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INTRODUCTION 
 
In the last ten years, the importance of the 

Mediterranean Italian Buffalo (Bubalus bubalis, L.) in the 
Campania region of southern Italy has increased due to 
rising demand for buffalo mozzarella cheese, which has 
been listed by the EU as Protected Designation of Origin 
(PDO). Several researchers from different disciplines are 
currently involved in studying the physiological traits of 
this species. In order to contribute to the knowledge of 
buffalo nutrition, it is useful to study the estimation of 
organic matter (OM) digestibility which is a basic step in 
evaluating the net energy content of feeds.  

OM digestibility of feeds can be estimated in vivo using 
the ingesta-excreta balance, by the marker method (Van 
Soest, 1996; McDonald et al., 2002), the in situ method 
(Mehrez and Ǿrskov, 1977) or by in vitro techniques (Tilley 
and Terry, 1963; Menke et al., 1979; Aufere, 1982; Kopecný 
et al., 1989; Pell and Schofield, 1993; Theodorou et al., 

1994; Bovera et al., 2006). In recent years, the in vitro gas 
production technique (IVGPT) has been used to evaluate 
the OM digestibility of forages; this method, by which 
feedstuffs are incubated with a rumen fluid inoculum, can 
also give information on the degradation rate of feedstuffs. 

Due to the easy employment of this technique, several 
researchers have compared in vivo digestibility and feed 
intake with the results of the IVGPT. Data from 400 tests of 
in vivo digestibility trials and the respective IVGPT were 
used to construct equations to provide in vivo digestibility 
from gas production (Menke and Steingass, 1988). 
Blümmel and Ǿrskov (1993) studied the correlations 
between the total gas production of 10 straws and the dry 
matter intake, OM digestibility and live weight gain. Total 
gas production was correlated with intake (0.88), digestible 
dry matter intake (0.93) and growth rate (0.95) in a multiple 
regression model.  

Calabrò et al. (1997), using diets at different 
forage/concentrate ratios in the buffalo, found a significant 
(p<0.001) correlation between in vivo DM digestibility and 
the volume of gas produced after 48 h of incubation (R2 = 
0.996) and the potential gas production (R2 = 0.990). 
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Although rumen fluid for the IVGPT is usually 
collected from rumen-fistulated animals, the method is 
costly both financially and in terms of animal welfare, 
hence the interest in an alternative microbial source. Several 
researchers (Manyuchi et al., 1991; Gonçalves and Borba, 
1996; Jones and Barnes, 1996; Omed et al., 1998) have 
shown that ruminant faeces can be used for in vitro trials. 
Mauricio et al. (2001) concluded that faeces have potential 
as an alternative inoculum to rumen fluid for in vitro gas 
production techniques, but methods of overcoming the 
longer lag phase with faeces require further research. 

The aim of the present paper is to compare the in vivo 
OM digestibility and the in vitro fermentation 
characteristics of six diets with different forage/concentrate 
ratios in the Mediterranean Italian buffalo. For the in vivo 
trial acid insoluble ash was used as marker and for the 
IVGPT the faeces of the animals were used as inoculum. 
The correlations between in vivo OM digestibility and the 
IVGPT parameters were also studied. 

 
MATERIAL AND METHODS 

 
The trial was carried out using six Mediterranean Italian 

buffalo heifers (Bubalus bubalis L.), 22 months old and 400 
kg average live weight, in a 6×6 Latin square design. The 
animals were housed in individual boxes in order to check 
feed intake and refusals. Animals were fed six iso-protein 
diets (N×6.25 = 115 g/kg DM) with different 
forage:concentrate ratios: Diet 1 = 100 (all hay); Diet 2 = 
90:10; Diet 3 = 80:20; Diet 4 = 70:30; Diet 5 = 60:40 and 
Diet 6 = 50:50, oat hay being the forage for all the diets. 
Concentrate comprised maize meal (64%) and wheat bran 
(36%) with an appropiate mineral-vitamin supplementation. 
The ingredients and chemical composition of the diets are 
reported in Table 1.  

