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Abstract. Multivariate Public Key Cryptography (MPKC) is one of
the main candidates for secure communication in a post-quantum era.
Recently, Yasuda and Sakurai proposed in [24] a new multivariate en-
cryption scheme called SRP, which o�ers e�cient decryption, a small
blow up factor between plaintext and ciphertext and resists all known
attacks against multivariate schemes. However, similar to other MPKC
schemes, the key sizes of SRP are quite large.
In this paper we propose a technique to reduce the key size of the SRP
scheme, which enables us to reduce the size of the public key by up to
54%. Furthermore, we can use the additional structure in the public key
polynomials to speed up the encryption process of the scheme by up to
50%. We show by experiments that our modi�cations do not weaken the
security of the scheme.

Keywords: Multivariate Cryptography, SRP Encryption Scheme, Key Size Re-
duction, E�ciency

1 Introduction

Multivariate cryptography is one of the main candidates to guarantee the secu-
rity of communication in the post-quantum era [1]. Multivariate schemes are in
general very fast and require only modest computational resources, which makes
them attractive for the use on low cost devices like RFIDs or smart cards [3,5].
Especially in the area of signature schemes, there exist many practical multivari-
ate schemes such as UOV [14], Rainbow [9] and Gui [20]. On the other hand, the
development of public key encryption schemes based on multivariate polynomi-
als appeared to be a much harder task. Indeed, many multivariate encryption
schemes such as MI [16] and HFE [17] have been broken in the past. Currently,
there exists very few candidates for encryption schemes including ZHFE [21]
and ABC [22]. Therefore, the development of secure and e�cient multivariate
encryption schemes is an important research topic.

Recently, Yasuda and Sakurai proposed in [24] a new multivariate encryption
scheme called SRP, which combines the Square encryption scheme [6], the Rain-
bow signature scheme [9] and the Plus method [8]; hence the name SRP. Since



both the decryption process of Square and the inversion of the Rainbow central
map are very e�cient, the decryption process of SRP is quite fast. Furthermore,
unlike many other multivariate encryption schemes, the blow up factor between
plaintext and ciphertext is less than two. In addition, by combining di�erent
schemes into one, several attacks against multivariate schemes are not appli-
cable against SRP, cf. [24, Section 4]. However, similar to other multivariate
schemes, the sizes of the public and private key of SRP are relatively large.

In this paper we propose a technique to reduce the public key size of the SRP
scheme. By our technique it is possible to reduce the size of the SRP public key by
up to 54%. Furthermore, it allows to reduce the number of �eld multiplications
needed during the encryption process of the scheme by up to 50%. We show
by experiments that the security of the SRP scheme is not weakened by our
modi�cations. While a similar approach to reduce the public key size has been
made by Petzoldt et al. [18,19] for multivariate signature schemes such as UOV
and Rainbow, our technique is the �rst approach to reduce the public key size
of a multivariate encryption scheme.

By our modi�cations, we obtain a very e�cient multivariate encryption
scheme. The public key size of the scheme is about 50% smaller than that of
other multivariate schemes such as ABC and ZHFE. The encryption process is
about twice as fast as that of the other schemes. Furthermore, the decryption
process of our proposed scheme is as fast as that of the standard SRP scheme.

Our paper is organized as follows. In Section 2, we recall the basic concepts of
multivariate public key cryptography and the SRP encryption scheme. Section
3 presents the construction of our CyclicSRP scheme and analyzes the security
of our construction. In Section 4 we give concrete parameter sets for our scheme
and compare it with the standard SRP scheme with regard to key sizes. Section
5 describes how the additional structure in the public key of our scheme can be
used to speed up the encryption process, and Section 6 concludes the paper.

2 The SRP Encryption Scheme

In this section, we recall the basic SRP scheme of [24]. Before we come to the
description of the scheme itself, we start with a short overview of the basic
concepts of multivariate cryptography.

2.1 Multivariate cryptography

The basic objects of multivariate cryptography are systems of multivariate quadratic
polynomials over a �nite �eld F. The security of multivariate schemes is based
on the MQ Problem of solving such a system. The MQ Problem is proven to be
NP-Hard even for quadratic polynomials over the �eld GF(2) [12].

