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INTRODUCTION 
 
GH was discovered in 1921. Since then, it has been 

regarded as the primary factor controlling postnatal growth 
rate (Le Roith et al., 2001; Lupu et al., 2001). GH also 
regulates physiological processes including carbohydrate 
and lipid metabolism in several tissues through the 
activation of GH receptor (direct action) or the stimulation 
of IGF-I synthesis (indirect action) (Etherton and Bauman, 
1998; Herrington and Carter-Su, 2001; Okada and 
Kopchick, 2001). GH activity can be regulated at the level 
of the GHR or intracellular signaling, with catabolic 
situations such as malnutrition, infection and disease 
leading to a state of GH resistance (Kopchick and Andry, 
2000; Lucy et al., 2001; Zhu et al., 2001). GH resistance is 
characterized by reduced circulating IGF-I despite 
unchanged or increased plasma GH. In the vascular system, 
most of the IGFs circulate in ternary complexes composed 
of one molecule each of IGF-I or -II, IGFBP-3 or -5 and 
ALS (Zapf et al., 1986; Baxter, 1988; Twigg and Baxter, 
1998). ALS is predominantly synthesized in liver in a GH-
dependent manner, and regulates IGF-I actions (Ooi et al., 
1998; Woelfle and Rotwein, 2004). Therefore, these two 

factors, IGF-I and ALS, could be used to assess the 
efficiency of hepatic GH action. In this review, I summarize 
what is known about the molecular mechanisms of GH 
action and ALS regulation. 

 
ACTION OF GH 

 
Growth 

Several hormones are important for normal postnatal 
growth, but it is generally accepted that GH is the most 
important hormone in this respect. A major portion of the 
effects of GH on growth is mediated by IGF-I. GH 
stimulates growth by stimulating liver production of IGF-I, 
which in turn stimulates longitudinal bone growth in an 
endocrine manner (Daughaday et al., 1972; Daughaday and 
Rotwein, 1989). In contrast, GH is not essential for prenatal 
growth and development, as shown by the existence of 
normal-sized infants with either congenital absence of the 
pituitary or deletions of the genes encoding GH or the GH 
receptor (GHR) (Laron, 1993; Takahashi et al., 1996). 

Knock-out of the IGF-I and IGF-I receptor in mice has 
demonstrated that the IGF-I signaling pathway is very 
important for tissue development and growth. IGF-I knock-
out mice suffer from a 40% growth deficit at birth and 
nearly all die within a few hours. Surviving mice suffer 
from severe growth retardation despite markedly increased 
circulating GH (Baker et al., 1993; Liu et al., 1993; Powell-
Braxton et al., 1993; LeRoith, 1996). In addition, when 
treated with GH, there was no significant effect of GH on 
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overall body growth or development in these mice (Liu and 
LeRoith, 1999). Also, IGF-I receptor knock-out mice are 
affected more profoundly (55% growth deficit at birth) and 
die of respiratory failure postnatally due to poor muscle 
development (Liu et al., 1993). Therefore, these studies 
demonstrate that IGF-I as well as its receptor play critical 
roles for normal growth and tissue development. To 
investigate further the relative importance of GH and IGF-I 
for growth, Lupu and co-workers (2001) compared the 
postnatal growth of mice lacking the GHR, IGF-I or both. 
From these studies, they concluded that the independent 
actions of GH and IGF-I accounted for 14 and 35% of 
postnatal growth, respectively, whereas the action of GH 
mediated by IGF-I accounted for 34% of postnatal growth. 
The unaccounted fraction (17%) represents growth that is 
completely independent of GH and IGF-I (Lupu et al., 
2001). Therefore, GH and IGF-I promote postnatal growth 
by both independent and dependent manners. 

In postnatal farm animals, it is evident that GH 
stimulates IGF-I synthesis, and that a positive relationship 
exists between body weight gain and plasma IGF-I 
(Etherton and Bauman, 1998; Bauman, 1999; Renaville et 
al., 2002). In growing pigs, exogenous porcine GH 
increased growth and protein deposition (Chung et al., 
1985; Etherton et al., 1987; Evock et al., 1988). Consistent 
with IGF-I mediating the effect of GH, the miniature Bos 
Indicus cattle strain has low plasma IGF-I and a 30% 
growth deficit. Moreover, GH treatment fails to increase 
plasma IGF-I and has no positive effects on growth in these 
animals (Hammond et al., 1991; Liu et al., 1999; Kitagawa 
et al., 2001).  

 
Metabolic effects 

The biological effects of GH involve multiple organs 
and all major classes of nutrients (lipid, protein and 
carbohydrate). It is well established that GH decreases fat 
deposition and increases fat mobilization (Houseknecht et 
al., 1995). The alteration of lipogenesis and lipolysis 
appears to be a direct action of GH on adipose tissue 
(Bauman and Vernon, 1993; Etherton et al., 1993). GH 
treatment reduces the lipogenic response of adipose tissue 
to insulin in vitro (Walton and Etherton, 1986; Walton et al., 
1986; Walton et al., 1987) and in vivo (Dunshea et al., 1992; 
Etherton et al., 1993). This results from decreased gene 
transcription and activities of key lipogenic enzymes such 
as fatty acid synthase, acetyl-CoA carboxylase and glucose-
6-phosphate dehydrogenase (Magri et al., 1990; Mildner 
and Clarke, 1991; Vernon et al., 1991; Harris et al., 1993; 
Liu et al., 1994a; Lanna et al., 1995). GH effects on lipid 
mobilization are also observed when energy intake is 
restricted (Machlin, 1972; Eisemann et al., 1986; Peters, 
1986). GH increases the lipolytic effects (elevated plasma 
NEFA and glycerol) to cathecholamines in farm animals 

(McCutcheon and Bauman, 1986; Peters, 1986; Sechen et 
al., 1990b). This response appears to be mediated in part via 
the inhibitory G (Gi) protein which mediates the anti-
lipolytic effects of adenosine. GH counteracts the effects of 
adenosine, and therefore causes increased catecholamine-
mediated lipolysis (Doris et al., 1994; Lanna et al., 1995; 
Doris et al., 1996). 

