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INTRODUCTION 
 
Artificial insemination plays an important role in animal 

breeding by allowing greater utilization of genetically 
superior sires. The opportunity for genetic improvement of 
male fertility traits has been previously shown (Brandt and 
Grandjot, 1998; Oh et al., 2006). However, appropriate 
statistical methods for analysis of semen traits in pigs has 
not been extensively studied. Total sperm cells per ejaculate 
are longitudinal data whereas volume changes over age. In 
previous studies, this type of data was analyzed by multiple 
trait methods choosing the most important time points as 
separate traits. Because of the number of potential 
observations over the lifetime of a boar, it would be difficult 
to thoroughly analyze this type of data due to computational 
limits. Semen data have also been analyzed similarly to 
growth curves ignoring genetic effects (Morant and 
Gnanasakthy, 1989), or were considered simple repeated 
measurements ignoring time dependency.  

In many cases, the assumption of a univariate repeated 
model is not appropriate while a full multivariate model 
with the number of traits equal to the number of ages would 

result in a highly over-parameterized analysis (Meyer and 
Hill, 1997). Random regression models (RRM) developed 
by Meyer (1998) have been extensively applied to the test-
day model analysis of milk yield of dairy cattle (Olori et al., 
1999; Strabel and Misztal, 1999; Meyer, 2000) and have 
also been fitted to weight data of pigs (Huisman et al., 
2002). RRM provide a method for analyzing independent 
components of variation that reveal specific patterns of 
change over time. 

Evidence has been reported that changes in animal 
performance with increasing age are influenced by genetic 
factors. Animal breeders are interested in genetic 
parameters that describe the change of traits over time. 
Analysis of these changes can be undertaken using 
repeatability (Henderson, 1984), multiple trait (Reents et al., 
1995) or random regression models. Random regression 
allows for the calculation of (co) variances at every age 
(Meyer, 1998). Multiple trait animal models have 
traditionally been used for traits measured over time by 
defining observations at distinct ages as different traits. 
However, computational requirements need to explain the 
number of traits equal to the number of ages (Meyer and 
Hill, 1997). 

Accordingly, records collected over ages are often 
analyzed as repeated measurements or as different traits that 
are separated by specific intervals. However, it is the object 
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of interest how much RRM is better than multi-trait analysis. 
The objective was to compare the (co) variance of total 
sperm cells (TSC; ×109) over the active lifetime of AI boars 
between RRM and a multi-trait animal model. 

 
MATERIALS AND METHODS 

 
Data source  

Records of total sperm cells per ejaculate (n = 19,629) 
from 834 boars were provided by Smithfield Premium 
Genetics (Rose Hill, NC). One thousand seven hundred and 
thirty six individuals were included in the pedigree file. 
Boars represented three breeds and were housed in AI 
stations. Each AI station was similar in number of boars of 
each breed and management. Thirty-four collectors 
recorded these data over 5 years (1998 to 2002) with 
approximately one-half of all records in 2000. Data were 
distributed evenly across seasons. Total sperm cells per 
ejaculate were determined by multiplying semen volume, 
measured as the weight of the ejaculate volume, by total 
concentration as measured using a self-calibrating 
photometer. Observations were removed when the number 
of data at a given age of boar classification time point was 
less than 10, or total sperm cells were missing, zero or less 
than zero. Differences between boar collection date and 
birth date were used to provide each record with a fixed age 
of boar classification in weeks for RRM. When a boar had 
two observations during one week of age the record closest 
to the whole week was utilized.  

For the multiple trait analyses, records were edited to 
include only records produced at 9, 12, 15, 18, 21, 24, and 
27 months of age and were used as separate traits. Number 
of observations at 9, 12, 15, 18, 21, 24, and 27 months of 
age were 305, 413, 370, 306, 248, 200 and 109, respectively. 
Number of animals with valid records was 750. Frequency 
of records was highest at 12 months of age, decreasing 
gradually over time. 

 
Multiple trait animal model  

Least square means were estimated for the fixed effects 
of breed and AI station, and differences within fixed effects 
were compared by least significant differences using the 
PDIFF option in SAS 8.01 (SAS Institute Inc., Cary, NC). 
The statistical model included fixed effects of year-season, 
breed, collector, and AI station.  

