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Abstract

When analyzing the round complexity of multi-party cryptographic protocols, one often
overlooks the fact that underlying resources, such as a broadcast channel, can be by themselves
expensive to implement. For example, it is well known that it is impossible to implement a
broadcast channel by a (deterministic) protocol in a sub-linear (in the number of corrupted
parties) number of rounds.

The seminal works of Rabin and Ben-Or from the early 80’s demonstrated that limitations
as the above can be overcome by using randomization and allowing parties to terminate at
different rounds, igniting the study of protocols over point-to-point channels with probabilistic
termination and expected constant round complexity. However, absent a rigorous simulation-
based definition, the suggested protocols are proven secure in a property-based manner or via
ad hoc simulation-based frameworks, therefore guaranteeing limited, if any, composability.

In this work, we put forth the first simulation-based treatment of multi-party cryptographic
protocols with probabilistic termination. We define secure multi-party computation (MPC)
with probabilistic termination in the UC framework, and prove a universal composition the-
orem for probabilistic-termination protocols. Our theorem allows to compile a protocol using
deterministic-termination hybrids into a protocol that uses expected-constant-round protocols
for emulating these hybrids, preserving the expected round complexity of the calling protocol.

We showcase our definitions and compiler by providing for the first time simulation-based
(therefore composable) protocols and security proofs for the following primitives relying on point-
to-point channels: (1) Expected-constant-round perfect Byzantine agreement, (2) expected-
constant-round perfect parallel broadcast, and (3) perfectly secure MPC with round complexity
independent of the number of parties.
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1 Introduction

In secure multi-party computation (MPC) [48, 26] n parties P1, . . . , Pn wish to jointly perform
a computation on their private inputs in a secure way, so that no coalition of cheating parties
can learn more information than their outputs (privacy), nor can they affect the outputs of the
computation any more than by choosing their own inputs (correctness).

While the original security definitions had the above property-based flavor (i.e., the protocols
were required to satisfy correctness and privacy—potentially along with other security properties,
such as fairness and input independence), it is by now widely accepted that security of multi-
party cryptographic protocols should be argued in a simulation-based manner. Informally, in the
simulation paradigm for security the protocol execution is compared to an ideal world where the
parties have access to a trusted third party (TTP, aka the “ideal functionality”) that captures
the security properties we want the protocol to achieve. The TTP takes the parties’ inputs and
performs the computation on their behalf. A protocol is then rendered secure if for any adversary
attacking it there exists an ideal adversary (the simulator) attacking the execution in the ideal
world such that no external distinguisher (environment) can tell them apart.

There are several advantages in proving a protocol secure in this way. For starters, the definition
of the functionality captures all security properties the protocol is supposed to have, and therefore
its design process along with the security proof often exposes potential design flaws or issues that
have been overlooked in the protocol design. A very important feature of many simulation-based
security definitions is composability, which ensures that a protocol can be composed with other
protocols without compromising its security. Intuitively, composability ensures that if a protocol
πG which uses a “hybrid” G (a broadcast channel, for example) securely realizes functionality F, and
protocol ρ securely realizes the functionality G, then the protocol πρ/G , which results by replacing
in π calls to G by invocations of ρ, securely realizes F. In fact, simulation-based security is the
one and only way we know to ensure that a protocol can be generically used to implement its
specification within an arbitrary environment.

Round complexity. The prevalent model for the design of MPC protocols is the synchronous
model, where the protocol proceeds in rounds and all messages sent in any given round are received
by the beginning of the next round. In fact, most if not all implemented and highly optimized
MPC protocols (e.g., [16, 18, 36, 14, 42]) are in this model. When executing such synchronous
protocols over large networks, one needs to impose a long round duration in order to account for
potential delay at the network level, since if the duration of the rounds is too short, then it is likely
that some of the messages that arrive late will be ignored or, worse, assigned to a later round.
Thus, the round complexity—number of rounds it takes for a protocol to deliver outputs—is an
important efficiency metric for such protocols and, depending on the network parameters, can play
a dominant role in the protocol’s running time.

An issue which is often overlooked in the analysis of protocols’ round complexity is that the
relation between a protocol’s round complexity and its actual running time is sensitive to the actual
“hybrids” (e.g., network primitives) that the protocol is assumed to have access to. For example,
starting with the seminal MPC works [48, 26, 6, 13, 46], a common assumption is that the parties
have access to a broadcast channel which they invoke in every round. In reality, however, such a
broadcast channel might not be available and would have to be implemented by a broadcast protocol
designed for a point-to-point network. Using a standard (deterministic) broadcast protocol for this
job incurs a linear (in n, the number of parties1) blow-up on the round complexity of the MPC
protocol, as no deterministic broadcast protocol can tolerate a linear number of corruptions in

1In fact, in the number of corruptions a protocol can tolerate, which is a constant fraction of n.
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a sublinear number of rounds [23, 20]. Thus, even though these protocols’ round complexity is
usually considered to be linear in the multiplicative depth d of the computed circuit, in reality their
running time could become linear in nd (which can be improved to O(n + d) [33]) when executed
over point-to-point channels.2

In fact, all so-called constant-round multi-party protocols (e.g., [37, 3, 15, 31, 1, 24, 29, 43]) rely
on broadcast rounds—rounds in which parties make calls to a broadcast channel—and therefore
their running time when broadcast is implemented by a standard protocol would explode to be
linear in n instead of constant.3 As the results from [23, 20] imply, this is not a consequence of
the specific choice of protocol but a limitation of any protocol in which there is a round such that
all parties are guaranteed to have received their output; consistently with the literature on fault-
tolerant distributed computing, we shall refer to protocols satisfying this property as deterministic-
termination protocols. In fact, to the best of our knowledge, even if we allow a negligible chance for
the broadcast to fail, the fastest known solutions tolerating a constant fraction of corruptions follow
the paradigm from [22] (see below), which requires a poly-logarithmic (in n) number of rounds.4

Protocols with probabilistic termination. A major breakthrough in fault-tolerant distributed
algorithms (recently honored with the 2015 Dijkstra Prize in Distributed Computing), was the
introduction of randomization to the field by Ben-Or [4] and Rabin [45], which, effectively, showed
how to circumvent the above limitation by using randomization. Most relevant to this submission,
Rabin [45] showed that linearly resilient Byzantine agreement protocols [44, 39] (BA, related to
broadcast, possibility- and impossibility-wise) in expected constant rounds were possible, provided
that all parties have access to a “common coin” (i.e., a common source of randomness).5 This line
of research culminated with the work of Feldman and Micali [22], who showed how to obtain a
shared random coin with constant probability from “scratch,” yielding a probabilistic BA protocol
tolerating the maximum number of misbehaving parties (t < n/3) that runs in expected constant
number of rounds. The randomized BA protocol in [22] works in the information-theoretic setting;
these results were later extended to the computational setting by Katz and Koo [32] who showed that
assuming digital signatures there exists an (expected-) constant-round protocol for BA tolerating
t < n/2 corruptions. The speed-up on the running time in all these protocols, however, comes
at the cost of uncertainty, as now they need to give up on guaranteed (eventual) termination (no
fixed upper bound on their running time6) as well as on simultaneous termination (a party that
terminates cannot be sure that other parties have also terminated7) [19]. These issues make the
simulation-based proof of these protocols a very delicate task which is the motivation for the current
work.

What made the simulation-based approach a more accessible technique in security proofs was the
introduction simulation-based security frameworks. The ones that stand out in this development—
and most often used in the literature—are Canetti’s modular composition (aka stand-alone secu-

2Throughout this work we will consider protocols in which all parties receive their output. If one relaxes this
requirement (i.e., allow that some parties do not receive their output and give up on fairness) then the techniques of
Goldwasser and Lindell [28] allow for replacing broadcast with a constant-round multi-cast primitive.

3We remark that even though those protocols are for the computational setting, the lower bound on broadcast
round complexity also applies.

4Note that this includes even FHE-based protocols, as they also assume a broadcast channel and their security
fails if multi-cast over point-to-point channels is used instead.

5Essentially, the value of the coin can be adopted by the honest parties in case disagreement at any given round
is detected, a process that is repeated multiple times.

6Throughout this paper we use running time and round complexity interchangeably.
7It should be noted however that in many of these protocols there is a known (constant) “slack” of c rounds, such

that if a party terminates in round r, then it can be sure that every honest party will have terminated by round r+ c.
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rity) [7] and the universal composition (UC) frameworks [8, 9]. The former defines security of
synchronous protocols executed in isolation (i.e., only a single protocol is run at a time and when-
ever a subroutine-protocol is called it is run until its completion); the latter allows protocols to
be executed alongside arbitrary (other) protocols and be interleaved in an arbitrary manner. We
remark that although the UC framework is inherently asynchronous, several mechanisms have been
proposed to allow for a synchronous execution within it (e.g., [9, 35, 10, 38]).