GH also increases hepatic gluconeogenesis in dairy 
cows (Pocius and Herbein, 1986; Knapp et al., 1992) and 
growing pigs (Gopinath and Etherton, 1989). It is thought 
that GH treatment attenuates the ability of insulin to 
decrease gluconeogenesis (Gopinath and Etherton, 1989). 
This may be important in lactating dairy cows because a 
decreased response to insulin would allow the liver to 
increase its rate of gluconeogenesis, and supply extra 
glucose to the mammary gland.  

The administration of GH induces amino acid uptake by 
skeletal muscles (Kostyo, 1968) and increases whole body 
protein synthesis (Wolf et al., 1992) and nitrogen retention 
(Horber and Haymond, 1990). The increase in protein 
accretion is largely the result of increased protein synthesis, 
whereas protein degradation remains unchanged in 
ruminants and pigs (Eisemann et al., 1986; Eisemann et al., 
1989; Seve et al., 1993; Boisclair et al., 1994). GH effects 
on protein synthesis may be mediated by IGF-I, and there is 
a correlation between plasma IGF-I and protein accretion 
rate in growing animals (Campbell et al., 1991), but not in 
neonatal animals (Burrin et al., 1997; Davis et al., 1997).  

GH effects on the mammary gland have been 
extensively studied in farm animals. Milk yield responses to 
GH have been observed in pigs, sheep, goats and cows 
(Bauman and Vernon, 1993; Zhou et al., 2006). The 
mechanisms underlying these effects of GH are not clear. 
GH is not lactogenic when added to bovine mammary slices 
cultured in vitro (Goodman et al., 1983). Moreover, GH did 
not bind to membranes prepared from the bovine mammary 
gland (Gertler et al., 1984; Akers, 1985; Keys and Djiane, 
1988; Glimm et al., 1990). Thus, it is believed that effects 
of GH on the mammary gland are mediated via IGF-I. 
Bovine mammary epithelial cells have an abundance of 
IGF-I receptors and IGF-I is a potent mitogen in these cells 
(Cohick, 1998; Weber et al., 2000). Indeed, close arterial 
infusion of IGF-I increased milk secretion in goats within 2-
4 h (Prosser et al., 1990), although a 24 h infusion of IGF-I 
was not galactopoetic in goats (Prosser et al., 1995). In 
contrast, GHR mRNA has been shown in the bovine 
mammary gland (Glimm et al., 1990; Hauser et al., 1990; 
Glimm et al., 1992; Ropke et al., 1994). GHR is 
predominantly localized in the epithelium of ducts and 
alveoli, and is increased post partum (Sinowatz et al., 2000). 
This result suggests that GH may have direct effects on 
epithelial differentiation and milk secretion. In lactating 
cows treated with GH, milk yield responses are positively 
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correlated with plasma IGF-I concentration (Etherton and 
Bauman, 1998). In dairy cows after peak lactation, the 
typical milk yield increment with GH treatment is 10-15%. 
The fat, protein and lactose content of milk are not altered 
in well-fed cows (Chalupa and Galligan, 1989; Barbano et 
al., 1992). 

 
GH SIGNALING 

 
Growth hormone receptor (GHR) 

The GH receptor is a single transmembrane protein of 
approximately 620 amino acids with a ligand binding 
extracellular domain (N terminus) of 246 residues, a short, 
transmembrane domain of 24 residues, and a large 
intracellular domain (C terminus) of 350 residues. The 
exact number of amino acids varies slightly from species to 
species. The receptor is initially synthesized as a pre-protein 
of ~640 amino acids, containing a short signal peptide 
(Edens and Talamantes, 1998; Schwartzbauer and Menon, 
1998; Kopchick and Andry, 2000).  

To date, the amino acid sequence of the GHR has been 
published for nine species. The human GHR is 84% 
identical to the rabbit receptor (Leung et al., 1987), ~70% 
identical to the rodent receptor (Baumbach et al., 1989; 
Mathews et al., 1989; Smith et al., 1989) and 76% identical 
to the bovine receptor (Hauser et al., 1990). GHR in most 
species has a molecular weight (Mr) of 110 to 140 kDa, 
although the Mr based on amino acid sequence is 70 kDa 
(Cramer and Talamantes, 1993). The difference between 
observed and predicted molecular weight reflects 
glycosylation. 

GHR transcripts have been detected in a variety of 
tissues including liver, muscle, kidney, lung, mammary 
gland, placenta and adipose tissue, with the highest level of 
expression in liver (Edens and Talamantes, 1998; 
Schwartzbauer and Menon, 1998). By northern analysis, the 
GHR mRNA migrates at ~4.6 kb, although the exact size 
varies slightly from species to species. In all species, the 
major GHR transcripts are twice larger than the minimum 
1.9 kb necessary to encode ~640 amino acid receptor. The 
majority of the excess size is due to the presence of an 
approximately 2 kb of 3’-untranslated region (Leung et al., 
1987; Agarwal et al., 1994). 