Variance components for the multiple trait analyses 
were estimated by derivative free REML using 
MTDFREML (Boldman et al., 1995). Fixed effects for the 
model were year-season, breed, collector and AI station. 
Convergence was considered to have been reached when 
the variance of the -2 log likelihood in the simplex was less 
than 1×10-9. To obtain convergence, as well as standard 

errors for parameter estimates, the seven ages classifications 
of total sperm cells were evaluated in five trait analyses. 
Therefore, twenty-one combinations of five trait analyses 
were conducted. The results presented are the means for 
each parameter estimate, and standard deviations were 
considered as standard errors. 

The multiple trait model was as follows: 
 
Yijklmn = μ+Ai+YSj+Bk+Cl+Fm+eijklmn 

 
where, μ is overall mean, Ai is the random additive 

genetic effect of ith animal, YSj is the fixed effect of jth year-
season, Bk is the fixed effect of kth breed, Cl is the fixed 
effect of lth collector, Fm is the fixed effect of mth AI station, 
and eijklmn is measurement error. The vector presentation of 
this model is: Y = Xb+Zu+e where Y is the vector of 
observations for all traits, b is a vector of common fixed 
effects due to year-season, breed, collector and AI station, u 
is a vector of random genetic effects, e is a vector of 
residuals, X and Z are incidence matrices relating 
observations to the fixed and animal effects and E [y′ u′ e′]′ 
= [b′X′ 0′ 0′]′. Variances of the random variables were: 
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Where, ⊗ denotes a direct product operation, GO, and 

RO are genetic and residual covariance matrices, with order 
equal to the number of traits in the analysis, and A is the 
numerator relationship matrix. 

 
Random regression model 

Random regression procedures are fully described in Oh 
et al. (2006). Parameters were estimated for total sperm 
cells by age of boar classification under a random 
regression model using DxMRR (Meyer, 1998). The 
analysis model included breed, collector and year-season as 
fixed effects; additive genetic effects, permanent 
environmental effect of boar and measurement error as 
random effects. Random regression models were fitted to 
evaluate all combinations of first- through seventh-order 
polynomial covariance functions for fixed age of boar 
classification, additive genetic and permanent 
environmental effects. This resulted in the evaluation of 343 
models. Goodness of fit for models was tested using log 
likelihood value, Akaike’s Information Criterion (AIC) and 
Schwarz Criterion (SC) (Oh et al., 2006). 

 
p  2  2logL-  AIC ×+=  

 
r(X)) - N ( logp  2logL-  SC ×+=   
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Where, p is the number of parameters estimated and 
r(X) is the rank of the coefficient matrix of fixed effects.  

The general model is 
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where yij is the jth record from the ith animal, wij is the 

standardized (-1 to 1) age at recording, φn(wij) is the nth 
Legendre polynomial of age, Fij is a set of fixed effects, βn 
are the fixed regression coefficients to model the population 
mean, αin are the random regression coefficients for 
additive genetic effects, and δin are the random regression 
coefficients for permanent environmental effects, 
respectively. kF, kA, and kP denote the corresponding orders 
of fit. 

 
In matrix notation,  
 
y = Xb+Za+Cp+ e 
 
Where,  
y: vector of N observations measured on ND animals 
b: vector of fixed effects (including Fij and βn) 
a : vector of kA×NA additive genetic random regression 

coefficients 
p: vector of kR×ND permanent environmental random 

regression coefficients 
e : vector of N measurement errors 
X, Z and C: corresponding design matrices 
kA and kR: the order of fit for a and p and corresponding 

genetic and permanent environmental covariance function A 
and R. 
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KA and KP are the matrices of coefficients of the 
covariance function for additive genetic and permanent 
environmental effects. A is the numerator relationship 
matrix, and I is an identity matrix. It is assumed that all 
measurement errors are equal. 

 
RESULTS AND DISCUSSION 

 
Multiple trait animal model analyses  

Mean and standard deviation of total sperm cells 
increased with age (Table 1). Coefficient of variation was 
the highest at 9 months of age and lowest at 27 months of 
age, however, there was not much difference among ages 
(Table 1). Breed 3 showed significantly more total sperm 
cells than both breeds 1 and 2 only at 15, 21 and 24 months 
of age (p<0.05; Table 2). At 9, 12 and 18 months of age, 
breed 3 had more total sperm cells than breed 1 but not 
breed 2 (p>0.05) as shown in Table 2. Also, there was no 
breed effect observed at 27 months of age in the comparison 
of total sperm cells produced. Artificial insemination 
stations did not differ (p>0.05) except at 15 months of age. 
There was no AI station by age interaction (p>0.05). 