To build a multivariate public key cryptosystem (MPKC), one starts with an
easily invertible quadratic map F : Fn → Fm (central map). To hide the structure
of F in the public key, we compose it with two invertible a�ne (or linear) maps
S : Fm → Fm and T : Fn → Fn. The public key of the scheme is therefore given



by P = S◦F ◦T : Fn → Fm. The private key consists of the three maps S,F and
T and therefore allows to invert the public key. To encrypt a message M ∈ Fn,
one simply computes C = P(M) ∈ Fm. To decrypt a ciphertext C ∈ Fm, one
computes recursively x = S−1(C) ∈ Fm, y = F−1(x) ∈ Fn and M = T −1(y).
M ∈ Fn is the plaintext corresponding to the ciphertext C.

Since, for multivariate encryption schemes, we have m ≥ n, the pre-image of
the vector x under the central map F and therefore the decrypted plaintext will
(with overwhelming probability) be unique.

2.2 SRP

The SRP encryption scheme was recently proposed by Yasuda and Sakurai
in [24] by combining the Square encryption scheme [6], the Rainbow signature
scheme [9] and the Plus method [8]. By combining Square and Rainbow into
one scheme, several attacks against the single schemes are not longer applicable.
Furthermore, since both Square and Rainbow are very e�cient, the same holds
for the SRP scheme.

The combination of Square with a signature scheme has another important
bene�t: The central map of Square is no one-to-one mapping. The combination
with Rainbow provides an e�cient possibility to distinguish between correct and
false solutions.

For our purpose, we restrict to variants of SRP in which the Rainbow part is
replaced by UOV [14]. Note that the parameter sets proposed in [24] are of this
type.

We choose a �nite �eld F = Fq of odd characteristic with q ≡ 3 mod 4 and,
for an odd integer d, a degree d extension �eld E = Fqd . Let φ : E → Fd be an
isomorphism between the �eld E and the vector space Fd. Moreover, let o, r, s
and l be non-negative integers.

Key Generation Let n = d + o − l, n′ = d + o and m = d + o + r + s. The
central map F : Fn′ → Fm of the scheme is the concatenation of three maps FS ,
FR, and FP . These maps are de�ned as follows.

(i) The Square part FS : Fn′ → Fd is the composition of the maps

Fd+o πd−→ Fd φ−1

−→ E X 7→X2

−→ E φ−→ Fd.

Here πd : Fd+o → Fd is the projection to the �rst d coordinates.
(ii) The UOV (Rainbow) part FR = (f (1), . . . , f (o+r)) : Fn′ → Fo+r is con-

structed as the usual UOV signature scheme: let V = {1, . . . , d} and O =
{d + 1, . . . , d + o}. For every k ∈ {1, . . . , o + r}, the quadratic polynomial
f (k) is of the form

f (k)(x1, . . . , xn′) =
∑

i∈O,j∈V
α
(k)
i,j xixj+

∑
i,j∈V,i≤j

β
(k)
i,j xixj+

∑
i∈V ∪O

γ
(k)
i xi+η

(k),



with α
(k)
i,j , β

(k)
i,j , γ

(k)
i , η(k) randomly chosen in F. 3

(iii) The Plus part FP = (g(1), . . . , g(s)) : Fn′ → Fs consists of s randomly chosen
quadratic polynomials g(1), . . . , g(s).

We additionally choose an a�ne embedding T : Fn ↪→ Fn′ of full rank and an
a�ne isomorphism S : Fm → Fm. The public key is given by P = S ◦ F ◦ T :
Fn → Fm and the private key consists of S,F and T .

Fd

""
Fn

P

>>
T // Fn+l

FS

;;

FP ##

FR // Fo+r // Fm S // Fm

Fs

<<

Encryption: Given a message M ∈ Fn, the ciphertext C is computed as
C = P(M) ∈ Fm.

Decryption: Given a ciphertext C = (c1, . . . , cm), the decryption is executed
as follows.

