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INTRODUCTION 
 
Following the rapid development of molecular genetics, 

many studies on the value of gene- and marker-assisted 
selection (GAS and MAS) in practical breeding programs 
have been published in recent years. The standard approach 
for using QTL information in selection schemes is based on 
a simple index: I = α+EBV (Falconer and Mackay, 1996; 
Soller, 1978), where α is an estimate of the breeding value 
for the identified or marked QTL of the individual and EBV 
is an estimated breeding value of the polygenic effects of 
the individual. When α and EBV are estimated based on 

best linear unbiased prediction (BLUP), α may be as a fixed 
or random effect. Most studies evaluating GAS have 
assumed standard truncation (where all selected parents 
contribute equally to the next generation) and equal 
emphasis on α and EBV (e.g. Gibson, 1994; Ruane and 
Colleau, 1995; Larzul et al., 1997; Pong-Wong and 
Woolliams, 1998; Abdel-Azim and Freeman, 2002; Kim 
and Farnir, 2006). The general finding has been that extra 
gains are expected from GAS in the early generations of 
selection, as described by Gibson (1994), however, these 
extra gains are not maintained in the long term. This 
paradox has become known as the Gibson effect. 

Dekkers and van Arendonk (1998) developed a model 
to optimize selection on an identified QTL over a planning 
horizon of multiple generations, and solved the problem of 
loss of longer term response. Chakraborty et al. (2002) 
extended the method of Dekkers and van Arendonk (1998) 
to selection programs with different selection strategies for 
males and females, maximizing a weighted combination of 
short and longer term responses, and to multiple identified 
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QTL, allowing for non-additive effects at the QTL, 
including dominance, epistasis and gametic imprinting. 
However, the model of Chakraborty et al. (2002) was 
restricted to one quantitative trait with multiple identified 
QTL, and in a population with discrete generations. These 
assumptions are too restrictive for application to practical 
breeding programs. Thus, Tang and Li (2006) extend the 
method of Chakraborty et al. (2002) to allow optimization 
of selection on multiple traits with multiple QTL in a 
population with overlapping generations. All these methods 
optimized relative weight on the QTL to maximize response 
of selection over multiple generations, but assumed equal 
contributions of selected candidates and infinite population 
sizes without accumulation of inbreeding.  

Optimum contribution (OC) selection algorithms for 
simultaneously maximizing genetic gain and constraining 
the rate of inbreeding have been developed during the past 
decade (Eisen, 2007). Meuwissen (1997) and Grundy et al. 
(1998) suggested a method to maximize genetic response 
while restricting the rate of inbreeding per generation to a 
predefined value in a population with discrete generations. 
The methods of Meuwissen (1997) and Grundy et al. (1998) 
were extended to populations with overlapping generations 
by Meuwissen and Sonesson (1998) and Grundy et al. 
(2000), respectively. They optimized genetic contributions 
of individuals over age classes. In general, the lifetimes of 
sires and dams are, however, different in practical breeding 
schemes, but these two methods are based on the same 
lifetime for sires and dams. Thus, they are too restrictive for 
application to practical breeding schemes. Villanueva et al 
(1999) used BLUP evaluation and OC selection algorithms 
in GAS schemes. The emphasis given to the QTL EBV 
relative to the polygenic EBV was, however, equal. It 
yielded more genetic gain than truncation selection schemes 
that account for the QTL in the short and the long term, but 
these authors also showed that the Gibson effect occurred 
for OC selection when used as a one-generation scheme (i.e. 
estimates of polygenic and QTL effect have equal weights) 
(Villanueva et al., 1999, 2002). Therefore, Villanueva et al. 
(2004) tried to combine the method of Dekkers and van 
Arendonk (1998) with OC selection, and to further increase 
the benefits from GAS in finite population sizes.  

The objective of this paper is to extend the rule of 
optimal contribution proposed by Meuwissen and Sonesson 
(1998) to populations with overlapping generations and 
different lifetimes between sires and dams. Moreover, this 
extended OC selection rule is combined with the methods 
of Tang and Li (2006) that optimizes the relative emphasis 
given to multiple QTL for multiple traits in a population 
with overlapping generations, and further increases the 
selection response. 

 

METHODS 
 

The constraint on rAr t 1' +
  

At any time, there are animals of different sex and ages 
in a population with different lifetimes for sire and dam. 
The animals will be divided into sex-age classes. Here, the 
interval of age is different from the common year, and an 
age class is defined as the time period between two 
consecutive rounds of selection. For convenience, this time 
period will be assumed to equal one year. Following the 
theory of Meuwissen and Sonesson (1998), when selecting 
parents in year t, we want to limit the increase of average 
inbreeding coefficient of future individuals, which is limited 
by constraining the rAr t 1' +

 term in year t+1; where r is a 
weight vector of age classes; ri denotes the long-term 
contribution of age class i (until lifetime is reached); 

1+tA   
is a matrix with the average additive genetic relationships 
within age classes on the diagonals and between age classes 
on the off-diagonals. For optimizing the contribution of 
selected parents in a population with different lifetimes 
between sires and dams, these animals have to be divided 
into sex-age classes according to the method of Hill (1974). 
Now, 

1+tA  is arranged according to the order of 
transmission matrix P: 
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where, subscript 1 and 2 denote age 1 and other ages 

(except for age 1) of sire, respectively; subscript 3 and 4 is 
age 1 and other ages of dam, respectively. The population of 
year t+1 is formed from that in year t. Namely, age class 2, 
3, …, q are formed by aging from the age class 1, 2, …, q-1 
in year t, respectively, because the age of animal increases 
one from year t to t+1, but the age class has no change. Age 
class 1 is newly formed in year t+1. It is formed by mating 
within the selected parent’s population in year t. Thus, 

rAr t 1' +
 of all age classes can be split into different terms:  
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Then, combining these terms of formula [2] according 

to age class 1 (subscript a) and other age classes (subscript 
b), and to form a new matrix formula: 

 

1 1( , ) 1( , ) 1( , )2t a t a a a a t a b b b t b b b+ + + +′ ′ ′ ′= + +r A r r A r r A r r A r        (3) 
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where: 
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The formula (3) is similar to the formula (4) of 