The transcription of the GHR gene is controlled by 
multiple promoters in human, rat, mouse, sheep and cattle 
(O'Mahoney et al., 1994; Heap et al., 1995; Menon et al., 
1995; Zou et al., 1997). In cattle, there are three promoters 
(P1, P2 and P3) that transcribe three major classes of GHR 
transcripts, referred to as GHR1A, GHR1B and GHR1C, 
respectively (Heap et al., 1995; Schwartzbauer and Menon, 
1998; Jiang et al., 1999; Jiang et al., 2000). The mRNA 
variants are produced by the alternative splicing of exon 1A, 
1B or 1C onto a core transcript containing exons 2 to 10. 

All GHR mRNA classes encode identical proteins (Edens 
and Talamantes, 1998). 

The GHR1A mRNA is expressed exclusively in liver 
where it accounts for ~50% of total hepatic GHR mRNA 
(Kobayashi et al., 1999; Jiang and Lucy, 2001b; Lucy et al., 
2001). The promoter responsible for GHR1A synthesis (P1 
promoter) is positively regulated by the hepatic nuclear 
factor 4, HNF-4 (Jiang and Lucy, 2001a) and STAT5 (Jiang 
et al., 2007). The P2 promoter transcribes GHR1B mRNA 
in a variety of tissues. GHR 1B mRNA accounts for ~35% 
of total GHR mRNA in liver and ~70% in other tissues 
(Heap et al., 1996; Jiang and Lucy, 2001b). The ubiquitous 
transcription factor, Sp1 is required for efficient activity of 
the P2 promoter. Sp1 acts by binding to a GC box 
containing element in the proximal region of the P2 
promoter (Jiang et al., 2000). The GHR1C mRNA is also 
synthesized in a variety of tissues by the P3 promoter. 
GHR1C mRNA accounts for ~15% of total GHR in liver 
and ~30% in other tissues (Jiang et al., 1999; Jiang et al., 
2000). The transcription factor responsible for the 
ubiquitous activity of the P3 promoter remains to be 
identified. 

Kim et al. (2004) have reported that the bovine hepatic 
GHR protein can be measured by immunoblotting for the 
first time and reduced GHR1A abundance is partly 
responsible for the decline of GHR protein abundance in 
periparturient liver. Moreover, insulin and feed restriction 
regulates the efficiency of GH signaling in liver and adipose 
tissue of dairy cows by acting as a rheostat of GHR 
synthesis (Rhoads et al., 2004; Rhoads et al., 2007). 

 
Propagation of GH signaling 

Recent reviews have described the multiple transduction 
pathways used by GH (Carter-Su et al., 2000a; Herrington 
et al., 2000; Kopchick and Andry, 2000; Zhu et al., 2001). 
GHR dimerization is a key requirement for receptor 
activation and leads to the activation of Janus kinase 2 
(JAK2). JAK2 is a member of the Janus family of 
mammalian tyrosine kinases, which is comprised of four 
cytoplasmic tyrosine kinases : JAK1, JAK2, JAK3 and 
TYK2 (Imada and Leonard, 2000; Zhu et al., 2001; Sodhi 
and Rajput, 2007). All four kinases have a pseudokinase 
domain (JH2; catalytically inactive) and a C-terminal kinase 
domain (JH1). Pseudokinase domain serves as a negative 
regulator, and maintains JAK2 inactive in the absence of 
cytokine stimulation (Saharinen et al., 2000). JAK2 has no 
SH2 domain (binding phosphorylated tyrosine residue) or 
SH3 domain (binding proline-rich domain). JAK2 
associates with the GHR via interactions between the N-
terminal region of JAK2 and Box 1 (proline rich element) 
of GHR. This is followed by JAK2 phosphorylation of key 
tyrosine residues on itself (autophosphorylation) and on the 
GHR. Thus, phosphorylated JAK2 and GHR provide 



Kim and Boisclair (2008) Asian-Aust. J. Anim. Sci. 21(5):754-768 

 

757

multiple sites for signal molecules to bind via SH2 domain.  
To date, four major signaling pathways mediating GH 

actions have been studied: 1) signal transducers and 
activators of transcription (STAT) signaling pathway 
(Figure 1); 2) mitogen-activated protein kinase (MAPK) 
pathway; 3) insulin receptor substrate (IRS) pathway; 4) 
Phospholipase Cγ (PLCγ) pathway. These pathways are 
characterized by intracellular signaling with multiple points 
of intersection and convergence, rather than linear paths 
leading to independent and exclusive cellular events. STAT 
signaling is the major pathway by which GH actions are 
transmitted. GH can activate four (STAT 1, 3, 5a and 5b) of 
the seven known mammalian STATs (Campbell et al., 1995; 
Smit et al., 1996). The STAT proteins contain many 
conserved domains including a DNA binding domain, SH2 
and SH3 domains, a tyrosine residue serving as a substrate 
for JAK2 and a transcriptional activation domain. The SH2 
domain of STAT binds to the tyrosine phosphorylated GHR 
cytoplasmic sites on either the GHR (STAT5a and 5b) or 
JAK2 (STAT1 and STAT3) (Yi et al., 1996). JAK2 
phosphorylates STATs on a single tyrosine residue, and then 
STATs are dimerized via their SH2 domain. Dimerized 
STATs translocate into the nucleus where they bind to cis-
elements in the promoter regions of target genes. The two 
major classes of cis-elements are γ-interferon-stimulated 
response element (GAS) binding STAT5a and 5b and 
interferon-stimulated response element (ISRE) binding 
STAT1 and 3 (Imada and Leonard, 2000). 