(1) Compute x = (x1, . . . , xm) = S−1(C).
(2) Compute X = φ−1(x1, . . . , xd).

(3) Compute R1,2 = ±X(qd+1)/4 and set y(i) = (y
(i)
1 , . . . , y

(i)
d ) = φ(Ri) (i =

1, 2). 4

(4) Given the vinegar values y
(i)
1 , · · · , y(i)d (i = 1, 2), solve the two systems of

o+ r linear equations in n′ − d = o variables ud+1, · · · , un′ given by

f (k)(y
(i)
1 , . . . , y

(i)
d , ud+1, · · · , un′) = xd+k (i = 1, 2)

for k = 1, · · · , o+ r. The solution is denoted by (yd+1, · · · , yn′). 5
(5) Compute the plaintext M ∈ Fn by �nding the pre-image of (y1, · · · , yn′)

under the a�ne embedding T .
3 Note that, while, in the standard UOV signature scheme, we only have o polynomials,
the map FR consists of o+ r polynomials of the Oil and Vinegar type. This fact is
needed to reduce the probability of decryption failures (see footnote 3).

4 The fact of q = 3 mod 4 and d odd allows us to compute the square roots of X by
this simple operation. Therefore, the decryption process of both Square and SRP is
very e�cient.

5 In [24, Proposition 1] it was shown that the probability of both (y
(1)
1 , . . . , y

(1)
d ) and

(y
(2)
1 , . . . , y

(2)
d ) leading to a solution of the linear system is about 1/q−r−1. Therefore,

with overwhelming probability, one of the possible solutions is eliminated during this
step.



Note that the only part of the central map needed for decryption are the coe�-
cients of the Rainbow polynomials f (1), . . . , f (o+r).

In the following, we restrict to a homogeneous quadratic map F as well as
to linear maps S and T . Therefore, the public key P of the scheme will be a
homogeneous quadratic system, too. The number of terms in each component of

the public key is given by n·(n+1)
2 =: D.

3 Our Improved Scheme

In this section, we present our technique to generate a key pair for SRP with a
structured public key. In particular we are able to construct a public key of the
form shown in Figure 1.

D︷ ︸︸ ︷
PS

B1

B2

C

︸ ︷︷ ︸
h

Fig. 1. Structure of the public key P

Here, the matrices B1 ∈ F(m−d)×h and B2 ∈ Fs×(D−h) can be arbitrarily chosen

by the user, and the parameter h is given by h = d·(d+1)
2 + d · (o− l).

In the following, we choose the matrices B1 and B2 in a "cyclic" way. In particu-
lar, we choose two random vectors b1 ∈ Fh and b2 ∈ FD−h. The �rst row of the
matrix B1 is just the vector b1, while the i-th row of B1 corresponds to a cyclic
right shift of the vector b1 by i − 1 positions (i = 2, . . . ,m − d). Analogously,
the �rst row of the matrix B2 corresponds to the vector b2 and the i-th row of
this matrix is the cyclic right shift of b2 by i− 1 positions.
By choosing the matrices B1 and B2 in this way, we have to store only the two
vectors b1 and b2 to recover the matrices B1 and B2. Therefore, the public key
size of the scheme is reduced signi�cantly (see Section 4). Furthermore, we can
use the structure in the matrices B1 and B2 to speed up the encryption process
of the scheme (see Section 5). The resulting scheme is called CyclicSRP.
Appendix A of this paper shows an algorithm for creating B1 and B2 in this way.
Furthermore, we discuss there shortly two other possibilities of constructing B1

and B2.



3.1 Notations

Let P = (p(1), · · · , p(m)), F = (f (1), · · · , f (m)) and Q = F ◦T = (q(1), · · · , q(m))
with

f (k)(x1, · · · , xn′) =
∑

1≤i≤j≤n′
f
(k)
ij xixj ,

q(k)(x1, · · · , xn) =
∑

1≤i≤j≤n

q
(k)
ij xixj ,

p(k)(x1, · · · , xn) =
∑

1≤i≤j≤n

p
(k)
ij xixj

for each k = 1, . . . ,m. These coe�cients are written into matrices F , Q and
P according to the lexicographic order. Note here again that we only consider
homogeneous quadratic maps F , Q and P. 6
Let S = (sij)

1≤j≤m
1≤i≤m and T = (tij)

1≤j≤n
1≤i≤n′ be the matrix representations of the

linear maps S and T respectively.
Furthermore, we divide the matrices S, Q and F into submatrices as shown in
Figure 2.