Meuwissen and Sonesson (1998). The latter is more general, 
the former is a special case for application in this paper. The 

bbbtb rAr ),(1' +  term in equation (3) does not depend on the 

selected parents, because animals in age classes 2 to q in 
year t+1 are identical to those in age class 1, to q-1 in year t 
(all individuals of age class i transfer to age class i+1 from 

year t to t+1). It is calculated from tA  and rb. The terms 

aaata rAr ),(1' +  and bbata rAr ),(1' +  are influenced by selection 

in year t, where the former represents the average additive 
genetic relationship among new progenies, and the second 
term represents the average additive genetic relationship 
between new progenies and other older animals (age class 2 
to q). Following the description of Meuwissen and 
Sonesson (12):  

 

1( , )t a a t t t+ ′=A c A c                              (4) 
 

1( , )t a b t t+ =A c A J                              (5) 
 
where, At denotes the matrix of additive genetic 

relationship among animals in year t; ct
 denotes the vector 

of genetic contribution of individuals in year t to age class 1 
in year t+1 (contributions of animals not selected are 0; 
male or female contributions sum to 0.5); 

),(1 aatA +
 denotes 

the average additive genetic relationship of individuals 
within age class 1 in year t+1 (i.e. the mean value of all 
elements of 

),(1 aatA +
); 

),(1 batA +
 is the vector of average 

additive genetic relationship of individuals between age 
class 1 and other age classes in year t+1 (the vector of mean 
value of each column of 

),(1 aatA +
); J is the matrix that 

averages these additive genetic relationships of individuals 
within every age class (i.e., the jth column of J has the n 
elements that correspond to animals in age class j equal to 
1/n and all other elements equal to 0, where n is equal to the 
number of animals per sex-age class. The columns of J 
include all other age class except for the age class 1 of sire 
and dam). For details, see Meuwissen (1998). 

Inbreeding increases on average within new progenies 

equal half the increase of the average additive genetic 
relationship among selected parents (Falconer and Mackay, 
1996). Hence, these selected animals in year t such that the 
average relationship of population in year t+1 does not 
exceed the constraint (1998):  

 

1 2 (1 1/ 2 )t t tC C F C+ = + Δ −                    (6) 
 
Combining equation (3), (4), (5) and (6) yields a 

restriction on the average additive genetic relationship in a 
population with different lifetimes between sire and dam: 

 
2

1 1 3 1 3 1( , )( ) 2( )t t t t t t b t t b b t b b bC r r r r+ +′ ′ ′ ′≤ + + + +c A c c A Jr c A Jr r A r   (7) 
 

The optimization problem 
In the round of selection, we want to maximize genetic 

value of new animals in the next selection cycle. In other 
words, we want to choose ct so that the expected genetic 
merit of offspring is as high as possible. The general 
optimization problem: 

 
Max: ctEBVt                                (8) 
 
Subject to: 
 

 
2

1 1 3 1 3 1( , )( ) 2( )t t t t t t b t t b b t b b bC r r r r+ +′ ′ ′ ′≤ + + + +c A c c A Jr c A Jr r A r  (8a) 
 

t′ =Q c s                                   (8b) 
 
Where, Q’ is the incidence matrix relating the animal to 

sex, and its column is sex-age classes arranged according to 
the order of 

1+tA ; s is contribution vector of every sex-age 

class. The above optimization problem can be solved using 
the Lagrange multiplier method to transform the extremum 
problem with condition constraints into no restriction 
extremum problem. The Lagrange objective function is:  

 
2

0 1 3 1 3( ) [( ) 2( ) ] ( )t t t t t t t b tH r r r r Kλ′ ′ ′ ′ ′= − + + + − − −c c EBV c A c c A Jr c Q s λ  (9) 
 
where, λ0 and λ are the Lagrange multipliers for the 

constraints (8a) and (8b); 
bbbtt rArCK ),(11 ' ++ −= .  

Equating the first derivative of H(c) with respect to the 
contribution vector ct to zero yields 

 
1 2

0 1 3 0 1 3[ 2 ( ) ] 2 ( )t t t t br r r rλ λ−= − + − +c A EBV A Jr Qλ  (10) 
 
From the constraint (8a) to get λ:  
 

1 1 1 2
0 1 3 0 1 3( ) { [ 2 ( ) ] 2 ( ) }t t t t t t t br r r rλ λ− − −′ ′= − + − +λ Q A Q Q A EBV A Jr s  (11) 
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From the constraint (8b) to get λ0: 
 

2 2 2
0 1 3 1 3
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where, 2

31
1'11'11 )/())(( rrAQQAQQAAR ttttttt +−= −−−−− . The value 

for λ0 from equation (12) is used in equation (11) to obtain 
λ. Now, λ0 and λ are used in equation (10) to obtain optimal 
ct. If genetic contributions of some individuals of ct are 
fixed, the above formulas can be split according to the 
method described by Meuwissen (1997), and these 
corresponding formulas as following: 
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Where, subscript 1 denotes candidates which will be 

optimized; subscript 2 denotes candidates with fixed 
contribution.  

 
Determining the contribution of the sex-age classes 

In the previous selection, weight vector r was assumed 
known. This vector was calculated from the transmission 
matrix P, and depended on the contribution of each sex-age 
class to sex-age class 1. This contribution depends, however, 
on the selected animals (ct). These are unknown when 
parents are selected in year t, but can be calculated from ct 
while limiting inbreeding. The optimized ct depends, 
however, on r (equation (10)), so, we need to find optimal ct 
and r simultaneously. This may be solved by an iteration 
method or simulated annealing algorithm (Meuwissen and 
Sonesson, 1998; Grundy et al., 2000). In practical breeding 
schemes, breeders sometimes need to fix the proportion of 
genetic contribution of each sex-age class to new progenies 
in advance (i.e. the sum of genetic contributions of all 

animals in each sex-age class is the same over years). The 
number of animals and the contribution of each animal may 
be variable within sex-age class, but its sum is fixed. In 
such a population, the first row (i.e. row for reproduction) 
of transmission matrix P is fixed, and r can be computed by 
the formula ∑ =