The two forms of STAT5 (5a and 5b) are encoded by 
two different genes, and share 90% homology in their 
coding sequence (Shuai, 1999; Herrington et al., 2000). 
STAT5a plays a major role in mediating the effects of 

prolactin on mammary gland differentiation (Teglund et al., 
1998), as shown by failure of mammary gland development 
and lactation in STAT5a knock-out mice (Liu et al., 1997). 
STAT5b knock-out mice defects include decreased amounts 
of adipose tissue, immunological defects, loss of sexually 
dimorphic body growth rate, and decreased liver gene 
expression (i.e. IGF-I), indicating that STAT5b plays a key 
role in GH action (Udy et al., 1997; Teglund et al., 1998; 
Park et al., 1999). STAT5a/b double knock-out mice 
combine phenotypes seen in the individual knock-outs 
(Teglund et al., 1998). 

STAT5 has been implicated in the GH-regulation of 
IGF-I gene transcription. In hypophysectomized STAT5b 
knock-out mice, GH treatment fails to increase hepatic IGF-
I mRNA and plasma IGF-I, suggesting that IGF-I 
expression is STAT5b-dependent (Davey et al., 2001). 
Recently, Woelfle and co-workers (2004) used adenovirus-
mediated gene transfer in hypophy-sectomized rats to 
evaluate the role of STAT5b. Animals infected with a 
dominant negative STAT5b did not have hepatic IGF-I 
expression even in the presence of GH whereas GH was 
dispensable in animals infected with a constitutively active 
STAT5b (Woelfle and Rotwein, 2004). Consistent with a 
role for STAT5b in GH-dependent activation of IGF-I gene, 
a functional STAT5 response element was identified in the 
second intron of the gene (Woelfle et al., 2003). 

GH also signals via the MAPK pathway (Okada and 
Kopchick, 2001; Zhu et al., 2001). This pathway begins 
with binding of the SHC adaptor protein via its SH2 domain 
to the tyrosine phosphorylated GHR (Moutoussamy et al., 
1998), followed by the tyrosine phosphorylation of SHC by 
JAK2. Subsequently, phosphorylated SHC interacts with 

Figure 1. JAK-STAT pathway. GH binds a GHR dimer. JAK2 associates with GHR and phosphorylates GHR to provide multiple binding
sites for STAT5. Phosphorylated STAT5 is dimerized and translocates into the nucleus where it binds to cis-element (GAS). Eventually, 
target genes such as IGF-I, ALS and SOCS are expressed. Termination occurs by SOCS as a competitor for binding to tyrosine residue of
GHR, and by PTP-1B for dephosphorylating to tyrosine residue of JAK2. 
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growth factor receptor-binding protein 2 (Grb2) containing 
one SH2 domain flanked by two SH3 domains (Okada and 
Kopchick, 2001; Zhu et al., 2001). The coupling of Grb2 
and son of Sevenless (SOS) is mediated via the interaction 
of SH3 domain of Grb2 with the C-terminal proline rich 
region of SOS. The assembly of a SHC-Grb2-SOS complex 
initiates a cascade of interdependent kinase activation 
(Okada and Kopchick, 2001; Zhu et al., 2001). SOS is a 
guanine nucleotide exchange factor that activates the small 
GTP binding protein Ras. Ras located at the plasma 
membrane then associates with and activates the 
serine/threonine kinase Raf. Raf, in turn, phosphorylates 
and activates the dual kinase MEK (phosphorylating 
serine/threonine or tyrosine), which then phosphorylates 
and activates MAPK (ERK1/2) (Cobb, 1999; Lewis et al., 
1998; Vanderkuur et al., 1997). In the nucleus, ERK1/2 
activates p90RSK, which phosphorylates the serum 
response factor (SRF). ERK1/2 also activates the serine 
phosphorylation of Elk-1. Both SRF and Elk-1 mediate the 
transcriptional effects of GH on the c-fos gene by binding to 
the serum response element (SRE) in the proximal promoter 
(Rivera et al., 1993; Hodge et al, 1998).  

GH can also activate the IRS signaling pathway. JAK2 
is required for GH-dependent phosphorylation of IRS-1, -2, 
and -3, although neither GHR nor JAK2 contains the NPXY 
consensus sequence required for IRS association 
(Argetsinger et al., 1995; Ridderstrale et al., 1995; 
Argetsinger et al., 1996). It is possible that the interaction 
between JAK2 and IRS proteins is mediated via a focal 
adhesion kinase, FAK (Zhu et al., 1998), or other adaptor 
molecules such as SH2-B, Grb2 or CrkII (VanderKuur et al., 
1995; Holland et al., 1997; Thirone et al., 1999; Carter-Su 
et al., 2000b; Finidori, 2000). Once activated, IRS proteins 
recruit PI-3 kinase (Argetsinger et al., 1995; Ridderstrale et 
al., 1995; Argetsinger et al., 1996). PI-3 kinase 
phosphorylates inositol lipids (phosphatidylinositol and 
related compounds) to generate the second messengers, 
phosphatidyl inositol-3, 4-bisphosphate (PIP2) and 
phosphatidyl- inositol-3, 4, 5-trisphosphate (PIP3) (Leevers 
et al., 1999). PIP3 recruits PDK-1 (pleckstrin homology 
domains of 3-phosphoinositide-dependent kinase-1) which 
in turn activates the serine/threonine kinase, Akt/PKB. GH 
activates glucose transporter 4 (GLUT4) translocation to the 
cell membrane in a PI-3 kinase dependent manner, resulting 
in increased glucose uptake (Yokota et al., 1998; Le 
Marchand-Brustel et al., 1999). This pathway could explain 
the acute insulin-like effects of GH in cultured cells. 
However, GH-mediated PI-3 kinase activation was 
maintained in IRS-1 deficient cells, in contrast to IGF-I 
which required IRS-1 to activate PI-3 kinase (Bruning et al., 
1997). This indicates that GH also utilizes an IRS-I 
independent pathway to activate PI-3 kinase. Indeed, the 
p85 subunit of PI-3 kinase can associate directly with the 

