters, any algorithm performing at most, say, 2n/4 queries, has
only an exponentially-small probability of reaching xL(n) (where the probability is taken over the
choice of the oracle OSVL).

Then, we show that any oracle-aided function FOSVL(·) can be inverted (with high probability
over the choice of the oracle OSVL) by an algorithm whose query complexity is polynomially-related
to that of the function FOSVL(·). The proof is based on the following approach. Consider a value
y = FOSVL(x) that we would like to invert. If F performs at most q = q(n) oracle queries, the
above-mentioned observation implies that the computation FOSVL(x) should not query OSVL with
any elements on the line 0n → x1 → · · · → xL(n) except for the first q elements x0, x1, . . . , xq−1. This
observation gives rise to the following inverter A: First perform q queries to OSVL for discovering
x1, . . . , xq, and then invert y = FOSVL(x) relative to the oracle ÕSVL defined via the following

successor function S̃:

S̃(α) =

{
xi+1 if α = xi for some i ∈ {0, . . . , q − 1}
α otherwise

.

The formal proof is in fact more subtle, and requires a significant amount of caution when inverting
y = FOSVL(x) relative to the oracle ÕSVL. Specifically, the inverter A should find an input x̃ such that

the computations F ÕSVL(x̃) and FOSVL(x̃) do not query the oracles ÕSVL and OSVL, respectively, with
any of xq, . . . , xL(n). In this case, we show that indeed FOSVL(x̃) = y and the inverter is successful.
We refer the reader to Section 3 for more details and for the formal proof.
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Average-case PPAD hardness does not imply unique-TFNP hardness. Theorem 1.3 is
proved by presenting a distribution of oracles relative to which there exists a hard-on-average dis-
tribution of instances of a PPAD-complete problem (specifically, we consider the source-of-sink
problem), but there are no hard TFNP instances having unique solutions.

A TFNP instance with a unique solution, denoted a unique-TFNP instance, is of the form
{Cn}n∈N, where for every n ∈ N it holds that Cn : {0, 1}n → {0, 1} and there is a unique x∗ ∈ {0, 1}n
such that C(x) = 1. Note that any valid SVL instance yields a TFNP instance that has a unique
solution. Therefore, relative to our distribution over oracles any valid SVL instance can be efficiently
solved.

A source-or-sink instance is of the form {(Sn,Pn)}n∈N, where for every n ∈ N it holds that
Sn : {0, 1}n → {0, 1}n and Pn : {0, 1}n → {0, 1}n. Intuitively, the circuits Sn and Pn can be viewed
as implementing the successor and predecessor functions of a directed graph over {0, 1}n, where
the in-degree and out-degree of every node is at most one, and the in-degree of 0n is 0 (i.e., it is a
source). The goal is to find any node, other than 0n, with either no incoming edge and no outgoing
edge.

We consider an oracle that is a source-or-sink instance OPPAD which is based on the same sparse
structure used to define the oracle OSVL: It corresponds to a graph with a single line 0n → x1 →
· · · → xL(n) of length L(n) = 2n/2. The line is chosen uniformly among all lines in {0, 1}n of length
L(n) starting at 0n (and all nodes outside the line have self loops).The fact that the oracle OPPAD is
a hard-on-average source-or-sink instance follows quite easily from the above-mentioned observation
on its sparse and uniform structure: Any algorithm performing q = q(n) oracle queries should not
be able to query OPPAD with any element on the line beyond the first q elements x0, x1, . . . , xq−1. In
particular, for our choice of parameters, any such algorithm should have only an exponentially-small
probability of reaching xL(n).

Solving any oracle-aided unique-TFNP instance relative to OPPAD, however, turns out to be
a completely different challenge. One might be tempted to follow a same approach based on the
oracle’s sparse and uniform structure. Specifically, let Cn be a unique-TFNP instance, and consider
the unique value x∗ ∈ {0, 1}n for which COPPAD

n (x∗) = 1, then if Cn issues at most q = q(n) oracle
queries, the computation COPPAD

n (x∗) should essentially not be able to queryOPPAD with any elements
on the line 0n → x1 → · · · → xL(n) except for the first q elements 0n, x1, . . . , xq−1. Therefore, one

can define a “fake” oracle ÕPPAD whose successor and predecessor functions agree with OPPAD on
0n, x1, . . . , xq (and are defined as the identity functions for all other inputs), and then find the

unique x̃ such that CÕPPAD
n (x̃) = 1. This approach, however, completely fails since the solution x∗

itself may depend on OPPAD in an arbitrary manner, providing the computation COPPAD
n (x∗) with

sufficient information for querying OPPAD with an input xi that is located further along the line
(i.e., q ≤ i ≤ L(n)).

Our proof of Claim 4.4 is obtained by building upon Rudich’s classic proof for ruling out black-
box constructions of one-way permutations based on one-way functions [Rud88]. In fact, Rudich’s
proof already generalizes, perhaps somewhat implicitly, from from ruling out constructions of one-
way permutations to ruling out constructions of any hard-on-average distribution of unique-TFNP
instances. We show, by extending and refining Rudich’s proof technique, that his approach provides a
rich framework that allows to bound not only the limitations of one-way functions as a building block,
but even the limitations of significantly more structured primitives as building blocks. Specifically,
our proof extends Rudich’s technique for bounding the limitations of hard-on-average source-or-sink
instances. We refer the reader to Section 4 for more details and for the formal proof.
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Injective trapdoor functions do not imply bounded-TFNP hardness. Theorems 1.2 and
1.4 are proved by presenting a distribution of oracles relative to which there exists a collection of
injective trapdoor functions, but there are no hard TFNP instances having a bounded number of
solutions (specifically, our result will apply to a sub-exponential number of solutions).

A TFNP instance with bounded number k(·) of solutions, denoted a k-bounded TFNP instance,
is of the form {Cn}n∈N, where for every n ∈ N it holds that C : {0, 1}n → {0, 1}, and there is at
least one and at most k(n) distinct inputs x ∈ {0, 1}n such that C(x) = 1 (any one of these x’s is
a solution). In particular, as discussed above, any valid SVL instance yields a 1-bounded TFNP
instance (i.e., a unique-TFNP instance), and therefore our result rules out black-box constructions
of a hard-on-average distribution of SVL instances from injective trapdoor functions. Similarly, any
source-or-sink instance which consists of at most (k + 1)/2 disjoint lines yields a k-bounded TFNP
instance, and therefore our result rules out black-box constructions of a hard-on-average distribution
of source-or-sink instances with a bounded number of disjoint lines from a one-way function.

For emphasizing the main ideas underlying our proof, in Section 5 we first prove our result for
constructions that are based on one-way functions, and then in Section 6 we generalize the proof
to constructions that are based on injective trapdoor functions. Each of these two parts requires
introducing new ideas and techniques, and such a level of modularity is useful in pointing them out.

When considering constructions that are based on one-way functions, our proof is obtained via
an additional generalization of Rudich’s proof technique [Rud88]. As discussed above, Rudich’s ap-
proach already generalizes, perhaps somewhat implicitly, from ruling out constructions of one-way
permutations based on one-way functions to ruling out constructions of any hard-on-average distri-
bution of unique-TFNP instances based on one-way functions. We show, by extending and refining
Rudich’s proof technique once again, that his approach allows to rule out not only constructions of
unique-TFNP instances, but even constructions of bounded-TFNP instances. This require a sub-
stantial generalization of Rudich’s attacker, and we refer reader to Section 5 for more details and
for the formal proof.

Then, when considering constructions that are based on injective trapdoor functions, we show
that our proof from Section 5 can be generalized from constructions of bounded-TFNP instances
based on one-way functions to constructions of bounded-TFNP instances based on injective trapdoor
functions. Following our result from Section 4, this provides additional evidence that Rudich’s proof
technique yields a rich framework that allows to bound not only the limitations of one-way functions
as a building block, but even the limitations of significantly more structured primitives as building
blocks. We refer reader to Section 6 for more details and for the formal proof.

1.4 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we introduce our notation as
well as the search problems and the cryptographic primitives that we consider in this paper. In
Section 3 we prove that average-case SVL hardness does not imply one-way functions in a black-box
manner. Then, in Section 4 we prove that average-case PPAD hardness does not imply unique-
TFNP hardness in a black-box manner. In Section 5 we prove that one-way functions do not imply
bounded-TFNP hardness in a black-box manner. Finally, by generalizing our result from Section 5,
in Section 6 prove that even injective trapdoor functions do not imply bounded-TFNP hardness in
a black-box manner.
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2 Preliminaries

In this section we present the notation and basic definitions that are used in this work. For a
distribution X we denote by x ← X the process of sampling a value x from the distribution X.
Similarly, for a set X we denote by x ← X the process of sampling a value x from the uniform
distribution over X . For an integer n ∈ N we denote by [n] the set {1, . . . , n}. A q-query algorithm
is an oracle-aided algorithm A such that for any oracle O and input x ∈ {0, 1}∗, the computation
AO(x) consists of at most q(|x|) oracle calls to O.

2.1 Complexity Classes and Total Search Problems

An efficiently-verifiable search problem is described via a pair (I,R), where I ⊆ {0, 1}∗ is an
efficiently-recognizable set of instances, and R is an efficiently-computable binary relation. Such
a search problem is total if for every instance z ∈ I there exists a witness w of length polynomial in
the length z such that R(z, w) = 1.

The class TFNP consists of all efficiently-verifiable search problem that are total, and its sub-
class PPAD consists of all such problems that are polynomial-time reducible the source-or-sink
problem [Pap94], defined as follows.

Definition 2.1 (The source-or-sink problem). A source-or-sink instance consists of a pair of circuits
S,P : {0, 1}n → {0, 1}n such that P(0n) = 0n 6= S(0n). The goal is to find an element w ∈ {0, 1}n
such that P(S(w)) 6= w or S(P(w)) 6= w 6= 0n.

Intuitively, the circuits S and P can be viewed as implementing the successor and predecessor
functions of a directed graph over {0, 1}n, where the in-degree and out-degree of every node is at
most one, and the in-degree of 0n is 0 (i.e., it is a source).4 The goal is to find any node, other than
0n, with either no incoming edge and no outgoing edge. Such a node must always exist by a parity
argument.

The sink-of-verifiable-line (SVL) problem is a search problem introduced by Abbot et al. [AKV04]
and further studied by Bitansky et al. [BPR15] and Garg et al. [GPS15]. It is defined as follows:

Definition 2.2 (The sink-of-verifiable-line (SVL) problem). An SVL instance consists of a triplet
(S,V, T ), where T ∈ [2n], and S : {0, 1}n → {0, 1}n and V : {0, 1}n → {0, 1} are two circuits with the
guarantee that for every x ∈ {0, 1}n and i ∈ [2n] it holds that V(x, i) = 1 if and only if x = Si(0n).
The goal is to find an element w ∈ {0, 1}n such that V(w, T ) = 1.

Intuitively, the circuit S can be viewed as implementing the successor function of a directed
graph over {0, 1}n that consists of a single line starting at 0n. The circuit V enables to efficiently
test whether a given node x is of distance i from 0n on the line, and the goal is to find the node of
distance T from 0n.

2.2 One-Way Functions and Injective Trapdoor Functions

We rely on the standard (parameterized) notions of a one-way function and injective trapdoor
functions [Gol01].

Definition 2.3. An efficiently-computable function f : {0, 1}∗ → {0, 1}∗ is (t(·), ε(·))-one-way if for
any probabilistic algorithm A that runs in time t(n) it holds that

Pr
[
A (f(x)) ∈ f−1 (f(x))

]
≤ ε(n)

4Specifically, for a pair of nodes x and y there exists an edge from x to y if and only if S(x) = y and P(y) = x.
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for all sufficiently large n ∈ N, where the probability is taken over the choice of x ← {0, 1}n and
over the internal randomness of A.

A collection of injective trapdoor functions is a triplet (KG,F,F−1) of polynomial-time algorithms.
The key-generation algorithm KG is a probabilistic algorithm that on input the security parameter
1n outputs a pair (pk, td), where pk is a public key and td is a corresponding trapdoor. For any
n ∈ N and for any pair (pk, td) that is produced by KG(1n), the evaluation algorithm F computes an
injective function F(pk, ·) : {0, 1}n → {0, 1}`(n), and the inversion algorithm F−1(td, ·) : {0, 1}`(n) →
{0, 1}n ∪ {⊥} computes its inverse whenever an inverse exists (i.e., it outputs ⊥ on all values y
that are not in the image of the function F(pk, ·)). The security requirement of injective trapdoor
functions is formalized as follows:

Definition 2.4. A collection of injective trapdoor functions (KG,F,F−1) is (t(·), ε(·))-secure if for
any probabilistic algorithm A that runs in time t(n) it holds that

Pr [A (pk,F(pk, x)) = x] ≤ ε(n)

for all sufficiently large n ∈ N, where the probability is taken over the choice of (pk, td)← KG(1n),
x← {0, 1}n, and over the internal randomness of A.

3 Average-Case SVL Hardness Does Not Imply One-Way Functions

In this section we prove that there is no fully black-box construction of a one-way function from a
hard-on-average distribution of SVL instances5. Our result is obtained by presenting a distribution
of oracles relative to which the following two properties hold:

1. There exists a hard-on-average distribution of SVL instances.

2. There are no one-way functions.

Recall that an SVL instance is of the form {(Sn,Vn, L(n))}n∈N, where for every n ∈ N it holds
that Sn : {0, 1}n → {0, 1}n, Vn : {0, 1}n × [2n] → {0, 1}, and L(n) ∈ [2n]. We say that an SVL
instance is valid if for every n ∈ N, x ∈ {0, 1}n, and i ∈ [2n], it holds that Vn(x, i) = 1 if and only
if x = Sin(0n). The following definition tailors the standard notion of a fully black-box construction
(based, for example, on [Lub96, Gol00, RTV04]) to the specific primitives under consideration.

Definition 3.1. A fully black-box construction of a one-way function from a hard-on-average dis-
tribution of SVL instances consists of an oracle-aided polynomial-time algorithm F , an oracle-aided
algorithm M that runs in time TM (·), and functions εM,1(·) and εM,2(·), such that the following
conditions hold:

• Correctness: There exists a polynomial `(·) such that for any valid SVL instance OSVL and
for any x ∈ {0, 1}∗ it holds that FOSVL(x) ∈ {0, 1}`(|x|).