Estimates of genetic variance (Table 3) for total sperm 
cells were lower for boars 9, 12 and 15 months of age. The 
genetic variance for total sperm cells was also much higher 
at 24 months as compared to all other ages, which may be 
due to sampling of records. Estimates of permanent 
environmental variance (Table 3) for total sperm cells were 
close to zero and did not differ across age classifications. 
Estimates of residual variance (Table 3) for total sperm cells 
were lower at 9, 12 and 27 months and higher at 15, 18 and 
21 months. A significantly lower residual variance was 
observed for total sperm cells at 24 months. Again, this may 
be due to sampling of records. These results suggest that 
both genetic and residual variance for total sperm cells over 
age classifications are heterogeneous and possibly different 
traits.  

Heritability estimates for total sperm cells were similar 

Table 1. Number of total sperm cell records and simple statistics by age of boar classification for multiple trait analyses 
Age (month) 9 12 15 18 21 24 27 
Number of records 305 413 370 306 248 200 109 
Mean (×10-9) 85.16 106.3 114.3 117.9 115.5 116.4 125.8 
SD 36.42 40.21 43.89 44.81 44.83 44.19 42.06 
CV 42.77 37.85 38.41 38.02 38.83 37.98 33.43 

Table 2. Least squares means of total sperm cells (×10-9) for breed and farm by age of boar 
Age (month) 9 12 15 18 21 24 27 
Breed 1 69.89a 97.22a 99.47a 101.5a 107.8a 123.3a 105.3a 
Breed 2 76.11ab 105.7ab 104.2a 110.3ab 109.9a 116.7a 112.1a 
Breed 3 79.36bc 108.8bc 117.7c 122.8bc 130.0c 142.0c 109.8a 
AI station 1 81.80a 109.8a 118.9a 120.2a 120.2a 122.4a 120.0a 
AI station 2 68.43a 97.97a 95.37b 102.9a 111.6a 132.2a 98.15a 
H0: LSMean (i) = LSMean (j) (p<0.05). 
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across age classifications with the exception of 24 months 
of age (Table 3). Heritability of total sperm cells at 24 
months of age was high because of high genetic variance 
and the low residual variance at that age. This may be due 
in part to selection of records for specific age points. 
Heritability estimates in this study were similar to those 
reported in the literature. Masek et al. (1977) estimated 0.24 
as repeatability using two-factorial hierarchical analysis of 
variance. Du Mesnil du Buisson et al. (1978) reported that 
the heritability for the number of spermatozoa produced per 
ejaculate in comparable collection rate conditions was 0.35, 
even though the standard deviations were too high to affirm 
interpreting the results. Huang and Johnson (1996) 
estimated repeatability of total number of sperm (billion) as 
0.26 for three collections per week, and 0.16 for daily 
collections. On the other hand, Brandt and Grandjot (1998) 
reported that heritability and repeatability of number of 
sperm cells was 0.24 and 0.46 on average, respectively. 

Genetic and residual correlations between measures of 
total sperm cells at different ages averaged 0.64 and 0.30, 
respectively (Table 4). Genetic correlations between 
adjacent ages were higher than those between more distant 
ages. Decreasing genetic correlations with increasing age 
may also be due to the limited amount of data and the 
selection of records to defined age ranges. Huisman et al. 
(2002) reported a similar observation in an evaluation of pig 
body weights.  

 
Random regression model analysis  

Results from the random regression analysis are 
presented in Oh et al. (2006). In brief the random regression 
model, fitting 6th, 5th, and 7th order for fixed, additive 
genetic and permanent environmental effects showed the 

largest log likelihood value. This model was the 4th best 
fitting model based on AIC and the 52nd best fitting model 
based on SC. AIC showed best fit when, respectively, 6th, 
4th, and 7th order fixed, additive genetic and permanent 
environmental effects were fitted. This was the 3rd best-
fitting model based on log likelihood and 20th best-fitting 
model based on SC. Schwarz Criterion showed the best fit 
when 4th, 2nd, and 7th order polynomials were fitted for 
fixed, additive genetic and permanent environmental effects, 
respectively. This model was ranked with the 10th best fit 
by log likelihood and 2nd best-fitting model by AIC. Based 
on the conservative nature of SC and the relative ranking by 
the other criterion, this model may be the best overall fit. 
Heritability estimates for total sperm cells over weeks of 
age ranged from 0.27 to 0.48. Standard deviations tended to 
decrease from 33 weeks of age to about 45 weeks, 
maintained consistent intervals by 100 weeks of age and 
then increased rapidly. This increase in variance closely 
follows the numbers of total sperm cells records over age. 