=
q

ij
LjPir /)),1(()(  (Meuwissen and Sonesson, 

1998), where q is number of sex-age classes and L  is 
average generation interval of the sires and dams. Then, the 
objects of optimization are number of animals selected and 
genetic contribution of each animal in every sex-age class. 
Referring to the method of Grundy et al. (2000), 
contribution proportions of sex-age classes can be restricted 
by s (equation (8b)). For example, the structure of a 
population is defined as: 80% of the paternal contribution to 
next round of selection derives from the 2 year-old boar, 
20% of the paternal contribution derives from 3 year-old 
boar, 60% maternal contribution to next round of selection 
derives from 2 year-old sow, 30% of the maternal 
contribution derives from 3 year-old sow, 10% of the 
maternal contribution derives from 4 year-old sow, then, 

,)05.015.03.01.04.0( '=s and the corresponding 
')02.009.021.004.021.0(=r . 

 
Genetic model and simulation procedure  

The genetic gains obtained by optimizing both the 
emphasis given to the QTL in the selection criterion and the 
contributions of candidates over generations were modeled 
using stochastic computer simulations. Considering a 
breeding scheme of a nucleus population for pigs, days to 
100 kg (D100) and backfat to 100 kg (BF) were improved 
in this scheme. These two traits under selection were 
genetically controlled by an infinite number of additive loci, 
each with infinitesimal effect (polygene effect), plus two 
identified biallelic QTL (A1, A2 and B1, B2). The A1 and 
B1 were favorable to D100 and BF. Parameters of this 
scheme are listed in Table 1.  

The base population (t = 0) was composed of 10,000 
unrelated individuals (5,000 males and 5,000 females), and 
was created by one generation of random selection. The 
initial frequencies of the favorable alleles (A1 and B1) were 
0.15 for both QTL of D100 and BF. The QTL genotypes of 
individuals in the base population were determined using 
the random number generator of uniform distribution u(0,1) 
according to the initial frequency p of the favorable allele. 
In the base population, the polygene effect ui for each 
individual was obtained randomly from a normal 
distribution ),0( 2

uN σ . The QTL and polygenes were in 
gametic phase equilibrium. For an additive model, the 
genotypic value vi of QTL was )1(2/2 ppq −σ , )1(2/2 ppq −− σ  

and 0 for an individual with favorable, unfavorable and 
heterozygous genotype, respectively (Falconer and Mackay, 
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1996), where 2
qσ  was the genetic variance of QTL. Thus, 

the genetic value for individual i was: ai = ui+vi1+vi2, where 
vil and vi2 denote the genotypic value of QTL1 and QTL2, 
respectively. The phenotypic values of BF and D100 for an 
individual were calculated based on the linear model: 

 

ikliklkiikl ealhy ++++= μ                     (19) 
 

where, hi denotes the management class effect (including 
year, season and sex effect, etc.); lk denotes the litter effect; 
eikl denotes the residual effect. The year, litter and residual 
effect were obtained randomly from the normal distribution 

),0( 2σN based on these corresponding variances, 

respectively (Table 1). The effects of sex and season were 
determined according to Table 1. 

In subsequent generations, the offspring were generated 
by parents according to the mating system. The number of 
progeny for each mating was obtained randomly from the 
normal distribution )25.6,10(N  (for dynamic selection, the 
number of progeny of the dam was fixed as 10). The sex of 
an individual was determined by u(0,1) based on equal 
frequency (0.5 for both male and female). The first allele of 
the QTL1 for offspring was derived randomly from the two 
alleles of the sire, and the second allele of QTL1 was 

derived randomly from the two alleles of the dam. The 
allelic origin of QTL2 depends on the linkage phase of 
parents, the allelic origin of QTL1 and the recombination 
rate r. When the allelic origin of QTL1 was determined, the 
probability of allelic origin of QTL2 from parents was 
obtained based on Table 2. Then, using the uniform 
distribution u(0,1) based on the previous probability the 
genotype of QTL2 was obtained. The polygenic effect of 
the offspring was generated based on the formula 

idsi muuu ++= 2/12/1 , where us and ud are the polygenic 
effects of sire and dam, respectively; mi is the random 
Mendelian deviation. The latter was sampled from a normal 
distribution with mean zero and variance 

))(5.01(5.0 2
dsu FF +−σ , where Fs and Fd are the inbreeding 

coefficients of the sire and dam, respectively. The QTL 
alleles were transmitted from parents to offspring in 
classical Mendelian fashion. The phenotypic value for a 
progeny was calculated according to the model described in 
the base population. 

For generating a population with overlapping 
generations, we simulated three years in advance based on 
random selection. The sires and dams were selected using 
the uniform distribution u(0,1) based on equal frequency for 
all candidates. Then, all these schemes were implemented 
again over 15 years based on the population with 

Table 1. Parameters of the nucleus breeding schemes for pigs 
Size of base population ♂: 5,000, ♀: 5,000 
Size of sow population 100 
Size of boar population for truncation selection 20 
Number of years evaluated 15 
Genetic contribution proportion of boar-age class 0, 0.8 and 0.2 
Genetic contribution proportion of sow-age class 0, 0.5, 0.3 and 0.2 
Traits evaluated and SD (in parenthesis) BF (2.5 mm) and D100 (16.7 d) 

Economic weight of trait BF: -1, D100: -0.7 
Value of season effect (spring-summer and autumn - winter)   BF: -0.1 and 0.1 mm, D100: -5 and 5 d 
Value of sex effect (male and female) BF: -1 and 1 mm, D100: -7 and 7 d 
Proportion of genetic, litter, year, and residual variance  
of BF relative to phenotypic variance  

0.5, 0.1, 0.05 and 0.35 

Proportion of genetic, litter, year, and residual variance  
of D100 relative to phenotypic variance  

0.3, 0.26, 0.04 and 0.4 

Number of QTL and QTL allele (in parenthesis) BF: 2 (2), D100: 2 (2)  
Initial QTL favorable allele frequency of BF and D100 0.15 (QTL1) and 0.15 (QTL2) 
Proportion of QTL variance of BF and D100 relative to genetic variance 15% (QTL1) and 10% (QTL2) 
Genetic distance between QTL1 and QTL2 6 cM 
BF and D100 denote backfat to 100 kg and days to 100 kg, respectively. 