• Black-box proof of security: For any valid SVL instance OSVL = {(Sn,Vn, L(n))}n∈N, for
any oracle-aided algorithm A that runs in time TA = TA(n), and for any function εA(·), if

Pr
[
AOSVL

(
FOSVL(x)

)
∈
(
FOSVL

)−1 (
FOSVL(x)

)]
≥ εA(n)

5Recall that any hard-on-average distribution of SVL instances can be used in a black-box manner to construct a
hard-on-average distribution of instances of a PPAD-complete problem [AKV04, BPR15]. Thus, our result implies (in
particular) that average-case PPAD hardness does not imply one-way functions in a black-box manner.
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for infinitely many values of n ∈ N, where the probability is taken over the choice of x← {0, 1}n
and over the internal randomness of A, then

Pr
[
MA,OSVL (1n) solves (Sn,Vn, L(n))

]
≥ εM,1 (TA(n)/εA(n)) · εM,2(n)

for infinitely many values of n ∈ N, where the probability is taken over the internal randomness
of M .

We note that, following Asharov and Segev [AS15, AS16], we split the security loss in the above
definition to an adversary-dependent security loss and an adversary-independent security loss, as
this allows us to capture constructions where one of these losses is super-polynomial whereas the
other is polynomial (e.g., [BPR15, BPW16]). Equipped with the above definition we prove the
following theorem:

Theorem 3.2. Let (F,M, TM , εM,1, εM,2) be a fully black-box construction of a one-way function
from a hard-on-average SVL instance. Then, at least one of the following properties holds:

1. TM (n) ≥ 2ζn for some constant ζ > 0 (i.e., the reduction runs in exponential time).

2. εM,1(n
c) · εM,2(n) ≤ 2−n/10 for some constant c > 1 (i.e., the security loss is exponential).

In particular, Theorem 3.2 rules out standard “polynomial-time polynomial-loss” reductions.
More generally, the theorem implies that if the running time TM (·) of the reduction is sub-exponential
and the adversary-dependent security loss εM,1(·) is polynomial (as expected), then the adversary-
independent security loss εM,2(·) must be exponential (thus even ruling out constructions based on
SVL instances with sub-exponential average-case hardness).

3.1 Proof Overview

In what follows we first describe the oracle, denoted OSVL, on which we rely for proving Theorem
3.2. Then, we describe the structure of the proof, showing that relative to the oracle OSVL there
exists a hard-on-average distribution of SVL instances, but there are no one-way functions. For the
remainder of this section we remind the reader that a q-query algorithm is an oracle-aided algorithm
A such that for any oracle O and input x ∈ {0, 1}∗, the computation AO(x) consists of at most
q(|x|) oracle calls to O.

The oracle OSVL. The oracle OSVL is a valid SVL instance {(Sn,Vn, L(n))}n∈N that is sampled
via the following process for every n ∈ N:

• Let L(n) = 2n/2, x0 = 0n, and uniformly sample distinct elements x1, . . . , xL(n) ← {0, 1}n \
{0n}.
• The successor function Sn : {0, 1}n → {0, 1}n is defined as

Sn(x) =

{
xi+1 if x = xi for some i ∈ {0, . . . , L(n)− 1}
x otherwise

.

• The verification function Vn : {0, 1}n × [2n]→ {0, 1} is defined in a manner that is consistent
with Sn (i.e., Vn is defined such that the instance is valid).
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Part I: OSVL is a hard-on-average SVL instance. We show that the oracle OSVL itself is a
hard-on-average SVL instance, which implies in particular that relative to the oracle OSVL there
exists a hard-on-average distribution of SVL instances. We prove the following claim stating that,
in fact, the oracle OSVL is an exponentially hard-on-average SVL instance:

Claim 3.3. For every q(n)-query algorithm M , where q(n) ≤ L(n)− 1, it holds that

Pr
[
MOSVL (1n) solves (Sn,Vn, L(n))

]
≤ (q(n) + 1) · L(n)

2n − q(n)− 1

for all sufficiently large n ∈ N, where the probability is taken over the choice of the oracle OSVL =
{(Sn,Vn, L(n))}n∈N as described above.

The proof of the claim, which is provided in Section 3.2, is based on the following, rather
intuitive, observation: Since the line 0n → x1 → · · · → xL(n) is sparse and uniformly sampled, then
any algorithm performing q = q(n) oracle queries should not be able to query OSVL with any element
on the line beyond the first q elements 0n, x1, . . . , xq−1. In particular, for our choice of parameters,
any such algorithm should have only an exponentially-small probability of reaching xL(n).

Part II: Inverting oracle-aided functions relative to OSVL. We show that any oracle-aided
function FOSVL(·) computable in time t(n) can be inverted with high probability by an inverter that
issues roughly t(n)4 oracle queries. We prove the following claim:

Claim 3.4. For every deterministic oracle-aided function F that is computable in time t(n) there
exists a q(n)-query algorithm A, where q(n) = O(t(n)4), such that

Pr
[
AOSVL

(
FOSVL(x)

)
∈
(
FOSVL

)−1 (
FOSVL(x)

)]
≥ 1

2

for all sufficiently large n ∈ N and for every x ∈ {0, 1}n, where the probability is taken over the
choice of the oracle OSVL = {(Sn,Vn, L(n))}n∈N as described above. Moreover, the algorithm A can
be implemented in time polynomial in q(n) given access to a PSPACE-complete oracle.

The proof of the claim, which is provided in Section 3.3, is based on the following approach.
Consider the value y = FOSVL(x) that is given as input to the inverter A. Since F is computable in
time t = t(n), it can issue at most t oracle queries and therefore the observation used for proving
Claim 3.3 implies that the computation FOSVL(x) should not query OSVL with any elements on the
line 0n → x1 → · · · → xL(n) except for the first t elements x0, x1, . . . , xt−1. In this case, any Sn-query

α in the computation FOSVL(x) can be answered as follows: If α = xi for some i ∈ {0, . . . , t−1} then
the answer is xi+1, and otherwise the answer is α. Similarly, any Vn-query (α, j) in the computation
FOSVL(x) can be answered as follows: If (α, j) = (xi, i) for some i ∈ {0, . . . , t − 1} then the answer
is 1, and otherwise the answer is 0.

This observation gives rise to the following inverter A: First perform t queries to Sn for discov-
ering x1, . . . , xt, and then invert y = FOSVL(x) relative to the oracle ÕSVL defined via the following
successor function S̃n:

S̃n(α) =

{
xi+1 if α = xi for some i ∈ {0, . . . , t− 1}
α otherwise

.

The formal proof is in fact more subtle, and requires a significant amount of caution when inverting
y = FOSVL(x) relative to the oracle ÕSVL. Specifically, the inverter A should find an input x̃ such that

the computations F ÕSVL(x̃) and FOSVL(x̃) do not query the oracles ÕSVL and OSVL, respectively, with
any of xt, . . . , xL(n). In this case, we show that indeed FOSVL(x̃) = y and the inverter is successful.
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3.2 OSVL is a Hard-on-Average SVL Instance

The proof of Claim 3.3 relies on the fact that the line 0n → x1 → · · · → xL(n) is sparse and uniformly
sampled. This intuitively implies that any algorithm performing q oracle queries should not be able
to query OSVL with any element on the line beyond the first q elements 0n, x1, . . . , xq−1, except with
an exponentially-small probability.

Given an oracle OSVL = {(Sn,Vn, L(n))}n∈N, sampled as described in Section 3.1, and given a q-
query algorithm M , for every n ∈ N and i ∈ [q] we denote by αi the random variable corresponding
to M ’s ith oracle query if this is an Sn-query, and we denote by (αi, ki) the random variable
corresponding to M ’s ith oracle query if this is a Vn-query. We denote by HITOSVL

M,n the event in
which there exist indices j ∈ [q] and i ∈ [L(n)] for which αj = xi but xi−1 /∈ {α1, . . . , αj−1}. That
is, this is the event in which M queries OSVL with one of the xi’s before querying on xi−1. In
particular, note that if the event HITOSVL

M,n does not occur, then M does not query OSVL with xi for

i ∈ {q, . . . , L(n)}. The following claim bounds the probability of event HITOSVL
M,n .

Claim 3.5. For every q-query algorithm M it holds that

Pr
[
HITOSVL

M,n

]
≤ q · L(n)

2n − q

for all sufficiently large n ∈ N, where the probability is taken over the choice of the oracle OSVL =
{(Sn,Vn, L(n))}n∈N. Moreover, q can be a bound on the number of calls to Sn and Vn.

Proof. Let M be a q-query algorithm, fix n ∈ N, and fix (OSVL)−n = {(Si,Vi, Ti)}i∈N\{n} (i.e., we
fix the entire oracle OSVL except for the nth SVL instance). For every i ∈ [q] denote by Mi the
following i-query algorithm: Invoke the computation MOSVL , and terminate once i oracle queries
have been performed. Note that since we do not place any restriction on the running time of M
and since the oracle distribution is known, we can assume without loss of generality that M is
deterministic. Therefore, for every i ∈ [q] and every fixing of the oracle OSVL, the computation
MOSVL
i is the “prefix” of the computation MOSVL which contains its first i oracle queries. This

implies that

Pr
[
HITOSVL

M,n

]
≤ Pr

[
HITOSVL

M1,n

]
+

q−1∑
i=1

Pr
[
HITOSVL

Mi+1,n

∣∣∣HITOSVL
Mi,n

]
,

where the probability is taken over the choice of the nth SVL instance (Sn,Vn, L(n)) (i.e., over
the choice of the elements x1, . . . , xL(n) that are used for defining the nth instance as described in
Section 3.1).

For bounding the probability of the event HITOSVL
M1,n

, note that this event corresponds to the fact
that M , without any information on x1, . . . , xL(n) (since no oracle queries have been issued so far),
manages to produce an oracle query with α1 ∈ {x1, . . . , xL(n)}. Since the value α1 is fixed by
the description of M , and we are now sampling distinct and uniformly distributed x1, . . . , xL(n) ←
{0, 1}n \ {0n}, we have that

Pr
[
HITOSVL

M1,n

]
≤

(
2n−2
L(n)−1

)(
2n−1
L(n)

) =
L(n)

2n − 1
.

For bounding the probability of the event HITOSVL
Mi+1,n

given that HITOSVL
Mi,n

occurred, we fix the
queries α1, . . . , αi with the corresponding ki’s for the Vn queries, we fix their successors β1, . . . , βi
where βj = Sn(αj), and for each j ∈ [i] and k ∈ [L(n)] we fix whether αj = xk or not. This fixes
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the oracle answers to the above queries, hence fixes αi+1 by the assumption that M is deterministic.

By the assumption HITOSVL
Mi,n

, there is some 0 ≤ ` ≤ i for which x0, x1, . . . , x`−1 ∈ {α1, . . . , αi} but
x`, . . . , xL(n) /∈ {α1, . . . , αi}. Hence x1, . . . , x` ∈ {β1, . . . , βi} but x`+1, . . . , xL(n) /∈ {β1, . . . , βi}. No
further information about x`+1, . . . , xL(n) is known, therefore, we are now sampling distinct and
uniformly distributed x`+1, . . . , xL(n) ← {0, 1}n \ {0n, β1, . . . , βi}, hence

Pr
[
HITOSVL

Mi+1,n

∣∣∣HITOSVL
Mi,n

]
≤ L(n)

2n − i− 1
.

We conclude that

Pr
[
HITOSVL

M,n

]
≤ Pr

[
HITOSVL

M1,n

]
+

q−1∑
i=1

Pr
[
HITOSVL

Mi+1,n

∣∣∣HITOSVL
Mi,n

]
≤

q−1∑
i=0

L(n)

2n − i− 1

≤ q · L(n)

2n − q
.

Equipped with Claim 3.5 we can now easily derive the proof of Claim 3.3.

Proof of Claim 3.3. We modify M such that it queries the oracle Sn with its output before it
terminates. Now, M is a (q(n) + 1)-query algorithm, and by the assumption q(n) + 1 ≤ L(n). If
M(1n) solves (Sn,Vn, L(n)) then HITOSVL

M(1n),n occurs, and by Claim 3.5 we deduce

Pr
[
MOSVL (1n) solves (Sn,Vn, L(n))

]
≤ Pr

[
HITOSVL

M(1n),n

]
≤ (q(n) + 1) · L(n)

2n − q(n)− 1
.

3.3 Inverting Oracle-Aided Functions Relative to OSVL

Proof of Claim 3.4. Let F be a deterministic oracle-aided function computable in time t(n), and
let p(n) = 1/2 (although the proof goes through for any value of 0 < p(n) < 1). We describe an
oracle-aided algorithm A that manages to invert FOSVL(x) for every x with high probability over
the choice of the oracle OSVL. Let A be the following oracle-aided algorithm that on input 1n and
y = FOSVL(x), where x ∈ {0, 1}n, proceeds as follows:

A1. Set a(n) = 2 · log(3t(n)2/p(n) + 1).

A2. For every 1 ≤ i < a(n), the algorithm A queries Si on all possible inputs α ∈ {0, 1}i.
A3. For every a(n) ≤ i ≤ t(n), the algorithm A repeatedly queries Si for t(n) times starting with

the query 0i (i.e., A discovers the line of length t(n) starting from 0i).

A4. The algorithm A constructs the “fake” oracle ÕSVL that is consistent with the “true” oracle
OSVL on all queries performed in steps A2 and A3 above, and is defined as the identity function
on all other queries.

A5. The algorithm A finds and outputs an input x̃ ∈ {0, 1}n such that F ÕSVL(x̃) = y and such that

the computation of F ÕSVL(x̃) does not query ÕSVL with any input of the form S
t(n)
i (0i) where

a(n) ≤ i ≤ t(n). If no such input x̃ exists, then the algorithm A outputs ⊥.
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First, note that steps A4 and A5 do not require any queries to the oracle OSVL. Second, note that
the number of oracle queries made by A in steps A2 and A3 is at most q(n) ≤ t(n)2 + 2 · 2a(n) =
O(t(n)4/p(n)2).

We now prove that for any n ∈ N and x ∈ {0, 1}n, the algorithm A inverts y = FOSVL(x) with
probability at least 1 − p(n) over the choice of the oracle OSVL. Fix n ∈ N and x ∈ {0, 1}n, and
consider the oracle-aided algorithm Mx defined as follows:

M1. Compute y = FOSVL(x).

M2. Compute x̃ = AOSVL(1n, y).