Despite the wide-spread use of the simulation-based paradigm to prove security of protocols with
deterministic termination, the situation has been quite different when probabilistic-termination
protocols are considered. Here, despite the existence of round-efficient protocols as mentioned
above [22, 32], to our knowledge, no formal treatment of the problem in a simulation-based model
exists which would allow us to apply the ingenious ideas of Rabin and Ben-Or in order to speed up
cryptographic protocols. We note that Katz and Koo [32] even provide an expected-constant-round
MPC protocol using their fast BA protocol as a subroutine, employing several techniques to ensure
proper use of randomized BA. In lack, however, of a formal treatment, existing constructions
are usually proved secure in a property-based manner or rely on ad hoc, less studied security
frameworks [41].8

A simulation-based and composable treatment of such probabilistic-termination (PT for short)
protocols would naturally allow, for example, to replace the commonly used broadcast channel with
a broadcast protocol, so that the expected running time of the resulting protocol is the same as
the one of the original (broadcast-hybrid) protocol. A closer look at this replacement, however,
exposes several issues that have to do not only with the lack of simulation-based security but also
with other inherent limitations. Concretely, it is usually the case in an MPC protocol that the
broadcast channel is accessed by several (in many cases by all) parties in the same (broadcast-
)round in parallel. In [5], Ben-Or and El-Yaniv observed that if we näıvely replace each such
invocation with a PT broadcast protocol with expected constant running-time, then the expected
number of rounds until all broadcasts terminate is no longer constant; in fact, it is not hard to see
that in the case of [22] it will be logarithmic in the number of instances (i.e., in the player-set size).
(We expand on the reason for this blow-up in the round complexity in Appendix A.) Nevertheless,
in [5] a mechanism was proposed for implementing such parallel calls to broadcast so that the total
number of rounds remains constant.

The inability of generic parallel composition is not the only composition task that has issues
with PT protocols. As observed by Lindell et al. [41], the composition of such protocols in sequence
is also problematic. The main issue here is that, as already mentioned, PT protocols do not have
simultaneous termination and therefore a party cannot be sure how long after he receives his output
from a call to such a PT protocol he can safely carry on with the execution of the calling protocol.
Although PT protocols usually guarantee a constant “slack” of rounds (say, c) in the output of any
two honest parties, the näıve approach of using this property to synchronize the parties—i.e., wait
c rounds after the first call, 2c rounds after the second call, and so on—imposes an exponential
blow-up on the round complexity of the calling protocol. To resolve this, [41] proposed using fixed
points in time at which a re-synchronization subroutine is executed, allowing the parties to ensure
that they never get too far out-of-sync. An alternative approach for solving this issue was also
proposed in [32] but, again, with a restricted (property-based) proof.

Now, despite their novel aspects, the aforementioned results on composition of PT protocols do
not use simulation-based security, and therefore it is unclear how (or if) we would be able to use them
to, for example, instantiate broadcast within a higher-level cryptographic protocol. In addition,

8As we discuss below, the protocol of Katz and Koo has an additional issue with adaptive security in the rushing
adversary model, as defined in the UC framework, similar to the issue exploited in [30].
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they do not deal with other important features of modern security definitions, such as adaptive
security and strict polynomial time execution. In fact, this lack of a formal cryptographic treatment
places some of their claims at odds with the state-of-the-art cryptographic definitions—somewhat
pointedly, [5] claims adaptive security, which although can be shown to hold in a property-based
definition, is not achieved by the specified construction when simulation-based security is considered
(cf. Section 5).

Our contributions. In this paper we provide the first formal simulation-based (and composable)
treatment of MPC with probabilistic termination. Our treatment builds on Canetti’s universal
composition (UC) framework [8, 9]. In order to take advantage of the fast termination of PT
protocols, parties typically proceed at different paces and therefore protocols might need to be
run in an interleaved manner—e.g., in an MPC protocol a party might initiate the protocol for
broadcasting his r-round message before other parties have received output from the broadcasting
of messages for round r− 1. This inherent concurrency along with its support for synchrony makes
the UC framework the natural candidate for our treatment.

Our motivating goal, which we achieve, is to provide a generic compiler that allows us to
transform any UC protocol π making calls to a (deterministic termination) r-round UC protocol ρ
into a (probabilistic-termination) protocol in which ρ is replaced by a PT protocol ρ′ achieving the
same security as π so that the following holds: if the (expected) round complexity of ρ′ is g(k),9

then the expected round complexity of the compiled protocol is (only) a factor of g(k)
r larger than

the round complexity of π.
Towards this goal, the first step is to define what it means for a protocol to (UC-)securely

realize a functionality with probabilistic termination in a simulation-based manner, by proposing
an explicit formulation of the functionality that captures this important protocol aspect. The
high-level idea is to parameterize the functionality with an efficiently sampleable distribution D
that provides an upper bound on the protocol’s running time (i.e., number of rounds), so that the
adversary cannot delay outputs beyond this point (but is allowed to deliver the output to honest
parties earlier, and even in different rounds).

Next, we prove our universal composability result. Informally, our result provides a generic
compiler that takes as input a protocol ρ, UC-realizing a probabilistic-termination functionality
FD (for a given distribution D) while making sequential calls to (deterministic-termination) secure
function evaluation (SFE)-like functionalities, and compiles it into a new protocol ρ′ in which the
calls to the SFEs are replaced by probabilistic-termination protocols realizing them. The important
feature of our compiler is that in the compiled protocol, the parties do not need to wait for every
party to terminate their emulation of each SFE to proceed to the emulation of the next SFE. Rather,
shortly after a party receives (locally) its output from one emulation, it proceeds to the next one.
This yields an (at most) multiplicative blow-up on the expected round complexity as discussed
above. In particular, if the protocols used to emulate the SFE’s are expected constant-round, then
the expected round complexity of ρ′ is the same (asymptotically) as that of ρ.

We then showcase our definition and composition theorem by providing simulation-based (there-
fore composable) probabilistic-termination protocols and security proofs for several primitives re-
lying on point-to-point channels: expected-constant-round perfect Byzantine agreement, expected-
constant-round perfect parallel broadcast, and perfectly secure MPC with round complexity inde-
pendent of the number of parties. Not surprisingly, the simulation-based treatment reveals several
issues, both at the formal and at the intuitive levels, that are not present in a property-based anal-
ysis, and which we discuss along the way. We now elaborate on each in turn. Regarding Byzan-

9k is the security parameter. For perfect security statements, we will take k = n.
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tine agreement, we present a protocol that perfectly securely UC-implements the probabilistic-
termination Byzantine agreement functionality for t < n/3 in an expected-constant number of
rounds. (We will use RBA to denote probabilistic-termination BA, as it is often referred to as
“randomized BA.”10) Our protocol follows the structure of the protocol in [22], with a modification
inspired by Goldreich and Petrank [27] to make it strict polynomial time (see the discussion below),
and in a sense it can be viewed as the analogue for RBA of the well-known “CLOS” protocol for
MPC [11]. Indeed, similarly to how [11] converted (and proved) the “GMW” protocol [25] from
statically secure in the stand-alone setting into an adaptively secure UC version, our work trans-
forms the broadcast and BA protocols from [22] into adaptively UC-secure randomized broadcast
and RBA protocols.11

Our first construction above serves as a good showcase of the power of our composition theorem,
demonstrating how UC-secure RBA is built in a modular manner: First, we de-compose the sub-
routines that are invoked in [22] and describe simple(r) (SFE-like) functionalities corresponding to
these sub-routines; this provides us with a simple “backbone” of the protocol in [22] making calls
to these hybrids, which can be easily proved to implement expected-constant-round RBA. Next, we
feed this simplified protocol to our compiler which outputs a protocol that implements RBA from
point-to-point secure channels; our compilation theorem ensures that the resulting protocol is also
expected-constant-round.

There is a sticky issue here that we need to resolve for the above to work: the protocol in [22]
does not have guaranteed termination and therefore the distribution of the terminating round is
not sampleable by a strict probabilistic polynomial-time (PPT) machine.12 A way around this
issue would be to modify the UC model of execution so that the corresponding ITMs are expected
PPTs. Such a modification, however, would impact the UC model of computation, and would
therefore require a new proof of the composition theorem—a tricker task than one might expect,
as the shift to expected polynomial-time simulation is known to introduce additional conceptual
and technical difficulties (cf. [34]), whose resolution is beyond the scope of this work. Instead, here
we take a different approach which preserves full compatibility with the UC framework: We adapt
the protocol from [22] using ideas from [27] so that it implements a functionality which samples
the terminating round with almost the same probability distribution as in [22], but from a finite
(linear-size) domain; as we show, this distribution is sampleable in strict polynomial time and can
therefore be used by a standard UC functionality.

Next, we use our composition theorem to derive the first simulation-based and adaptively (UC)
secure parallel broadcast protocol, which guarantees that all broadcast values are received within
an expected-constant number of rounds. This extends the results from [5, 32] in several ways:
first, our protocol is perfectly UC-secure which means that we can now use it within a UC-secure
SFE protocol to implement secure channels, and second, it is adaptively secure against a rushing
adversary.13

Finally, by applying once again our compiler to replace calls to the broadcast channel in the
SFE protocol by Ben-Or, Goldwasser, and Wigderson [6] (which, recall, is perfectly secure against
t < n/3 corruptions in the broadcast-hybrid model [2]) by invocations to our adaptively secure UC

10BA is a deterministic output primitive and it should be clear that the term “randomized” can only refer to the
actual number of rounds; however, to avoid confusion we will abstain from using this term for functionalities other
than BA whose output might also be probabilistic.

11As we show, the protocol in [22] does not satisfy input independence, and therefore is not adaptively secure in
a simulation-based manner (cf. [30]).