Table 2. The probability of origin of alleles at the second QTL from the allele of parents 
Origin of allele 1,21,2

si QQ ⇐
 2,21,2

si QQ ⇐  1,22,2
di QQ ⇐  2,22,2

di QQ ⇐  
1,11,1

si QQ ⇐
 

1-r r 0 0 
2,11,1

si QQ ⇐  r 1-r 0 0 
1,12,1

di QQ ⇐  0 0 1-r R 
2,12,1

di QQ ⇐  0 0 r 1-r 
Subscript i, s and d denote individual, sire and dam, respectively. 
The first number of superscript denotes the QTL, and the second number denotes the allele. 
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overlapping generations. All these cases were replicated 50 
times. The end results were the mean values of all these 
replicates and standard errors were calculated from the 
variance among replicates.  

 
Estimation of breeding values 

All candidates were phenotyped and genotyped for the 
QTL prior to selection. Three types of schemes for 
estimation of breeding value were compared, and they are 
described below: 

Conventional BLUP selection (CBLUPS) : When the 
information on the QTL was not used, genetic evaluations 
were entirely based on phenotypic and pedigree information. 
The total estimated breeding value (including QTL and 
polygene) for an individual i (EBVi) was obtained from 
standard BLUP using the total additive genetic variance 

)( 22
uq σσ +  and the phenotypic values uncorrected for the 

QTL effect. In this case, the estimated breeding value was: 
 

ii gEBV ˆ=                                (20) 

 
where, 

iĝ  is total estimated breeding value of 

individual i. If there are multiple quantitative traits in 
selection schemes, then, the EBVs of multiple traits are 
aggregated with the corresponding economic weight. 
Therefore, the selection criterion in simulated populations 
was:  

 

100100 DDBFBF EBVwEBVwI +=                  (21) 

 
Standard QTL-assisted selection (SQS) : In schemes 

selecting directly on the QTL, it was assumed that all 
individuals had a known genotype for the QTL, and its 
effect was known without error (as the fixed effect). In 
these assumptions, the estimated breeding value was: 

 

iii quEBV += ˆ                              (22) 

 
where, iû  is the estimate of polygenic breeding value; 

qi is the sum of the breeding value due to the QTL effect. 
The estimate iû  was obtained from standard BLUP using 

the polygenic variance )( 2
uσ  and the phenotypic values 

corrected for the QTL effect ).( '
iii qyy −=  For an additive 

model, the breeding value of the QTL with two alleles was 
2(1-p)a, -2pa and ((1-p)-p)a for individuals with genotype 
A1A1, A2A2 and A1A2 respectively (Falconer and Mackay, 
1996). The frequency p was updated each cycle of selection 
to obtain qi. If there were multiple traits, EBV was 
calculated according to formula (21).  

Optimal QTL-assisted selection (OQS) : In OQS 

schemes, the objective was to maximize the cumulative 
response in the terminal generation, and the selection 
criterion was: 

 

iii quEBV λ+= ˆ                           (23) 
 
where, iû  is the estimate of polygenic breeding value; 

λ is the optimal weight given to qi. According to the theory 
of Chakraborty et al. (2002), the optimization program 
provides an optimal vector of proportion selected for all sex, 
genotypes and generations. Based on the standard normal 
distribution theory, these proportions can be used to derive 
the standardized truncation point that is associated with 
genotype. Following Dekkers and van Arendonk (1998), 
differences in truncation point between genotypes were 
translated to the differences between means between 
genotypes:  

 

jtktreftreftk XX σθθ )( ,,,, −=−                 (24) 

 
where ref refers to an arbitrary reference genotype. The 

means derived by (24) quantify the emphasis (λ) that is put 
on each QTL genotype in (23) relative to reference 
genotype. These will be referred to as optimal genotype 
values (λqi). Then, the selection index was: 

 

ijktjtktreftrefijkt EBVXXI +−+= σθ )( ,,,           (25) 

 
where EBVijkt is the polygenic EBV of animal i and was 

obtained as SQS; Xk,t is the truncation point of the kth 
genotype in year t and was obtained by the method of Tang 
and Li (2006) in a population with two quantitative traits 
and overlapping generations. Finally, the aggregate EBV 
was calculated according to the formula (21).  

 
Selection procedure  

For three types of breeding value estimation method 
described above, two types of selection procedures were 
considered in selection schemes. 

Standard truncation selection (TS) : A fixed number of 
individuals (Ns males and Nd females) with the highest 
estimated breeding values were selected to be parents of the 
next cycle. Each sire mated at random to Nd/Ns dams, and 
each dam mated to a single sire.  

Dynamic selection (DS) : The number of parents and 
their contributions to the next generation are dynamic. 
Selection on a quadratic index that optimizes the number of 
animals selected and their contribution maximizes the 
genetic gain while restricting the rate of inbreeding to a 
predefined value in a population with different lifetimes for 
sires and dams. The detailed method of optimization was 
described previously (section 2.1. and 2.2.). In a time period 
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of selection, a boar can mate with several sows, and a sow 
has to mate with a boar because a sow procreates generally 
once. For the breeders, they want every dam to be mated in 
a reproduction period. In this case, the optimization of 
contribution on sow has little meaning. Thus, the 
contributions of sows were fixed in this paper, and the 
contributions of boars were optimized according to formula 
(15), (16) and (17). For purposes of comparison, the rate of 
inbreeding in dynamic selection was restricted to be the 
same as the mean annual rate of inbreeding in truncation 
selection over the planning horizon. Following Villanueva 
(2004), selection decisions for OQS-DS were optimized in 
two steps. Firstly, the SQS-DS scheme was run, and the 
optimal number of males and females selected and the 
accuracies of EBV for both sexes obtained from this 
scheme were used as the inputs for OQS to obtain the 
optimal QTL genotype value over generations (Tang and Li, 
2006). Secondly, contributions of candidates were 
optimized based on OQS.  