M3. If x̃ = ⊥ then output 0 and terminate.

M4. Compute ỹ = FOSVL(x̃).

M5. If ỹ = y then output 1, and otherwise output 0.

The probability over the choice of OSVL that Mx outputs 1 is exactly the probability that A manages
to invert y = FOSVL(x). Now suppose for all a(n) ≤ i ≤ t(n) the event HITOSVL

Mx,i
does not occur, we

aim to show that in this case ỹ = y. To start with, we claim that in this case the computation of

Mx until step M3 does not query OSVL with an input of the form S
t(n)
i (0i) where a(n) ≤ i ≤ t(n):

• Mx does not query S
t(n)
i (0i) in step M1 because FOSVL(x) performs at most t(n) queries, and

querying S
t(n)
i (0i) when HITOSVL

Mx,i
does not occur requires at least t(n) + 1 queries.

• Mx does not query S
t(n)
i (0i) in step M2 by the definition of the algorithm A, since A only

queries the oracle Si with input of the form Sji (0
i) where j ∈ [t(n)− 1].

Note that since the computation of Mx until step M3 does not query OSVL with S
t(n)
i (0i), and since

the event HITOSVL
M,i does not occur, then the computation of Mx until step M3 does not query OSVL

with any input of the form Ski (0
i) where k ∈ {t(n), . . . , L(i)}. At this point, since x itself satisfies

F ÕSVL(x) = FOSVL(x) = y , and since the computation of F ÕSVL(x) does not query S
t(n)
i (0i), we know

for sure that the algorithm A in step M2 will not return ⊥. It remains to show that any x̃ that A
might return will satisfy FOSVL(x̃) = F ÕSVL(x̃), hence ỹ = y as claimed.

Assume by contradiction that FOSVL(x̃) 6= F ÕSVL(x̃), and consider the first oracle query for which

the computations of FOSVL(x̃) and F ÕSVL(x̃) diverge. By the definition of ÕSVL, it must be a query
to Si or Vi where a(n) ≤ i ≤ t(n), with input of the form Sji (0

i) where j ∈ {t(n), . . . , L(i) − 1} (in

case of a query to the oracle Vi, S
j
i (0

i) is only the first argument of the input). The case j = t(n)

is impossible because A chooses x̃ for which the computation of F ÕSVL(x̃) does not query S
t(n)
i (0i).

The case j > t(n) is also impossible since until this point Mx did not query S
t(n)
i (0i), and since the

event HITOSVL
M,i does not occur.

We conclude that if y 6= ỹ then HITOSVL
M,i occurs for some a(n) ≤ i ≤ t(n). By the fact that Mx
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issues at most 3t(n) queries to Si and Vi for every a(n) ≤ i ≤ t(n), Claim 3.5 implies that

Pr
OSVL

[
AOSVL

(
FOSVL(x)

)
/∈
(
FOSVL

)−1 (
FOSVL(x)

)]
≤

t(n)∑
i=da(n)e

Pr
OSVL

[
HITOSVL

Mx,i

]

≤
t(n)∑

i=da(n)e

3t(n) · L(i)

2i − 3t(n)

≤
t(n)∑

i=da(n)e

3t(n) · L(i)

2i − L(i)

=

t(n)∑
i=da(n)e

3t(n)

2i/2 − 1

≤ 3t(n)2

2a(n)/2 − 1
≤ p(n).

3.4 Proof of Theorem 3.2

Proof of Theorem 3.2. Let (F,M, TM , εM,1, εM,2) be a fully black-box construction of a one-way
function from a hard-on-average distribution of SVL instances (recall Definition 3.1). Claim 3.4
guarantees an oracle-aided algorithm A that runs in polynomial time TA(n) such that

Pr
[
APSPACE,OSVL

(
FOSVL(x)

)
∈
(
FOSVL

)−1 (
FOSVL(x)

)]
≥ εA(n)

for all sufficiently large n ∈ N and for every x ∈ {0, 1}n, where εA(n) = 1/2, and the probability is
taken over the choice of the oracle OSVL. Definition 3.1 then guarantees that

Pr
[
MA,PSPACE,OSVL (1n) solves (Sn,Vn, L(n))

]
≥ εM,1 (TA(n)/εA(n)) · εM,2(n)

for infinitely many values of n ∈ N, where M runs in time TM (n), and the probability is again taken
over the choice of the oracle OSVL.

The algorithmM may invokeA on various security parameters (i.e., in generalM is not restricted
to invoking A only on security parameter n), and we denote by `(n) the maximal security parameter
on which M invokes A (when M itself is invoked on security parameter n). Thus, viewing MA as a
single oracle-aided algorithm that has access to a PSPACE-complete oracle and to the oracle OSVL,
its running time TMA(n) satisfies TMA(n) ≤ TM (n) · TA(`(n)) (this follows since M may invoke A
at most TM (n) times, and the running time of A on each such invocation is at most TA(`(n))). In

particular, viewing M ′
def
= MA

PSPACE
as a single oracle-aided algorithm that has oracle access to the

oracle OSVL, implies that M ′ is a q(n)-query algorithm where q(n) = TMA(n). Claim 3.3 and our
choice of L(n) = 2n/2 then imply that

εM,1 (TA(n)/εA(n)) · εM,2(n) ≤ (q(n) + 1) · 2n/2

2n − q(n)− 1
.

There are now two possible cases to consider:
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Case 1: 2n/4 ≤ q(n). In this case, noting that `(n) ≤ TM (n), we obtain that

2n/4 ≤ q(n) = TMA(n) ≤ TM (n) · TA(`(n)) ≤ TM (n) · TA(TM (n)).

The running time TA(n) of the adversary A (when given access to a PSPACE-complete oracle) is
some fixed polynomial in n, and therefore TM (n) ≥ 2ζn for some constant ζ > 0.

Case 2: 2n/4 > q(n). In this case we have that

εM,1 (TA(n)/εA(n)) · εM,2(n) ≤ (q(n) + 1) · 2n/2

2n − q(n)− 1
≤ 1

2n/10
,

and since TA(n) is some fixed polynomial in n (and εA(n) is a constant) we obtain that εM,1(n
c) ·

εM,2(n) ≤ 2−n/10 for some constant c > 1.

4 Average-Case PPAD Hardness Does Not Imply Unique-TFNP Hardness

In this section we prove that there is no fully black-box construction of a hard-on-average distribution
of TFNP instances having a unique solution from a hard-on-average distribution of instances of a
PPAD-complete problem. Our result is obtained by presenting a distribution of oracles relative to
which the following two properties hold:

1. There exists a hard-on-average distribution of instances of a PPAD-complete problem (specif-
ically, we consider the source-of-sink problem).

2. There are no hard-on-average distributions over TFNP instances having a unique solution.

A TFNP instance with a unique solution, denoted a unique-TFNP instance, is of the form
{Cn}n∈N, where for every n ∈ N it holds that Cn : {0, 1}n → {0, 1} and there is a unique x∗ ∈ {0, 1}n
such that C(x) = 1. In particular, for any valid SVL instance (S,V, T ) it holds that V(·, T ) is a
TFNP instance that has a unique solution since there is exactly one value x∗ for which V(x∗, T ) = 1.
Therefore, our result shows, in particular, that there is no fully black-box construction of a hard-on-
average distribution of SVL instances from a hard-on-average distribution of instances of a PPAD-
complete problem6.

Recall that a source-of-sink instance is of the form {(Sn,Pn)}n∈N, where for every n ∈ N it holds
that Sn : {0, 1}n → {0, 1}n and Pn : {0, 1}n → {0, 1}n. The following definition tailors the standard
notion of a fully black-box construction to the specific primitives under consideration.

Definition 4.1. A fully black-box construction of a hard-on-average distribution of unique-TFNP
instances from a hard-on-average distribution of source-or-sink instances consists of a sequence of
polynomial-size oracle-aided circuits C = {Cn}n∈N, an oracle-aided algorithm M that runs in time
TM (·), and functions εM,1(·) and εM,2(·), such that the following conditions hold:

• Correctness: For any source-or-sink instance OPPAD and for any n ∈ N there exists a unique
x∗ ∈ {0, 1}n such that COPPAD

n (x∗) = 1.

• Black-box proof of security: For any source-or-sink instance OPPAD = {(Sn,Pn)}n∈N, for
any oracle-aided algorithm A that runs in time TA = TA(n), and for any function εA(·), if

Pr
[
AOPPAD (1n) = x∗ s.t. COPPAD

n (x∗) = 1
]
≥ εA(n)

6Recall that constructions in the opposite direction do exist: Any hard-on-average distribution of SVL instances can
be used in a black-box manner to construct a hard-on-average distribution of instances of a PPAD-complete problem
[AKV04, BPR15].
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for infinitely many values of n ∈ N, where the probability is taken over the choice of x← {0, 1}n
and over the internal randomness of A, then

Pr
[
MA,OPPAD (1n) solves (Sn,Pn)

]
≥ εM,1 (TA(n)/εA(n)) · εM,2(n)

for infinitely many values of n ∈ N, where the probability is taken over the internal randomness
of M .

We note that, as in Definition 3.1, we split the security loss in the above definition to an
adversary-dependent security loss and an adversary-independent security loss, as this allows us to
capture constructions where one of these losses is super-polynomial whereas the other is polynomial.
Equipped with the above definition we prove the following theorem:

Theorem 4.2. Let (C,M, TM , εM,1, εM,2) be a fully black-box construction of a hard-on-average dis-
tribution of unique-TFNP instances from a hard-on-average distribution of source-or-sink instances.
Then, at least one of the following properties holds:

1. TM (n) ≥ 2ζn for some constant ζ > 0 (i.e., the reduction runs in exponential time).

2. εM,1(n
c) · εM,2(n) ≤ 2−n/10 for some constant c > 1 (i.e., the security loss is exponential).

In particular, Theorem 4.2 rules out standard “polynomial-time polynomial-loss” reductions.
More generally, the theorem implies that if the running time TM (·) of the reduction is sub-exponential
and the adversary-dependent security loss εM,1(·) is polynomial (as expected), then the adversary-
independent security loss εM,2(·) must be exponential (thus even ruling out constructions based on
SVL instances with sub-exponential average-case hardness).

4.1 Proof Overview

In what follows we first describe the oracle, denoted OPPAD, on which we rely for proving Theorem
4.2. Then, we describe the structure of the proof, showing that relative to the oracle OPPAD there
exists a hard-on-average distribution of source-or-sink instances, but there are no hard-on-average
unique-TFNP instances. For the remainder of this section we remind the reader that a q-query
algorithm is an oracle-aided algorithm A such that for any oracle O and input x ∈ {0, 1}∗, the
computation AO(x) consists of at most q(|x|) oracle calls to O.

The oracle OPPAD. The oracle OPPAD is a source-or-sink instance {(Sn,Pn)}n∈N that is based on
the same sparse structure used to define the oracle OSVL in Section 3. The oracle OPPAD is sampled
via the following process for every n ∈ N:

• Let L(n) = 2n/2, x0 = 0n, and uniformly sample distinct elements x1, . . . , xL(n) ← {0, 1}n \
{0n}.
• The successor function Sn : {0, 1}n → {0, 1}n is defined as

Sn(x) =

{
xi+1 if x = xi for some i ∈ {0, . . . , L(n)− 1}
x otherwise

.

• The predecessor function Pn : {0, 1}n → {0, 1}n is defined in a manner that is consistent with
the successor function Sn:

Pn(x) =

{
xi−1 if x = xi for some i ∈ {1, . . . , L(n)}
x otherwise

.

Note that the oracle OPPAD corresponds to a source-or-sink instance that consists of the single line
0n → x1 → · · · → xL(n), and therefore the only solution to this instance is the element xL(n).
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Part I: OPPAD is a hard-on-average source-or-sink instance. We show that the oracle OPPAD

itself is a hard-on-average source-or-sink instance, which implies in particular that relative to the
oracle OPPAD there exists a hard-on-average distribution of instances to the source-or-sink problem.
We prove the following claim stating that, in fact, the oracle OPPAD is an exponentially hard-on-
average source-or-sink instance:

Claim 4.3. For every q(n)-query algorithm M , where q(n) ≤ L(n)− 1, it holds that

Pr
[
MOPPAD (1n) solves (Sn,Pn)

]
≤ (q(n) + 1) · L(n)

2n − q(n)− 1

for all sufficiently large n ∈ N, where the probability is taken over the choice of the oracle OPPAD =
{(Sn,Pn)}n∈N as described above.

The proof of the claim, which is provided in Section 4.2, is based on an observation similar to
the one used for proving Claim 3.3: Since the line 0n → x1 → · · · → xL(n) is sparse and uniformly
sampled, then any algorithm performing q = q(n) oracle queries should not be able to query OPPAD

with any element on the line beyond the first q elements x0, x1, . . . , xq−1. In particular, for our
choice of parameters, any such algorithm should have only an exponentially-small probability of
reaching xL(n).

Part II: Solving oracle-aided unique-TFNP instances relative to OPPAD. We show that
any oracle-aided unique-TFNP instance C = {Cn}n∈N, where each Cn is a circuit that contains
at most q(n) oracle gates, can always be solved by an algorithm that issues roughly q(n)2 oracle
queries. We prove the following claim:

Claim 4.4. Let C = {Cn}n∈N be an oracle-aided unique-TFNP instance, where each Cn is a circuit
that contains at most q(n) oracle gates. If C satisfies the correctness requirement stated in Definition
4.1, then there exists a O(q(n)2)-query algorithm A such that

Pr
[
AOPPAD (1n) = x∗ s.t. COPPAD

n (x∗) = 1
]

= 1

for every n ∈ N, where the probability is taken over the choice of the oracle OPPAD = {(Sn,Pn)}n∈N
as described above. Moreover, the algorithm A can be implemented in time q(n)2 · poly(n) given
access to a PSPACE-complete oracle.

For proving Claim 4.4, one might be tempted to follow the same approach used for proving Claim
3.4, based on the sparse and uniform structure of the oracle. However, as discussed in Section 1.3,
this approach seems to completely fail.