 
In vivo digestibility 

The diets were offered twice daily, at 08:00 am and 

04:00 pm, as total mixed ration (TMR). Each period was 
divided into two sub-periods: the first (14 days) for 
adaptation to the new diet and to evaluate the voluntary feed 
intake, and the second (7 days) for faeces collection (3 
times/day). In the second sub-period, in order to avoid 
refusals, each animal was fed in an amount equal to the 
voluntary feed intake. 

Samples of the TMR were collected daily, dried at 62°C 
for 48 h, ground through a 1mm screen (Braebender Wiley 
mill, Braebender OHG, Duisburg, Germany) and analysed 
for dry matter (DM), crude protein (CP) and ash as 
suggested by the AOAC (2000) procedures (ID members: 
930.04, 930.05, 977.02 and 930.10, respectively). Neutral 
detergent fibre (NDF) was determined by boiling for 1 h a 
0.5 g sample in 100 ml of neutral detergent plus 50 μl of 
heat stable α-amylase (ANKOM Technology) and 0.5 g of 
sodium sulphite (Van Soest et al., 1991). Acid detergent 
fibre (ADF) and lignin (ADL) were determined according 
to Goering and Van Soest (1970).  

The faecal samples were collected for each buffalo 
directly from the rectum as suggested by Rode et al. (1999). 
They were then dried at 65°C, ground through a 1-mm 
screen (Brabender Wiley mill, Braebender OHG, Duisburg, 
Germany) and analysed for dry matter (DM) and ash as 
suggested by the AOAC (2000) procedures (ID members: 
930.04). The acid insoluble ashes (AIA) were determined as 
suggested by Van Keulen and Young (1977) and the 
coefficients of apparent digestibility (ADC) of each diet 
were calculated. 

 
In vitro trial 

A sample of faeces was collected on the last day of each 
in vivo trial (at 8.00 am), from the rectum of each buffalo, 
put in pre-warmed thermos and rapidly transported to the 
laboratory. About 50 g of faeces were mixed with 100 ml of 
anaerobic buffer (Medium D; Theodorou, 1993); the whole 
mixture was filtered through various layers of gauze and 
then diluted 1:1 (Mauricio et al., 2001) with the buffer, 

Table 1. Ingredients and chemical composition of the diets 
 Diet 1 Diet 2 Diet 3 Diet 4 Diet 5 Diet 6 
Ingredients (% as feed)  

Oat hay 100 90.0 80.0 70.0 60.0 50.0 
Concentrates* - 10.0 20.0 30.0 40.0 50.0 

Chemical composition  
DM (%) 90.21 90.43 89.72 89.33 89.65 89.62 
Ash (% DM) 9.62 8.80 8.40 7.20 6.80 8.20 
CP (% DM) 11.51 11.72 11.62 11.62 11.32 11.42 
NDF (% DM) 63.93 59.64 56.04 52.51 47.92 44.45 
ADF (% DM) 43.62 40.51 36.02 31.22 28.21 24.07 
ADL (% DM) 7.31 6.80 6.20 5.60 5.00 4.30 
NFC (% DM) 12.03 16.92 21.03 25.75 31.03 33.01 

* Concentrate: 36% wheat bran+64% maize meal. 
DM = Dry matter; CP = Crude protein; NDF = Neutral detergent fibre; ADF = Acid detergent fibre;  
ADL = Acid detergent lignin; NFC (non-fiber carbohydrates) = 100-(NDF+CP+Ash+Crude fat). 
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ultimately obtaining six inocula (1 per buffalo). The various 
steps were carried out at 39°C and under insufflations of 
CO2 in order to maintain anaerobic conditions.  

Around 1 g of sample per diet was incubated as 
substrate in 3 replications at 39°C in 100 ml culture flasks 
containing 74 ml of anaerobic medium and 5 ml of 
inoculum. The fermentation was carried out for 144 h. At 
pre-established times (at 2-24 intervals) the gas produced 
was measured for each flask using a pressure transducer 
described by Theodorou et al. (1994). At the end of 
incubation an aliquot (5 ml) of the liquid flask content was 
used to determine the pH (Alessandrini Instrument glass 
electrode; mod. JENWAY 3030) and the volatile fatty acid 
(VFA) including acetate, propionate and butyrate. The 
content of each flask was filtered using pre-weighed porous 
septum crucibles (Schott Duran, porosity 2) and the residual 
OM was determined by drying at 103°C and burning at 
550°C. Degraded OM (dOM, %) was calculated by the 
difference between incubated and residual OM, corrected 
for the blank, consisting of 4 flasks containing only the 
inoculum.  