 
RESULTS 

 
Selection response and rate of inbreeding  

Annual genetic gain and annual rate of inbreeding over 
15 years on standard truncation selection and dynamic 
selection for OQS, SQS and CBLUPS are listed in Table 3. 
As expected, under DS, the annual genetic gains of the total 
component for aggregate breeding value (ABV) for three 
selection strategies were greater than the corresponding TS. 
DS in the SQS scheme resulted in the greatest increment of 
gain, followed by OQS and then CBLUPS. From Table 3, 

for three selection strategies DS increased mainly the 
genetic gain of D100. The selection response of BF for DS 
was not as good as TS because the QTL response of BF was 
decreased in DS. As TS, under DS, OQS mitigated 
substantially the Gibson effect and obtained the greatest 
selection response in three selection strategies. The 
combination for OQS and DS further increased the selection 
response.  

For three selection strategies, the annual rate of 
inbreeding on dynamic selection was restricted successfully 
as the annual rate of inbreeding on truncation selection 
(Table 3 and Figure 1). From Table 3, SQS resulted in the 
greatest annual rate of inbreeding, followed by OQS. 
CBULPS resulted in the smallest annual rate of inbreeding. 
The optimal numbers of boars on DS for SQS and OQS 
were smaller than the numbers of boars on TS (fixed 
number), but the number for CBLUPS was a little larger 
than that on TS. They all decreased with the increase of 
annual rate of inbreeding.  

The trends of cumulative gain about ABV and average 
inbreeding coefficient for OQS, SQS and CBLUPS in two 
selection procedures are illustrated in Figure 1. The increase 
of inbreeding was strictly controlled by DS, which 
increased following an approximate beeline using the fixed 
rate in the three selection schemes. SQS resulted in the 
greatest difference of movement trend for inbreeding 
coefficient between DS and TS, followed by OQS. The 
smallest was CBLUPS, and its inbreeding curve in TS 
increased according to a fixed rate that was similar to DS. 
For three selection strategies, the cumulative gain was 
improved more rapidly in the forepart and then slower in 

Table 3. Annual genetic gains (∆G) and annual rates of inbreeding (∆F) on truncation selection and dynamic selection for OQS, SQS and 
CBLUPS 

Truncation selection Dynamic selection Selection 
strategy 

Response 
component Ns

 ∆GBF
 ∆GD100 ∆GABV ∆Fyear Ns

 ∆GBF
 ∆GD100 ∆GABV ∆Fyear

Polygene -0.30 
(91.90) 3 

-3.19 
(92.73) 

2.54 
(92.63) 

-0.31 
(103.18) 

-3.51 
(101.69) 

2.77 
(101.86) 

QTL -0.30 
(202.92) 

-1.57 
(118.72) 

1.40 
(130.30) 

-0.24 
(173.38) 

-1.44 
(103.74) 

1.25 
(112.57) 

OQS 

Total  

20 

-0.60 
(126.08) 

-4.76 
(99.94) 

3.94 
(103.22) 

0.0111 14.42

-0.56 
(125.42) 

-4.96 
(102.28) 

4.03 
(104.97) 

0.0113

Polygene -0.28 
(83.80) 

-2.87 
(83.35) 

2.29 
(83.40) 

-0.29 
(94.25) 

-3.19 
(92.28) 

2.52 
(92.50) 

QTL -0.27 
(184.74) 

-1.62 
(122.36) 

1.40 
(130.93) 

-0.24 
(170.75) 

-1.65 
(118.36) 

1.39 
(125.00) 

SQS 

Total  

20 

-0.55 
(114.87) 

-4.49 
(94.17) 

3.69 
(96.77) 

0.0131 12.32

-0.53 
(118.48) 

-4.83 
(99.76) 

3.91 
(101.94) 

0.0132

Polygene -0.33 -3.44 2.74 -0.30 -3.46 2.72 
QTL -0.15 -1.32 1.07 -0.14 -1.39 1.11 

CBLUPS 

Total  

20 

-0.48 -4.77 3.82 

0.0075 20.62

-0.45 -4.85 3.84 

0.0076

Ns denotes the average annual optimal number of sires.  
Subscript BF, D100 and ABV denote backfat to 100 kg, days to 100 kg, and aggregate breeding value, respectively  
In parenthesis, response for OQS and SQS are also expressed relative to response for CBLUPS.  
The sampling standard errors ranged from 0.03 to 0.09 for ∆GBF, from 0.09 to 0.33 for ∆GD100, from 0.08 to 0.26 for ∆GABV and from 1.06 to 1.29 for Ns in 
all cases. The standard error for ∆Fyear ranged from 0.0002 to 0.0005 in dynamic selection and 0.0007 to 0.0017 in truncation selection. 



Tang et al. (2008) Asian-Aust. J. Anim. Sci. 21(11):1559-1571 

 

1566 

back-part because genetic variance was decreased owing to 
the increase of inbreeding.  

 
QTL haplotype frequencies  

The curves in frequencies for three QTL haplotypes of 
BF and D100 are displayed in Figure 2 for SQS, OQS and 
CBLUPS. As described by Dekkers et al. (2002), for all 
these schemes the trends of frequency for the favorable 
haplotype A1B1 and the unfavorable haplotype A2B2 were 
to fixation and zero, respectively. The frequency for the 
haplotype A1B2 in the repulsion phase was, however, 
increased initially before reducing to zero. These trends for 

D100 in the SQS scheme were most rapid (Figure 2b), 
followed by the OQS scheme and then the CBLUPS 
scheme. These trends for BF in the OQS scheme were 
however, most rapid, followed by SQS and CBLUPS. 
Relative to TS, DS resulted in a slower movement trend for 
three haplotypes in the SQS and OQS schemes. 
Furthermore, they are more obvious in the OQS scheme.  