tyrosyl-phosphorylated GHR, providing a direct alternative 
route for the activation of PI-3 kinase (Moutoussamy et al., 
1998). 

Finally, GH stimulates the PLCγ pathway. PLCγ is 
tyrosine phosphorylated by JAK2 and associates with 
intracellular portions of GHR (Moutoussamy et al., 1998). 
PLCγ hydrolyses phosphatidylinositol 4, 5-bisphosphate to 
produce the second messenger molecule, inositol 1, 4, 5-
trisphosphate (IP3) and diacylglycerol (DAG). DAG 
activates protein kinase C (PKC), which translocates from 
the cytosol to the plasma membrane (Ron and Kazanietz, 
1999; Musashi et al., 2000). Activated PKC is associated 
with a wide range of downstream events including 
lipogenesis (Gurland et al., 1990), the increase in 
intracellular Ca2+ concentration (Gaur et al., 1996) and the 
expression of the c-fos gene (Slootweg et al., 1991; Tollet et 
al., 1991). 

 
Termination of GH signaling 

Hormone signaling is a tightly regulated process. After 
initial activation, signaling is first attenuated, and finally 
terminated to avoid the detrimental consequence of 
excessive stimulation. In the case of GH, two mechanisms 
accounting for signal termination have been described.  

The first mechanism involves a family of proteins called 
suppressor of cytokine signaling (SOCS). To date, eight 
members of the SOCS proteins (CIS, SOCS 1-7) have been 
identified (Krebs and Hilton, 2000; Krebs and Hilton, 2001). 
All these SOCS proteins have a central SH2 domain and a 
conserved C-terminal region (SOCS box). SOCS-1, -2, -3 
and CIS mRNA are induced by GH in rat liver and 
hepatocytes (Adams et al., 1998; Ram and Waxman, 1999; 
Tollet-Egnell et al., 1999), but only CIS and SOCS-2 are 
induced in the mammary gland from mice (Davey et al., 
1999). Moreover, STAT5b is required for the induction of 
SOCS-2 and -3 in liver (Davey et al., 1999). The phenotype 
of SOCS-2 knock-out mice is the opposite of that of GH 
and IGF-I knock-out mice (i.e. increased body weight and 
length, increased weight of visceral organ weight). Elevated 
IGF-I was found in the heart, lung and spleen of SOCS-2 
knock-out mice (Kopchick et al., 1999; Metcalf et al., 2000). 
Overall, these data suggest that SOCS-2 is a physiologically 
relevant attenuator of GH action. 

The central SH2 domain of some SOCSs inhibits GH 
signaling by acting as a competitor for binding to tyrosine 
residues of the GHR. SOCS-3 does so by binding to the 
membrane proximal tyrosine residues recognized by STAT5 
whereas CIS/SOCS-2 binds to more distal tyrosine residues 
(Krebs and Hilton, 2000; Krebs and Hilton, 2001). In 
contrast, SOCS-1 attenuates GH signaling by directly 
inhibiting JAK2 activity (Ram and Waxman, 1999; Krebs 
and Hilton, 2000; Krebs and Hilton, 2001). Finally, SOCS 
proteins may also be involved in proteosomal degradation 
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of the activated JAK2-GHR complex. This function is 
suggested by the ability of SOCS box to bind to Elongin B 
and C, two proteins that associate with the E3 ubiquitin 
ligase, cullin-2 (Ram and Waxman, 1999; Shuai, 1999). 
Both JAK2 and SOCS proteins themselves can be 
ubiquitinated by cullin-2 (Verdier et al., 1998; Bousquet et 
al., 1999).  

Another mechanism involved in the termination of GH 
signaling is the dephosphorylation of critical tyrosine 
residues in the activated GHR-JAK2 complex. The SH2 
domain-containing phosphatase-1 (SHP-1) directly 
associates with JAK2 in response to GH (Hackett et al., 
1997). GH also induces the interaction between SHP-1 and 
STAT5b in the nucleus, suggesting that GH-induced SHP-1 
might be required for the dephoshporylation of JAK2 and 
STAT5b (Hackett et al., 1997). SHP-2, another phosphatase 
has been shown to bind to the GHR and to dephosphorylate 
GHR, JAK2 and STAT5b (Stofega et al., 2000). Finally, Gu 
and co-workers showed that the protein tyrosine 
phosphatase-1B (PTP-1B) associates with JAK2 in a GH-
dependent manner and dephosphorylates the tandemly 
arranged tyrosine residues responsible for JAK2 activation 
(Gu et al., 2003). Over-expression PTP-1B in H4-II-E cells 
blunts STAT5-mediated gene transcription in response to 
GH, suggesting that PTP-1B is one of the phosphatases 
capable of terminating GH signaling (Gu et al., 2003). 