Smd

SP

S′P
@@ ��

Sd

QRh

QSh

QPh

Q′R

Q′S

Q′P

FR 0

Fig. 2. Layout of the matrices S, Q and F

Additionally, we de�neQS = (QSh‖Q′S) ∈ Fd×D and QRPh =

(
QRh
QPh

)
∈ F(o+r+s)×h.

3.2 Construction

After �xing the matrices S, T , B1 and B2, the entries of the matrix QS (i.e. the
coe�cients of the map Q referring to the Square part of SRP) are determined
by the equation

QS(x) = φ
(
(φ−1 ◦ πd ◦ T (x))2

)
= (q(1)(x), . . . , q(d)(x)). (1)

6 Due to the embedding function T : Fn → Fn′ , the number of variables in F is given
by n′, while Q and P contain only n variables.



From P = S ◦ Q it follows directly that P = S · Q. Therefore we obtain
B1 = Sd ·QSh+Smd ·QRPh which, under the assumption of Smd being invertible,
yields

QRPh = S−1md · (B1 − Sd ·QSh). (2)

Furthermore, from Q = F ◦ T we obtain the relation

q
(k)
ij =

n′∑
r=1

n′∑
s=r

αrsij f
(k)
rs (1 ≤ i ≤ j ≤ n) (3)

for each k = 1, . . . ,m, where

αrsij =

{
tritsi if i = j
tritsj + trjtsi otherwise.

We consider the m− d− s = o+ r equations from (3) for k = d+ 1, . . . ,m− s;
those correspond to the UOV part of SRP. Due to the special structure of the
UOV polynomials, we have

q
(k)
ij =

d∑
r=1

n′∑
s=r

αrsij f
(k)
rs (1 ≤ i ≤ j ≤ n, d+ 1 ≤ k ≤ m− s). (4)

Let A be the (d(d+ 1)/2 + od)× h matrix containing the coe�cients αrsij of
equation (4) for 1 ≤ r ≤ d, r ≤ s ≤ n′ for the rows and 1 ≤ i ≤ d, i ≤ j ≤ n for
the columns. With this notation, equation (4) yields

QRh = FR ·A. (5)

If A has full rank, we therefore can recover FR from QRh by solving, for each
k ∈ {d+ 1, . . . ,m− s}, a linear system of the form

q
(k)
11

q
(k)
12
...

q
(k)
dn

 = AT ·


f
(k)
11

f
(k)
12
...

f
(k)
dn′

 . (6)

Remark: 1) Experiments show that, for a randomly chosen invertible matrix T ,
the probability of A having rank h is quite high. Therefore, we do not have to
test many matrices T to �nd a matrix A of full rank.
2) The linear systems in equation (6) have multiple solutions. We just randomly
choose one of these solutions and put it into the matrix FR.

Having recovered the coe�cients of the Rainbow central map, we can easily
compute the elements of the matrix Q′R by using the relation Q = F ◦ T .



The last submatrix of Q still unknown is now Q′P . Under the assumption of
SP being invertible we can recover it by

Q′P = S−1P ·
(
B2 − S′P ·

(
Q′S
Q′R

))
. (7)

Having therefore recovered the whole matrix Q, it is easy to compute the coef-
�cient matrix of the public key by

P = S ·Q. (8)

Note that the so computed matrix P will have the structure shown in Figure 1.

We publish P as the public key of our scheme, while the private key consists of
S, T and FR.

Algorithm 1 shows this key generation process in compact form.