For VFA analysis the liquid sample was centrifuged 
twice at 12,000 g for 10 min at 4°C. One ml of supernatant 
was added to 1 ml of oxalic acid 0.06 M. Volatile fatty acids 
were measured by gaschromatography (Thermo Quest mod. 
8000top, FUSED SILICA capillary column 30 m×0.25 mm× 
0.25 mm film thickness) according Calabrò et al. (2006) 
including acetate, propionate and butyrate as external 
standards. The area of each VFA response was compared 
with the external standard. 

 
Statistical analysis 

For each inoculum, the cumulative gas volumes 
obtained at each incubation time (average of the three 
bottles), as ml/g of incubated organic matter (ml/g OM), 
were elaborated using a multiphasic model suggested by 
Schofield et al. (1994):  

 
V = VF (1+exp (2+4 S (λ-t)))-1       Equation 1 
 

where Vt is the gas volume at time t; VF is the maximum 
volume at time t = ∞, S is a rate constant called the specific 
rate (S = maximum rate/maximum volume), and λ is an 
integration constant equivalent to a lag term. The dual-pool 
version of Equation 1 would contain two terms, each with 
its own values for VF and S, but with the same value for λ. 
The NONLIN package (Sherrod, 1995) was used to fit the 
data to this equation.  

The diets were compared for the in vivo (the apparent 
coefficient digestibility, ADC) and in vitro data, i.e. model 
parameters, dOM, OMCV (gas production at 144 h of 
incubated OM), VFA and pH, with the following model: 

 
yij = μ+Di+εij 
 
where y is the single data, μ is the mean, D is the diet 

effect (1-6) and ε is the error. The t-test was used to assess 
statistically the in vitro and in vivo characteristics. 

In order to evaluate the relationships between the in vivo 
and in vitro results, the correlation between the ADC and 
the IVGPT parameters (dOM and the real gas recorded after 
24, 48, 72, 96, 120 and 144 hours of incubation (G24, G48, 
G72, G96, G120 and G144, respectively)) was studied 
using the CORR procedure of SAS (2000). 

 
RESULTS 

 
In vivo digestibility 

The apparent digestibility coefficients (ADC) of the 
organic matter in the six diets are reported in Table 2. 
According to the concentrate content of the diets, the ADC 
values increased up to diet 4 (diets 1, 2 and 3 differed for 
p<0.01); diet 5 showed significantly (p<0.01) lower values 
than diets 3 and 4, while diet 6 was superimposable on 
these last two diets. 

 
In vitro fermentation characteristics 

The parameters of the in vitro fermentation (dOM, 
OMCV, acetate, propionate, butyrate, total VFA), 
acetate:propionate ratio (A:P) and pH) are shown in Table 3. 
OM degradability increased as the concentrate of diets 
increased in the first 4 diets: diet 1 was less degradable than 
diets 2 and 3 (p<0.05) and 4 (p<0.01). As observed in vivo, 
despite its higher concentrate content diet 5 showed lower 
OM digestibility than the previous diets, even if the 
differences were not statistically significant. OM 
digestibility also increased from diet 5 to diet 6. On 
increasing the concentrate in the diet, the pH values 
decrease. 

 
DISCUSSION 

 
The cumulative gas production recorded at the end of 

Table 2. Apparent digestibility coefficients of the organic matter 
in the diets 
 ADC (%) 
Diet 1 67.01D 
Diet 2 73.03C 
Diet 3 78.06ABa 
Diet 4 79.05A 
Diet 5 75.11BCb 
Diet 6 79.06A 
SEM 1.09 
ADC: Apparent digestibility coefficients. 
A, B, C, D Values with different letters are significantly different (p<0.01). 
a, b Values with different letters are significantly different (p<0.05). 
SEM: Standard error mean. 
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incubation (OMCV) showed an irregular trend and was not 
closely correlated to degraded OM, in contrast with the 
results of other authors (Blümmel and Ørskov, 1993; 
Calabrò et al., 1997). However, it must be underlined that 
not all the degraded organic matter is fermented, thereby 
producing gas. Williams (2000) indicates that the fate of the 
degraded OM is double: gas and volatile fatty acids 
production and microbial biomass production.  