Our proof of Claim 4.4, which is provided in Section 4.3, is obtained by building upon Rudich’s
classic proof for ruling out black-box constructions of one-way permutations based on one-way
functions [Rud88]. In fact, Rudich’s proof already generalizes, perhaps somewhat implicitly, from
from ruling out constructions of one-way permutations to ruling out constructions of any hard-on-
average distribution of unique-TFNP instances. We show, by extending and refining Rudich’s proof
technique, that his approach provides a rich framework that allows to bound not only the limitations
of one-way functions as a building block, but even the limitations of significantly more structured
primitives as building blocks. Specifically, our proof of Claim 4.4 extends Rudich’s technique for
bounding the limitations of hard-on-average source-or-sink instances.
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4.2 OPPAD is a Hard-on-Average Source-or-Sink Instance

Given an oracle OPPAD = {(Sn,Pn)}n∈N, sampled as described in Section 4.1, and given a q-query
algorithm M , for every n ∈ N and i ∈ [q] we denote by αi ∈ {0, 1} the random variable corresponding
to M ’s ith oracle query to Sn or Pn (note that we ignore oracle queries to Si or Pi where i 6= n). We
denote by HITOPPAD

M,n the event in which there exist indices j ∈ [q] and i ∈ [L(n)] for which αj = xi
but xi−1 /∈ {α1, . . . , αj−1}. That is, this is the event in which M queries OPPAD with one of the xi’s

before querying on xi−1. In particular, note that if the event HITOPPAD
M,n does not occur, then M does

not query OPPAD with xi for i ∈ {q, . . . , L(n)}. The following claim bounds the probability of event
HITOPPAD

M,n (its proof is essentially identical to that of Claim 3.5).

Claim 4.5. For every q-query algorithm M it holds that

Pr
[
HITOPPAD

M,n

]
≤ q · L(n)

2n − q

for all sufficiently large n ∈ N, where the probability is taken over the choice of the oracle OPPAD =
{(Sn,Pn)}n∈N.

Proof. Let M be a q-query algorithm, fix n ∈ N, and fix (OPPAD)−n = {(Si,Pi)}i∈N\{n} (i.e., we
fix the entire oracle OPPAD except for the nth source-or-sink instance). For every i ∈ [q] denote by
Mi the following i-query algorithm: Invoke the computation MOPPAD , and terminate once i oracle
queries have been performed. Note that since we do not place any restriction on the running time
of M and since the oracle distribution is known, we can assume without loss of generality that M
is deterministic. Therefore, for every i ∈ [q] and every fixing of the oracle OPPAD, the computation
MOPPAD
i is the “prefix” of the computation MOPPAD which contains its first i oracle queries. This

implies that

Pr
[
HITOPPAD

M,n

]
≤ Pr

[
HITOPPAD

M1,n

]
+

q−1∑
i=1

Pr
[
HITOPPAD

Mi+1,n

∣∣∣HITOPPAD
Mi,n

]
,

where the probability is taken over the choice of the nth source-or-sink instance (Sn,Pn) (i.e., over
the choice of the elements x1, . . . , xL(n) that are used for defining the nth instance as described in
Section 4.1).

For bounding the probability of the event HITOPPAD
M1,n

, note that this event corresponds to the
fact that M , without any information on x1, . . . , xL(n) (since no oracle queries have been issued so
far), manages to produce an oracle query with α1 ∈ {x1, . . . , xL(n)}. Since the value α1 is fixed by
the description of M , and we are now sampling distinct and uniformly distributed x1, . . . , xL(n) ←
{0, 1}n \ {0n}, we have that

Pr
[
HITOPPAD

M1,n

]
≤

(
2n−2
L(n)−1

)(
2n−1
L(n)

) =
L(n)

2n − 1
.

For bounding the probability of the event HITOPPAD
Mi+1,n

given that HITOPPAD
Mi,n

occurred, we fix the

queries α1, . . . , αi, we fix their successors β1, . . . , βi where βj = Sn(αj), fix their predecessors
γ1, . . . , γi where γj = Pn(αj), and for each j ∈ [i] and k ∈ [L(n)] we fix whether αj = xk or not. This
fixes the oracle answers to the above queries, hence fixes αi+1 by the assumption that M is determin-

istic. By the assumption HITOPPAD
Mi,n

, there is some 0 ≤ ` ≤ i for which x0, x1, . . . , x`−1 ∈ {α1, . . . , αi}
but x`, . . . , xL(n) /∈ {α1, . . . , αi}. Hence x1, . . . , x` ∈ {β1, . . . , βi} but x`+1, . . . , xL(n) /∈ {β1, . . . , βi}.
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No further information about x`+1, . . . , xL(n) is known, therefore, we are now sampling distinct and
uniformly distributed x`+1, . . . , xL(n) ← {0, 1}n \ {0n, β1, . . . , βi}, hence

Pr
[
HITOPPAD

Mi+1,n

∣∣∣HITOPPAD
Mi,n

]
≤ L(n)

2n − i− 1
.

We conclude that

Pr
[
HITOPPAD

M,n

]
≤ Pr

[
HITOPPAD

M1,n

]
+

q−1∑
i=1

Pr
[
HITOPPAD

Mi+1,n

∣∣∣HITOPPAD
Mi,n

]
≤

q−1∑
i=0

L(n)

2n − i− 1

≤ q · L(n)

2n − q
.

Equipped with Claim 4.5 we can now easily derive the proof of Claim 4.3.

Proof of Claim 4.3. We modify M such that it queries the oracle Sn with its output before it
terminates. Now, M is a (q(n) + 1)-query algorithm, and by the assumption q(n) + 1 ≤ L(n), if
M(1n) solves (Sn,Pn) then HITOPPAD

M(1n),n occurs. By Claim 4.5 we deduce

Pr
[
MOPPAD (1n) solves (Sn,Pn)

]
≤ Pr

[
HITOPPAD

M(1n),n

]
≤ (q(n) + 1) · L(n)

2n − q(n)− 1
.

4.3 Solving Oracle-Aided Unique-TFNP Instances Relative to OPPAD

Proof of Claim 4.4. Fix the oracle OPPAD = {(Sn,Pn)}n∈N and let C = {Cn}n∈N be an oracle-
aided unique-TFNP instance that satisfies the correctness requirement stated in Definition 4.1,
where each Cn contains at most q(n) oracle gates. Consider the following oracle-aided algorithm A
that on input 1n would like to find an input x ∈ {0, 1}n such that COPPAD

n (x) = 1. The algorithm
A initializes two empty sets, QS and QP, which at any point in time will be consistent with the
functions S = {Sn}n∈N and P = {Pn}n∈N, respectively. That is, the set QS will contain pairs of the
form (α, β) where S|α|(α) = β, and the set QP will contain pairs of the form (β, α) where P|β|(β) = α.
The algorithm A performs the following steps for q(n) + 1 iterations:

Step 1. The algorithm A finds an oracle ÕPPAD =
{(

S̃n, P̃n
)}

n∈N
and an input x̃ ∈ {0, 1}n subject

to the following two requirements:

• ÕPPAD is consistent with the sets QS and QP. That is, for every (α, β) ∈ QS it holds that
S̃|α|(α) = β, and for every (β, α) ∈ QP it holds that P̃|β|(β) = α.

• CÕPPAD
n (x̃) = 1.

Step 2. The algorithm A computes ỹ = COPPAD
n (x̃), and if ỹ = 1 then it outputs x̃ and terminates.
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Step 3. The algorithm A queries the oracle OPPAD with all inputs to ÕPPAD-gates in the computa-

tion CÕPPAD
n (x̃), and adds these queries to the sets QS and QP.

That is, for every input α to an S̃-gate in the computation CÕPPAD
n (x̃), the algorithmA computes

β = S|α|(α), and adds the pair (α, β) to the set QS. Similarly, for every input β to a P̃-gate in

the computation CÕPPAD
n (x̃), the algorithm A computes α = P|β|(β), and adds the pair (β, α)

to the set QP.

If the algorithm A did not return an output during the above iterations, then it outputs ⊥. In terms
of the number of oracle queries made by A, observe that step 1 does not require any oracle queries,
while steps 2 and 3 require at most q(n) queries each. Therefore, the total number of queries made
by A is (q(n) + 1) · 2q(n) = O(q(n)2), as required. In the remainder of this proof, we show that A
is always successful in one of its q(n) + 1 iterations. This follows from the following claim:

Claim 4.6. Let x∗ ∈ {0, 1}n be the unique input such that COPPAD
n (x∗) = 1. Then, in each iteration,

at least one of the following events occur:

• In step 2 of the iteration A outputs x∗.

• During step 3 of the iteration A adds to QS or QP a new OPPAD-query that is performed in
the computation COPPAD

n (x∗).

We now show that Claim 4.6 indeed guarantees that A is always successful when repeating steps
1–3 above for q(n) + 1 iterations. Let x∗ ∈ {0, 1}n be the unique input such that COPPAD

n (x∗) = 1,
and assume that in the first q(n) iterations A does not output x∗ in step 2. Claim 4.6 implies that
in each of these q(n) iterations A adds to QS or QP a new OPPAD-query that is performed in the
computation COPPAD

n (x∗). Since this computation contains at most q(n) oracle queries to OPPAD, at
the end of the first q(n) iterations we are guaranteed that all of these queries are included in the

sets QS and QP. In particular, in the final iteration, for any ÕPPAD that will be chosen in step 1 it

holds that CÕPPAD
n (x∗) = 1 since ÕPPAD is chosen to be consistent with QS and QP. Thus, in step 2

of this iteration A is guaranteed to output x∗. We now conclude the proof of Claim 4.4 by proving
Claim 4.6.

Proof of Claim 4.6. Let x∗ ∈ {0, 1}n be the unique input such that COPPAD
n (x∗) = 1, and assume

towards a contradiction that in some iteration j ∈ [q(n) + 1] the following two events occur:

• In step 2 of the iteration A does not output x∗. In particular, this implies that for the input
x̃ that A finds in this iteration it holds that x̃ 6= x∗.

• During step 3 of the iteration A does not add to QS or QP a new OPPAD-query that is per-
formed in the computation COPPAD

n (x∗). In particular, all inputs to S̃-gates and P̃-gates in the

computation CÕPPAD
n (x̃) are either already in the sets QS and QP, respectively, at the begin-

ning of the jth iteration, or are not used as inputs to S-gates or P-gates in the computation
COPPAD
n (x∗).

We now show that, in fact, there exists an oracle O′PPAD, which is a source-or-sink instance, such

that C
O′PPAD
n (x∗) = C

O′PPAD
n (x̃) = 1. This contradicts the correctness requirement stated in Definition

4.1, asking that Cn has a unique solution relative to any source-or-sink oracle. The oracle O′PPAD =
{(S′n,P′n)}n∈N is defined as follows (according to the following 4 types of possible inputs):
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• Type 1 inputs: For every pair (α, β) ∈ QS we set S′|α|(α) = β, and for every pair (β, α) ∈ QP

we set P′|β|(β) = α.

Note that sinceQS andQP are consistent withOPPAD, and ÕPPAD is consistent withQS andQP,
then for all type 1 inputs α and β it holds that S′(α) = S(α) = S̃(α) and P′(β) = P(β) = P̃(β).

• Type 2 inputs: For every input α that is used as input to an S-gate in the computation
COPPAD
n (x∗) and (α, ·) /∈ QS, we set S′(α) = S(α). Similarly, for every input β that is used as

input to a P-gate in the computation COPPAD
n (x∗) and (β, ·) /∈ QP, we set P′(β) = P(β).

• Type 3 inputs: For every input α that is used as input to a S̃-gate in the computation

CÕPPAD
n (x̃) and (α, ·) /∈ QS, we set S′(α) = S̃(α). Similarly, for every input β that is used as

input to a P̃-gate in the computation CÕPPAD
n (x̃) and (β, ·) /∈ QP, we set P′(β) = P̃(β).

• Type 4 inputs: For any other inputs α and β we set S′(α) and P′(β) to arbitrary values
(e.g., we set them to 0|α| and 0|β|, respectively).

First, note that the oracle O′PPAD is indeed a source-or-sink instance since its successor and pre-
decessor functions are well defined (i.e., the above 4 types of inputs are indeed a partition of

the input space). Relative to O′PPAD, however, it holds that C
O′PPAD
n (x∗) = COPPAD

n (x∗) = 1, and

C
O′PPAD
n (x̃) = CÕPPAD

n (x̃) = 1, but recall that x∗ 6= x̃ and this contradicts that C has a unique
solution with respect to any source-or-sink oracle.

This settles the proof of Claim 4.4.

4.4 Proof of Theorem 4.2

Proof of Theorem 4.2. Let (C,M, TM , εM,1, εM,2) be a fully black-box construction of a hard-on-
average distribution of unique-TFNP instances from a hard-on-average distribution of source-or-sink
instances (recall Definition 4.1). Claim 4.4 guarantees an oracle-aided algorithm A that runs in
polynomial time TA(n) such that

Pr
[
AOPPAD (1n) = x∗ s.t. COPPAD

n (x∗) = 1
]

= εA(n)

for all n ∈ N, where εA(n) = 1, and the probability is taken over the choice of the oracle OPPAD.
Definition 4.1 then guarantees that

Pr
[
MA,PSPACE,OPPAD (1n) solves (Sn,Pn)

]
≥ εM,1 (TA(n)/εA(n)) · εM,2(n)

for infinitely many values of n ∈ N, where M runs in time TM (n), and the probability is taken over
the choice of the oracle OPPAD = {(Sn,Pn)}n∈N.

The algorithmM may invokeA on various security parameters (i.e., in generalM is not restricted
to invoking A only on security parameter n), and we denote by `(n) the maximal security parameter
on which M invokes A (when M itself is invoked on security parameter n). Thus, viewing MA as a
single oracle-aided algorithm that has access to a PSPACE-complete oracle and to the oracle OPPAD,
its running time TMA(n) satisfies TMA(n) ≤ TM (n) · TA(`(n)) (this follows since M may invoke A
at most TM (n) times, and the running time of A on each such invocation is at most TA(`(n))). In

particular, viewing M ′
def
= MA

PSPACE
as a single oracle-aided algorithm that has oracle access to the
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oracle OPPAD, implies that M ′ is a q(n)-query algorithm where q(n) = TMA(n). Claim 4.3 then
implies that

εM,1 (TA(n)/εA(n)) · εM,2(n) ≤ (q(n) + 1) · L(n)

2n − q(n)− 1
.

There are now two possible cases to consider:

Case 1: 2n/4 ≤ q(n). In this case, noting that `(n) ≤ TM (n), we obtain that

2n/4 ≤ q(n) = TMA(n) ≤ TM (n) · TA(`(n)) ≤ TM (n) · TA(TM (n)).

