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INTRODUCTION 
 
The somatotopic (GH-IGF-I) axis in the ruminant, as for 

other domestic animals, is essential for the control of 
metabolism and the functions of various tissues and organs, 
including bone, liver, skeletal and cardiac muscles, adipose 
tissue, and reproductive organs (Simmen et al., 1998; Clark 
and Rogol, 1999). The somatotropic axis has been shown to 
include many hormonal and nutritional factors that control 
GH release from the anterior pituitary. In addition, we 
recently found that weaning drastically changes the 
somatotropic axis (Katoh and Obara, 2001; Katoh et al., 
2004a). In this review, we summarize recent findings on the 

factors that control the somatotropic axis in the ruminant. 
 

THE SOMATOTROPIC AXIS  
 
The overall features of the somatotropic axis are 

depicted in Figure 1. It has been established that GH 
secretion from the anterior pituitary is controlled by two 
major hypothalamic hormones: GH-releasing hormone 
(GHRH) and somatostatin (SRIF). GH release is stimulated 
by GHRH, but is inhibited by SRIF. The concentrations of 
GHRH and SRIF in the hypophyseal-portal circulation, as 
well as GH in peripheral circulation, alternate in a pulsatile 
manner (Frohman et al., 1990). The peaks of GHRH are 
significantly correlated with GH pulses up to 70%, whereas 
the nadir of the somatostatin (SRIF) concentration does not 
synchronize with the peaks of the plasma GH concentration 
(Frohman et al., 1990) or maintain complex, time-varying 
interactions (Veldhuis et al., 2002). In addition, no sex 
differences were demonstrated in circulating patterns of 
SRIF in the ovine hypophyseal-portal vein, despite the 
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existence of sexually dimorphic patterns of GH secretion 
(Gatfold et al., 1997). It was also reported that sheep are 10 
times less sensitive to SRIF than rats to cause the SRIF-
induced inhibition of GH secretion (Briard et al., 1997). 
These findings suggest that the role of SRIF in controlling 
GH secretion in sheep is different from that in rats, 
suggesting that the control mechanisms of the somatotropic 
axis are different among different animal species. 

Recently, the GH secretagogue (GHS) family (GHRP or 
ghrelin) has been discovered to be a stimulant for GH 
release, and intensive study on GHS is being conducted 
with respect to the somatotropic axis and orexigenic action. 
GHRH-6, one of the GHS family, did not change the 
concentrations of GHRH and SRIF in the ovine 
hypophyseal-portal vein (Fletcher et al., 1996), despite a 
marked increase in the peripheral circulating GH level. At 
the end of the last century, ghrelin, an endogenous GHS, 
was discovered by Kojima et al. (1999). Ghrelin is mainly 
synthesized in, and released from, the stomach epithelium 
of many animal species studied so far, including ruminants 
and humans. Although this hormone has been shown to 
stimulate GH release and appetite in rats and humans 

(Kojima and Kangawa, 2005), the significance of ghrelin 
has not been fully evaluated in the ruminant.  

Other substances such as insulin-like growth factor-I 
(IGF-I), leptin and glucocorticoids are known to inhibit GH 
release in the ruminant. In addition, factors such as feeding 
and nutrition are also important for controlling GH release, 
which is also changed by weaning. There is a complex 
relationship among these factors, which is described below. 