12All entities in UC, and in particular ideal functionalities, are strict interactive PPT Turing machines, and the
UC composition theorem is proved for such PPT ITMs.

13Although security against a “dynamic” adversary is also claimed in [5], the protocol does not implement the
natural parallel broadcast functionality in the presence of an adaptive adversary (see Section 5).
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parallel broadcast protocol , we obtain the first UC-secure PT MPC protocol in the point-to-point
secure channels model with (expected) round complexity O(d), independently of the number of
parties, where d is the multiplicative depth of the circuit being computed. As with RBA, this
result can be seen as the first analogue of the UC compiler by Canetti et al. [11] for SFE protocols
with probabilistic termination.

We stress that the use of perfect security to showcase our composition theorem is just our
choice and not a restriction of our composition theorem. In fact, our theorem can be also applied
to statistically or computationally secure protocols. Moreover, if one is interested in achieving
better constants in the (expected) round complexity then one can use SFE protocols that attempt
to minimize the use of the broadcast channel (e.g., [33]). Our composition theorem will give a
direct methodology for this replacement and will, as before, eliminate the dependency of the round
complexity from the number of parties.14

2 Model

We consider n parties P1, . . . , Pn and an adaptive t-adversary, i.e., the adversary corrupts up to
t parties during the protocol execution.15 We work in the UC model and assume the reader has
some familiarity with its basics. To capture synchronous protocols in UC we use the framework of
Katz et al. [35]. Concretely, the assumption that parties are synchronized is captured by assuming
that the protocol has access to a “clock” functionality Fclock. The functionality Fclock maintains
an indicator bit which is switched once all honest parties request the functionality to do it. At any
given round, a party asks Fclock to turn the bit on only after having finished with all operations
for the current round. Thus, this bit’s value can be used to detect when every party has completed
his round, in which case they can proceed to the next round. As a result, this mechanism ensures
that no party sends his messages for round r + 1 before every party has completed round r. For
clarity, we retain from writing this clock functionality in our theorem statement; however, all our
results assume access to such a clock functionality.

In the communication network of [35], parties have access to bounded-delay secure channels.
These channels work in a so-called “fetch” mode, i.e., in order to receive his output the receiver
issues a fetch-output command. This allows to capture the property of a channel between a sender
Ps and a receiver Pr, delaying the delivery of a message by an amount δ: as soon as the sender Ps
submits an input y (message to be sent to the receiver) the channel functionality starts counting
how many times the receiver requests it.16 The first δ−1 such fetch-output requests (plus all such
requests that are sent before the sender submits input) are ignored (and the adversary is notified
about them); the δth fetch-output request following a submitted input y from the sender results
in the channel sending (output, y) to Pr. In this work we take an alternative approach and model
secure channels as special simple SFE functionalities. These SFEs also work in a fetch mode17 and
provide the same guarantee as the bounded-delay channels.

There are two important considerations in proving the security of a synchronous UC protocol:
(1) The simulator needs to keep track of the protocol’s current round, and (2) because parties
proceed at the same pace, they can synchronize their reaction to the environment; most fully-
synchronous protocols, for example, deliver output exactly after a given number of rounds. In [35]
this property is captured as follows: The functionality keeps track of which round the protocol

14Note that even a single round of broadcast is enough to create the issues with parallel composition and non-
simultaneous termination discussed above.

15In contrast, a static adversary chooses the set of corrupted parties at the onset of the computation.
16Following the simplifying approach of [35], we assume that communication channels are single use, thus each

message transmission uses an independent instance of the channel (cf. Appendix B).
17In fact, for simplicity we assume that they deliver output on the first “fetch”.
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would be in by counting the number of activations it receives from honest parties. Thus, if the
protocol has a regular structure, where every party advances the round after receiving a fixed
number µ of activations from its environment (all protocols described herein will be in this form), the
functionality can easily simulate how rounds in the protocol advance by incrementing its round index
whenever it receives µ messages from all honest parties; we shall refer to such a functionality as a
synchronous functionality. Without loss of generality, in this work we will describe all functionalities
for µ = 1, i.e., once a functionality receives a message from every party it proceeds to the simulation
of the next protocol round. We stress that this is done to simplify the description, and the in an
actual evaluation, as in the synchronous setting of [35], in order to give the simulator sufficiently
many activations to perform its simulation, functionalities typically have to wait for µ > 1 messages
from each party where the last µ− 1 of these messages are typically “dummy” activations (usually
of the type fetch-output).

To further simplify the description of our functionalities, we introduce the following terminology.
We say that a synchronous functionality F is in round ρ if the current value of the above internal
round counter in F is r = ρ. All synchronous functionalities considered in this work have the
following format: They treat the first message they receive from any party Pi as Pi’s input18—if
this message is not of the right form (input, ·) then a default value is taken as Pi input; as soon as an
honest party sends its first message, any future message by this party is treated as a fetch-output

message. Refer to Appendix B for a more detailed overview of [35] and discussion of our model.

3 Secure Computation with Probabilistic Termination

The work of Katz et al. [35] addresses (synchronous) cryptographic protocols that terminate in a
fixed number of rounds for all honest parties. However, as mentioned in Section 1, Ben-Or [4] and
Rabin [45] showed that in some cases, great asymptotic improvements on the expected termination
of protocols can be achieved through the use of randomization. Recall, for example, that in the
case of BA, even though a lower bound of O(n) on the round complexity of any deterministic BA
protocol tolerating t = O(n) corruptions exists [23, 20], Rabin’s global-coin technique (fully realized
later on in [22]) yields an expected-constant rounds protocol. This speed-up, however, comes at a
price, namely, of relinquishing both fixed and simultaneous termination [19]: the round complexity
of the corresponding protocols may depend on random choices made during the execution, and
parties may obtain output from the protocol in different rounds.

In this section we show how to capture protocols with such probabilistic termination (PT),
i.e., without fixed and without simultaneous termination, within the UC framework. To capture
probabilistic termination, we first introduce a functionality template Fcsf called a canonical syn-
chronous functionality (CSF). Fcsf is a simple two-round functionality with explicit (one-round) in-
put and (one-round) output phases. Computation with probabilistic termination is then defined by
wrapping Fcsf with an appropriate functionality wrapper that enables non-fixed, non-simultaneous
termination.

3.1 Canonical Synchronous Functionalities

At a high level, Fcsf corresponds to a generalization of the UC secure function evaluation (SFE)
functionality, to allow for some potential adversarial leakage on the inputs and potential adversarial
influence on the outputs.19 In more detail, Fcsf has two parameters: (1) a randomized function f
that receives n+ 1 inputs (n inputs from the parties and an additional input from the adversary)
and (2) a leakage function l that leaks some information about the input values to the adversary.

18Note that this implies that also protocol machines treats its first message as their input.
19Looking ahead, this adversarial influence will allow us to describe BA-like functionalities as simple and intuitive

CSFs.
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Fcsf proceeds in two rounds: in the first round all the parties hand Fcsf their input values, and
in the second round each party receives its output. This is very similar to the standard (UC) SFE
functionality; the difference here is that whenever some input is submitted to Fcsf, the adversary
is handed some leakage function of this input—similarly, for example, to how UC secure channels
leak the message length to the adversary. The adversary can use this leakage when deciding the
inputs of corrupted parties. Additionally, he is allowed to input an extra message which, depending
on the function f , might affect the output(s). The detailed description of Fcsf is given in Figure 1.

Functionality Ff,lcsf(P)

Fcsf proceeds as follows, parameterized by a function f : ({0, 1}∗ ∪ {⊥})n+1 → ({0, 1}∗)n and a leakage
function l : ({0, 1}∗ ∪ {⊥})n → {0, 1}∗, and running with parties P = {P1, . . . , Pn} and an adversary S.

• Initially, set the input values x1, . . . , xn, the output values y1, . . . , yn and the adversary’s value a to ⊥.

• In round ρ = 1:

– Upon receiving (adv-input, sid, v) from the adversary, set a← v.

– Upon receiving (input, sid, v) from some party Pi ∈ P, set xi ← v and send
(leakage, sid, Pi, l(x1, . . . , xn)) to the adversary.

• In round ρ = 2:

– Upon receiving (adv-input, sid, v) from the adversary, if y1 = . . . = yn = ⊥, set a← v. Otherwise,
discard the message.

– Upon receiving (fetch-output, sid) from some party Pi ∈ P, if y1 = . . . = yn = ⊥ compute
(y1, . . . , yn) = f(x1, . . . , xn, a). Next, send (output, sid, yi) to Pi and (fetch-output, sid, Pi) to the
adversary.

Figure 1: The canonical synchronous functionality

Next, we point out a few technical issues about the description of Fcsf. Following the simplifica-
tions from Section 2, Fcsf advances its round as soon as it receives µ = 1 message from each honest
party. This ensures that the adversary cannot make the functionality stall indefinitely. Thus,
formally-speaking, the functionality Fcsf is not well-formed (cf. [11]), as its behavior depends on
the identities of the corrupted parties.20 We emphasize that the non-well-formedness relates only
to advancing the rounds, and is unavoidable if we want to restrict the adversary not to block the
evaluation indefinitely (cf. [35]).