 
ACID LABILE SUBUNIT (ALS) 

 
As described in previous sections, plasma IGF-I has 

been used as the endpoint to assess the efficiency of GH 
action in liver. In plasma, IGF-I is always sequestered in a 
150 kDa noncovalent complex. This complex consists of 
one molecule each of IGF-I or IGF-II, IGF-binding protein 
(IGFBP)-3 or IGFBP-5 and an acid labile subunit (ALS). In 
humans and rodents, ALS is synthesized predominantly in 
liver in a GH-dependent manner (Ooi et al., 1997; 
Suwanichkul et al., 2000) and therefore could also serve as 
a reporter of GH action in liver. The next section 
summarizes what is known about the biology of ALS. 

 
Structure of the ALS gene, cDNA and protein 

In the human and mouse, the ALS gene spans ~3.3 kb 
and is composed of two exons separated by a ~1,100 bp 
intron (Suwanichkul et al., 2000). Exon 1 encodes only the 
first 5 amino acids of the signal peptide and contributes the 
first nucleotide of codon 6. Exon 2 encodes the remainder 
of the signal peptide (27 amino acids in human, 23 amino 
acids in mouse) and the entire mature protein (578 amino 
acids in human, 580 amino acids in the mouse). This 
genomic structure is conserved in sheep, baboon, rat, pig 
and cattle (Dai and Baxter, 1992; Delhanty and Baxter, 
1996; Rhoads et al., 2000; Lee et al., 2001; Kim et al., 

2006). The ALS gene is located on chromosome 16p13.3 in 
human (Suwanichkul et al., 2000) and on chromosome 17 
in mice (Boisclair et al., 1996). Transcription of the gene 
produces a single ~2.2 kb mRNA in all species studied so 
far (Dai and Baxter, 1992; Leong et al., 1992; Boisclair et 
al., 1996; Delhanty and Baxter, 1996; Rhoads et al., 2000; 
Lee et al., 2001). The ALS cDNA has been cloned in human 
(Leong et al., 1992), rat (Dai and Baxter, 1992), mouse 
(Boisclair et al., 1996), baboon (Delhanty and Baxter, 1996), 
sheep (Rhoads et al., 2000), pig (Lee et al., 2001) and cattle 
(Kim et al., 2006). 

The amino acid sequences deduced from these cDNAs 
indicate a degree of homology between human and other 
species ranging from 76% (sheep) to 95% (baboon). Mature 
ALS contains 6 to 7 asparagine-linked glycosylation sites 
and 12 to 13 of cysteine residues located in the N-terminal 
and C-terminal regions. Approximately 75% of mature ALS 
is represented by 18 to 20 leucine-rich repeat domains of 24 
amino acids (Leong et al., 1992; Janosi et al., 1999b). Using 
computational modeling and rotary shadowing electron 
microscopy, Janosi et al. (1999b) have predicted that ALS is 
a donut-shaped structure with an external diameter of 7.2 
nm, an internal diameter of 1.7 nm, and a thickness of 3.6 
nm. In this model, clusters of negatively charged amino 
acids (Asp55, Glu103, Asp147, Glu171, Glu195, Asp223, Glu287, 
Glu314, Glu367 and Asp411) are located on the internal face of 
ALS, and create an overall electronegative surface charge. 
This property is thought to be important for the interaction 
with IGFBP-3 and -5 (Firth et al., 1998; Twigg et al., 1998; 
Janosi et al., 1999a). 

 
Biochemical properties 

By SDS-PAGE analysis, the ALS protein migrates at 84 
to 86 kDa. After N-glycanase treatment, serum ALS 
migrates at ~66 kDa (Baxter and Martin, 1989; Baxter et al., 
1989; Kim et al., 2006). ALS has a high affinity for binary 
complexes of IGFs and IGFBP-3, but no affinity for free 
IGFs and IGFBP-1, -2, -4 or -6 (Baxter et al., 1989; Twigg 
and Baxter, 1998; Twigg et al., 1998), and low affinity for 
free IGFBP-3 (Baxter and Martin, 1989; Barreca et al., 
1995; Lee and Rechler, 1995a). The binding affinity of ALS 
for binary complexes containing IGF-I is slightly higher 
that those with IGF-II (Barreca et al., 1995). ALS is also 
capable of binding binary complexes of IGFs and IGFBP-5 
(Twigg and Baxter, 1998). This is not entirely surprising 
because IGFBP-5 is structurally similar to IGFBP-3. In 
plasma, however, ternary complexes containing IGFBP-5 
account for only ~10% of all ternary complexes (Mohan et 
al., 1995). Domain swapping studies indicates that the C-
terminal region of IGFBP-3 and -5 are responsible for 
binding ALS (Hashimoto et al., 1997; Firth et al., 1998; 
Twigg and Baxter, 1998). This region contains a stretch of 
positively charged amino acids which are thought to interact 
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with the negatively charged internal face of ALS. This 
electrostatic model of interaction is supported by 
elimination of ternary complex formation when the 
negatively charged sialic acid chains are removed from ALS 
(Janosi et al., 1999a). 