 
GHRELIN 

 
History  

Bowers and colleagues (Bowers, 1999) found that some 
opioid peptide derivatives had weak GH-releasing activity. 
Since the 1970’s, these peptides had been referred to as 
GHRP (GH-releasing peptides). The first generation of 
GHRP was a pentapeptide derived from a Met-enkephalin 
derivative, in which the second Gly from the N terminal 
was replaced by D-Trp. The second generation was a 
hexapeptide, which was called GHRP-6 and was 
biologically active in vivo and in vitro (Argente et al., 1996). 
In 1983, researchers at the Merck Institute found that non-
peptide GHS, L-692,429 and L-163,191 (MK-0677) exerted 
sufficient activity even when orally administered (Smith et 
al., 1993; Patchett et al., 1995). It was first shown that GHS 
stimulates GH release through distinct receptor sites from 
GHRH (Blake and Smith, 1991), and the GHS receptor 
(GHSR) was identified by expression cloning in Xenopus 
oocytes (Howard et al., 1996). Since that time, the existence 
of an endogenous GHS ligand had been expected, and 
Kojima et al. (1999) successfully isolated a GH-releasing 
acylated peptide, ghrelin, from the stomach of rats. GHSR, 
a typical GTP-binding protein-coupled receptor (GPCR), is 
widely expressed in various tissues, including the pituitary, 
hypothalamus, hippocampus, kidney and reproductive 
organs. 

 
Chemical features and synthesis  

Ghrelin is a 28-amino acid peptide in humans and 
rodents. The Ser residue at position 3 from the N-terminal is 
n-octanonylated, and this acylation is essential for ghrelin’s 
activity (Kojima and Kangawa, 2005). When the amino acid 
sequence of ghrelin is compared among mammalian species, 
residues at the positions of 1-10, 13, 15-17, 19-21, 25 and 
27-28 from the N-terminal are the same within all species in 

Table 1. Amino acid sequence of ghrelin in various mammals 
Mammals Amino acid sequence 
     5    10 15 20     25
Human G S S F L S P E H Q R V Q Q R K E S K K P P A K L Q P R
Cow G S S F L S P E H Q K L Q * R K E A K K P S G R L K P R
Goat/sheep G S S F L S P E H Q K L Q * R K E P K K P S G R L K P R
Rat G S S F L S P E H Q K A Q Q R K E S K K P P A K L Q P R
Mouse G S S F L S P E H Q K A Q Q R K E S K K P P A K L Q P R

Figure 1. The somatotropic axis. GHRH: GH-releasing hormone,
SRIF: somatostatin, IGF-I: insulin-like growth factor I, FFA: free 
fatty acids, EndGHS: endogenous GH secretagogues, GI tract: 
gastrointestinal tract. +: stimulation, -: inhibition. 
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which the residues were determined. In the ruminant, 
ghrelin is a 27-amino acid peptide because Gln at position 
14 from the N-terminal is lacking. The sequence of ovine 
ghrelin is exactly the same as that of caprine, whereas one 
amino acid (Ala) at position 18 from the N-terminal is 
replaced by Pro in the bovine (Table 1). 

In mammals, ghrelin is mainly synthesized in the 
stomach. It is known that ghrelin-containing cells are more 
abundant in the fundus than in the pylorus (Date et al., 
2000). Four types of endocrine cells that contain ghrelin 
have been identified, and X/A-like cells were found to be 
filled with ghrelin (Kojima et al., 1999). In goats and calves, 
ghrelin peptide and mRNA are expressed mainly in the 
abomasum (Hayashida et al., 2001). 

 
Actions  

The intravenous injection of ghrelin as well as GHRP 
increases GH secretion in goats and calves (Fletcher et al., 
1996; Hayashida et al., 2001; Katoh et al., 2004a; 
Hashizume et al., 2005; Itoh et al., 2005) as well as humans 
(Takaya et al., 2000) in vivo. The potency of ghrelin was 
less than one-tenth that of GHRH in goats (Hashizume et al., 
2005) and in calves (Itoh et al., 2005). It has been accepted 
that the somatotropic axis is not completely established at 
the fetus and neonate stages (Blum and Hammon, 1999). In 
our study with pituitary cells isolated from a bovine fetus 

(3-month gestation, term = 280 days) and cultured for 3 
days in DME medium, GHRH or GHRP-1 stimulation 
caused significant increases in GH release. However, the 
amount of GH release was one-tenth that of adults. Pituitary 
cells isolated from a 70-day-old ovine fetus (term = 147 
days) also responded to the administration of GHRH and 
SRIF (Blanchard et al., 1988; Silverman et al., 1989).  