Generally, the VFA concentration agrees with the final 
gas production. Indeed, there was a close relationship 
between VFA and gas production during the fermentation 
process in rumen and caecum. The fermentation of the 
carbohydrates can be simplified by considering the glucose 
molecule as follows (Van Soest, 1996):  

 
Glucose = 2 Acetate+CO2+CH4 
 
Glucose = 1 Butyrate+2CO2 
 
Glucose = 2 Propionate. 
 
The gas from the reaction between the VFA and HCO3

-

/CO3
- buffer has to be added to the gas obtained from 

fermentation. The association between gas volume and VFA 

production is clear. To underline these considerations, a 
correlation coefficient (r) equal to 0.9088 (p<0.01) between 
the two parameters was found. 

 
Organic matter digestibility 

As reported by others (Mould et al., 1983; Hoover, 
1986; Sniffen and Robinson, 1987; Huhtanen and Jaakkola, 
1993), the forage:concentrate ratio in the diet influences in 
vivo structural carbohydrate digestibility. As the 
concentration of non-fibrous carbohydrates (mainly starch 
and sugars) increases, fibre digestion decreases, due to the 
lower rumen pH which alters the activity of the cellulolytic 
bacteria.  

In the present experiment, diet 5 (F:C = 60:40) showed 
a decrease in OM digestibility, both in vivo and in vitro, 
compared to the other diets, probably due to the lower fibre 
digestion. At this result surely contributed the lower activity 
of the cellulolytic bacteria evidenced by the pH value (6.28), 
close to the threshold value (6.20) suggested for cellulolytic 
bacteria activity (Mould et al., 1983; Grant and Mertens, 
1991; Huhtanen et al., 2006). 

OM digestibility increases again in diet 6 (F:C = 50:50). 
The loss in digestibility of the structural carbohydrates may 
well be compensated by the higher contribution to the 

Table 3. In vitro fermentation characteristic of the diets 

 dOM (%) OMCV 
(ml/g) 

Acetate 
(mmol/g) 

Propionate
(mmol/g) 

Butyrate 
(mmol/g) 

VFA 
(mmol/g) A:P pH 

Diet 1 61.06Bb 168.81D 20.57BC 7.05Cb 2.15b 30.56Bb 3.13a 6.69Aa 
Diet 2 67.54a 196.02C 22.00B 7.70Cb 1.97b 32.08Bab 2.84ab 6.62A 
Diet 3 68.63a 179.54CD 25.80bc 9.80Cb 2.55ab 38.47Bab 2.60ab 6.52ab 
Diet 4 69.69A 192.32C 26.70abc 9.38Cb 3.57ab 45.11ABa 2.74ab 6.43bc 
Diet 5 64.80ab 218.72B 28.09ab 12.05b 4.01a 46.12ABa 2.63ab 6.28Bc 
Diet 6 68.23a 239.81A 33.41Aa 20.10Aa 3.80a 58.60Aa 1.66b 6.23Bc 
SEM 2.88 7.97 3.46 3.04 0.78 6.92 0.68 0.11 
Diet 1: all hay; Diet 2: F/C = 90/10; Diet 3: F/C = 80:20; Diet 4: F/C = 70/30; Diet 5: F/C = 60:40; Diet 6: F/C = 50/50. 
dOM = Organic matter degradability (% of incubated); OMCV = Cumulative gas volume of incubated OM.  
VFA = Total volatile fatty acids; A:P = Acetate-propionate ratio. 
In the same column values with different letters are significantly different (a, b p<0.05 and A, B, C, D p<0.01). 
SEM: standard error mean. 