Algorithm 1 Key Generation of our SRP variant

Input: SRP parameters q, d, o, r, s, l, matrices B1 ∈ F(m−d)×h and B2 ∈ Fs×(D−h).
Output: SRP key pair ((S, FR, T ), P ) with P of the form of Figure 1.
1: Choose an invertible matrix S ∈ Fm×m such that the submatrices

Smd ∈ F(m−s)×(m−s) and Sp ∈ Fs×s are invertible.

2: Choose a full rank matrix T ∈ Fn′×n such that the matrix A has full rank.
3: Compute QS by equation (1).
4: Compute QRPh by equation (2).
5: Compute FR by equation (6).
6: Compute QR using the relation Q = F ◦ T .
7: Compute Q′P by equation (7).
8: Compute P = S ·Q.
9: return ((S, FR, T ), P )

3.3 Security

The security analysis of our scheme runs in the same way as for the standard
SRP scheme of [24]. We therefore refer to [24, Section 4] regarding an analysis of
our scheme against rank attacks [2,13], and attacks of the UOV type [15,14,10],
and only cover here direct attacks [1,23].

Direct Attacks [1,23] The direct attack tries to recover the plaintext M by
solving the public system P(M) = C as an instance of the MQ Problem using
an algorithm like XL or a Gröbner Basis method.
To study the security of the CyclicSRP scheme against direct attacks, we carried
out a large number of experiments with MAGMA [4] ver. 2.18-9, which contains



an e�cient implementation of Faugéres F4-algorithm [11] for computing Gröbner
Bases. Table 1 shows the results of our experiments against random systems,
the SRP scheme and our scheme. For each parameter set, we carried out 10
experiments.

Table 1. Results of experiments with direct attacks

parameters CyclicSRP SRP random system

q, d, o, r, s, l m, n dreg time (s) dreg time (s) dreg time (s)

31, 11, 10, 5, 4, 6 30, 15 4 3.2 4 3.2 4 3.2

31, 11, 10, 5, 4, 5 30, 16 5 31.8 5 31.8 5 32.0

31, 11, 10, 5, 4, 4 30, 17 5 91.8 5 92.7 5 94.0

31, 11, 10, 5, 4, 3 30, 18 5 382.8 5 382.2 5 470.3

31, 11, 10, 5, 4, 2 30, 19 6 4, 646 6 4, 650 6 5, 785

As the table shows, the F4 algorithm can not solve our systems signi�cantly
faster than those of the standard SRP scheme.

4 Parameters and Key Sizes

4.1 Parameters

In this paper, we consider three parameter sets proposed by Yasuda in [24]. In
particular, these are

(A) (q, d, o, r, s, l) = (31, 33, 32, 16, 5, 16) providing 80 bit of security

(B) (q, d, o, r, s, l) = (31, 47, 47, 22, 5, 22) providing 112 bit of security and

(C) (q, d, o, r, s, l) = (31, 71, 71, 32, 5, 32) proving a security level of 160 bit.

4.2 Key Size

The size of the public key of the standard SRP scheme [24] is

m · n(n+ 1)

2
field elements. (9)

Note here again that we restrict to a homogeneous quadratic public map.
The public key of the CyclicSRP scheme consists of the matrix PS represent-

ing the Square part, the vectors b1 and b2 and the matrix C (see Figure 1).

Therefore, the size of the public key is given by

sizepk = d ·D + h+D − h+ (m− d− s) · (D − h)

= (m+ 1− s) · n(n+ 1)

2
− (m− d− s) ·

(
d(d+ 1)

2
+ d(o− l)

)
(10)



�eld elements. Table 2 gives a comparison between the standard SRP scheme
and our scheme with the three parameter sets from [24].

Table 2. Public key size comparison of SRP scheme and our scheme

(A) (B) (C)

Parameters
q, d, o, r, s, l 31, 33, 32, 16, 5, 16 31, 47, 47, 22, 5, 22 31, 71, 71, 32, 5, 32

m,n 86, 49 121, 72 179, 110

Public key size

Standard SRP 105, 350 317, 988 1, 092, 795
CyclicSRP 48, 178 148, 569 519.900
Reduction 54.3% 53.3% 52.4%

5 E�ciency of the encryption process

Besides the considerable reduction of the public key size, we can use the ad-
ditional structure in the public key of CyclicSRP to reduce the the number of
multiplications needed in the encryption process signi�cantly. This can be seen
as follows.