We compared GH secretion in response to GHRH and 
GHRP around weaning time. The intravenous injection of 
GHRH and GHRP-6 (0.25 and 2.5 g/kg BW, respectively) 
significantly increased the plasma GH concentrations, 
despite the fact that the calves were in the process of being 
weaned. However, responsiveness to the GHRH and GHS 
challenge was reduced after weaning, as shown in Figure 2 
(Katoh et al., 2004a). The GH area was significantly smaller 
at 12 weeks of age than at 3 weeks of age. It has been 
accepted that aging suppresses the circulating GH levels in 
many animal species. The intravenous injection of GHRP 
significantly increased the circulating insulin levels in 
young calves (Katoh et al., 2004a). 

In the cellular signal transduction system for the action 
of GHRH and GHS, it is well established that GHRH exerts 
GH release through the cyclic AMP (PKA) system followed 
by an increased cellular calcium concentrations ([Ca2+]c), 
while GHS exerts its action through the IP3-[Ca2+]c (PKC 
and PKG) system. In sheep anterior pituitary cells cultured 
for 3 days, stimulation with GHRP-1 and GHRP-2 (KP-101 
and -102, respectively) increased GH release (Wu et al., 
1994a, b) as well as [Ca2+]c in a dose-dependent manner 
(Figure 3). Dr. Chen’s group in Australia recently showed 
that ghrelin reduces the voltage-gated K+ current (Han et al., 
2005), whereas SRIF, an inhibitor for ghrelin secretion 
(Shimada et al., 2003; Silva et al., 2005) and ghrelin-
induced GH release, increases voltage-gated K+ current in 
GH3 cells (Yang et al., 2005). The increase in [Ca2+]c and 
GH release evoked by ghrelin or GHRP stimulation was 
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significantly inhibited by the addition of TTX, nifedipine, 
SRIF, dexamethasone or fatty acids (our unpublished data). 
The inhibitory actions of these substances were also 
observed for GH release evoked by GHRH stimulation.  

Unexpectedly, GH release induced by KP-102 was 
completely abolished, but that by KP-101 stimulation was 
not affected (Wu et al., 1994b), by a GHRH antagonist 
([Ac-Try1, D-Arg2] GHRH1-29). Additionally, KP-102 is 
reported to increase cAMP concentration in ovine 
somatotrophs (Wu et al., 1996). Also in porcine 
somatotrophs, ghrelin increased GH secretion and cellular 
cyclic AMP concentrations (Malagon et al., 2003). However, 
Chen et al. (1998a, b) clearly showed that GHRP-2 does not 
act through the GHRH receptor in human somatotrophs and 
rat pituitary GC cells transfected cDNA coding for the 
human GHRH receptor. Although this confusion remains to 
be clarified, it is plausible that there might be partially 
sharing molecules between GHSR and GHRHR on the cell 
membrane of the somatotrophs of the artiodactyla. 

 
Secretion  

Aging decreases the circulating concentrations of 
ghrelin and GH. In rats, however, aging enhanced the 

ghrelin mRNA expression and increased the circulating 
concentration and accumulation in the stomach (Englander 
et al., 2004). Although it was reported that the circulating 
ghrelin level was 20-35% lower in older than in young 
adults (Rigamonti et al., 2002; Sturm et al., 2003), this 
finding should be carefully analyzed because it is known 
that increased body fat, commonly seen in elderly adults, 
decreases the circulating ghrelin levels. Ghrelin secretion is 
suppressed by somatostatin, as is GH secretion (Shimada et 
al., 2003; Silva et al., 2005).  