We point out that as a generalization of the SFE functionality, CSFs are powerful enough to
capture any deterministic well-formed functionality. In fact, all the basic (unwrapped) functional-
ities considered in this work will be CSFs. We now describe how standard functionalities from the
MPC literature can be cast as CSFs:

Secure Message Transmission (aka Secure Channel). In the secure message trans-
mission (SMT) functionality, a sender Pi with input xi sends its input to Pj . Since Fcsf is
an n-party functionality, and involves receiving input messages from all n parties, we define
the two-party task using an n-party function. The function to compute is f i,jsmt(x1, . . . , xn, a) =
(λ, . . . , xi, . . . , λ) (where xi is the value of the j’th coordinate) and the leakage function is
li,jsmt(x1, . . . , xn) = y, where y = |xi| in case Pj is honest and y = xi in case Pj is corrupted. We

20This is, in fact, also the case for the standard UC SFE funtionality.
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denote by F i,jsmt the functionality Fcsf when parameterized with the above functions f i,jsmt and
li,jsmt, for sender Pi and receiver Pj .

Broadcast. In the (standard) broadcast functionality, a sender Pi with input xi distributes
its input to all the parties, i.e., the function to compute is f ibc(x1, . . . , xn, a) = (xi, . . . , xi).
The adversary only learns the length of the message xi before its distribution, i.e., the leakage
function is libc(x1, . . . , xn) = |xi|. This means that the adversary does not gain new information
about the input of an honest sender before the output value for all the parties is determined,
and in particular, the adversary cannot corrupt an honest sender and change its input after
learning the input message. We denote by F ibc the functionality Fcsf when parameterized with
the above functions f ibc and libc, for sender Pi.

Secure Function Evaluation. In the secure function evaluation functionality, the
parties compute a randomized function g(x1, . . . , xn), i.e., the function to compute is
fgsfe(x1, . . . , xn, a) = g(x1, . . . , xn). The adversary learns the length of the input values via
the leakage function, i.e., the leakage function is lsfe(x1, . . . , xn) = (|x1| , . . . , |xn|). We denote
by Fgsfe the functionality Fcsf when parameterized with the above functions fgsfe and lsfe, for
computing the n-party function g.

Byzantine Agreement (aka Consensus). In the Byzantine agreement functionality, de-
fined for the set V , each party Pi has input xi ∈ V . The common output is computed such that
if n− t of the input values are the same, this will be the output; otherwise the adversary gets
to decide on the output. The adversary is allowed to learn the content of each input value from
the leakage (and so it can corrupt parties and change their inputs based on this information).
The function to compute is fba(x1, . . . , xn, a) = (y, . . . , y) such that y = x if there exists a value
x such that x = xi for at least n − t input values xi; otherwise y = a. The leakage function
is lba(x1, . . . , xn) = (x1, . . . , xn). We denote by FVba the functionality Fcsf when parameterized
with the above functions fba and lba, defined for the set V .

3.2 Probabilistic Termination in UC

Having defined CSFs, we turn to the notion of (non-reactive) computation with probabilistic ter-
mination. This is achieved by defining the notion of an output-round randomizing wrapper. Such a
wrapper is parameterized by an efficient probabilistic algorithm D, termed the round sampler, that
samples a round number rout by which all parties are guaranteed to receive their outputs no matter
what the adversary strategy is. Moreover, since there are protocols in which all parties terminate
in the same round and protocols in which they do not, we consider two wrappers: the first, denoted
Wstrict, ensures in a strict-manner that all (honest) parties terminate in the same round, whereas
the second, denoted Wflex, is more flexible and allows the adversary to deliver outputs at any time
before round rout.

A delicate issue that needs to be addressed is the following: While an ideal functionality can
be used to abstractly describe a protocol’s task, it cannot hide the protocol’s round complexity.
This phenomenon is inherent in the synchronous communication model: any environment can
observe how many rounds the execution of a protocol takes, and, therefore, the execution of the
corresponding ideal functionality must take the same number of rounds.21

As an illustration of this issue, let F be an arbitrary functionality realized by some protocol π.
If F is to provide guaranteed termination (whether probabilistic or not), it must enforce an upper
bound on the number of rounds that elapse until all parties receive their output. If the termination
round of π is not fixed (but may depend on random choices made during its execution), this upper
bound must be chosen according to the distribution induced by π.

21In particular, this means that most CSFs are not realizable, since they always guarantee output after two rounds.
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Thus, in order to simulate correctly, the functionality F and π’s simulator S must coordinate
the termination round, and therefore F must pass the upper bound it samples to S. However,
it is not sufficient to simply inform the simulator about the guaranteed-termination upper bound
rout. Intuitively, the reason is that protocol π may make probabilistic choices as to the order in
which it calls its hybrids (and, even worse, these hybrids may even have probabilistic termination
themselves). Thus, F needs to sample the upper bound based on π and the protocols realizing the
hybrids called by π. As S needs to emulate the entire protocol execution, it is now left with the
task of trying to sample the protocol’s choices conditioned on the upper bound it receives from
F. In general, however, it is unclear whether such a reverse sampling can be performed in (strict)
polynomial time.

To avoid this issue and allow for efficient simulation, we have F output all the coins that were
used for sampling round rout to S. Because S knows the round sampler algorithm, it can reproduce
the entire computation of the sampler and use it in its simulation. In fact, as we discuss below,
it suffices for our proofs to have F output a trace of its choices to the simulator instead of all
the coins that were used to sample this trace. In the remainder of this section we motivate and
formally describe our formulation of such traces. The formal description of the wrappers, which in
particular sample traces, can then be found at the end of this section.

Execution traces. As mentioned above, in the synchronous communication model, the execution
of the ideal functionality must take the same number of rounds as the protocol. For example,
suppose that the functionality F in our illustration above is used as a hybrid by a higher-level
protocol π′. The functionality G realized by π′ must, similarly to F, choose an upper bound on the
number of rounds that elapse before parties obtain their output. However, this upper bound now
not only depends on π′ itself but also on π (in particular, when π is a probabilistic-termination
protocol).

Given the above, the round sampler of a functionality needs to keep track of how the function-
ality was realized. This can be achieved via the notion of trace. A trace basically records which
hybrids were called by a protocol, and in a recursive way, for each hybrid, which hybrids would
have been called by a protocol realizing that hybrid. The recursion ends with the hybrids that are
“assumed” by the model, called atomic functionalities.22

Building on our running illustration above, suppose protocol π′ (realizing G) makes ideal hybrid
calls to F and to some atomic functionality H. Assume that in an example execution, π′ happens
to make (sequential) calls to instances of H and F in the following order: F, then H, and finally
F again. Moreover, assume that F is replaced by protocol π (realizing F) and that π happens to
make two (sequential) calls to H upon the first invocation by π′, and three (sequential) calls to H
the second time. Then, this would result in the trace depicted in Figure 2.

22In this work, atomic functionalities are always CSFs.
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Figure 2: Example of an execution trace

Assume that π is a probabilistic-termination protocol and π′ a deterministic-termination pro-
tocol. Consequently, this means that F is in fact a flexibly-wrapped functionality of some CSF F ′,
i.e., F =WDF

flex (F ′), where the distribution DF samples (from a distribution induced by π) depth-1

traces with root WDF
flex (F ′) and leaves H.23 Similarly, G is a strictly-wrapped functionality of some

CSF G′, i.e., G =WDG
strict(G′), where the distribution DG first samples (from a distribution induced

by π′) a depth-1 trace with rootWDG
strict(G′) and leavesWDF

flex (F ′) as well as H. Then, each leaf node

WDF
flex (F′) is replaced by a trace (independently) sampled from DF . Thus, the example trace from

Figure 2 would look as in Figure 3.

WDG
strict(G′)

H

H H H H
π

π′

π

H

WDF
flex(F ′) WDF

flex(F ′)

Figure 3: An execution trace with probabilistic-termination and deterministic-termination protocols

Formally, a trace is defined as follows:

Definition 3.1. A trace is a rooted tree in which all nodes are labeled by functionalities and where
every node’s children are ordered. The root and all internal nodes are labeled by wrapped CSFs (by
either of the two wrappers), and the leaves are labeled by unwrapped CSFs.

Remark. The actual trace of a protocol may depend on the input values and the behavior of the
adversary. For example, in the setting of Byzantine agreement, the honest parties may get the
output faster in case they all have the same input, which results in a different trace. However, the
wrappers defined below sample traces independently of the inputs. All protocols considered in this
work can be shown to realize useful ideal functionalities in spite of this restriction.

Strict wrapper functionality. We now proceed to give the formal descriptions of the wrappers.
The strict wrapper, defined in Figure 4, is parameterized by (a sampler that induces) a distribution
D over traces, and internally runs a copy of a CSF functionality F. Initially, a trace T is sampled

23Note that the root node of the trace sampled from DF is merely labeled by WDF
flex (F ′), i.e., this is not a circular

definition.

11



from D; this trace is given to the adversary once the first honest party has provided its input. The
trace T is used by the wrapper to define the termination round rout ← 2 · ctr(T ), where ctr(T ),
called trace complexity, is the number of leaves in T (the additional factor of 2 stems from the
fact that CSFs always take two rounds to complete). In the first round, the wrapper forwards
all the messages from the parties and the adversary to (and from) the functionality F. Next, the
wrappers essentially waits until round rout, with the exception that the adversary is allowed to send
(adv-input, sid, ·) messages and change its input to the function computed by the CSF. Finally,
when round rout arrives, the wrapper provides the output generated by F to all parties.