The encryption process of a multivariate encryption scheme consists of the
evaluation of the public system P. Basically, there are two approaches to do this.

In the �rst approach we store the public key P of the scheme as a matrix P ∈
Fm×n(n+1)/2. Let x = (x1, . . . , xn) ∈ Fn and de�ne X = (x21, x1x2, · · · , x2n) ∈
Fn(n+1)/2 to be the vector containing the values of the quadratic monomials of
F[x1, . . . , xn] in lexicographical order. Then we have

P(x) = P ·XT . (11)

To evaluate the public key P using this approach, we need

� n(n+ 1)/2 multiplications to compute the vector X and
� m ·n(n+ 1)/2 multiplications to compute the matrix vector product P ·XT .

Altogether, this approach requires

(m+ 1) · n(n+ 1)/2 field multiplications (12)

to evaluate the system P.

For the second approach, we store the public key in the form of m upper trian-
gular matrices P (i) ∈ Fn×n of the form

P (i) =


p
(i)
11 p

(i)
12 · · · p

(i)
1n

0 p
(i)
22 · · · p

(i)
2n

0 0
...

. . .

0 0 · · · p(i)nn

 (i = 1, . . . ,m).



Let x = (x1, . . . , xn). Then we have

P(x) = (x · P (1) · xT , . . . ,x · P (m) · xT )T . (13)

To evaluate one random polynomial in this way, we need

� n(n+ 1)/2 multiplications to compute x · P (i) and
� n multiplications to compute the inner product (x · P (i)) · xT .

Hence, in order to evaluate the public key P using the second approach, we need

m · n · (n+ 3)

2
�eld multiplications. (14)

However, when evaluating the public system of our CyclicSRP scheme using this
approach, we do not have to perform all these multiplications one by one.
To be more speci�c, for the �rst d polynomials corresponding to the Square part,
the needed number of multiplications is computed as above; we need

d · n · (n+ 3)

2
field multiplications.

The �rst polynomial p(d+1) belonging to the Rainbow part is also evaluated in
the standard way.
However, when we look at the matrix P (d+2) containing the coe�cients of the
second polynomial of the Rainbow part , we see that many of the computations
we need in order to compute x · P (d+2) have already been performed during the
evaluation of p(d+1) (see equation (15)). In particular, for the example shown in
equation (15), these are the computations a ·x1, b ·x1 +f ·x2, c ·x1 +g ·x2 +j ·x3
and d ·x1+h ·x2+k ·x3. By systematically reusing these results, we can therefore
save a large number of multiplications.

P (d+1) =


a b c d e
0 f g h i
0 0 j k l
0 0 0 ∗ ∗
0 0 0 0 ∗

 P (d+2) =


l a b c d
0 e f g h
0 0 i j k
0 0 0 ∗ ∗
0 0 0 0 ∗

 (15)

During the evaluation of the Plus polynomials p(d+o+r+1), . . . , p(m), the number
of reusable results is even higher.

As a thorough analysis shows, we can, by using this strategy, save

(o+ r − 1) ·
d∑
i=1

(n− i) + (s− 1) ·
n∑
i=1

(n− i)

= (o+ r + s− 2) · n · (n− 1)

2
− (o+ r − 1) · (n− d) · (n− d− 1)

2
(16)

�eld multiplications. Table 3 gives a comparison of the number of �eld mul-
tiplications needed during the encryption process of the standard SRP scheme



and CyclicSRP for the three parameter sets of [24]. The two numbers given for
the standard SRP scheme refer to the evaluation of the public system with the
�rst and the second approach respectively. The numbers in the last row give the
ratio of saved �eld multiplications between CyclicSRP and the standard SRP
scheme (when evaluating the polynomials with the �rst approach).

Remark: When evaluating the polynomials p(1), . . . , p(d) as well as the ma-
trix C with the �rst approach, we achieve a further reduction of the number of
�eld multiplications needed during the encryption process of

d · n− n+ 1

2
+ (o+ r) ·

(
(n− d) · (n− d+ 3)

2
− (o− l) · (o− l + 1)

2

)
. (17)

The numbers given in Table 3 refer to this strategy.