Sugino et al. (2004), based on their excellent series of 
studies, concluded that ghrelin secretion is not stimulated 
by direct contact with ingested feed or nutrients, but by 
anticipation of a meal in adult sheep. This is because the 
plasma ghrelin concentrations increased just before a 
scheduled meal, but thereafter decreased. In addition, the 
preprandial ghrelin surge that was followed by a GH surge 
was enhanced by the intravenous infusion of cholinergic 
antagonists. These findings mean that the transient surge of 
ghrelin is caused by a conditioned emotional response, but 
not by ingested nutrients. Therefore, the preprandial ghrelin 
surge was thought to be a signal for controlling feeding 
behavior. However, Iqbal et al. (2006) demonstrated that the 
IV or ICV infusion of ghrelin did not stimulate voluntary 
food intake, but did change GH and LH secretion in 
ovariectomized ewes, indicating that ghrelin does not 
appear to be a significant signal for appetite in this animal 
species.  

It is obvious that nutrition is related to ghrelin secretion. 
First, mRNA in the stomach (Toshinai et al., 2001) and the 
circulating levels (Hayashida et al., 2001: Toshinai et al., 
2001) of ghrelin are increased by fasting but reduced by 
feeding in rats and ruminants. Second, circulating ghrelin 
levels are reduced by macronutrient administration or by the 
ingestion of glucose or lipids, but increased by a high-
protein diets in rats and humans (Broglio et al., 2002; 
Nakagawa et al., 2002; Erdmann et al., 2003; Vallejo-
Cremades et al., 2004). However, more detailed studies are 
needed in the future on the somatotropic axis. 

 
LEPTIN 

 
General features  

Leptin, the product of the ob gene, is expressed in and 
released mainly from mature adepocytes (Zhang et al., 
1997) as well as other tissues, including the hypothalamus, 
anterior pituitary gland, mammary gland and 
gastrointestinal tract (Senaris et al., 1997; Morash et al., 
1999; Yonekura et al., 2002a, b, 2006). The leptin receptors, 
which consist of at least five isoforms (Lee et al., 1996), are 
also widely expressed in various tissues (Fei et al., 1997). 
Messenger RNA of the leptin receptor (Ob-Rb) exists in the 
two major neuronal groups in the arcuate nucleus (Mercer 
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et al., 1996; Cheung et al., 1997). This finding suggests the 
possibility that leptin, as well as voluntary food intake, is 
involved in the somatotropic axis. The circulating leptin 
level increases with aging in calves (Yonekura et al., 2002b) 
and dietary energy levels change the plasma leptin levels in 
sheep (Tokuda et al., 2002). However, feeding does not 
cause any significant change in the plasma leptin levels.  

 
Weaning  

Leptin mRNA expression in the rumen and abomasum 
of calves was abolished, but that in the adipocytes and 
duodenum was still observed after weaning (Figure 
4)(Yonekura et al., 2002a). However, leptin mRNA was 
observed in the rumen and abomasum isolated from animals 
that were maintained on milk feeding until 13 weeks of age, 
but not in the animals that were maintained on milk and 
VFA feeding until 13 weeks of age. These findings suggest 
that the reason why the leptin mRNA expression in the 
stomachs was abolished after weaning may be because of 
VFA production in the forestomach along with changes in 
diet caused by weaning. It is not known, however, whether 
or not the inhibitory effects of leptin on the somatotropic 
axis change with aging.  

 
Actions  

It was reported that serum leptin concentrations are 
inversely correlated with circulating GH concentrations in 
humans (Tuominen et al., 1997). This is also likely in young 

calves. Roh et al. (1998) demonstrated that leptin 
significantly suppressed GHRH-induced, but not basal, GH 
secretion in the ovine pituitary cells. However, leptin 
enhanced GH secretion and GHmRNA expression in pig 
pituitary cells (Saleri et al., 2005). The difference in animal 
species has not been clarified. 