Wrapper Functionality WD
strict(F)

Wstrict, parameterized by an efficiently sampleable distributionD, internally runs a copy of F and proceeds
as follows:

• Initially, sample a trace T ← D and compute the output round rout ← 2 · ctr(T ). Send (trace, sid, T )
to the adversary.a

• In every round, forward (adv-input, sid, ·) messages from the adversary to F.

• In round ρ = 1: Forward (input, sid, ·) messages from each party Pi ∈ P to F. In addition, forward
(leakage, sid, ·) messages from F to the adversary.

• In rounds ρ = 2, . . . , rout − 1: Upon receiving (fetch-output, sid) from some party Pi ∈ P, send
(fetch-output, sid, Pi) to the adversary.

• In round ρ = rout: Upon receiving (fetch-output, sid) from some party Pi ∈ P, forward it to F and
the response from F to Pi.

Figure 4: The strict wrapper functionality

aTechnically, the trace is sent to the adversary at the first activation of the functionality along with the first
message.

Flexible wrapper functionality. The flexible wrapper, defined in Figure 5, follows in similar
lines to the strict wrapper. The difference is that the adversary is allowed to instruct the wrapper
to deliver the output to each party at any ronud. In order to accomplish this, the wrapper assign
a termination indicator termi, initially set to 0, to each party. Once the wrapper receives an
early-output request from the adversary for Pi, it sets termi ← 1. Now, when a party Pi sends a
fetch-output request, the wrapper check if termi = 1, and lets the party receive its output in this
case (by forwarding the fetch-output request to F). When the guaranteed-termination round rout
arrives, the wrapper provides the output to all parties that didn’t receive it yet.
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Wrapper Functionality WD
flex(F)

Wflex, parameterized by an efficiently sampleable distribution D, internally runs a copy of F and proceeds
as follows:

• Initially, sample a trace T ← D and compute the output round rout ← 2 · ctr(T ). Send (trace, sid, T )
to the adversary.a In addition, initialize the termination indicators term1, . . . , termn ← 0.

• In every round, forward (adv-input, sid, ·) messages from the adversary to F.

• In round ρ = 1: Forward (input, sid, ·) messages from each party Pi ∈ P to F. In addition, forward
(leakage, sid, ·) messages from F to the adversary.

• In rounds ρ = 2, . . . , rout − 1:

– Upon receiving (fetch-output, sid) from some party Pi ∈ P, proceed as follows:

∗ If termi = 1, forward the message to F and the response to Pi.

∗ Otherwise, send (fetch-output, sid, Pi) to the adversary.

– Upon receiving (early-output, sid, Pi) from the adversary, set termi ← 1.

• In round ρ = rout: Upon receiving (fetch-output, sid) from some party, forward the message to F and
the response to Pi.

Figure 5: The flexible wrapper functionality

aTechnically, the trace is sent to the adversary at the first activation of the functionality along with the first
message.

4 (Fast) Composition of Probabilistic-Termination Protocols

Flexibly-wrapped CSFs (cf. Section 3.2), which correspond to protocols with non-simultaneous
termination, are cumbersome to be used as hybrid functionalities for protocols. The reason is that
the adversary can cause parties to finish in different rounds, and, as a result, after the execution of
the first such functionality, the parties might be out of sync.

This “slack” can be reduced, but—unless one is willing to pay a linear blow-up in round com-
plexity [23, 20]—only to a difference of one round. Hence, all protocols must be modified to deal
with a slack of one round, and protocols that introduce slack must be followed by a slack-reduction
phase. Since this is a tedious, yet systematic task, in this section we provide a compiler (with a
corresponding theorem) that generically transforms protocols designed in a simple setting without
slack and round-complexity issues into protocols that deal with these issues while maintaining their
security.

In the following high-level overview, we first introduce the “simple setting.” In this setting,
protocols only make calls to (unwrapped) CSF hybrids, which allows to design them without
worrying about round complexity and slack (Section 4.1). Then, in a first step, we describe how
to take into account round complexity (Section 4.2). In a second step, we show how to deal with
potential slack (Section 4.3). These two steps define a protocol compiler that transforms protocols
for the simple setting into protocols for the “realistic” setting where round complexity and slack is
taken into account. Finally, we state the composition theorem (Section 4.4), which deals with the
security of the compiler. Details can be found in Appendix C.

4.1 The Simple Setting

The protocols that we feed to our compiler need to be in a special synchronous normal form (SNF),
which, intuitively, means that they can only make strictly sequential calls to CSF hybrids.
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Definition 4.1. A protocol is in SNF if at any point during its execution, parties have invoked
only a single instance of a single CSF and no honest party hands inputs to other CSFs before this
instance halts.

The starting point of every application of the composition theorem (cf. Section 4.4) is a proof
that an SNF protocol π realizes a strictly-wrapped CSF WD

strict(F) (resp. a flexibly-wrapped CSF
WD

flex(F)) using some (easy-to-handle) CSF hybrids Fi for some distribution D over depth-1 traces
(the traces have depth-1 since the hybrids used are CSFs and not wrapped CSFs), which hides the
round complexities and potentially non-simultaneous termination properties of the hybrids.

Note that the simple structure (and deterministic-termination property) of the CSF function-
ality make designing SNF protocols and proving their security and correctness a far simpler task
than designing protocols that call more complicated (probabilistic-termination) hybrids. It is the
job of our compiler to map the SNF protocol into one that can work with probabilistic hybrids.
Moreover, while considering only SNF protocols may at a first glance seem to be restrictive, most
of the known synchronous protocols can be phrased in such a way.

4.2 Using Actual Round Complexities

In a first step, the actual round complexities of (the protocols realizing) the hybrids Fi are taken
into account (while still ignoring the potential slack). Suppose these round complexities are given
by distributions Di (over traces). In Appendix C.1 we prove that the protocol π′ that calls hybrids
WDi

strict(Fi) (instead of the unwrapped CSFs Fi) still realizes WD′
strict(F) (resp. WD′

flex(F)) but for a
distribution D′ that is based on D and may change depending on the distributions Di. In particular,
D′ outputs full traces, in which each depth-1 node Fi of a trace sampled by D is replaced by a
trace (independently) sampled from Di. In the following, the adapted distribution is denoted by
D′ = full-trace(D, {Di}i). Full traces are formally defined in Section C.1.

4.3 Accounting for Slack

In the second generic step, we take care of slack introduced by hybrids realized by protocols without
simultaneous termination.

Let π be an arbitrary (SNF) protocol that is to be “hardened” such that it can be safely executed
even if parties potentially initiate the protocol up to c ≥ 1 rounds apart.24 A possible solution to
this problem, inspired by [40], is to expand each round r into 3c + 1 rounds as follows: During
the first 2c+ 1 rounds, each party listens for round-r messages sent by other parties, and in round
c+ 1 the party sends its own round-r messages. During the last c rounds, it simply waits (without
listening).25 It can be easily verified (on an informal level) that this results in all round-r messages
being properly exchanged, even if parties start this process up to c rounds apart.

Furthermore, if π is not a slack-introducing protocol, that is, if each party runs exactly the same
number of rounds, then the protocol resulting from the above transformation is slack-preserving,
i.e., parties finish with the same slack with which they initiated the protocol.

In contrast, if π induces slack, then, in addition to the above expansion technique, π needs to
be enhanced by a slack-reduction phase. We adopt an approach originally suggested by [5], which
works for public-output protocols:

• As soon as a party is ready to output a value y (according to the prescribed protocol) or upon
receiving at least t + 1 messages (end, y) for the same value y (whichever happens first), it
sends (end, sid, y) to all parties.

24In the context of this work, the slack will always be c = 1.
25The reason for this is explained in Appendix C.4.
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• Upon receiving n− t messages (end, sid, y) for a single value y, a party outputs y as the result
of the computation and halts.

In Appendix C.2, we show that the above steps can be described by considering two additional
wrappers, Wc

st and Wc
str, where Wc

st is used for hybrids realized by non-slack-inducing protocols
and Wc

str for those realized by slack-inducing protocols.
Denote by π′′ := Compcpt(π) the “compiled” protocol resulting in the first case above (resp. by

π′′ := Compcdt(π) the “compiled” protocol π′′ resulting in the second case).
We prove that

• in the case where π realizes a strictly-wrapped F, then the protocol π′′ making calls to hybrids
Wc

st(WDi
strict(Fi)) realizes Wc

st(WD′
strict(F)), and

• in the case where π realizes a flexibly-wrapped F, then the protocol π′′ making calls to hybrids
Wc

st(WDi
strict(Fi)) or Wc

str(WDi
flex(Fi)) realizes Wc

str(WD′
flex(F)).

4.4 The Composition Theorems

Denote by WD
dt(F) := Wst(WD

strict(F)) and WD
pt(F) := Wstr(WD

flex(F)) . Summarizing, we prove
the two theorems below. Recall that c denotes the amount of slack tolerance and ctr(T ) denote
the number of leaves in a trace T . The derivations of the round complexities can be found in
Section C.3.

Theorem 4.2. Let {Fi}i and F be arbitrary CSFs, D and {Di}i arbitrary distributions over traces,
and D′ = full-trace(D, {Di}i). If an SNF protocol π securely realizes WD

strict(F) in the {Fi}i-hybrid

model, then Compcdt(π) securely realizes WD′
dt (F) in the {WDi

dt (Fi)}i-hybrid model.
The expected round complexity of the compiled protocol Compcdt(π) is

2(3c+ 1)
∑
i

di · E[ctr(Ti)],

where di is the expected number of calls to hybrid Fi and Ti is a trace sampled from Di.