Quite different trends in haplotype frequencies are 
observed for OQS and SQS schemes (Figure 2). In the SQS 
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Figure 1. Cumulative gains (−) of ABV and average inbreeding
coefficients (---) for dynamic selection (♦) and truncation selection
(○) for SQS, OQS and CBLUPS.  
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Figure 2. Frequencies of A1B1 (dynamic: ♦, truncation: ◊), A1B2 
(dynamic: ●, truncation: ○), and A2B2 (dynamic: ▲, truncation: 
∆) of BF (−) and D100 (---) for SQS, OQS and CBLUPS.  
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scheme, the haplotype frequency for D100 rapidly trended 
to fixation or zero, the haplotype frequency for BF slowly 
trended, however, to fixation or zero. On the contrary, in the 
OQS scheme for both TS and DS the changing trends of 
haplotype frequency for D100 were more gradual than in 
the SQS scheme, but the trends for BF were more rapid. 
This showed that the optimization of emphasis given to 
QTL balanced substantially the relative weight between 
QTL and polygene in the selection criterion. Relative to 
SQS and OQS schemes, the movement trends of QTL 
haplotype frequencies were gentler in the CBLUPS scheme 
under TS. But under DS, unlike the SQS and OQS, the 
trends of QTL haplotype frequencies of D100 were more 
rapid in the CBLUPS scheme, and the trends of BF were 
similar to SQS and OQS. 

 
Effects of contribution of sire-age class 

A comparison of the rates of response and inbreeding 
obtained with truncation selection and dynamic selection 
with different contributions of sire-age classes for CBLUPS, 
SQS and OQS is shown in Table 4. The annual gains of 
ABV for SQS and OQS increased gradually following the 
increase of contribution of the first sire-age class (i.e. the 
generational interval decreased) in TS. The increment of 
gain for D100 was larger than that for BF. When s = (0.35, 
0.15) or s = (0.45, 0.05), DS resulted in more response than 
TS in CBLUPS, SQS and OQS. However, when s = (0.35, 
0.15) the annual gains of ABV for CBLUPS and OQS were 
smaller in DS than in TS and only the gain of ABV for SQS 
was larger. As expected, the annual rates of inbreeding 
decreased gradually following the increase of contribution 
of the first sire-age class in TS. When s = (0.35, 0.15) or s = 
(0.45, 0.05), DS successfully maintained annual rates of 
inbreeding at the corresponding value which resulted in TS 
for CBLUPS, SQS and OQS. However, when s = (0.35, 
0.15), annual rates of inbreeding for the three selection 
strategies were not restricted substantially as the 
corresponding value. This shows the constraints for s and 

rate of inbreeding will be more difficult following the 
increase of contribution of the second sire-age class.  

 
Effects of annual rate of inbreeding 

For OQS, SQS and CBLUPS, the average annual 
genetic gains and the cumulative terminal gains in DS with 
different annual rates of inbreeding (Kim et al., 2006) are 
listed in Table 4. At the same annual rate of inbreeding, 
SQS resulted in the greatest optimal number of sires, 
followed by OQS. The smallest was CBULPS. The optimal 
number of sires was decreased obviously with the increase 
of annual rate of inbreeding that was defined in advance 
(Table 4). Both the average annual genetic gain and the 
cumulative terminal gain for SQS were improved following 
the increase of the annual rate of inbreeding. They were 
decreased, however, following the increase of the annual 
rate of inbreeding in the CBLUPS scheme. OQS resulted in 
the greatest annual genetic gain and cumulative terminal 
gain when the annual rate of inbreeding equaled 0.02, 
followed by equaling to 0.03 and 0.01.  

Figure 3 shows the cumulative genetic gain and average 
inbreeding coefficient for SQS, OQS and CBLUPS in DS 
with different annual rates of inbreeding. The annual rates 
of inbreeding for three selection strategies were restricted to 
a predefined value by DS, and the inbreeding coefficient in 
the terminal generation were similar for SQS, OQS and 
CBLUPS. The rate of inbreeding in the CBLUPS scheme 
was controlled more easily, followed by OQS and SQS 
schemes. The curve of average inbreeding coefficient in 
OQS and SQS schemes represents slight fluctuation. 
Comparing these curves for SQS, OQS and CBLUPS, the 
rate of inbreeding can be controlled more easily by DS to a 
smaller predefined value. For all three selection strategies, 
while annual rate of inbreeding equaled 0.01, the 
cumulative gain was improved most slowly in the forepart, 
then the followed was to equal 0.01 and 0.02. This is 
because the larger annual rate of inbreeding is favorable to 
select those animals with closer coancestry, furthermore, 

Table 4. Annual genetic gains (∆G) and annual rates of inbreeding (∆F) on truncation selection and dynamic selection for OQS, SQS and 
CBLUPS with different contributions of sire-age classes 

Truncation selection Dynamic selection S Selection 
strategy Ns

 ∆GBF
 ∆GD100 ∆GABV ∆Fyear Ns

 ∆GBF
 ∆GD100 ∆GABV ∆Fyear

CBLUPS 20 -0.47 -4.80 3.83 0.0080 18.11 -0.40 -4.76 3.73 0.0083
SQS 20 -0.55 -4.40 3.63 0.0138 11.17 -0.51 -4.61 3.74 0.0145

(0.35, 0.15) 

OQS 20 -0.60 -4.69 3.88 0.0118 13.29 -0.54 -4.73 3.85 0.0124
CBLUPS 20 -0.48 -4.77 3.82 0.0075 20.62 -0.45 -4.85 3.84 0.0076
SQS 20 -0.55 -4.49 3.69 0.0131 12.32 -0.53 -4.83 3.91 0.0132

(0.4, 0.1) 

OQS 20 -0.60 -4.76 3.94 0.0111 14.42 -0.56 -4.96 4.03 0.0113
CBLUPS 20 -0.51 -4.90 3.94 0.0072 23.19 -0.46 -5.03 3.98 0.0071
SQS 20 -0.56 -4.53 3.74 0.0130 13.99 -0.54 -5.06 4.08 0.0127

(0.45, 0.05) 

OQS 20 -0.62 -4.77 3.96 0.0107 16.00 -0.58 -5.13 4.17 0.0106
S denotes the vector restricted for contributions of sire-age classes. 
The standard errors ranged from 0.03 to 0.09 for ∆GBF, from 0.09 to 0.38 for ∆GD100, from 0.08 to 0.27 for ∆GABV and from 1.06 to 1.60 for Ns in all cases; 
the standard error for ∆Fyear ranged from 0.0002 to 0.0005 in dynamic selection and 0.0007 to 0.0021 in truncation selection. 
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these animals have similar genetic levels because of their 
coancestry. So, the corresponding cumulative gain of ABV 
was improved more rapidly following the increase of annual 
rate of inbreeding in the forepart. However, the genetic 
variation was decreased gradually following the increase of 
inbreeding. So, the increment of cumulative gain was 
decreased more rapidly in the back-part with the increase of 
inbreeding. Finally, the cumulative gains for three annual 
rates of inbreeding were similar in the terminal year for 

CBLUPS, SQS and OQS.  
 