Leptin administration in peripheral circulation was 
demonstrated to suppress voluntary food intake in sheep 
and rats (Henry et al., 1999; Stanley et al., 2005). The 
intracerebroventricular infusion of leptin also reduced 
voluntary food intake only in sheep fed ad lib, but it 
increased the circulating GH level in sheep fed ad lib. and 
under long-term food-restriction (Henry et al., 2001). This 
finding indicates that an increased circulating GH level in 
food-restricted sheep is not caused by leptin, but by 
suppressed SRIF secretion, as previously demonstrated by 
Thomas et al. (1991). 

 IGF-I 
 

Insulin-like growth factor I, which is particularly 
contained at a high concentration in colostrum, is one of the 
essential factors for neonatal calves because orally 
administered IGF-I stimulates epithelial cell proliferation in 
the small intestine (Baumrucker et al., 1994; Blum and 
Hammon, 1999). The synthesis and release of IGF-I are 
mainly undertaken by the liver, and are accelerated by 
stimulation with GH as well as by amino acids. The plasma 
IGF-I levels increase with aging, although the GH levels are 
reduced in calves. This means that control of the basal 
plasma IGF-I levels diminishes with aging. 

Although IGF-I partially mediates GH action on animal 
growth, it also exerts an inhibiting action on GH secretion 
by a negative feedback mechanism. IGF-I suppresses 
GHRH-stimulated GH release in vivo and in vitro 
(Yamashita and Melmed, 1986; Fletcher et al., 1995; 
Wehrenberg and Giustina, 1999; Katoh et al., 2004b). 
Fletcher et al. (1995) found that IGF-I possesses a short-
loop feedback action on the anterior pituitary gland, but 
does not have a long-loop feedback action to the 
hypothalamus. We attempted to prove by an in vitro study 
that this short-loop feedback occurs, in which the effects of 
various concentrations of IGF-I on basal and GHRH-
induced GH release were assessed in goat anterior pituitary 
cells (Katoh et al., 2004b). A significant increase in GH 
release induced by GHRH stimulation was abolished when 
the cells were incubated in a medium containing IGF-I at 
100 ng/ml (Figure 5). This abolishment of GH release was 
due to the increased basal GH release by IGF-I treatment 
without changing the GHRH-induced responses. IGF-I was 
also demonstrated to suppress the increase in the cellular 
calcium ion concentrations induced by GHRH stimulation. 
Additionally, the inhibitory action of IGF-I was caused by a 
process, which was acute because it did not cause the 
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inhibitory action on GH release if the medium did not 
contain IGF-I, even in the cells cultured for 48 h before 
stimulation with GHRH with IGF-I at a 10 times greater 
concentration (1,000 ng/ml). Furthermore, IGF-I even at 
this concentration did not alter the cellular GH content. 
Therefore, it is unlikely that IGF-I reduces the GH mRNA 
expression in ruminant somatotrophs, although IGF-I 
suppresses the expression of mRNA for GH and the GHS 
receptor in rats (Yamashita and Melmed, 1986; Kamegai et 
al., 2005). Eventually, these findings may indicate a limited 
role of IGF-I in the somatotropic axis of the ruminant.  

 
FEEDING 

 
Feeding reduces the plasma GH levels in sheep (Bassett, 

1974a, b; Driver and Forbes, 1981; Trenkle, 1989; Thomas 
et al., 1991; Matsunaga et al., 1998, 1999), calves (Moseley 
et al., 1988) and humans (Merimee and Fineberg, 1974; 
Ishizuka et al., 1983; Jaffe et al., 1998), but not in rats 
(Tannenbaum et al., 1976). Postprandial reduction in the 
plasma GH levels is apparent in animals under food 
restriction, because food restriction is known to raise the 
basal GH levels and pulse amplitude (Thomas et al., 1990, 
1991). Chronic food restriction increases GHRH but 
reduces SRIF synthesis in the hypothalamus of sheep 
(Henry et al., 2001). Feeding is accompanied by a 
reciprocal increase in the plasma insulin, glucagon and 
SRIF concentrations (Bassett, 1974b; Matsunaga et al., 
1999).  