Table 3. Comparison between numbers of multiplications needed in the encryption
process of SRP and CyclicSRP

(A) (B) (C)

Parameters
q, d, o, r, s, l 31, 33, 32, 16, 5, 16 31, 47, 47, 22, 5, 22 31, 71, 71, 32, 5, 32

m,n 86, 49 121, 72 179, 110

# �eld
Standard SRP

106,575 320,616 1,098,900
multiplications 109,564 326,700 1,112,485

during CyclicSRP 54,068 160,587 546,875
encryption Reduction 49.3% 49.9% 50.2%

6 Conclusion

In this paper we investigated the recent multivariate encryption scheme SRP [24]
which is a good candidate for post-quantum encryption schemes. We proposed
a technique to reduce the public key size of this scheme. The resulting scheme,
CyclicSRP, reduces the size of the public key by up to 54% and the number
of �eld multiplications needed during the encryption process by 50%. By our
technique we therefore help to solve one of the biggest problems of multivariate
schemes, namely the large size of the public keys. To our knowledge, our proposal
is the �rst application of such a technique to a multivariate encryption scheme.
Future work includes

� Application of our technique to other multivariate encryption schemes such
as ABC.

� Extension of our technique to SRP variants with several Rainbow layers.
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A Choice of the matrices B1 and B2

As mentioned in Section 3 of this paper, our technique allows the user of the
scheme to choose the matrices B1 and B2 in an arbitrary way. However, in or-
der to reduce the public key size and to speed up the encryption process of the
scheme, we chose in this paper "cyclic" matrices B1 and B2.
In particular, we chose two random vectors b1 ∈ Fh and b2 ∈ FD−h. The �rst
row of B1 is given by b1, while the i-th row of B1 corresponds to the cyclic right
shift of b1 by i− 1 positions (i = 1, . . . ,m− d). Similarly, the �rst row of B2 is
given by the vector B2, while the i-th row of B2 (i = 2, . . . , s) corresponds to
the cyclic right shift of b2 by i− 1 positions. Algorithm 2 shows this generation
process in algorithmic form.

Other possibilities to construct the matrices B1 and B2 include

� Use of a Pseudo-Random-Number Generator (PRNG): When gen-
erating the matrices B1 and B2 using a PRNG with a small seed s of e.g.
128 bit, we have to store only s in order to recover B1 and B2. Therefore, the
public key size of the scheme is reduced signi�cantly. However, since there
is no visible structure in the public key, we can not get a speed up in the
encryption process.



Algorithm 2 Generation of the matrices B1 and B2 for CyclicSRP

Input: SRP parameters q, d, o, r, l, s
Output: matrices B1 ∈ F(m−d)×h and B2 ∈ Fs×(D−h) for CyclicSRP
1: m← d+ o+ r + s
2: n← d+ o− l
3: D ← n · (n+ 1)/2
4: h← d · (d+ 1)/2 + d · (o− l)
5: Choose randomly vectors b1 ∈ Fh and b2 ∈ FD−h

6: B1[1]← b1

7: for i = 2 to o+ r do
8: b1 ← CyclicRightShift(b1, 1)
9: B1[i]← b1

10: end for

11: b1 ← b1‖b2

12: for i = 1 to s do
13: b1 ← CyclicRightShift(b1, 1)
14: B1[o+ r + i]← (b1)1...h
15: B2[i]← (b1)D−h+1...D

16: end for

17: return B1, B2

� Use of a Linear Feedback Shift Register (LFSR): When generating
the matrices B1 and B2 using an LFSR, we have to store only the initial
vector and the propagation polynomial of the LFSR in order to recover B1

and B2 and therefore observe a signi�cant reduction in the public key size.
Furthermore, we can use the structure of the public key to speed up the
encryption process of the scheme. Additionally, linear recurring sequences
o�er good statistical properties which makes it hard to develop a structural
attack against these schemes (see [19]).