 
Regulation of ALS 

Spatial : ALS is predominantly found in the vascular 
compartment. The plasma concentration of ALS is 285 nM 
in human and 570 nM in the rat (Baxter, 1990; Khosravi et 
al., 1997). ALS has also been found at lower concentration 
in ovarian follicular fluid (Hughes et al., 1997), synovial 
fluid (Hughes et al., 1997; Khosravi et al., 1997; Labarta et 
al., 1997), peritoneal fluid (Khosravi et al., 1997; Labarta et 
al., 1997) and skin interstitial fluid (Xu et al., 1995; Hughes 
et al., 1997) in human. In addition, the ternary complexes 
presumably containing ALS were detected in colostrum, 
milk, ovarian follicular fluid and mammary lymph in sheep 
(Hodgkinson et al., 1989). Bovine ALS was detected in 
plasma at the highest levels followed by ovarian follicular 
fluid, lymph and colostrums. A portion of colostrums and 
follicular fluid ALS appears to be synthesized locally as 
ALS mRNA found in mammary epithelial cells and ovarian 
follicular cells (Kim et al., 2006). 

By northern analysis, ALS mRNA can be detected in 
liver of the mouse, rat, sheep, pig and primate (Dai and 
Baxter, 1994; Delhanty and Baxter, 1996; Rhoads et al., 
2000; Ueki et al., 2000; Lee et al., 2001) and at low levels 
in kidney of the mouse (Ueki et al., 2000). In the rat, ALS 
mRNA was also detected by in situ hybridization in kidney 
(Chin et al., 1994). In pig, using the more sensitive RNase 
protection assay (RPA), ALS mRNA has been found in 
muscle, spleen, ovary and uterus (Lee et al., 2001). ALS 
mRNA was also detected by in situ hybridization in 
granulosa and thecal cells of the pig ovary (Wandji et al., 
2000). In cattle, ALS mRNA abundance was five-fold 
higher in liver than in lung, small intestine, adipose tissue, 
kidney and heart, but was almost absent in muscle and brain 
(Kim et al., 2006). 

Developmental : ALS could not be detected in human 
fetal serum at 27 wk of gestation (Lewitt et al., 1995), but is 
increased five-fold from birth to puberty (Baxter, 1990). 
Using in situ hybridization, ALS mRNA is detected in liver 
and kidney of embryonic d 20 rats, and is increased 
dramatically between birth and day 20 (Chin et al., 1994). 
Hepatic ALS mRNA is increased 10-fold from day 21 to 70 
of postnatal age (Dai and Baxter, 1994). In sheep, Rhoads et 
al. (2000) have shown that the expression of ALS mRNA is 
detectable by northern analysis at day 130 of prenatal life 
and is increased dramatically at day 7 of postnatal life. This 
is consistent with IGF-I circulating as 50 kDa complexes 
after birth and as 150 kDa complexes within 1 wk of birth 
(Butler and Gluckman, 1986). In the pig, ALS mRNA was 

barely detectable in liver on day 75 of gestation, increased 
on day 112 of gestation and continued to increase after birth 
(Lee et al., 2001).  

Hormonal : Hepatic ALS mRNA abundance was 
decreased by ~90% in hypophysectomized rats and returned 
to near normal levels 8 h after GH treatment (Ooi et al., 
1997). Using GH deficient rats, circulating IGF-I and 
IGFBP-3 are less than 10% compared to wild type animals, 
and there is no formation of ternary complexes (Gargosky 
et al., 1994). IGF-I treatment increases the binary complex 
of IGF-I and IGFBP-3, but only GH treatment induces the 
formation of both the binary and ternary complexes 
(Gargosky et al., 1994). Renal ALS mRNA was also 
reduced in hypophysectomized rats and partially restored 
after GH treatment (Chin et al., 1994). These data suggest 
that GH is the most important positive regulator of ALS 
synthesis. 

Ooi et al. (1997) identified a GH-responsive element, 
called ALSGAS1 between nt -633 and nt -625 of the mouse 
ALS promoter. This element is shown to bind STAT5 in a 
GH dependent manner and to mediate the effect of GH on 
ALS gene transcription (Ooi et al., 1997; Ooi et al., 1998). 
Similar elements are found in human and sheep (Rhoads et 
al., 2000; Suwanichkul et al., 2000). Hepatic ALS 
expression is maintained in hypophysectomized rats 
infected with a constitutively active STAT5b, and 
eliminated in hypophysectomized rats infected with a 
dominant negative STAT5b, even after GH treatment 
(Woelfle and Rotwein, 2004). These data suggest that 
STAT5b is required and sufficient for effects of GH on ALS 
transcription. 

IL-1β decreases the GH-dependent induction of ALS 
mRNA in rat primary hepatocytes. This inhibition is 
mediated by increased SOCS-3 expression (Boisclair et al., 
2000). ALS mRNA is also reduced by dexamethasone, 
cAMP and epidermal growth factor in primary rat 
hepatocytes (Dai et al., 1994; Delhanty and Baxter, 1998).  

Disease and catabolic state : Several studies 
demonstrate that ALS production is reduced during 
catabolic conditions (Dai and Baxter, 1994; Oster et al., 
1995; Bereket et al., 1996; Lang et al., 1996; Frystyk et al., 
1999; Fukuda et al., 1999; Moller et al., 2000; Kong et al., 
2002a; Kong et al., 2002b). In humans, suffering from burn 
injury or cirrhosis, ALS synthesis is decreased (Frystyk et 
al., 1998; Moller et al., 2000). In underfeeding, fasting and 
diabetes, ALS mRNA and protein are also reduced (Dai and 
Baxter, 1994; Frystyk et al., 1999). The effects of fasting on 
ALS production are age-dependent in rats. Fasting for 48 h 
causes a more pronounced reduction in plasma ALS in 
juvenile (4 weeks old) than in adult rats (10 weeks old). 
This reduction is restored within 24 h of re-feeding in the 
juvenile rats, but persists beyond 48 h in the adult rats 
(Oster et al., 1995; Kong et al., 2002a).  