Feeding also reduces GHRH-induced GH release, and 

the action was mimicked by the anticipation of being fed, 
distension of the rumen with a water-filled balloon, and 
sham feeding (Trenkle, 1989). However, Moseley et al. 
(1988) reported that the amplitude and area under the GH 
response curve in response to GHRH stimulation were not 
significantly different after sham feeding compared with 
before (the animals were not given food, but expected to be 
fed). Interestingly, the GH responses induced by activation 
of the 5-HT receptors with quipazine were not significantly 
different between before and after feeding, whereas 
blockade of the 5-HT receptors with cyproheptadine 
decreased both the basal GH levels before and after feeding 
in steers (Gaynor et al., 1995). In addition, hypophyseal 
stalk transection reduced the GH increase induced by 
GHRH stimulation, but feeding further reduced the GHRH-
induced response in calves (Plouzek et al., 1988). These 
findings imply that a postprandial reduction in the GH level 
is mediated mainly by peripheral factors, but not entirely by 
the central nervous system.  

After birth, weaning is the most drastic event that 
neonates have to experience, because they are forced to 
change from a liquid milk diet to a solid particle one, even 
if this process occurs gradually. Since weaning causes 
changes in the digestive and metabolic functions to meet the 
altered quality of the diet and nutrients, it is plausible that 
the somatotropic axis changes around weaning time. In 
practice, we recently found that the plasma GH levels do 
change around weaning time (Figure 6)(Katoh et al., 2004a). 
We compared the effect of feeding on the plasma basal GH 
level in 3- (before weaning) and 12- (after weaning) week-
old Holstein male calves. They were fed with either milk at 
3 weeks of age, or roughage and milk replacer at 12 weeks 
of age, respectively. Weaning was at 6 weeks of age. 
Eventually, there was a significant difference in GH areas 
induced by feeding between before and after weaning. The 
milk-feeding-induced increase in the plasma GH levels was 
also reported in 3-month-old lambs (Bassett, 1974a). It is 
apparent that the digestive tract is able to detect and respond 
to the chemical and physical components of diets, resulting 
in changes in the GH levels.  

It would be interesting to find out whether or not the 
milk-feeding-induced GH increase is parallel with changes 
in the plasma ghrelin level. The postprandial plasma level 
of ghrelin was, however, decreased by milk feeding, even 
though the plasma GH level was increased in young calves. 
Therefore, the plasma ghrelin level does not seem to be 
related to the postprandial level of GH. 

The precise reason why the postprandial plasma GH 
concentration was different relative to weaning time 
remains to be clarified. However, in calves maintained on a 
milk-replacer diet until 12 weeks of age, the postprandial 
plasma GH concentrations and GH area were not different 
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Figure 6. Postprandial changes in venous GH concentrations in
young calves at 3 or 12 weeks of age (Katoh et al., 2004a). 
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from those in an age-matched weaned group (Katoh et al., 
2004a). This finding indicates that aging is the definitive 
factor responsible for the postprandial GH changes.  

 
NUTRITION 

 
It is also obvious that nutrition affects the somatotropic 

axis, because energy restriction or starvation increases the 
plasma GH levels in sheep (Thomas et al., 1991) and 
humans (Hartman et al., 1992), respectively. Restricted 
feeding suppressed the circulating SRIF level, but did not 
change the GHRH level, in the ovine hypophyseal-portal 
vein, resulting in an enhanced circulating GH level in sheep 
(Thomas et al., 1991). Obesity, on the other hand, is 
characterized by low circulating GH levels and a suppressed 
GH secretion in response to secretagogues (Baranowska et 
al., 2003).  

The actions of nutrients on secretory functions have 
been less established for pituitary somatotrophs than for 
pancreatic endocrine cells. Recently, however, a large 
amount of evidence suggests that the function of 
somatotrophs can be modified by various kinds of nutrients 
(Katoh and Obara, 2001).  