The running time TA(n) of the adversary A (when given access to a PSPACE-complete oracle) is
some fixed polynomial in n, and therefore TM (n) ≥ 2ζn for some constant ζ > 0.

Case 2: 2n/4 > q(n). In this case we have that

εM,1 (TA(n)/εA(n)) · εM,2(n) ≤ (q(n) + 1) · 2n/2

2n − q(n)− 1
≤ 1

2n/10
,

and since TA(n) is some fixed polynomial in n (and εA(n) is a constant) we obtain that εM,1(n
c) ·

εM,2(n) ≤ 2−n/10 for some constant c > 1.

5 One-Way Functions Do Not Imply Bounded-TFNP Hardness

In this section we prove that there is no fully black-box construction of a hard-on-average distribution
of TFNP instances having a bounded number of solutions from a one-way function. Our result is
obtained by presenting a distribution of oracles relative to which the following two properties hold:

1. There exists a one-way function.

2. There are no hard-on-average distributions of TFNP instances having a bounded number of
solutions. Specifically, our result will apply to any sub-exponential number of solutions.

A TFNP instance with bounded number k(·) of solutions, denoted a k-bounded TFNP instance,
is of the form {Cn}n∈N, where for every n ∈ N it holds that C : {0, 1}n → {0, 1}, and there is at
least one and at most k(n) distinct inputs x ∈ {0, 1}n such that C(x) = 1 (any one of these x’s
is a solution). In particular, as discussed in Section 4, any valid SVL instance yields a 1-bounded
TFNP instance (i.e., a unique-TFNP instance as defined in Section 4), and therefore our result rules
out fully black-box constructions of a hard-on-average distribution of SVL instances from a one-way
function. Similarly, any source-or-sink instance which consists of at most (k + 1)/2 disjoint lines
yields a k-bounded TFNP instance, and therefore our result rules out fully black-box constructions
of a hard-on-average distribution of source-or-sink instances with a bounded number of disjoint lines
from a one-way function.

In this section we model a one-way function as a sequence f = {fn}n∈N, where for every n ∈ N
it holds that fn : {0, 1}n → {0, 1}n. The following definition tailors the standard notion of a fully
black-box construction to the specific primitives under consideration.

Definition 5.1. A fully black-box construction of a hard-on-average distribution of k-bounded
TFNP instances from a one-way function consists of a sequence of polynomial-size oracle-aided
circuits C = {Cn}n∈N, an oracle-aided algorithm M that runs in time TM (·), and functions εM,1(·)
and εM,2(·), such that the following conditions hold:
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• Correctness: For any function f = {fn}n∈N and for any n ∈ N there exists at least one and

at most k(n) distinct inputs x ∈ {0, 1}n such that Cfn(x) = 1.

• Black-box proof of security: For any function f = {fn}n∈N, for any oracle-aided algorithm
A that runs in time TA = TA(n), and for any function εA(·), if

Pr
[
Af (1n) = x s.t. Cfn(x) = 1

]
≥ εA(n)

for infinitely many values of n ∈ N, where the probability is taken over the choice of x← {0, 1}n
and over the internal randomness of A, then

Pr
[
MA,f (fn(x)) ∈ f−1n (fn(x))

]
≥ εM,1 (TA(n)/εA(n)) · εM,2(n)

for infinitely many values of n ∈ N, where the probability is taken over the choice of x← {0, 1}n
and over the internal randomness of M .

We note that, as in Definitions 3.1 and 4.1, we split the security loss in the above definition to an
adversary-dependent security loss and an adversary-independent security loss, as this allows us to
capture constructions where one of these losses is super-polynomial whereas the other is polynomial.
Equipped with the above definition we prove the following theorem:

Theorem 5.2. Let (C,M, TM , εM,1, εM,2) be a fully black-box construction of a hard-on-average
distribution of k-bounded TFNP instances from a one-way function. Then, at least one of the
following properties holds:

1. TM (n) ≥ 2ζn for some constant ζ > 0 (i.e., the reduction runs in exponential time).

2. k(TM (n)) ≥ 2n/8 (i.e., the number of solutions, as a function of the reduction’s running time,
is exponential).

3. εM,1(k(n) ·nc) · εM,2(n) ≤ 2−n/2 for some constant c > 1 (i.e., the security loss is exponential).

In particular, Theorem 5.2 rules out standard “polynomial-time polynomial-loss” reductions
resulting in at most 2n

o(1)
solutions. That is, if TM (n), εM,1(n) and εM,2(n) are all polynomials in

n, then the number k(n) of solutions must be at least sub-exponential in n (i.e., k(n) ≥ 2n
Θ(1)

). In
addition, if the number k(n) of solutions is constant, the running time TM (·) of the reduction is sub-
exponential, and the adversary-dependent security loss εM,1(·) is polynomial (all as in [BPR15]),
then the adversary-independent security loss εM,2(·) must be exponential (thus even ruling out
constructions based on one-way functions with sub-exponential hardness).

5.1 Proof Overview

In what follows we first describe the oracle, denoted f , on which we rely for proving Theorem 5.2.
Then, we describe the structure of the proof, showing that relative to the oracle f there exists a
one-way function, but there are no hard-on-average bounded-TFNP instances. For the remainder
of this section we remind the reader that a q-query algorithm is an oracle-aided algorithm A such
that for any oracle O and input x ∈ {0, 1}∗, the computation AO(x) consists of at most q(|x|) oracle
calls to O.

The oracle f . The oracle f is a sequence {fn}n∈N where for every n ∈ N the function fn :
{0, 1}n → {0, 1}n is sampled uniformly from the set of all functions mapping n-bit inputs to n-bit
outputs.
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Part I: f is a one-way function. We prove the following standard claim stating that the oracle
f is an exponentially-hard one-way function.

Claim 5.3. For every q(n)-query algorithm M it holds that

Pr
[
Mf (fn(x)) ∈ f−1n (fn(x))

]
≤ 2(q(n) + 1)

2n − q(n)

for all sufficiently large n ∈ N, where the probability is taken over the choice of x ← {0, 1}n, and
over the choice of the oracle f = {fn}n∈N as described above.

Part II: Solving oracle-aided bounded-TFNP instances relative to f . We show that any
oracle-aided k-bounded TFNP instance C = {Cn}n∈N, where each Cn is a circuit that contains at
most q(n) oracle gates, can always be solved by an algorithm that issues roughly k(n) · q(n)2 oracle
queries. We prove the following claim:

Claim 5.4. Let C = {Cn}n∈N be an oracle-aided k(n)-bounded TFNP instance, where each Cn
contains at most q(n) oracle gates. If C satisfies the correctness requirement stated in Definition
5.1, then there exists a 2k(n) · (q(n) + 1)2-query algorithm A such that

Pr
[
Af (1n) = x s.t. Cfn(x) = 1

]
= 1

for all n ∈ N, where the probability is taken over the choice of the oracle f = {fn}n∈N as described
above. Moreover, the algorithm A can be implemented in time k(n) · (q(n))2 · poly(n) given access
to a PSPACE-complete oracle.

Our proof of Claim 5.4, which is provided in Section 5.3, is obtained by further generalizing
our extension of Rudich’s classic proof technique [Rud88]. As discussed in Section 4.1, Rudich’s
approach already generalizes, perhaps somewhat implicitly, from ruling out constructions of one-
way permutations to ruling out constructions of any hard-on-average distribution of unique-TFNP
instances. We show, by extending and refining Rudich’s proof technique once again, that his ap-
proach allows to rule out not only constructions of unique-TFNP instances, but even constructions
of bounded-TFNP instances.

5.2 f is a One-Way Function

Proof of Claim 5.3. Let M be a q(n)-query algorithm, fix n ∈ N, and fix (f)−n = {fi}i∈N\{n}
(i.e., we fix the entire oracle f except for the nth function fn). Without loss of generality, by
viewing M as a (q(n) + 1)-query algorithm, we may assume that M always queries fn with its
output. For any y ∈ {0, 1}n and for every i ∈ [q(n) + 1] denote by αi(y) the random variable
corresponding to the ith query made by M to fn when M is given y as input (note that since we do
not place any restriction on the running time of M we can assume without loss of generality that
M is deterministic). Therefore,

Pr
[
Mf (y) ∈ f−1n (y)

]
≤ Pr

[
α1(y) ∈ f−1n (y)

]
+

q(n)∑
i=1

Pr
[
αi+1(y) ∈ f−1n (y)

∣∣α1(y), . . . , αi(y) /∈ f−1n (y)
]
,

where y = fn(x), and the probability is taken over the choice of the nth function fn : {0, 1}n →
{0, 1}n and over the choice of x← {0, 1}n.
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For bounding the probability of the event α1(y) ∈ f−1n (y), note that this event corresponds to
the fact that M , when given input y = fn(x) and without any information on the uniformly chosen
x ∈ {0, 1}n, manages to produce an input α1(y) that fn maps to y. If α1(y) = x then clearly
α1(y) ∈ f−1n (y) (but this happen with probability 2−n since x is still uniform from M ’s point of
view), and if α1(y) 6= x then the value fn(α1(y)) is completely independent of fn(x) and therefore
uniformly distributed over {0, 1}n. Therefore,

Pr
[
α1(y) ∈ f−1n (y)

]
≤ Pr [α1(y) = x] + Pr

[
α1(y) ∈ f−1n (y) |α1(y) 6= x

]
=

1

2n
+

1

2n

=
2

2n
.

For bounding the probability of the event αi+1(y) ∈ f−1n (y) conditioned on α1(y), . . . , αi(y) /∈
f−1n (y) we follow a similar argument. Without loss of generality, we assume that α1(y), . . . , αi+1(y)
are all distinct, and then it holds that:

• Given that α1(y), . . . , αi(y) /∈ f−1n (y) then from M ’s point of view the value x is uniformly
distributed over the set {0, 1}n \ {α1(y), . . . , αi(y)}. Therefore

Pr
[
αi+1(y) = x

∣∣α1(y), . . . , αi(y) /∈ f−1n (y)
]

=
1

2n − i
.

• Given that α1(y), . . . , αi(y) /∈ f−1n (y) and αi+1(y) 6= x, we have that αi+1(y) /∈ {x, α1(y), . . . ,
αi(y)} based on our assumption that the queries are all distinct. This implies that the random
variable fn(αi+1(y)) is completely independent of fn(x), fn(α1(y)), . . . , fn(αi(y)) and therefore
uniformly distributed over {0, 1}n. That is,

Pr
[
αi+1(y) ∈ f−1n (y)

∣∣α1(y), . . . , αi(y) /∈ f−1n (y) ∧ αi+1(y) 6= x
]

=
1

2n
.

Therefore,

Pr
[
αi+1(y) ∈ f−1n (y)

∣∣α1(y), . . . , αi(y) /∈ f−1n (y)
]

≤ Pr
[
αi+1(y) = x

∣∣α1(y), . . . , αi(y) /∈ f−1n (y)
]

+ Pr
[
αi+1(y) ∈ f−1n (y)

∣∣α1(y), . . . , αi(y) /∈ f−1n (y) ∧ αi+1(y) 6= x
]

=
1

2n − i
+

1

2n

≤ 2

2n − i
.

We conclude that

Pr
[
Mf (y) ∈ f−1n (y)

]
≤

q(n)∑
i=0

2

2n − i

≤ 2(q(n) + 1)

2n − q(n)
.
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5.3 Solving Oracle-Aided Bounded-TFNP Instances Relative to f

Proof of Claim 5.4. Fix the oracle f = {fn}n∈N and let C = {Cn}n∈N be an oracle-aided k-
bounded TFNP instance that satisfies the correctness requirement stated in Definition 5.1, where
each Cn contains at most q(n) oracle gates. Consider the following oracle-aided algorithm A that on

input 1n would like to find an input x ∈ {0, 1}n such that Cfn(x) = 1. The algorithm A initializes an
empty set Q, which at any point in time will contain pairs of the form (α, β) where β = f(α) (i.e.,
the set Q is always consistent with f). The algorithm A performs the following steps for q(n) + 1
iterations:

Step 1. The algorithm A finds a function g that is consistent with Q and maximizes the number
kg of solutions to the instance Cgn(·) (i.e., kg is the number of distinct inputs x ∈ {0, 1}n such
that Cgn(x) = 1).

Step 2. The algorithm A finds the distinct inputs x1, . . . , xkg ∈ {0, 1}n for which Cgn(xi) = 1 for
every i ∈ [kg].

Step 3. For every i ∈ [kg], the algorithm A computes Cfn(xi). If there exists an i ∈ [kg] for which

Cfn(xi) = 1, then A outputs the first such xi and terminates.

Step 4. For every i ∈ [kg], the algorithm A queries f with all inputs to g-gates in the computation
Cgn(xi), and adds these queries to the set Q.

If the algorithm A did not return an output during the above iterations, then it outputs ⊥. In
terms of the number of oracle queries made by A, observe that steps 1 and 2 do not require any
oracle queries, while each of steps 3 and 4 require at most k ·q queries7. Therefore, the total number
of queries made by A is at most 2k · q(q + 1) ≤ 2k · (q + 1)2, as required. In the remainder of
this proof, we show that A is always successful in one of its q + 1 iterations. This follows from the
following claim:

Claim 5.5. Fix some x∗ ∈ {0, 1}n such that Cfn(x∗) = 1. Then, in each iteration, at least one of
the following events occur:

• During step 3 of the iteration A finds an input x ∈ {0, 1}n such that Cfn(x) = 1.

• During step 4 of the iteration A adds to Q a new f -query that is performed in the computation
Cfn(x∗).

We now show that Claim 5.5 indeed guarantees that A is always successful when repeating steps
1–4 above for q + 1 iterations. Fix some x∗ ∈ {0, 1}n such that Cfn(x∗) = 1, and assume that in
the first q iterations A does not find a solution in step 3. Claim 5.5 implies that in each of these q
iterations A adds to the set Q a new f -query that is performed in the computation Cfn(x∗). Since
this computation contains at most q oracle queries to f , at the end of the first q iterations we are
guaranteed that all of these queries are included in the set Q. In particular, in the final iteration, for
any g that will be chosen in step 1 it holds that Cgn(x∗) = 1 since g is chosen to be consistent with
Q. Thus, in this iteration x∗ ∈ {x1, . . . , xkg}, and therefore there exists at least one index i ∈ [kg]

for which Cfn(xi) = 1, which implies that A outputs a solution. We now conclude the proof of Claim
5.4 by proving Claim 5.5.