Theorem 4.3. Let {Fi}i and F be arbitrary CSFs, D and {Di}i arbitrary distributions over traces,
and D′ = full-trace(D, {Di}i). Moreover, let I be a set indexing a subset of the CSFs Fi. If an SNF
protocol π securely realizes WD

flex(F) in the {Fi}i-hybrid model, then Compcpt(π) securely realizes

WD′
pt (F) in the ({WDi

dt (Fi)}i/∈I , {WDi
pt (Fi)}i∈I)-hybrid model.

The expected round complexity of the compiled protocol Compcpt(π) is

2(3c+ 1)
∑
i

di · E[ctr(Ti)] +O(1),

where di is the expected number of calls to hybrid Fi and Ti is a trace sampled from Di.

Remark. Note that (recursively) the round complexity of a protocol realizing WDi
dt (Fi) already

contains the factor 2(3c + 1), and, therefore, these factors do not accumulate when one replaces
hybrids by their realizing protocols! Moreover, in either case, if π and all the protocols realizing
the hybrids are expected constant-round protocols, so is the compiled protocol.

Wrapping SMTs. Using the above composition theorems, one can get protocols realizing wrapped
functionalities Wdt(F) or Wpt(F) from wrapped functionalities Wdt(Fi) and Wpt(Fi). To ulti-
mately get a protocol that uses only the parallel secure message transmission CSFs Fpsmt (defined
in Section 5), we show in Appendix C.4 how to realize Wdt(Fpsmt) from Fpsmt.
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5 Applications of our Fast Composition Theorem

In this section we demonstrate the power of our framework by providing some concrete appli-
cations. All of the protocols we present in this section enjoy perfect security facing adaptive
adversaries corrupting less than a third of the parties. We start in Section 5.1 by presenting
expected-constant-round protocols for Byzantine agreement. Next, in Section 5.2 we present an
expected-constant-round protocol for parallel broadcast. Finally, in Section 5.3 we present a secure
function evaluation protocol whose round complexity is O(d) in expectation, where d is the depth
of the circuit representing the function.

Our aim is to construct protocols in the point-to-point channels network model, and so it
is tempting to use the secure channel functionality Fsmt (defined in Section 3.1) as our atomic
functionality. However, since we consider SNF protocols that can call a single hybrid in any given
round, we actually need the parallel version of Fsmt, where each pair of parties can communicate
privately at the same round.

Parallel Secure Message Transmission. In the parallel secure message transmission
functionality, each party Pi has a vector of input values (xi1, . . . , x

i
n) such that xij is sent

from Pi to Pj . That is, the function to compute is fpsmt((x
1
1, . . . , x

1
n), . . . , (xn1 , . . . , x

n
n), a) =

((x1
1, . . . , x

n
1 ), . . . , (x1

n, . . . , x
n
n)). As we consider rushing adversaries, that can determine the

messages sent by the corrupted parties after receiving the messages sent by the honest parties,
the leakage function should leak the messages that are to be delivered from honest parties
to corrupted parties. Therefore, the leakage function is lpsmt((x

1
1, . . . , x

1
n), . . . , (xn1 , . . . , x

n
n)) =

(y1
1, y

1
2, . . . , y

n
n−1, y

n
n), where yij =

∣∣∣xij∣∣∣ in case Pj is honest and yij = xij in case Pj is corrupted.

We denote by Fpsmt the CSF functionality parameterized with the above functions fpsmt and
lpsmt.

5.1 Fast and Perfectly Secure Byzantine Agreement

We start by describing the binary and multi-valued randomized Byzantine agreement protocols (the
definition of Fba appears in Section 3.1). These protocols are based on techniques due to Feldman
and Micali [22] and Turpin and Coan [47], with modifications to work in the UC framework. We
provide simulation-based proofs for these protocols.

A binary Byzantine Agreement Protocol. We now describe a UC protocol for randomized bi-
nary Byzantine agreement, that is based on the protocol of Feldman and Micali [22]. For simplicity,
we work in a hybrid model, where parties have access to the oblivious common coin functionality;
we first present this functionality as a canonical synchronous functionality Fcsf.

Oblivious common coin. In the oblivious common coin ideal functionality (introduced in [22])
every honest party Pi outputs a bit yi ∈ {0, 1} such that the following holds: with probability p > 0
all honest parties will agree on a uniformly distributed bit, and with probability 1− p the output
for each honest party is determined by the adversary. The meaning of obliviousness here is that
the parties are unaware of whether agreement on the coin is achieved or not.

In more detail, each honest party Pi sends an empty string xi = λ as input, and the leakage
function is loc(x1, . . . , xn) = ⊥. The function to compute, foc(x1, . . . , xn, a) = (y1, . . . , yn), is pa-
rameterized by an efficiently sampleable distribution D over {0, 1}, that outputs 1 with probability
p and 0 with probability 1− p, and works as follows:

• Initially, sample a “fairness bit” b← D.

• If b = 1 or if a = ⊥ (i.e., if the adversary did not send an adv-input message) sample a
uniformly distributed bit y ← {0, 1} and set yi ← y for every i ∈ [n].
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• If b = 0 and a 6= ⊥, parse the adversarial input a as a vector of n values (a1 . . . , an), and set
yi ← ai for every i ∈ [n].

We denote by Foc the CSF functionality parameterized with the above functions foc and loc. In [22,
Thm. 3], Feldman and Micali showed a constant-round oblivious common coin protocol for p = 0.35.

Overview of the protocol. The binary BA functionality, realized by the protocol, is the wrapped

functionalityWDrba
flex (F{0,1}ba ) (the distribution Drba is formally defined in Lemma 5.1), denoted Frba

for short. The protocol πrba, described in Figure 6, is based on the protocol from [22] modified
using the “best-of-both-worlds” technique due to Goldreich and Petrank [27]. Recall that following
Theorem 4.3, it is sufficient to describe the protocol using CSFs as hybrids rather than wrapped
CSFs (even though such a description might be overly ideal, and cannot be instantiated in the real
world), and the same level of security is automatically achieved in a compiled protocol (that can be
instantiated) where the underlying CSFs are properly wrapped. Therefore, the protocol is defined

in the (Fpsmt,Foc,F{0,1}ba )-hybrid model.
To avoid confusion in πrba between the different calls to Foc, the α’th invocation will use the

session identifier sidα = sid ◦ α, obtained by concatenating α to sid.
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Protocol πrba

Each party Pi ∈ P = {P1, . . . , Pn} proceeds as follows:

• Initially, Pi sets the phase counter α ← 0 and the termination indicator term ← 0. For every other
party Pj ∈ P set a value Bj ← 0 for storing the last bit value received from Pj . In addition, denote
τ = log1.5(k) + 1.

• In the first round, upon receiving (input, sid, v) with v ∈ {0, 1} from the environment, party Pi sets
bi ← v (note that the value bi will change during the protocol) and sends (sid, bi) to all the parties (via
Fpsmt).

• In the second round, upon receiving (sid, bj) from Pj (via Fpsmt) with bj ∈ {0, 1}, set Bj ← bj . If no
message was received from Pj , set bj ← Bj .

• While term = 0 and α ≤ τ , do the following:

1. Set α← α+ 1 and send (input, sidα, λ) to Foc.

2. Send (fetch-output, sidα) to Foc.
Let (output, sidα, β), with β ∈ {0, 1}, be the output received from Foc.

3. Compute c←∑n
j=1 bj .

If c < n/3 set bi ← 0; If n/3 ≤ c < 2n/3 set bi ← β; If 2n/3 ≤ c ≤ n set bi ← 1.
Send (sid, bi) to all the parties (via Fpsmt). Upon receiving (sid, bj) from Pj (via Fpsmt) with
bj ∈ {0, 1}, set Bj ← bj ; if no message was received from Pj , set bj ← Bj .

4. Compute c←∑n
j=1 bj .

If c < n/3 set bi ← 0 and term← α; If n/3 ≤ c < 2n/3 set bi ← 0; If 2n/3 ≤ c ≤ n set bi ← 1.
Send (sid, bi) to all the parties (via Fpsmt). Upon receiving (sid, bj) from Pj (via Fpsmt) with
bj ∈ {0, 1}, set Bj ← bj ; if no message was received from Pj , set bj ← Bj .

5. Compute c←∑n
j=1 bj .

If c < n/3 set bi ← 0; If n/3 ≤ c < 2n/3 set bi ← 1; If 2n/3 ≤ c ≤ n set bi ← 1 and term← α.
Send (sid, bi) to all the parties (via Fpsmt). Upon receiving (sid, bj) from Pj (via Fpsmt) with
bj ∈ {0, 1}, set Bj ← bj ; if no message was received from Pj , set bj ← Bj .

• If 0 < term < τ , then output (output, sid, bi) and halt.

• Else (i.e., if term = 0 or term = τ), proceed as follows:

1. Send (input, sid, bi) to F{0,1}ba (note that bi is the value that was set in phase τ).

2. Send (fetch-output, sid) to F{0,1}ba . Upon receving (output, sid, b), with b ∈ {0, 1}, if term = 0
output (output, sid, b) and halt. Else, if term = τ , output (output, sid, bi) and halt.