 
Glucose  

An increase in circulating glucose concentrations 
increases the GH levels in goats and cows (Reynaert et al., 
1975; Sartin et al., 1985). However, insulin-induced 
hypoglycemia increases the GH level in humans (Hanew, 
2000), but not in sheep (Frohman et al., 1990). These 
findings in vivo are difficult to interpret, because 

intravenous glucose infusion commonly declines the 
concentration of NEFA (Reynaert et al., 1975), a nutrient 
that is known to inhibit GH secretion in somatotrophs. A 
doubled concentration of glucose in the medium slightly 
increased GH release (Katoh and Ishiwata, 1998) without 
changing the cellular cAMP and [Ca2+]c levels (Katoh and 
Obara, 2001). This result implies that the glucose-induced 
GH increase is due to elevated cellular metabolism.  

 
Proteins and amino acids  

As GH possesses nitrogen-sparing actions, it would be 
interesting to find out whether or not protein (or amino 
acids) feeding affects the somatotropic axis. High protein 
diets reduce the plasma GH levels in sheep (Clarke et al., 
1993) and horses (Sticker et al., 1995), although these diets 
increase the IGF-I levels in sheep. The accumulation of GH 
proteins in the pituitary gland was reported in rams fed with 
high protein diets (Clarke et al., 1993). 

However, some amino acids act as a potent GH releaser. 
Excitatory amino acids and their analogue (NMDA) were 
reported to increase GH secretion in sheep (Estienne et al., 
1989b; Kuhara et al., 1991; Downing et al., 1996), horses 
(Sticker et al., 2001), pigs (Barb et al., 1992, 1996) and rats 
(Lindström and Ohlsson, 1992) in vivo and in vitro. It was 
reported that ghrelin-induced GH secretion is mediated by 
excitatory amino acids in the nervous system in rats 
(Aguiler et al., 2005). Estienne et al. (1999) and Estienne 
and Barb (2005) showed that the NMDA-induced GH 
secretion is attributable, at least in part, to an enhanced 
GHRH secretion from the central nervous system. In sheep, 
aspartate, not glutamate, was a potent agonist for GH 
release when administered in venous circulation (Kuhara et 
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Figure 7. Inhibitory effects of fatty acids on GHRH-induce GH release in ovine anterior pituitary cells. C2: acetate (10 mM), C3:
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al., 1991). However, the action of arginine is interesting, 
because this amino acid is an ineffective stimulant for GH 
release in rams (Kuhara et al., 1991) and calves, although it 
is a potent stimulant in humans (Müller et al., 1999; Hanew, 
2000). Despite the negative action on GH release, arginine 
is still as potent a stimulant for insulin secretion in 
ruminants as it is in humans. In horses, curiously, the peak 
concentration of GH after the venous infusion of arginine 
appeared 30 min later than that for aspartic acid (Sticker et 
al., 2001). There is, unfortunately, no information available 
on the effects of weaning on the actions of excitatory amino 
acids in the ruminant, although these amino acids showed 
age-dependent variable effects on GH responses in the rat 
(Aguiler et al., 2005). 

Branched chain or non-essential amino acids (NEAA) 
also stimulated GH secretion in goat somatotrophs (Ohata 
et al., 1997) as well as in the baboon (Stewart et al., 1984). 
The increase in the GH release induced by NEAA depended 
on the amino acid concentrations, and was abolished by a 
reduced Ca2+ concentration in medium or by blockade of 
the membrane Ca2+ channels by nifedipine (Ohata et al., 
1997).  

As described above, there is discrepancy in the actions 
between protein diets and individual amino acids, which 
remains to be clarified in the future.  

 
Fatty acids  

Fatty acids are the nutrient that inhibits GH release in 
vivo and in vitro, and the action is principally independent 
of their chemical structure, carbon lengths, or saturated or 
unsaturated groups.  