Table 4. Fermentation parameters obtained by monophasic and biphasic models 
Vf (ml) Vs (ml) Vf (%) Sf (h-1) Ss

 (h-1) F V (ml) S (h-1) F  
------------------------------------------- Biphasic model ------------------------------- ------------- Monophasic model ----------

Diet 1 36.33Cc 139.01Aa 20.69C 0.0567bc 0.0094b 5,055 173.63D 0.0082Bb 649 
Diet 2 65.01BCbc 132.03Aa 33.38BCb 0.0493Bc 0.0117ab 3,821 192.55BCc 0.0119b 765 
Diet 3 81.67ABC 98.67b 44.95AB 0.0513c 0.0117ab 1,189 168.53D 0.0110b 203 
Diet 4 116.33A 79.47B 59.30A 0.0457Bc 0.0100ab 889 172.81D 0.0170Aa 136 
Diet 5 104.33ABa 109.02ABab 48.70AB 0.0863Aa 0.0120a 1,419 202.75ABCb 0.0167Aa 167 
Diet 6 124.9A 111.01ABab 52.81ABa 0.0770ab 0.0106ab 1,092 215.19Aa 0.0183Aa 120 
SEM 16.49 15.50 7.33 0.0125 1.13×10-3 - 4.53 2.6×10-3 - 
Diet 1: all hay; Diet 2: F/C = 90/10; Diet 3: F/C = 80:20; Diet 4: F/C = 70/30; Diet 5: F/C = 60:40; Diet 6: F/C = 50/50. 
Vf: potential gas pool of the fast fraction in the biphasic model; Vs: potential gas pool of the slow fraction in the biphasic model;  
Vf (%): (Vf/(Vf+Vs ))×100; Sf: relative rate of the fast fraction; Ss: relative rate of the slow fraction;  
V: potential gas production in the monophasic model; S: relative rate of gas production.  
Values with different letters (a, b, c and A, B, C, D) in the same column are significantly different for p<0.05 and p<0.01, respectively. 
SEM: standard error mean. 
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degraded OM of the non-fibre carbohydrates. 
 

Fermentation kinetics and gas production  
In our previous IVGPT experiments, with rumen fluid 

as inoculum (Calabrò et al., 2001 and 2004), the 
multiphasic model proposed by Groot et al. (1996) always 
gave a good fit to the experimental data; instead in the 
present trial with faecal inoculum, this model did not fit as 
well. Good results were obtained using the multiphasic 
model proposed by Schofield et al. (1994) which includes a 
lag phase. Figure 1 shows a typical gas production curve 
using monophasic and biphasic models.  

In Table 4 the parameters of the curves obtained using a 
monophasic or biphasic model are shown. The biphasic 
showed better fitted the values of the cumulative gas 
production recorded, due to the higher number of estimated 
parameters as indicated by the higher F values: for the 
biphasic model ranging from 5,055 to 889 and for the 
monophasic model ranging from 765 to 120. Moreover, as 
reported by Doane et al. (1997a) the t values were also 
taken into account: for each parameter it was similar or 
better using the biphasic model. Consequently, only the 
results obtained using the biphasic model will be discussed 
below.  

The biphasic model involves gas production with two 
different rates, higher (Sf) and lower (Ss), clearly 
distinguishable, associated to two different pools of gas Vf 
and Vs respectively. The two gas pools may be due to the 
fermentation of two different substrates, or two different 
microbial populations or probably, to the combination of 
both factors as hypothesized by some authors (Schofield et 
al., 1994; Schofield and Pell, 1995; Cone et al., 1996). 

In order to illustrate the comparison among the diets, 
the gas volume associated to the most rapidly fermentable 
fraction is also reported (Table 4) as a percent of the total 
volume (Vf, %). Excluding diet 5, the gas volume (Vf) 
associated to the higher rate increased according to the 
concentrate content of diet (Table 4). Diets 1 and 2 were 
significantly different from diets 4, 5 and 6 (p<0.01). Diet 3 

showed a significant difference (p<0.05) from diet 1. The 
gas volume trend of the lower rate is less clear, as it 
decreased with the concentrate up to the first four diets and 
then increased. The gas proportion trend of the higher rate 
(Vf, %) is related more closely to the chemical composition 
of the diets. Indeed, on average, Vf (%) increased by 12.9 
units for each 10-point increase in concentrates up to diet 4; 
diets 5 and 6 then recorded lower values than diet 4. The 
relative rate of the pool Vf (Sf) was higher in the two diets 
with a lower forage/concentrate ratio, while that of pool Vs 
(Ss) was lower for diet 1, significantly differing only from 
the diet 5 (p<0.05).  