Figure 6: The binary randomized Byzantine agreement protocol, in the (Fpsmt,Foc,F{0,1}ba )-
hybrid model

At first sight, it may seem odd that the binary Byzantine agreement functionality F{0,1}ba is
used in order to implement the randomized binary Byzantine agreement functionality Frba. How-

ever, the functionality F{0,1}ba will only be invoked in the event (which occurs with a negligible
probability) that the protocol does not terminate within a poly-log number of rounds. Once the

protocol is compiled, the CSF functionality F{0,1}ba will be wrapped using a strict wrapper, such that

the wrapped functionality Wstrict(F{0,1}ba ) can be instantiated using any linear-round deterministic
Byzantine agreement protocol (e.g., the protocol in [30]).

At a high level, protocol πrba proceeds as follows. Initially, each party sends its input to all
other parties over a point-to-pint channel using Fpsmt, and sets its vote to be its input bit. Next,
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the parties proceed in phases, where each phase consists of invoking the functionality Foc followed
by a voting process consisting of three rounds of sending messages via Fpsmt. The voting ensures
that (1) if all honest parties agree on their votes at the beginning of the phase, they will terminate
at the end of the phase, (2) in each phase, all honest parties will agree on their votes at the end of
each phase with probability at least p, and (3) if an honest party terminates in some phase then all
honest parties will terminate with the same value by the end of the next phase. In the negligible
event that the parties do not terminate after τ = log1.5(k)+1 phases, the parties use the Byzantine
agreement functionality Fba in order to ensure termination.

In Appendix D.1 we prove the following lemma.

Lemma 5.1. Let p = 0.35 and t < n/3. Denote by Drba the distribution that outputs a depth-1

trace, where the root is WDrba
flex (F{0,1}ba ), and the leaves are set as follows: initially sample an integer

r from the geometric distribution with parameter p and support {1 . . . , τ+1} (representing the phase
where Foc samples a fairness bit 1, plus the option that Foc samples 0 in all τ phases). The first
leaf in the trace is Fpsmt, followed by min(r, τ) sequences of (Foc,Fpsmt,Fpsmt,Fpsmt). Finally, if

r ≥ τ add the leaf F{0,1}ba to the trace.
Then, assuming all honest parties receive their inputs at the same round, protocol πrba UC-

realizes Frba = WDrba
flex (F{0,1}ba ), in the (Fpsmt,Foc,F{0,1}ba )-hybrid model, with perfect security, in

the presence of an adaptive malicious t-adversary.

We now use Theorem 4.3 to derive the main result of this section.

Theorem 5.2. Let c ≥ 0 and t < n/3. There exists an efficiently sampleable distribution D

such that the functionality WD
pt(F{0,1}ba ) has an expected-constant-round complexity, and can be UC-

realized in the Fpsmt-hybrid model, with perfect security, in the presence of an adaptive malicious
t-adversary, assuming that all honest parties receive their inputs within c consecutive rounds.

Proof (sketch). Let Drba be as in Lemma 5.1. Denote by Dpsmt the deterministic distribution
that outputs a depth-1 trace consisting of a single leaf Fpsmt, denote by Doc the deterministic
distribution that outputs a depth-1 trace consisting of a 36 leaves Fpsmt (recall that the Foc

protocol in [22, Claim T4-4] requires 36 rounds), and denote by Dba the deterministic distribution
that outputs a depth-1 trace consisting of O(n) leaves Fpsmt. Let D′rba, D

′
psmt, D

′
oc, D

′
ba be the

translated distributions, respectively.
Then, following Theorem 4.3 and Lemma 5.1, the compiled protocol Compcpt(πrba) UC-realizes

WD′rba
pt (F{0,1}ba ), in the (WD′psmt

dt (Fpsmt),WD′oc
dt (Foc),WD′ba

dt (F{0,1}ba ))-hybrid model, with perfect secu-
rity, in the presence of adaptive malicious adversaries corrupting at most t < n/3 of the parties.

The proof follows since each of the functionalities (WD′psmt
dt (Fpsmt),WD′oc

dt (Foc),WD′ba
dt (F{0,1}ba ))

can be UC-realized in the Fpsmt-hybrid model. This follows from Lemma C.4, combined with the
protocols from [22] and [30].

Multi-Valued Byzantine agreement protocol. In Appendix D.1 we present an analogue of
the multi-valued Byzantine agreement protocol due to Turpin and Coan [47] for the UC framework,
and prove the following.

Theorem 5.3. Let c ≥ 0, t < n/3 and V ⊆ {0, 1}∗. There exists an efficiently sampleable
distribution D such that the functionalityWD

pt(FVba) has an expected-constant-round complexity, and
can be UC-realized in the Fpsmt-hybrid model, with perfect security, in the presence of an adaptive
malicious t-adversary, assuming that all honest parties receive their inputs within c consecutive
rounds.
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5.2 Fast and Perfectly Secure Parallel Broadcast

As discussed in Section 1 (and Appendix A), composing protocols with probabilistic termination
näıvely does not retain expected round complexity. In [5], Ben-Or and El-Yaniv constructed an
elegant protocol for probabilistic-termination parallel broadcast26 with a constant round complexity
in expectation, albeit under a property-based security definition. In this section we adapt the [5]
protocol to the UC framework and show that it does not realize the parallel broadcast functionality,
but rather a weaker variant which we call unfair parallel broadcast. Next, we show how to use
unfair parallel broadcast in order to compute (fair) parallel broadcast in constant excepted number
of rounds.

In a standard broadcast functionality (cf. Section 3.1), the sender provides a message to the
functionality which delivers it to the parties. In [30], Hirt and Zikas defined the unfair version
of the broadcast functionality, in which the functionality informs the adversary which message it
received, and allows the adversary, based on this information, to corrupt the sender and replace
the message. Following the spirit of [30], we now define the unfair parallel broadcast functionality,
using the language of CSF.

Unfair Parallel Broadcast. In the unfair parallel broadcast functionality, each party
Pi with input xi distributes its input to all the parties. The adversary is allowed to learn
the content of each input value from the leakage function (and so it can corrupt parties and
change their messages prior to their distribution, based on this information). The function
to compute is fupbc(x1, . . . , xn, a) = ((x1, . . . , xn), . . . , (x1, . . . , xn)) and the leakage function is
lupbc(x1, . . . , xn) = (x1, . . . , xn). We denote by Fupbc the functionality Fcsf when parameterized
with the above functions fupbc and lupbc.

In Appendix D.2.1 we present an adaptation of the [5] protocol and show that it perfectly
UC-realizes (a wrapped version of) Fupbc (see Figure 12).

Parallel Broadcast. In the parallel broadcast functionality, each party Pi with input xi
distributes its input to all the parties. Unlike the unfair version, the adversary only learns
the length of the honest parties’ messages before their distribution, i.e., the leakage function
is lpbc(x1, . . . , xn) = (|x1| , . . . , |xn|). It follows that the adversary cannot use the leaked infor-
mation in a meaningful way when deciding which parties to corrupt. The function to compute
is identical to the unfair version, i.e., fpbc(x1, . . . , xn, a) = ((x1, . . . , xn), . . . , (x1, . . . , xn)). We
denote by Fpbc the functionality Fcsf when parameterized with the above functions fpbc and
lpbc.

Unfortunately, the unfair parallel broadcast protocol πupbc (cf. Figure 12) fails to realize (a
wrapped version of) the standard parallel broadcast functionality Fpbc. The reason is similar to
the argument presented in [30]: in the first round of the protocol, each party distributes its input,
and since we consider a rushing adversary, the adversary learns the messages before the honest
parties do. It follows that the adversary can corrupt a party before the honest parties receive the
message and replace the message to be delivered. This attack cannot be simulated in the ideal
world where the parties interact with Fpbc, since by the time the simulator learns the broadcast
message in the ideal world, the functionality does not allow to change it.

Although protocol πupbc does not realize Fpbc, it can be used in order to construct a protocol
that does. Each party commits to its input value before any party learns any new information,
as follows. Each party, in parallel, first secret shares its input using a t-out-of-n secret sharing
protocol.27 In the second step, every party, in parallel, broadcast a vector with all the shares

26In [5] the problem is referred to as “interactive consistency.”
27In [30] verifiable secret sharing (VSS) is used; however, as we argue, this is not necessary.
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he received, by use of the above unfair parallel broadcast functionality Fupbc, and each share is
reconstructed based on the announced values. The reason this modification achieves fair broadcast
is the following: If a sender Pi is not corrupted until he distributes his shares, then a t-adversary
has no way of modifying the reconstructed output of Pi’s input, since he can at most affect t < n/3
shares. Thus the only way the adversary can affect any of the broadcast messages is by corrupting
the sender independently of his input, an attack which is easily simulated. We describe this protocol,
denoted πpbc, in Figure 7.

Protocol πpbc

1. In the first round, upon receiving (input, sid, xi) with xi ∈ V from the environment, Pi secret
shares xi using a t-out-of-n secret sharing scheme, denoted by (x1

i , . . . , x
n
i ). Next, Pi sends for

every party Pj its share (sid, xji ) (via Fpsmt). Denote by xij the value received from Pj .