Long-chain fatty acids (LCFA) inhibit GH release in 
sheep (Hertelendy and Kipnis, 1973; Estienne et al., 1989a; 

Katoh and Ishiwata, 1998), cattle (Coxam et al., 1989; 
Romo et al., 1997), and humans and rats (Casanueva et al., 
1987; Peino et al., 1996). 

Whether short-chain fatty acids (SCFA) were 
administered in the vein or in the forestomachs, they 
reduced the GH concentrations in the plasma of sheep 
(Matsunaga et al., 1993, 1997a, b, 1998, 1999). It is likely 
that activation of the parasympathetic nervous system is 
involved in the mechanism for the reduced GH release seen 
postprandially, or induced by the infusion of SCFA in the 
forestomachs, because the effects of SCFA are abolished by 
the administration of anticholinergic agents (Matsunaga et 
al., 1998).  

The inhibitory action of SCFA as well as LCFA on GH 
release was also confirmed in anterior pituitary cells 
isolated from goats and rats in vitro (Figure 7) (Katoh et al., 
1999; Ishiwata et al., 2000; Ishiwata et al., 2005). The 
inhibitory actions of SCFA on the cellular signal 
transduction system are diverse in rat somatotrophs, 
because butyrate inhibited cellular cyclic AMP and IP3 
production, GH mRNA expression, an increase in the 
[Ca2+]c level, and Ca2+ channel opening. In addition, in 
anterior pituitary cells isolated from the bovine fetus and 
neonate, the addition of propionate or butyrate to the 
medium significantly reduced the cell number compared 
with cells cultured without SCFA (our unpublished data). In 
addition, the expression of GTP-binding protein-coupled 
receptors for fatty acids (GPR41 and 43) was discovered in 
rat anterior pituitary cells (Figure 8) (Ishiwata et al., 2005). 
It is likely that the inhibitory actions induced by short-chain 
fatty acids on pituitary hormone secretion are mediated 
through these receptors. 

SCFA seems to be a likely candidate causing the 
postprandial decline in the plasma GH levels. However, the 
physiological importance for the involvement of SCFA may 
not necessarily be confined to ruminants, because the 
postprandial reduction of the GH level has also been 
reported in humans (see FEEDING), and this reduction is 
not necessarily caused by the afternoon feeding when 
animals are fed twice per day (our unpublished data). 

 
CONCLUSIONS 

 
The somatotropic (GH-IGF-I) axis consists of many 

hormonal and nutritional factors: GHRH and GHS (GHRP 
or ghrelin) as GH-releasing substances, and somatostatin 
(SRIF), insulin-like growth factor-I (IGF-I) and leptin as 
GH release–inhibiting substances. In addition, it was shown 
that nutrition and weaning are strongly involved in the 
control of the somatotropic axis.  

In this review on the control of the somatotropic axis in 
the ruminant, the biological role of ghrelin, IGF-I and leptin 
as well as weaning and nutrition was examined. Ghrelin, 
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Figure 8. Expression of GPR41 and 43 mRNA in rat anterior
pituitary cells (Ishiwata et al., 2005). 
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which is mainly synthesized and released from the 
abomasum epithelium in the ruminant, has been shown to 
stimulate GH release from the anterior pituitary in a similar 
way to GHS. However, ghrelin as well as leptin seem to 
exert animal-species-dependent actions via a complex set of 
intracellular signaling pathways. The effect of nutrition is 
also different among animal species, particularly the 
ruminant and rodent. We recently found that weaning 
changes the postprandial GH responses in ruminants 
because milk feeding increases, but hay and concentrate 
feeding suppresses, the postprandial circulating GH levels. 
Even if the postprandial GH level was increased by milk 
feeding in young calves, the ghrelin level was decreased. 
Macronutrients also demonstrate stimulatory and inhibitory 
actions on GH secretion in vivo and in vitro. It is likely that 
the inhibitory action of SCFA is mediated by G-protein-
coupled receptors. 

In summary,the control mechanisms of the somatotropic 
axis in the ruminant, in particular around weaning time, are 
complex. 
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