Kim and Boisclair (2008) Asian-Aust. J. Anim. Sci. 21(5):754-768 

 

761

In almost all of these conditions, the reduction in 
plasma ALS is associated with the development of hepatic 
GH resistance. Recent studies show that in human cirrhosis, 
levels of ALS, IGF-I and GHR mRNA are significantly 
decreased (Moller et al., 2000; Donaghy et al., 2002). 
Similar observations have been reported in liver of LPS 
treated rats (Kong et al., 2002b). These catabolic conditions 
also increase the secretion of glucocorticoid and production 
of cellular cAMP (Frystyk et al., 1998; Moller et al., 2000), 
two factors shown to reduce ALS secretion in primary 
hepatocytes (Dai et al., 1994; Delhanty and Baxter, 1998). 

 
Function 

150 kDa complex : ALS circulates at 2 to 3 fold molar 
excess over the concentration of IGF-I and IGFBP-3 in 
humans and rats (Baxter, 1988; Frystyk et al., 1998). As a 
result, 50% to 60% of serum ALS circulates in free form. 
This excess is thought to be important in maintaining most 
of IGFs in ternary complexes. This large excess is needed 
because ALS has a rather low affinity for binary complexes. 
IGF-I and ALS are produced by hepatocytes whereas 
IGFBP-3 is produced in non-parenchymal cells such as 
Kupffer and sinusoidal endothelial cells (Chin et al., 1994; 
Scharf et al., 1995; Uchijima et al., 1995). Therefore, the 
formation of the ternary complexes appears to occur in the 
vascular system. 

Incorporation of IGFs in ternary complexes extends 
their half-lives from 10 min (free IGF) or 30 min (IGF in 
binary complexes) to over 15 h (Zapf et al., 1986; Baxter, 
1988; Twigg and Baxter, 1998). This reflects the fact that 
IGFs cross the endothelial barrier when in free form or part 
of binary complexes, but are unable to do so when in 
ternary complexes (Binoux and Hossenlopp, 1988). 
Formation of ternary complexes limits the bioactivity of 
circulating IGFs. For example, bolus injection of binary 
IGF-I/IGFBP-3 complexes causes hypoglycemia in 
hypophysectomized rats with low plasma ALS, but not in 
intact rats with normal ALS levels (Zapf, 1995). Similarly, 
non-islet tumor hypoglycemia in human is caused by 
increased IGF-II present in binary complexes (Baxter and 
Daughaday, 1991; Zapf et al., 1995). This condition is 
reversed by chronic GH treatment, which increases plasma 
ALS and ternary complex formation (Katz et al., 1996). 

ALS knock-out models : Recently, Ueki et al. (2000) 
generated ALS knock-out mice. These mice showed a 
reduction in circulating IGF-I (62%) and IGFBP-3 (88%). 
The synthesis of IGF-I and IGFBP-3 in liver and kidney 
remains unaltered, indicating that absence of ALS caused 
increasing turnover of IGF-I and IGFBP-3. ALS knock-out 
mice suffered at 13% growth retardation, but had normal 
plasma concentrations of glucose, insulin and GH.  

Yakar et al. (1999) created a liver-specific IGF-I 
deficient (LID) mice using the Cre/loxP system. These mice 

have significantly reduced circulating IGF-I (~75%), five-
fold elevated GH and insulin levels, but normal growth. 
LID mice treated with IGF-I or a GHRH antagonist have 
increased insulin sensitivity (Yakar et al., 2001). When 
crossing ALS knock-out and LID mice (ALS×LID), the 
growth retardation increased to 30% (Yakar et al., 2002). 
These mice show a dramatic reduction of circulating of 
IGF-I levels (85 to 90%) and a 15-fold increase of plasma 
GH (Yakar et al., 2002; Haluzik et al., 2003). Surprisingly, 
compared with LID mice, ALS×LID mice have improved 
insulin sensitivity in white adipose tissue and muscle but 
not in liver. These data suggest that the changes in 
circulating IGF-I and ALS levels affect glucose metabolism 
and insulin sensitivity in a tissue specific manner (Haluzik 
et al., 2003). 

An ALS deficient patient has been identified recently. 
Absence of ALS results from a frame-shift point mutation, 
which is caused by the deletion of one of five consecutive 
guanines at positions 1,334 through 1,338 (Domene et al., 
2004). This patient shows a marked reduction in plasma 
IGF-I and IGFBP-3, and high GH concentrations. The 
concentrations of IGF-I and IGFBP-3 remain unchanged 
even after GH treatment. The patient has no detectable 
ternary complexes, reduced binary complexes and increased 
free IGFs. The phenotype is similar to that of the ALS 
knock-out mice (a modest growth deficit). 

 
CONCLUSION 

 
It is generally accepted that GH is absolutely required 

for normal postnatal growth. The effects of GH on growth 
are mediated in part via hepatic production of IGF-I. Plasma 
IGF-I forms ternary complexes by associating with IGFBP-
3 or -5 and ALS. The ability of GH to stimulate plasma 
IGF-I and ALS is responsive to many conditions, such as 
nutrition, disease and physiological state. Two factors such 
as hepatic GHR abundance and plasma ALS could account 
for variation in plasma IGF-I in animals. 
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