7Since Q is always consistent with f , and since C is a k-bounded TFNP instance, then in each iteration it holds
that kf ≤ kg ≤ k.
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Proof of Claim 5.5. Fix some x∗ ∈ {0, 1}n such that Cfn(x∗) = 1, and assume towards a contra-
diction that in some iteration j ∈ [q + 1] the following two events occur:

• During step 3 of the iteration A does not find an input x ∈ {0, 1}n such that Cfn(x) = 1. In
particular, this implies that x∗ /∈ {x1, . . . , xkg}.

• During step 4 of the iteration A does not add to Q a new f -query that is performed in the com-
putation Cfn(x∗). In particular, all inputs to g-queries in the computations Cgn(x1), . . . , C

g
n(xkg)

are either already in the set Q at the beginning of the jth iteration, or are not used as inputs
to f -queries in the computation Cfn(x∗).

We now show that, in fact, at the beginning of the jth iteration there was a function g′ such that:

(1) g′ is consistent with Q, and (2) there are at least kg + 1 inputs x ∈ {0, 1}n for which Cg
′
n (x) = 1.

This contradicts the fact that, in step 1 of the jth iteration, A chose g that maximizes the number
kg of solutions to the instance Cgn(·). The function g′ is defined as follows (according to the following
4 types of possible inputs):

• Type 1 inputs: For every input α that appears in the set Q we set g′(α) = f(α).

Note that since Q is consistent with f , and g is consistent with Q, then for all type 1 inputs
α it holds that g′(α) = f(α) = g(α).

• Type 2 inputs: For every input α that is used as input to an f -query in the computation
Cfn(x∗) and is not in the set Q, we set g′(α) = f(α).

• Type 3 inputs: For every input α that is used as input to a g-query in the computations
Cgn(x1), . . . , C

g
n(xkg) and is not in the set Q, we set g′(α) = g(α).

• Type 4 inputs: For any other input α we set g′(α) to an arbitrary value.

For the function g′ it holds that Cg
′
n (x∗) = Cfn(x∗) = 1, and Cg

′
n (xi) = Cgn(xi) = 1 for every i ∈ [kg].

Thus, the values x∗, x1, . . . , xkg are kg + 1 distinct solutions to the instance Cg
′
n (·).

This settles the proof of Claim 5.4.

5.4 Proof of Theorem 5.2

Proof of Theorem 5.2. Let (C,M, TM , εM,1, εM,2) be a fully black-box construction of a hard-on-
average distribution of k-bounded TFNP instances from a one-way function (recall Definition 5.1).
Claim 5.4 guarantees an oracle-aided algorithm A that runs in time TA(n) = k(n) ·poly(n) such that

Pr
[
APSPACE,f (1n) = x s.t. Cfn(x) = 1

]
= εA(n)

for all n ∈ N, where εA(n) = 1, and the probability is taken over the choice of the oracle f = {fn}n∈N.
Definition 5.1 then guarantees that

Pr
[
MA,PSPACE,f (fn(x)) ∈ f−1n (fn(x))

]
≥ εM,1 (TA(n)/εA(n)) · εM,2(n)

for infinitely many values of n ∈ N, where M runs in time TM (n), and the probability is taken over
the choice of the oracle f = {fn}n∈N and over the choice of x← {0, 1}n.

The algorithmM may invokeA on various security parameters (i.e., in generalM is not restricted
to invoking A only on security parameter n), and we denote by `(n) the maximal security parameter
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on which M invokes A (when M itself is invoked on security parameter n). Thus, viewing MA as
a single oracle-aided algorithm that has access to a PSPACE-complete oracle and to the oracle f ,
its running time TMA(n) satisfies TMA(n) ≤ TM (n) · TA(`(n)) (this follows since M may invoke A
at most TM (n) times, and the running time of A on each such invocation is at most TA(`(n))). In

particular, viewing M ′
def
= MA

PSPACE
as a single oracle-aided algorithm that has oracle access to the

oracle f , implies that M ′ is a q(n)-query algorithm where q(n) = TMA(n). Claim 5.3 then implies
that

εM,1 (TA(n)/εA(n)) · εM,2(n) ≤ 2(q(n) + 1)

2n − q(n)
.

There are now two possible cases to consider:

Case 1: 2n/4 ≤ q(n). In this case, noting that `(n) ≤ TM (n), we obtain that

2n/4 ≤ q(n) = TMA(n) ≤ TM (n) · TA(`(n)) ≤ TM (n) · TA(TM (n)).

Since TA(n) = k(n) · poly(n) for some fixed polynomial poly(n), then it holds that

2n/4 ≤ k (TM (n)) · poly(TM (n))

which implies that either k(TM (n)) ≥ 2n/8 or TM (n) ≥ 2ζn for some constant ζ > 0.

Case 2: 2n/4 > q(n). In this case we have that

εM,1 (TA(n)/εA(n)) · εM,2(n) ≤ 2(q(n) + 1)

2n − q(n)
≤ 1

2n/2
,

and since TA(n) = k(n) · poly(n) for some fixed polynomial poly(n) (and εA(n) = 1) we obtain that
εM,1(k(n) · nc) · εM,2(n) ≤ 2−n/2 for some constant c > 1.

6 Public-Key Cryptography Does Not Imply Bounded-TFNP Hardness

In this section we generalize the result proved in Section 5 from considering a one-way function
as the underlying building block to considering a collection of injective trapdoor functions as the
underlying building block. Specifically, we prove that there is no fully black-box construction of
a hard-on-average distribution of TFNP instances having a bounded number of solutions from a
collection of injective trapdoor functions. Our result is obtained by presenting a distribution of
oracles relative to which the following two properties hold:

1. There exists a collection of injective trapdoor functions.

2. There are no hard-on-average distributions of TFNP instances having a bounded number of
solutions. Specifically, our result will apply to any sub-exponential number of solutions, exactly
as in Section 5.

From the technical perspective, instead of considering an oracle f = {fn}n∈N where for every
n ∈ N the function fn : {0, 1}n → {0, 1}n is sampled uniformly, we consider a more structured
oracle, OTDF, corresponding to a collection of injective trapdoor functions. Proving that the oracle
OTDF is indeed hard to invert is quite standard (based, for example, on the approach of Haitner
et al. [HHR+15]). However, showing that relative to the oracle OTDF we can solve bounded-TFNP
instances is significantly more challenging than the corresponding proof relative to the oracle f .

We say that τ =
{(

KGn,Fn,F
−1
n

)}
n∈N is a collection of injective trapdoor functions if for every

n ∈ N and for every pair (td, pk) produced by KGn(), the function Fn(pk, ·) : {0, 1}n → {0, 1}m
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is injective (for some m ≥ n) and the function F−1n (td, ·) computes it inverse whenever an inverse
exists (i.e., it outputs ⊥ on all values y that are not in the image of the function Fn(pk, ·)) – see
Section 2.2 for more details. The following definition tailors the standard notion of a fully black-box
construction to the specific primitives under consideration.

Definition 6.1. A fully black-box construction of a hard-on-average distribution of k-bounded
TFNP instances from a collection of injective trapdoor functions consists of a sequence of polynomial-
size oracle-aided circuits C = {Cn}n∈N, an oracle-aided algorithm M that runs in time TM (·), and
functions εM,1(·) and εM,2(·), such that the following conditions hold:

• Correctness: For any collection τ of injective trapdoor functions and for any n ∈ N there
exists at least one and at most k(n) distinct inputs x ∈ {0, 1}n such that Cτn(x) = 1.

• Black-box proof of security: For any collection τ =
{(

KGn,Fn,F
−1
n

)}
n∈N of injective

trapdoor functions, for any oracle-aided algorithm A that runs in time TA = TA(n), and for
any function εA(·), if

Pr [Aτ (1n) = x s.t. Cτn(x) = 1] ≥ εA(n)

for infinitely many values of n ∈ N, where the probability is taken over the choice of x← {0, 1}n
and over the internal randomness of A, then

Pr
[
MA,τ (pk,Fn(pk, x)) = x

]
≥ εM,1 (TA(n)/εA(n)) · εM,2(n)

for infinitely many values of n ∈ N, where the probability is taken over the choice of (td, pk)←
KGn(), x← {0, 1}n, and over the internal randomness of M .

We note that, as in Definitions 3.1, 4.1 and 5.1, we split the security loss in the above definition to
an adversary-dependent security loss and an adversary-independent security loss, as this allows us to
capture constructions where one of these losses is super-polynomial whereas the other is polynomial.
Equipped with the above definition we prove the following theorem (generalizing Theorem 5.2):

Theorem 6.2. Let (C,M, TM , εM,1, εM,2) be a fully black-box construction of a hard-on-average
distribution of k-bounded TFNP instances from a collection of injective trapdoor functions. Then,
at least one of the following properties holds:

1. TM (n) ≥ 2ζn for some constant ζ > 0 (i.e., the reduction runs in exponential time).

2. k(TM (n)) ≥ 2n/8 (i.e., the number of solutions, as a function of the reduction’s running time,
is exponential).

3. εM,1(k(n) ·nc) · εM,2(n) ≤ 2−n/2 for some constant c > 1 (i.e., the security loss is exponential).

In particular, and similarly to Theorem 5.2, Theorem 6.2 rules out standard “polynomial-time
polynomial-loss” reductions resulting in at most 2n

o(1)
solutions. That is, if TM (n), εM,1(n) and

εM,2(n) are all polynomials in n, then the number k(n) of solutions must be at least sub-exponential

in n (i.e., k(n) ≥ 2n
Θ(1)

). In addition, if the number k(n) of solutions is constant, the running
time TM (·) of the reduction is sub-exponential, and the adversary-dependent security loss εM,1(·)
is polynomial (all as in [BPR15]), then the adversary-independent security loss εM,2(·) must be
exponential (thus even ruling out constructions based on one-way functions with sub-exponential
hardness). Given our claims in the remainder of this section, the proof of Theorem 6.2 is derived in
a nearly identical to proof of 5.2, and is therefore omitted.
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6.1 Proof Overview

In what follows we first describe the oracle, denoted OTDF, on which we rely for proving Theorem
6.2. Then, we describe the structure of the proof, and explain the main challenges in generalizing
our proof from Section 5.

The oracle OTDF. The oracle OTDF is a sequence of the form
{(

Gn,Fn,F
−1
n

)}
n∈N that is sampled

via the following process for every n ∈ N:

• The function Gn : {0, 1}n → {0, 1}2n is sampled uniformly from the set of all functions mapping
n-bit inputs to n-bit outputs.

• For every pk ∈ {0, 1}2n the function Fn(pk, ·) : {0, 1}n → {0, 1}2n is sampled uniformly from
the set of all injective functions mapping n-bit inputs to 2n-bit outputs.

• For every td ∈ {0, 1}n and y ∈ {0, 1}2n we set

F−1n (td, y) =

{
x if Fn(Gn(td), x) = y
⊥ if no such x exists

.

Part I: OTDF is a hard-to-invert collection of injective trapdoor functions. We show
that the oracle OTDF naturally defines a hard-on-average collection of injective trapdoor functions.
Specifically, the key-generation algorithm on input 1n samples td ← {0, 1}n uniformly at random,
and computes pk = Gn(td) (where Fn and F−1n are used as the evaluation and inversion algorithms).
We prove the following claim stating that collection of injective trapdoor functions is exponentially
secure.

Claim 6.3. For every q(n)-query algorithm M it holds that

Pr
[
MOTDF (Gn(td),Fn(Gn(td), x)) = x

]
≤ 4(q(n) + 1)

2n − q(n)

for all sufficiently large n ∈ N, where the probability is taken over the choice of td ← {0, 1}n,
x← {0, 1}n, and the oracle OTDF = {(Gn,Fn,F−1n )}n∈N.

The proof of Claim 6.3, which is provided in Section 6.2, is based on the observation that the
inversion oracle F−1n is not quite useful. Specifically, the function Gn itself is uniformly chosen and
thus hard to invert, and therefore any algorithm M that is given as input (pk,Fn(pk, x)) should not
be able to find the trapdoor td corresponding to pk = Gn(td). Combining this with the fact that the
function Fn(pk, ·) is uniformly chosen and length doubling, such an algorithm M should not be able
to find any y in its image, unless y was obtained as the result of a previous query (and, in this case,
its inverse is already known). Therefore, the task of computing x given (pk,Fn(pk, x)) essentially
reduces to that of inverting a uniformly-sampled injective function.

Part II: Solving oracle-aided bounded-TFNP instances relative to OTDF. We show that
any oracle-aided k-bounded TFNP instance C = {Cn}n∈N, where each Cn is a circuit of size q(n),
can always be solved with constant probability by an algorithm that issues roughly k(n)3 · q(n)9

oracle queries8. We prove the following claim:

8In fact, our proof does not need to assume any bound on the size of the circuit Cn, and we only need to assume
that Cn contains at most q(n) oracle gates and that the input to each such gate is of length at most q(n) bits.
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Claim 6.4. Let C = {Cn}n∈N be an oracle-aided k-bounded TFNP instance, where each Cn is a
circuit of size at most q = q(n). If C satisfies the correctness requirement stated in Definition 6.1,
then there exists a O(q(n)9 · k(n)3)-query algorithm A such that

Pr
[
AOTDF (1n) = x s.t. COTDF

n (x) = 1
]
≥ 1

2

for all n ∈ N, where the probability is taken over the choice of the oracle OTDF = {(Gn,Fn,F−1n )}n∈N
as described above. Moreover, the algorithm A can be implemented in time q(n)9 · k(n)3 · poly(n)
given access to a PSPACE-complete oracle.

The proof of Claim 6.4, which is provided in Section 6.3, generalizes the proof of Claim 5.4
(which holds relative to the oracle f defined in Section 5). Recall that for the proof of Claim 5.4
we introduced an adversary that runs for q + 1 iterations, with the goal of discovering a new oracle
query from the computation Cfn(x∗) in each iteration, where x∗ is some fixed solution of the instance

Cfn(·). This approach is based on the observation if no progress is made then there exists an oracle

g′ for which the instance Cg
′
n (·) has too many solutions. The oracle oracle g′ can be constructed by

“pasting together” partial information on the actual oracle f with full information on an additional
oracle g that is partially-consistent with f .