DISCUSSION 
 
In this paper, a method was developed to optimize the 

genetic contribution of individuals in a population with 
overlapping generations and different lifetimes for sires and 
dams. This rule maximizes genetic merit of selected 
individuals while restricting the rate of inbreeding to a 
predefined value. As described by Meuwissen and Sonesson 
(1998), this paper also controls the increase of average 
additive genetic relationship for parents selected by 
constraining the rAr t 1' +  term of year t+1, and further 
restricts the increase of average inbreeding for new 
offspring. However, for optimizing the contribution of 
selected parents in a population with different lifetimes 
between sires and dams, the population has to be divided 
into sex-age classes according to the method of Hill (1974) 
and not be divided into age classes based on the methods 
described by Meuwissen and Sonesson (1998) and Grundy 
et al. (2000). Then, the long-term contribution vector r and 
average additive genetic relationship 1+tA  need to be 
defined again in terms of sires and dams, respectively. 
Under these conditions, the Lagrange function of the 
optimization problem was further reconstructed, and 
obtained the corresponding formulas of Lagrange 
multipliers and optimal ct.  

As described by Meuwissen and Sonesson (1998), this 
extended rule was also based on the year to constrain the 
increase of annual rate of inbreeding. It is favorable to 
practical breeders, because they want to control the 
inbreeding depression, variance reduction due to inbreeding 
and the risk of the breeding scheme in a fixed number of 
years (for example five years), and not in a fixed number of 
generations, consequently to maximize the economic profit 
of breeding over years. However, from a theoretical and 
long-term perspective, a limit on the inbreeding per 
generation may be more appropriate because those factors 
that counteract the detrimental effects of inbreeding occur 
on a per-generation basis. Classical examples of these 
factors are natural selection and mutations that occur during 
meiosis. After comparison between the method of 
Meuwissen and Sonesson (1998), based on the constraint of 
inbreeding per year, and the method of Grundy et al. (2000), 
based on the restriction of inbreeding per generation, 
Sonesson et al. (2000) found that constraint of inbreeding 
on a per generation basis resulted in shorter generation 
interval. This enhances the chance to cull animals at 
younger ages. It is favorable to increase the transmission 
rate of gain. However, it also leads to an increase in 
breeding cost, and may not be appropriate for practical 
breeders. In addition, the “year” in the extended rule 
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Figure 3. Cumulative genetic gains (−) of ABV and average
inbreeding coefficients (---) for dynamic selection for three
selection strategies with rate of inbreeding equaling to 0.01 (♦), 
0.02 (▲), and 0.03 (○).  



Tang et al. (2008) Asian-Aust. J. Anim. Sci. 21(11):1559-1571 

 

1569

implies an interval of selection period (from the selection of 
parents to the selection of new offspring), and changes 
following a change of livestock (such as 6 months for pigs, 
1 year for cattle). For convenience, it was assumed to be 
one year. Therefore, the extended dynamic rule constrained 
the rate of inbreeding based on per selection period, and so 
it also considered these factors based on the generation in a 
breeding scheme.  

In a selection period, a sire may mate with multiple 
dams and a dam has to mate commonly with a sire. In other 
words, a dam only procreates one time in a reproduction 
cycle. Following the rapid development of reproductive 
biotechnology, now a dam can also procreates multiple 
times (such as multiple ovulation and embryo transfer, 
MOET). Unfortunately, these biotechnologies are not 
implemented on a large scale in a practical breeding scheme. 
In addition, practical breeders generally let the number of 
dams denote the size of the population, and let every dam 
have the same contribution to offspring. In this case, the 
contributions of the dams do not need to be optimized, and 
the optimization of contributions for the sires has the more 
important value. Thus, for matching to a practical breeding 
program, this paper only optimized the number and 
contributions of sires selected, and the number and 
contributions of dams were determined in advance. 
Certainly, this strategy inevitably causes some loss of 
selection response, because the dams also have half 
contributions to offspring in a breeding scheme. 

Meuwissen and Sonesson (1998) and Grundy et al. 
(2000) optimized the long-term contribution vector r using 
iteration method and annealing method, respectively. 
However in a small simulated population, if EBVs of the 
animals in some sex-age classes are too large or too small, it 
will cause the animals of some sex-age classes to be fully 
selected or eliminated in the optimization process. For 
example, if the lifetime of an animal is 3 years, and the 
EBVs of animals for sex-age class 3 are very large, these 
animals will be totally selected by DS. Furthermore, the 

optimal contributions for them will be very large. In this 
case, the animals of sex-age class 2 may be eliminated 
entirely, but the animals of sex-age class 3 also have to be 
fully eliminated the next year (surpassing the service 
lifetime of the animal). So, it inevitably causes the 
population to fluctuate in the planning horizon. This case 
was met by the author in optimizing simultaneously r and ct 
using an iteration method (results not shown). For avoiding 
this case, the sum of contributions for each sex-age class 
can be restricted to a fixed proportion by s according to the 
method described by Grundy et al. (2000). Then, the genetic 
contributions of all these sex-age classes will be determined 
in advance.  

Although only a limited number of scenarios were 
investigated, the results indicate that the extended rule can 
strictly constrain the annual rate of inbreeding to a 
predefined value for SQS, OQS and CBLUPS, and can 
obtain greater selection response than TS in a population 
with overlapping generations and different lifetimes 
between sires and dams. This paper also shows that the 
combination of the extended rule and the optimization of 
emphasis given to QTL can further increase the selection 
response, and substantially solve the conflict between short-
term and long-term selection response for GAS. A similar 
increment for gain was produced by optimizing 
contributions of selection candidates and emphasis given to 
QTL, respectively. Optimization of the emphasis given to 
QTL over years had, however, a greater impact on avoiding 
the long-term loss usually observed in these schemes.  