In general, the gas proportion of the rapidly fermentable 
fraction (Vf, %) agrees with that reported by Schofield and 
Pell (1995) and Doane et al. (1997a) for single forages. The 
gas fraction associated to the faster pool decreased as fibre 
content in the diet increased. 

As both gas pools were estimated by a mathematical 
model, they are not clearly connectable to a specific 
chemical entity. As a rule, as supposed by Doane et al. 
(1997a), it is possible that to both pools different Neutral 
Detergent Soluble (difference in gas produced between the 
unfractioned whole forage and its respective NDF) and 
NDF fractions contributed. 

For all diets, gas production at 48 h of incubation (Table 
5) was lower, proportionally to the weight of substrate, than 
that reported for forages (Schofield and Pell, 1995; Doane 
et al., 1997 a and b) and for diets (Calabrò, 1999). Probably 
the different findings were also due to the inoculum 
micropopulation which comes mainly from the caecum 
where it is adapted to carbohydrates and nitrogen with low 
fermentability and degradability, respectively. Hence it 
needs to conform to the new substrates. For sure, the 
peculiarity of the inoculum contributed to the slower rate of 
both pools, considering normal that obtained by Schofield 
et al. (1994). The key difference in gas production rates 
between rumen fluid and faeces as sources of micro-
organisms can be explained by the different populations of 
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Figure 1. Typical gas production trend for Diet 4 (F/C = 70:30) 
using monophasic and biphasic models. 
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micro-organisms present as suggested by Mauricio et al. 
(2001).  

 
Correlations between in vivo OM digestibility and in 
vitro fermentation parameters 

In Table 5 in vivo digestibility, in vitro degradability of 
the organic matter and cumulative gas production at various 
times chosen according to the consulted bibliography 
(Menke et al., 1979; Blümmel and Ørskov, 1993; 
Macheboeuf et al., 1997; Khazaal et al., 1995; Calabrò, 
1999) are shown. The in vitro organic matter degradability 
(dOM) was always lower than in vivo digestibility (ADC), 
while the two trends were almost superimposable.  

Cumulative gas productions after 144 h of fermentation 
(G144) do not always agree with the dOM. Diet 5, with a 
low degradability (64.8%), showed high final gas 
production (218.7 ml); vice versa diet 3 (high dOM 68.63 
and low gas production 179.5 ml). The ADC is positively 
related with dOM (p<0.001), but not with gas production at 
every time. Usually both the dOM and ADC are related to 
gas production, but in our case the results may well have 
been influenced by the faecal inoculum. 

In Table 6 the results of the regression study of the ADC 
on the parameters of in vitro fermentation are reported. 
Equation (N.1) for estimating the ADC as a function of the 
dOM was obtained (p<0.05) with R2 equal to 0.694 and 
RSD 2.90, which leaves considerable room for 
improvement. 

Using the step-wise procedure, the equation also 
includes the gas produced at 120 h (Eq. N.2) improving the 
R2 (0.790 vs. 0.694; p<0.05) and RSD (2.47 vs. 2.90) values. 

CONCLUSIONS 
 

This work confirmed the IVGPT as a straightforward, 
reliable method to study the characteristics of ruminant 
diets. Moreover, our data indicated the importance of a 
suitable mathematical model to fit gas production values 
and properly describe the fermentation kinetics of the 
substrates. In addition, estimation of the ADC from in vitro 
fermentation data was attained, albeit leaving room for 
improvement. 

The results of this experiment showed that faecal matter 
has potential as an alternative inoculum to rumen fluid for 
the IVGPT, in order to avoid using fistulated animals, and 
appears an eminently practical method. However, for the 
reliable applicability of faeces as inoculum for the gas 
production technique, further work is required to correct 
these profiles according to their corresponding rumen fluid 
profiles. 
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