When dealing with the oracle OTDF, which is clearly more structured than just a single random
function f , this argument becomes much more subtle. One may hope to follow a similar iteration-
based approach and argue that if no progress is made then there exists an oracle O′TDF for which

the instance C
O′TDF
n (·) has too many solutions. However, “pasting together” partial information on

the actual oracle OTDF with full information on an additional injective trapdoor function oracle
that is partially-consistent with OTDF may completely fail, as the resulting oracle may not turn out
injective at all.

Our main observation is that although pasting together the two oracles may not always work
(as in Section 5), it does work with high probability over the choice of the oracle OTDF. By closely
examining the way the two oracles are combined, we show that if the resulting oracle is not a valid
collection of injective trapdoor functions, then one of the following “bad” events must have occurred:

• The adversary was able to “guess” an element pk for which there exists td such that pk = Gn(td)
without previously querying Gn with td.

• The adversary was able to “guess” a public key pk and an element y for which there exists an
input x such that y = Fn(pk, x) without previously querying Fn with (pk, x).

We show that the probability of each of these two events is small, as we choose both Gn and all
functions Fn(pk, ·) to be length increasing and uniformly distributed.

6.2 OTDF is a Collection of Injective Trapdoor Functions

The proof of Claim 6.3, as discussed above, is based on the observation that the inversion oracle
F−1n is not quite useful. Specifically, we show that with high probability the behavior of F−1n
is predictable, which means that it can be simulated without actually calling the oracle. In more
details, for an oracle-aided algorithm M we denote by HitInvOTDF

M,n the event in which the computation

MOTDF manages to call F−1n with an input (td, y) which results with x 6= ⊥ without previously calling
Fn with (Gn(td), x). We prove the following claim:

Claim 6.5. For every q-query algorithm M and for every n ∈ N it holds that

Pr
[
HitInvOTDF

M,n

]
≤ q

2n − q
,
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where the probability is taken over the choice of the oracle OTDF =
{(

Gi,Fi,F
−1
i

)}
i∈N as described

above. Moreover, q can be a bound on the number of calls to Fn and F−1n only.

This intuitively means that the access to the oracle F−1n does not strengthen the power of M
by much, because with high probability it can be simulated by answering ⊥ for every query to F−1n
that cannot be determined by previous queries to Fn.

Proof. Let M be a q-query algorithm, fix (OTDF)−n = {(Gi,Fi,F−1i )}i∈N\{n} (i.e., we fix the entire
oracle OTDF except for the nth instance), and fix Gn : {0, 1}n → {0, 1}2n. Thus, we only consider
queries to the oracles Fn and F−1n . For every i ∈ [q] denote by Mi the following i-query algorithm:
Invoke the computation MOTDF , and terminate once i oracle queries have been performed. Note that
since we do not place any restriction on the running time of M and since the oracle distribution
is known, we can assume without loss of generality that M is deterministic. Therefore, for every
i ∈ [q] and every fixing of the oracle OTDF, the computation MOTDF

i is the “prefix” of the computation
MOTDF which contains its first i oracle queries. This implies that

Pr
[
HitInvOTDF

M,n

]
≤ Pr

[
HitInvOTDF

M1,n

]
+

q−1∑
i=1

Pr
[
HitInvOTDF

Mi+1,n

∣∣∣HitInvOTDF
Mi,n

]
,

where the probability is taken over the choice of Fn.
For bounding the probability of the event HitInvOTDF

M1,n
, note that this event corresponds to the fact

that M , without any information on Fn : {0, 1}n × {0, 1}n → {0, 1}2n (since no oracle queries have
been issued so far), manages to produce an oracle query to F−1n of the form q1 = (td1, y1) where
there exists x such that Fn(Gn(td1), x) = y1.

Since the value q1 is fixed by the description of M , and we are now sampling Fn(Gn(td1), ·) :
{0, 1}n → {0, 1}2n uniformly from the set of all injective functions mapping n-bit inputs to 2n-bit
outputs, we have that

Pr
[
HitInvOTDF

M1,n

]
≤
(
4n−1
2n−1

)(
4n

2n

) =
2n

4n
.

For bounding the probability of the event HitInvOTDF
Mi+1,n

given that HitInvOTDF
Mi,n

occurred, we fix the

queries q1, . . . , qi and their answers. Each query qj is to Fn and of the form (pk, x) or to F−1n and of the
form (td, y). Suppose the query qi+1 is to F−1n and of the form (tdi+1, yi+1). Let pki+1 = Gn(tdi+1), let
x1, . . . , xa be the second arguments of all previous queries to Fn of the form (pki+1, x), let y1, . . . , ya
be the answers to those queries, and let ya+1, . . . , yb be the second arguments of all previous queries to

F−1n of the form (tdi+1, y) such that F−1n (tdi+1, yj) = ⊥ (so b ≤ i). By the assumption that HitInvOTDF
Mi,n

we know that for every other query to F−1n of the form (tdi+1, y) holds F−1n (tdi+1, y) ∈ {x1, . . . , xa},
thus we are now sampling a function {0, 1}n \ {x1, . . . , xa} → {0, 1}2n \ {y1, . . . , yb} uniformly from
the set of all injective functions on those domain and range. So we have that

Pr
[
HitInvOTDF

Mi,n

]
≤ 2n − a

4n − b
≤ 2n

4n − i
.
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We conclude that

Pr
[
HitInvOTDF

M,n

]
≤ Pr

[
HitInvOTDF

M1,n

]
+

q−1∑
i=1

Pr
[
HitInvOTDF

Mi+1,n

∣∣∣HitInvOTDF
Mi,n

]
≤

q−1∑
i=0

2n

4n − i

≤ q · 2n

4n − q
≤ q

2n − q
.

Given an oracle OTDF, sampled as described above, we let ÔTDFn = {(Gi,Fi,F−1i )}i∈N\{n} ∪
{(Fn,Gn)} denote the oracle that is obtained by omitting F−1n . For proving Claim 6.3 we rely on
the following two claims, stating that the functions Gn and Fn(pk, ·) are hard to invert relative to

ÔTDFn.

Claim 6.6. For every q(n)-query algorithm M it holds that

Pr
[
M ÔTDFn(Gn(td)) ∈ G−1n (Gn(td))

]
≤ 2(q(n) + 1)

2n − q(n)

for all sufficiently large n ∈ N, where the probability is taken over the choice of td ← {0, 1}n and

the choice of the oracle ÔTDFn as described above. Moreover, q(n) can be a bound on the number of
queries to Gn only.

Claim 6.7. For every q(n)-query algorithm M and every pk ∈ {0, 1}n it holds that

Pr
[
M ÔTDFn(pk,Fn(pk, x)) = x

]
≤ q(n) + 1

2n − q(n)

for all sufficiently large n ∈ N, where the probability is taken over the choice of the oracle ÔTDFn as
described above. Moreover, q(n) can be a bound on the number of queries to Fn(pk, ·) only.

The proofs of Claims 6.6 and 6.7 and are nearly identical to the proof of Claim 5.3, and are
therefore omitted. We now deduce the proof of Claim 6.3:

Proof of Claim 6.3. Suppose M is a q(n)-query algorithm, and consider the following algorithm

N with oracle access to ÔTDFn and input pk = Gn(td) where td← {0, 1}n:

1. The algorithm N samples x← {0, 1}n.

2. The algorithm N obtains y = Fn(pk, x).

3. The algorithm N runs x̃ ← MOTDF(pk, y), where queries are answered according to ÔTDFn,
except for queries to F−1n of the form (td′, y′) which are answered in the following manner:

(a) If Gn(td′) = pk then the algorithm N outputs td′ and terminates.

(b) If a previous query to Fn of the form (Gn(td′), x′) resulted with y′, then algorithm N
answers the query with x′.

(c) Otherwise, then algorithm N answers the query with answer ⊥.
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4. If x̃ = x then output 1, and otherwise output 0.

If N terminates on step 3.(a) then it manages to invert Gn, therefore by Claim 6.6 it holds that

Pr [N teminates on step 3.(a)] ≤ 2(q(n) + 1)

2n − q(n)
.

We may see step 3 of the algorithm N as an algorithm by itself with input (pk, Fn(pk, x)), oracle

access to ÔTDFn and output x̃, so by Claim 6.7 it holds that

Pr [N outputs 1] = Pr [Step 3 of N outputs x] ≤ q(n) + 1

2n − q(n)
.

Finally, if N gives M a wrong oracle answer for a query to F−1n (i.e. not consistent with (Gn,Fn))
then HitInvOTDF

M(pk,y),n occurs. The computation of M(pk, y), including the computation of pk and y,

consists of at most q(n) + 1 queries to Fn and F−1n , therefore by Claim 6.5 it holds that

Pr[N gives M a wrong oracle answer] ≤ q(n) + 1

2n − q(n)
.

Now, if MOTDF(pk,Fn(pk, x)) = x then either the algorithm N outputs 1 or the simulation done by
N goes wrong (i.e., N terminates or gives a wrong oracle answer to M). Therefore, it holds that

Pr
[
MOTDF (Gn(td),Fn(Gn(pk), x)) = x

]
≤ Pr[N outputs 1]

+ Pr[N gives M a wrong answer]

+ Pr[N teminates on step 3.(a)]

≤ 4(q(n) + 1)

2n − q(n)
.

6.3 Solving Oracle-Aided Bounded-TFNP Instances Relative to OTDF

As discussed above, our generalization of the attack presented in Section 5 relies on the fact that
it should be infeasible to “guess” elements in the images of the functions Gn and Fn(pk, ·). Let M
be an oracle-aided algorithm, and during the runtime M we allow it to make “guesses” of the form
pk ∈ {0, 1}2i or of the form (pk, y) where pk ∈ {0, 1}i and y ∈ {0, 1}2i for some i. When counting
the number of oracle calls we also include the number of guesses. We denote by HitFRangeOTDF

M,n

the event in which M guesses (pk, y) for which there exists x ∈ {0, 1}n with Fn(pk, x) = y without
querying Fn with (pk, x) before. Similarly, we denote by HitGRangeOTDF

M,n the event in which M

guesses pk ∈ {0, 1}2n for which there exists td ∈ {0, 1}n with pk = Gn(td) without querying Gn on
td before. In Section 6.4 we prove the following claims:

Claim 6.8. Denote by ÔTDFn the oracle obtained by omitting F−1n from the oracle OTDF. For every
q-query algorithm M it holds that

Pr

[
HitFRange

ÔTDFn
M,n

]
≤ q

2n − q

where the probability is taken over the choice of the oracle OTDF = {(Gi,Fi,F−1i )}i∈N as described
above. Moreover, q can be a bound on the number of guesses and calls to Fn.

35



Claim 6.9. For every q-query algorithm M it holds that

Pr
[
HitInvOTDF

M,n ∨ HitFRangeOTDF
M,n

]
≤ 2q

2n − q

where the probability is taken over the choice of the oracle OTDF = {(Gi,Fi,F−1i )}i∈N as described
above. Moreover, q can be a bound on the number of guesses and calls to Fn and F−1n .

Claim 6.10. For every q-query algorithm M it holds that

Pr
[
HitGRangeOTDF

M,n

]
≤ q

2n − q

where the probability is taken over the choice of the oracle OTDF = {(Gi,Fi,F−1i )}i∈N as described
above. Moreover, q can be a bound on the number of guesses and calls to Gn.

Equipped with Claims 6.8–6.10 we now prove Claim 6.4.

Proof of Claim 6.4. Let p(n) = 1/2 (although the proof goes through for any value of p(n)). To
simplify the notation, we denote Gn(td), Fn(pk, x) and F−1n (td, y) by G(td), F(pk, x) and F−1(td, y).
There is no ambiguity since n can be determined by the size of the input. Let C = {Cn}n∈N
be an oracle-aided k-bounded TFNP instance that satisfies the correctness requirement stated in
Definition 6.1, where each Cn contains at most q(n) oracle gates. We modify the circuit such that
each query to F−1 with input (td, y) is preceded by a query to G with input td. This may double
q(n), but to ease the notation we will assume that q(n) is a bound on the number of gates in the
modified circuit. Consider the following oracle-aided algorithm A that on input 1n tries to find an
input x ∈ {0, 1}n such that COTDF

n (x) = 1:

1. The algorithm A sets a(n) = log(12 · (q(n) + 1)3 · k(n)/p(n) + 4 · (q(n) + 1)2 · k(n)).

2. The algorithm A initialize empty lists QG and QF.
The set QG will contain pairs of the form (td, pk) where Gi(td) = pk and the set QF will
contain triplets of the form (pk, x, y) where Fi(pk, x) = y and triplets of the form (pk,⊥, y)
where y /∈ Fi(pk, {0, 1}i).

3. The algorithm A initialize an empty list Check.
The list Check will contain inputs x ∈ {0, 1}n to the oracle-aided circuit Cn.

4. For every 1 ≤ i < a(n), the algorithm A queries Gi and Fi on all possible inputs, and adds
these queries to the sets QG and QF respectively.

5. The algorithm A performs the following steps for q(n) + 1 iterations:

(a) The algorithm A finds an oracle σ = {(G̃n, F̃n, F̃−1n )}n∈N that is valid, consistent with QG

and QF, and maximizes the number kσ of solutions to the instance Cσn(·) (i.e., kσ is the
number of distinct inputs x ∈ {0, 1}n such that Cσn(x) = 1).

(b) The algorithm A finds the distinct inputs x1, . . . , xkσ ∈ {0, 1}n for which Cσn(xi) = 1 for
every i ∈ [kσ].

(c) The algorithm A adds x1, . . . , xkσ to the list Check.

(d) For every i ∈ [kg] and every query td to a G̃-gate in the computation Cσn(xi), the algorithm

A guesses G̃(td).

(e) For every i ∈ [kg] and every query (pk, x) to a F̃-gate in the computation Cσn(xi), the

algorithm A guesses (pk, F̃(pk, x)).

(f) For every i ∈ [kg] and every query (td, y) to a F̃−1-gate in the computation Cσn(xi), the

algorithm A guesses (G̃(td), y).
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(g) For every i ∈ [kg], the algorithm A queries G with all inputs to G̃-gates in the computation
Cσn(xi), and adds these queries to the set QG.

(h) For every i ∈ [kg] and every query (pk, x) to a F̃-gate in the computation Cσn(xi) resulting

with y = F̃(pk, x):
i. The algorithm A queries F with (pk, x) and adds the (pk, x,F(pk, x)) to QF.

ii. If (td, pk) ∈ QG for some td then the algorithm A queries F−1 with (td, y) and adds
the (pk,F−1(td, y), y) to QF.