Most results indicated that SQS resulted in the greatest 
relative advantage for DS over TS, followed by OQS and 
then CBLUPS (Tables 3 and 4; Figure 1). Furthermore, 
most increase of these relative advantages for the three 
selection strategies was produced from the polygenic 
component, and the top-down order of increment size was 
SQS, OQS and CBLUPS. It is known that SQS results in 
the loss of long-term selection response (Gibson, 1994; 
Ruane and Colleau, 1995; Pong-Wong and Woolliams, 

Table 5. Annual genetic gains and terminal cumulative gains on dynamic selection for OQS, SQS and CBLUPS with different rates of 
inbreeding 

Annual rate of inbreeding 
0.01 0.02 0.03 

Selection 
strategy 

Response 
component 

Ns ∆GABV
 ∆G15

 Ns ∆GABV
 ∆G15

 Ns ∆GABV
 ∆G15

 

Polygene 2.66 37.30 2.72 38.15 2.68 37.49 
QTL 1.19 16.67 1.20 16.79 1.18 16.49 

OQS 

Total  

16.98 

3.85 53.97 

6.82 

3.92 54.94 

4.58 

3.86 53.98 
Polygene 2.38 33.37 2.42 33.82 2.48 34.65 
QTL 1.38 19.28 1.38 19.25 1.37 19.24 

SQS 

Total  

18.07 

3.76 52.64 

7.56 

3.79 53.07 

5.00 

3.85 53.89 
Polygene 2.81 39.29 2.84 39.70 2.78 38.92 
QTL 1.08 15.17 1.05 14.66 0.98 13.72 

CBLUPS 

Total  

15.31 

3.89 54.46 

6.15 

3.88 54.36 

4.12 

3.76 52.64 
G15 denotes the terminal cumulative response of ABV. 
The standard errors ranged from 0.23 to 0.54 for ∆GABV, from 0.60 to 1.47 for Ns and from 3.30 to 7.64 for G15 in all cases. 
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1998). The cause of loss for the long-term selection 
response is that QTL is given high emphasis in early 
generations, and reduces the selection intensity of 
polygenes, consequently resulting in a reduced early 
response at polygenes. This loss is not fully recovered 
during the later generations of selection due to the non-
linear relationship between selection pressure and selection 
response in a finite population with an infinitesimal model. 
According to the illustration by Villanueva et al. (2004), 
dynamic selection that obtains the optimal contributions 
attempts to i) make the contribution of a candidate to the 
next generation equal to its desired long term contribution 
conditional on the observed information, and ii) uses the 
estimated Mendelian sampling term as the selective 
advantage and not the breeding value. Therefore, in each 
generation of selection, a considerable part of the selection 
pressure will be within families by DS, and between-family 
selection will be kept to the minimum. The probability of 
identity for the favorable QTL genotype between animals is 
very large when a family has high favorable QTL allele 
frequency. Then, the selection of parents will mainly 
depend on the size of polygenic effect (high emphasis given 
to polygenes), and within-family selection will give little or 
no decrease of selection intensity for polygenes. Thus, to a 
certain extent, it can reduce the loss of early polygenic 
response. In other words, following the increase of 
favorable QTL allele frequency in a family, the selection 
within family will gradually enhance the selection pressure 
given to the polygenic component in the process of DS. In 
the SQS-DS scheme, because the frequencies of favorable 
QTL alleles rapidly reach fixation in early generations 
(within 6 generations), so, the early polygenic selection 
pressure under DS has little reduction, which finally results 
in more polygenic response over the planning horizon. In 
the OQS-DS scheme, the weight given to the polygene has 
been increased by the optimization of relative emphasis 
given to QTL in the first step and, to a certain extent, the 
loss of early polygenic response has been lessoned. Thus, in 
the second step, the space for increasing the frequency of a 
favorable QTL allele to reduce the loss of early polygenic 
response under DS is smaller than the corresponding SQS 
scheme. For the CBLUPS, there is nearly no loss of early 
polygenic response, so the extra early polygenic response 
under DS is very little.  

Several interesting features were observed from these 
simulated results, which deserve further discussion. First, 
SQS resulted in the greatest annual rate of inbreeding, and 
obtained the smallest genetic gain in the long term under TS 
(Table 3). Second, SQS resulted in the largest optimal 
number of sires, and CBLUPS resulted in the smallest 
optimal number of sires while constraining the annual rate 
of inbreeding to a given value under DS (Tables 3 and 4). In 
the process of TS, within-family and between-family 

selection are given equal selection pressure by SQS, but the 
selection intensity given to QTL is larger than polygenes. 
For a favorable QTL allele, from the staring of mutation, it 
has been given very high selection intensity by SQS that 
maximizes the selection response from current generation to 
next generation. In this process of selection, other 
polygenes are given a little emphasis (i.e. all individuals 
with this favorable QTL allele are selected, and the size of 
polygenic effect not considered), which finally results in the 
loss of early polygenic response. However, these 
individuals with this QTL allele come from a common 
ancestor that produces this QTL allele; so, there is some 
kindredship between them. In this case, SQS resulted in a 
rapid increase of inbreeding, and obtained the smallest 
selection response. For CBLUPS, an individual is selected 
based on the EBV of this individual (including QTL and 
polygenes). This selection criterion may put more emphasis 
on polygenes, because the polygenic effects are generally 
larger. Therefore, CBLUPS did not result in the extra 
increase of inbreeding due to the QTL component, and 
obtained a high selection response in the long term. For the 
same reason, while constraining the rate of inbreeding to a 
given value, DS needs to select more animals with a little 
kindredship to reduce the increase of inbreeding in the SQS 
scheme and needs fewer animals in the CBLUPS scheme, 
because the average relationship of animals selected in the 
CBLUPS scheme is smaller than that in the SQS scheme.  
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