 
Comparison between models  

Estimates of genetic parameters from both multiple trait 
and random regression methods would indicate that 
measures of total sperm cells at different ages are 
genetically different traits. Figure 1 shows the comparison 
of heritability estimates between the three best-fit models 
determined from random regression model analysis and the 
evaluation of seven ages by multiple trait animal model 
analyses. The results are similar except for the heritability at 
24 months of age from the multiple trait method that had 
very high genetic variance. Other than 24 months, the 
results are consistent but it appears that the multiple trait 
method resulted in a higher estimate of heritability of total 

Table 3. Estimates of genetic variance (σ2
a), permanent environmental variance (σ2

pe), residual variance (σ2
e) and heritability (h2) across 

age classifications for total sperm cells over the active lifetime of AI boars 
Age (month) 9 12 15 18 21 24 27 
σ2

a±SE 320±57 390±60 439±47 487±88 512±96 1,388±163 633±153 
σ2

pe±SE 3±2 7±7 9±10 8±6 9±10 18±13 11±9 
σ2

e±SE 799±55 970±60 1,249±44 1,277±77 1,170±77 341±160 906±144 
h2±SE 0.28±0.05 0.29±0.04 0.26±0.03 0.27±0.05 0.30±0.05 0.79±0.09 0.41±0.09

Table 4. Estimates of residual (above diagonal) and genetic (below diagonal) correlation between age classifications for total sperm cells 
over the active lifetime of AI boars 
Age (month) 9 12 15 18 21 24 27 

9 - 0.30±0.01 0.16±0.02 0.14±0.18 0.25±0.16 0.63±0.17 0.32±0.10 
12 0.73±0.07 - 0.27±0.04 0.06±0.05 0.21±0.13 0.82±0.10 0.41±0.08 
15 0.77±0.07 0.87±0.13 - 0.25±0.08 0.31±0.06 0.38±0.16 0.17±0.07 
18 0.50±0.49 0.77±0.18 0.71±0.23 - 0.30±0.08 0.24±0.12 0.22±0.08 
21 0.16±0.53 0.52±0.42 0.62±0.22 0.62±0.29 - 0.71±0.07 -0.06±0.12 
24 -0.05±0.14 0.18±0.26 0.29±0.16 0.32±0.09 0.37±0.11 - 0.31±0.09 
27 0.21±0.05 0.44±0.22 0.50±0.14 0.49±0.12 0.52±0.12 0.54±0.05 - 
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sperm cells at each age. These higher estimates may be due 
to the reduced amount of data used in the multiple trait 
method or possibly the age classifications selected. The 
ability to accurately estimate genetic correlations between 
different ages is reduced by limiting records to specific ages. 
Therefore, multiple trait methods that do not include all 
available data may not be the most appropriate method for 
analyzing longitudinal data. However, this method may be 
improved with sufficient numbers of records at each age 
and if availability of computer resources allowed for more 
age classifications. Random regression analysis provides 
much more detail with regard to the changes of the variance 
components with age. Genetic correlations between total 
sperm cells at different ages were larger for adjacent ages. 
RRM with comparatively high order polynomials for fixed, 
additive genetic and permanent environmental effects 
provided the best fit. 

 
CONCLUSION 

 
These studies show there is an opportunity for genetic 

selection on semen traits. Estimates of genetic parameters 
would indicate that measures of total sperm cells at 
different ages are genetically different traits. However, the 
ability to accurately estimate genetic correlations between 
different ages is reduced if records are limited to specific 
ages. Therefore, multiple trait methods that do not allow for 
the inclusion of all available data may not be appropriate for 
analyzing longitudinal data. This method may be 
appropriate with sufficient numbers of records at each age 
and availability of computer resources. Random regression 
methods are the most appropriate to analyze semen traits as 
they are longitudinal data measured over the lifetime of 
boars. Additional work is needed to understand the relative 
economic importance of semen traits in the development of 
breeding objectives. 
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Figure 1. Comparison of heritability estimates of total sperm cells
by age of boar classification from random regression and multiple
trait animal models. 