(i) For every i ∈ [kg] and every query (td, y) to a F̃−1-gate in the computation Cσn(xi)

resulting with x = F̃−1(td, y) which might be ⊥:
i. The algorithm A queries F−1 with (td, y) and adds (G(td),F−1(td, x), y) to QF.

ii. If x 6= ⊥ then the algorithmA queries F with (G(td), x) and adds (G(td), x,F(G(td), x))
to QF.

6. For every x ∈ Check, the algorithm A computes COTDF
n (x), and if COTDF

n (x) = 1 then it outputs
x and terminates.

7. If no such x was found then the algorithm A outputs ⊥.

In terms of the number of oracle queries made by A, observe that in step 4 the algorithm require at
most 2 ·2a(n) +3 ·23a(n) = O(q(n)9 ·k(n)3/p(n)3) queries, in each iteration the algorithm A performs
at most 2 · q · k oracle queries, and in step 6 the algorithm performs at most (q + 1) · q · k oracle
queries. Therefore the algorithm A in total performs at most O(q(n)9 · k(n)3/p(n)3) queries. For
later analysis we note that including the guesses, and excluding the queries in step 4 which are only
to the oracles {(Gi,Fi,F−1i )}1≤i<a(n), the algorithm performs at most 4 · (q + 1)2 · k queries.

Fix OTDF = (G,F,G−1), fix some x∗ ∈ {0, 1}n such that COTDF
n (x∗) = 1 and fix an iteration

j ∈ [q(n) + 1] of the algorithm A. Let QF and QG denote these variables in the beginning of that
iteration, let σ = (G̃, F̃, F̃−1) be the oracle chosen in that iteration, let x1, . . . , xkσ be the solutions
Cσn and assume that none of them is x∗. Let Q

G̃
be the G̃-gate queries done in the computation of

Cσn(xi) for any i ∈ [kσ], and let Q
F̃

be the F̃-gate and F̃−1-gate queries done in these computations,

i.e. for each query to F̃ of the form (pk, x) we store (pk, x, F̃(x, pk)) and for each query to F̃−1 of the
form (td, y) we store (G̃(td), F̃−1(td, y), y) (where the middle value might be ⊥). Note that in the
case of query to F̃−1 it holds that (td, G̃(td)) ∈ G̃(td) due to our assumption that each query to F̃−1

is preceded by a matching query to G̃. Let Q∗F and Q∗G be the queries done in the computation of
COTDF
n (x∗).

If there exists a valid oracle σ′ which is consistent with QF, QG, Q
F̃
, Q

G̃
, Q∗F and Q∗G then we get

that σ′ has at least kσ + 1 solutions - x1, . . . , xkσ and x∗. Along with the fact that σ′ is consistent
with QF and QG we get a contradiction to the maximality of σ. Therefore, at least one of the
following cases holds:

Case 1 There exists td and pk 6= pk′ for which (td, pk) ∈ Q
G̃

but (td, pk′) ∈ Q∗G. This means that
the pair (td, pk′) is currently not contained in QG but the algorithm A will add it in step 5.(g).

Case 2 There exists pk, x 6= ⊥ and y 6= y′ for which (pk, x, y) ∈ Q
F̃

but (pk, x, y′) ∈ Q∗F. This
means that the triplet (pk, x, y′) is currently not contained in QF but the algorithm A will add
it in step 5.(h).i or 5.(i).ii.

Case 3 There exists pk, x 6= x′ and y for which (pk, x, y) ∈ Q
F̃

but (pk, x′, y) ∈ Q∗F. This case splits
into two cases:

Case 3.a If x′ 6= ⊥ then that means that A managed to guess (pk, y) in step 5.(e) or 5.(f)
without querying F on x′ before.
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Case 3.b If x′ = ⊥ then (pk,⊥, y) is in Q∗F due to a query to F−1 of the form (td, y) where
G(td) = pk. If (td, pk) ∈ QG then the algorithm A will add (pk,⊥, y) to QF in step 5.(h).ii
or 5.(i).i. If (td, pk) /∈ QG that means that A managed to guess pk in step 5.(d) without
querying G on td before.

Case 4 There exists pk ∈ {0, 1}2i for which there are more than 22i−2i pairs of the form (pk,⊥, y) in
QF∪QF̃

∪Q∗F. Let Y = {y|@xF(pk, x) = y} and Ỹ = {y|(pk,⊥, y) ∈ Q
F̃
}. Then |Y ∪Ỹ | > 22i−2i

but |Y | = 22i − 2i, hence there exists y ∈ Ỹ with y /∈ Y , thus the algorithm A manages to
guess (pk, y) in step 5.(e) or 5.(f) for which there exists x with F(pk, x) = y without querying
F with (pk, x) before.

So we get that in every iteration, at least one of the followings happens:

• The algorithm A finds a solution to COTDF
n (which will be checked in step 6).

• The event HitGRangeOTDF

A(1n),i occurs to some a(n) ≤ i ≤ q(n).

• The event HitFRangeOTDF

A(1n),i occurs to some a(n) ≤ i ≤ q(n).

• The algorithm A adds a new pair from Q∗G to QG.

• The algorithm A adds a new triplet from Q∗F to QF.

Denoting HITOTDF
n =

∨q(n)
i=da(n)e(HitGRange

OTDF

A(1n),i ∨ HitFRangeOTDF

A(1n),i) and fixing OTDF for which

HITOTDF
n does not occur, we get that after q(n) iteration, if A did not find a solution to COTDF

n yet
then QG ⊃ Q∗G and QF ⊃ Q∗F. Therefore, in the q(n) + 1 iteration we will have Cσn(x∗) = 1 and the
algorithm A will find the solution x∗ to COTDF

n . Therefore,

Pr
OTDF

[
AOTDF (1n) = x s.t. COTDF

n (x) = 0
]

≤
q(n)∑

i=da(n)e

Pr
OTDF

[
HitGRangeOTDF

A(1n),i ∨ HitFRangeOTDF

A(1n),i

]

≤
q(n)∑

i=da(n)e

3 · 4 · (q(n) + 1)2 · k(n)

2i − 4 · (q(n) + 1)2 · k(n)

≤ 12(q(n) + 1)3 · k(n)

2a(n) − 4 · (q(n) + 1)2 · k(n)

≤ p(n).

This settles the proof of Claim 6.4.

6.4 Proofs of Claims 6.8–6.10

Proof of Claim 6.8. Let M be a q-query algorithm. Fix n ∈ N, (OTDF)−n = {(Gi,Fi,F−1i )}i∈N\{n}
(i.e., we fix the entire oracle OTDF except for the nth instance), and Gn : {0, 1}n → {0, 1}n. Thus, we
only consider queries to the oracles Fn and guesses. We may assume without loss of generality that
if M queried Fn with some (pk, x) and got y as a result, then it will not make the guess (pk, y). For

every i ∈ [q] denote by Mi the following i-query algorithm: Invoke the computation M ÔTDFn , and
terminate once i oracle queries have been performed. Note that since we do not place any restriction
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on the running time of M and since the oracle distribution is known, we can assume without loss of
generality that M is deterministic. Therefore, for every i ∈ [q] and every fixing of the oracle OTDF,

the computation M
ÔTDFn
i is the “prefix” of the computation M ÔTDFn which contains its first i oracle

queries. This implies that

Pr

[
HitFRange

ÔTDFn
M,n

]
≤ Pr

[
HitFRange

ÔTDFn
M1,n

]
+

q−1∑
i=1

Pr

[
HitFRange

ÔTDFn
Mi+1,n

∣∣∣∣HitFRangeÔTDFn
Mi,n

]
,

where the probability is taken over the choice of Fn.

For bounding the probability of the event HitFRange
ÔTDFn
M1,n

, note that this event corresponds to

the fact that M , without any information on Fn : {0, 1}n×{0, 1}n → {0, 1}2n (since no oracle queries
have been issued so far), manages to guess (pk1, y1) for which there exists x such that Fn(pk1, x) = y1.

Since the guess (pk1, y1) is fixed by the description of M , and we are now sampling Fn(pk1, ·) :
{0, 1}n → {0, 1}2n uniformly from the set of all injective functions mapping n-bit inputs to 2n-bit
outputs, we have that

Pr

[
HitFRange

ÔTDFn
M1,n

]
≤
(
4n−1
2n−1

)(
4n

2n

) =
2n

4n
.

For bounding the probability of the event HitFRange
ÔTDFn
Mi+1,n

given that HitFRange
ÔTDFn
Mi,n

occurred,
we fix the queries or guesses q1, . . . , qi, and fix the answers to the queries. Each qj is a query to
Fn and of the form (pk, x) or a guess of the form (pk, y). Suppose the query qi+1 is a guess of
the form (pki+1, yi+1). Let x1, . . . , xa be the second argument of all previous queries to Fn of the
form (pki+1, x), let y1, . . . , ya be the answers to these queries, and let ya+1, . . . , ya+b be the second
argument of all previous guesses of the form (pki+1, y) (so a + b ≤ i). By the assumption that

HitFRange
ÔTDFn
Mi,n

we know that ya+1, . . . , ya+b are not in the image of Fn(pki+1, ·), thus we are now

sampling a function {0, 1}n \ {x1, . . . , xa} → {0, 1}2n \ {y1, . . . , ya+b} uniformly from the set of all
injective functions on those domain and range. So we have that

Pr

[
HitFRange

ÔTDFn
Mi,n

]
≤ 2n − a

4n − a− b
≤ 2n

4n − i
.

We conclude that

Pr

[
HitFRange

ÔTDFn
M,n

]
≤ Pr

[
HitFRange

ÔTDFn
M1,n

]
+

q−1∑
i=1

Pr

[
HitFRange

ÔTDFn
Mi+1,n

∣∣∣∣HitFRangeÔTDFn
Mi,n

]

≤
q−1∑
i=0

2n

4n − i

≤ q · 2n

4n − q
≤ q

2n − q
.

Proof of Claim 6.9. Consider the following algorithm N with oracle access to ÔTDFn:

1. The algorithm N runs the algorithm M , where oracle queries are answered according to ÔTDFn,
except for queries to F−1n of the form (td′, y′) which are answered in the following manner:
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(a) If a previous query to Fn of the form (Gn(td′), x′) resulted with y′, then algorithm N
answers the query with x′.

(b) Otherwise, then algorithm N answers the query with answer ⊥.

2. The algorithm N outputs the output of the execution of the algorithm M .

If HitInvOTDF
M,n does not occur then N answers all the oracle calls correctly, therefore HitFRangeOTDF

M,n

occurs if and only if HitFRange
ÔTDFn
N,n occurs. Hence by Claim 6.5 and Claim 6.8 it holds that

Pr
[
HitInvOTDF

M,n ∨ HitFRangeOTDF
M,n

]
= Pr

[
HitInvOTDF

M,n

]
+ Pr

[
HitInvOTDF

M,n ∨ HitFRangeOTDF
M,n

]
= Pr

[
HitInvOTDF

M,n

]
+ Pr

[
HitInvOTDF

M,n ∨ HitFRange
ÔTDFn
N,n

]
≤ Pr

[
HitInvOTDF

M,n

]
+ Pr

[
HitFRange

ÔTDFn
N,n

]
≤ 2q

2n − q

where the probability is taken over the choice of the oracle OTDF = {(Gi,Fi,F−1i )}i∈N.

Proof of Claim 6.10. Let M be a q-query algorithm, fix (OTDF)−n = {(Gi,Fi,F−1i )}i∈N\{n} (i.e.,
we fix the entire oracle OTDF except for the nth instance), and fix Fn : {0, 1}2n×{0, 1}n → {0, 1}2n.
Thus, we only consider queries to the oracle Gn. For every i ∈ [q] denote by Mi the following
i-query algorithm: Invoke the computation MOTDF , and terminate once i oracle queries have been
performed. Note that since we do not place any restriction on the running time of M and since
the oracle distribution is known, we can assume without loss of generality that M is deterministic.
Therefore, for every i ∈ [q] and every fixing of the oracle OTDF, the computation MOTDF

i is the
“prefix” of the computation MOTDF which contains its first i oracle queries. This implies that

Pr
[
HitGRangeOTDF

M,n

]
≤ Pr

[
HitGRangeOTDF

M1,n

]
+

q−1∑
i=1

Pr
[
HitGRangeOTDF

Mi+1,n

∣∣∣HitGRangeOTDF
Mi,n

]
,

where the probability is taken over the choice of Fn.
For bounding the probability of the event HitGRangeOTDF

M1,n
, note that this event corresponds to

the fact that M , without any information on Gn : {0, 1}n → {0, 1}2n (since no oracle queries have
been issued so far), manages to guess pk1 ∈ {0, 1}2n for which there exists td ∈ {0, 1}n such that
Gn(td1) = pk. Since the value pk1 is fixed by the description of M , and we are now sampling
Gn : {0, 1}n → {0, 1}2n uniformly from the set of all functions mapping n-bit inputs to 2n-bit
outputs, we have that

Pr
[
HitGRangeOTDF

M1,n

]
≤ 2n

4n
.

For bounding the probability of the event HitGRangeOTDF
Mi+1,n

given that HitGRangeOTDF
Mi,n

occurred,
we fix the queries and guesses q1, . . . , qi. Let td1, . . . , tda be the queries to Gn and pka+1, . . . , pki
be the guesses. We fix the answers pk1, . . . , pka to the queries. By the assumption that M is
deterministic we know that the next query or guess qi+1 is fixed. Assume that it is a guess pki+1.

By the assumption that HitGRangeOTDF
Mi,n

we know that pka+1, . . . , pki are not in the range of G, thus

we are sampling a function {0, 1}n \ {td1, . . . tda} → {0, 1}2n \ {pka+1, . . . , pki} uniformly from the
set of all functions on those domain and range. So we have that

Pr
[
HitGRangeOTDF

Mi,n

]
≤ 2n − a

4n − (i− a)
≤ 2n

4n − i
.
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We conclude that

Pr
[
HitGRangeOTDF

M,n

]
≤ Pr

[
HitGRangeOTDF

M1,n

]
+

q−1∑
i=1

Pr
[
HitGRangeOTDF

Mi+1,n

∣∣∣HitInvOTDF
Mi,n

]
≤

q−1∑
i=0

2n

4n − i

≤ q · 2n

4n − q
≤ q

2n − q
.
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