2. Next, Pi broadcasts the values xi = (xi1, . . . , x
i
n) using the unfair parallel broadcast functionality,

i.e., Pi sends (input, sid,xi) to Fupbc. Denote by yj = (yj1, . . . , y
j
n) the value received from Pj .

Now, Pi reconstructs all the input values, i.e., for every j ∈ [n] reconstructs yj from the shares
(y1
j , . . . , y

n
j ), and outputs (output, sid, (y1, . . . , yn)) .

Figure 7: The parallel broadcast protocol, in the (Fpsmt,Fupbc)-hybrid model

Theorem 5.4. Let c ≥ 0 and t < n/3. There exists an efficiently sampleable distribution D
such that the functionality WD

pt(Fpbc) has an expected-constant-round complexity, and can be UC-
realized in the Fpsmt-hybrid model, with perfect security, in the presence of an adaptive malicious
t-adversary, assuming that all honest parties receive their inputs within c consecutive rounds.

Proof (sketch). The simulator uses the adversary attacking πpbc in a black-box straight-line manner.
To simulate the first (secret sharing) round, for honest senders the simulation to simply hands the
adversary random shares for all corrupted parties and for corrupted he follows the adversary’s
instructions. If during this step the adversary asks to corrupt new senders, the simulator learns
their output and can easily complete the sharing to match this output. At the end of this phase,
the simulator interacts with its hybrid until it produces output. Once this is the case, he uses this
output to continue the simulation with its adversary. Clearly, for any sender Pi who is not corrupted
until he distributes his shares, then a t-adversary has no way of modifying the reconstructed output
of Pi’s input, since he can at most affect t < n/3 shares. Thus the only way the adversary can affect
any of the broadcasted message is by corrupting the sender independently of his input, an attack
which is easily simulated. The fact that the running time is constant (expected) follows trivially
from the fact that πpbc executes only one round (namely the sharing round) more than the unfair
protocol which is expected constant round (Theorem D.3).

5.3 Fast and Perfectly Secure SFE

We conclude this section by showing how to construct a perfectly UC-secure SFE protocol which
computes a given circuit in expected O(d) rounds, independently of the number of parties, in
the point-to-point channels model. The protocol is obtained by taking the protocol from [6],28

denoted πbgw. This protocol relies on (parallel) broadcast and (parallel) point-to-point channels,
and therefore it can be described in the (Fpsmt,Fpbc)-hybrid model. It follows from Theorem 4.3,

28A full simulation proof of the protocol with a black-box straight-line simulation was recently given by [2] and
[17].
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that the compiled protocol Comppt(πbgw) UC realizes the corresponding wrapped functionality

WD
pt(Fsfe) (for an appropriate distribution D), in the (WD′psmt

dt (Fpsmt),WD′pbc
pt (Fpbc))-hybrid model,

resulting in the following.

Theorem 5.5. Let f be an n-party function, C an arithmetic circuit with multiplicative depth d
computing f , and t < n/3. Then there exists an efficiently sampleable distribution D such that

the functionality WD
pt(Ffsfe) has round complexity O(d) in expectation, and can be UC-realized in

the Fpsmt-hybrid model, with perfect security, in the presence of an adaptive malicious t-adversary,
assuming that all honest parties receive their inputs within c consecutive rounds.
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[1] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan, and Daniel
Wichs. Multiparty computation with low communication, computation and interaction via threshold
fhe. In EUROCRYPT, pages 483–501, 2012.

[2] Gilad Asharov and Yehuda Lindell. A full proof of the BGW protocol for perfectly-secure multiparty
computation. Electronic Colloquium on Computational Complexity (ECCC), 18:36, 2011.

[3] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols (extended
abstract). In STOC, pages 503–513. ACM, 1990.

[4] Michael Ben-Or. Another advantage of free choice: Completely asynchronous agreement protocols
(extended abstract). In Robert L. Probert, Nancy A. Lynch, and Nicola Santoro, editors, Proceedings
of the Second Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing,
Montreal, Quebec, Canada, August 17-19, 1983, pages 27–30. ACM, 1983.

[5] Michael Ben-Or and Ran El-Yaniv. Resilient-optimal interactive consistency in constant time. Dis-
tributed Computing, 16(4):249–262, 2003.

[6] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation (extended abstract). In 20th ACM STOC, pages 1–10. ACM
Press, May 1988.

[7] Ran Canetti. Security and composition of multiparty cryptographic protocols. J. Cryptology, 13(1):143–
202, 2000.

[8] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd
FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

[9] Ran Canetti. Universally composable signatures, certification and authentication. Cryptology ePrint
Archive, Report 2003/239, 2003. http://eprint.iacr.org/2003/239.

[10] Ran Canetti, Asaf Cohen, and Yehuda Lindell. A simpler variant of universally composable security
for standard multiparty computation. In Rosario Gennaro and Matthew Robshaw, editors, Advances in
Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August
16-20, 2015, Proceedings, Part II, volume 9216 of Lecture Notes in Computer Science, pages 3–22.
Springer, 2015.

[11] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-party and
multi-party secure computation. In 34th ACM STOC, pages 494–503. ACM Press, May 2002.

[12] Ran Canetti and Tal Rabin. Universal composition with joint state. In Dan Boneh, editor,
CRYPTO 2003, volume 2729 of LNCS, pages 265–281. Springer, August 2003.
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A On Parallel (In)Composability of Protocols with Probabilistic Termination

Ben-Or and El-Yaniv [5] observed that when executing randomized protocols with probabilistic
termination in parallel, then the expected running time of the composed protocol (i.e., the rounds
its takes for all protocols to give output to any party) is not, in general, preserved. We prove a
formal example where this is the case. Concretely, consider a protocol realizing a particular ideal
functionality such that the probability that all parties have completed the protocol by round k is pk

for some 0 < p < 1. Then, the expected running time of the protocol is 1/p rounds, i.e., constant.
(This is essentially the case in most randomized BA protocols starting with [22].) However, as
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implied by the following lemma, if these protocols are run in parallel in a straight-forward manner,
the resulting protocol will have an expected running time of Θ(logm), which is no longer constant.

In particular, running m parallel copies of the Feldman-Micali protocol [22] results in a protocol
that in expectation takes Θ(logm) phases (and thus rounds) to complete.

Lemma A.1. Let X1, . . . , Xm be geometrically distributed random variables such that for every
i ∈ [m] it holds that Pr[Xi = 1] = p for some 0 < p < 1. Then,

E

[
max

1≤i≤m
Xi

]
= Θ(logm).

Proof. As shown in [21],

1

− log(1− p)
m∑
k=1

1

k
≤ E

[
max

1≤i≤m
Xi

]
≤ 1 +

1

− log(1− p)
m∑
k=1

1

k
,

from which the statement of the lemma follows immediately by observing that
∑m

k=1
1
k = Hm =

Θ(logm).

B The Model (Cont’d)

In this section we give complementary material to Section 2 and in particular we include a high-
level overview of the formulation of synchronous UC from [35]. More concretely, Katz et al. [35]
introduced a framework for universally composable synchronous computation. For self contain-
ment we describe here the basics of the model and introduce some terminology that simplifies the
description of corresponding functionalities.

Synchronous protocols can be cast as UC protocols which have access to a special clock func-
tionality Fclock—which allows them to coordinate round switches as described below—and com-
municate over bounded-delay channels.29 In a nutshell, the clock-functionality works as follows:
It stores a bit b which is initially set to 0 and it accepts from each party two types of messages:
clock-update and clock-read. The response to clock-read is the value of the bit b to the
requestor. Each clock-update is forwarded to the adversary, but it is also recorded, and upon
receiving such a clock-update message from all honest parties, the clock functionality updates b
to b⊕ 1. It then keeps working as above, until it receives again a clock-update message from all
honest parties, in which case it resets b to b⊕ 1 and so on.

Such a clock can be used as follows to ensure that honest parties remain synchronized, i.e.,
no honest party proceeds to the next round before all (honest) parties have finished the current
round: Every party stores a local variable where it keeps (its view of) the current value of the
clock indicator b. At the beginning of the protocol execution this variable is 0 for all parties.
In every round, every party uses all its activations (i.e., messages it receives) to complete all its
current-round instructions and only then sends clock-update to the clock signaling to the clock
that it has completed its round; following clock-update, all future activations result to the party
sending clock-read to the clock until its bit b is flipped; once the party observes that the bit b
has flipped, it starts its next round. Recall that, as mentioned in Section 2, for the sake of clarity,
we do not explicitly mention Fclock in our constructions.

In [35], for each message that is to be sent in the protocol, the sender and the receiver are given
access to an independent single-use channel.30 We point out, that instead of the bounded-delay

29As argued in [35], bounded-delay channels are essential as they allow parties to detect whether or not a message
was sent within round.

30As pointed out in [35], an alternative approach would be to have a multi-use communication channel; as modelling
the actual communication network is out of the scope of the current work, we will use the more standard and formally
treated model of single-use channels from [35].
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channels, in this work we will assume very simple SFEs31 that take as input from the sender the
message he wishes to send (and a default input from other parties) and deliver the output to the
receiver in a fetch mode. Such a simple secure-channel SFE can be realized in a straightforward
manner from bounded-delay channels and a clock Fclock.

As is common in the synchronous protocols literature, throughout this work we will assume
that protocols have the following structure: In each round every party sends/receives a (potentially
empty) message to all parties and hybrid functionalities. Such a protocol can be described in UC
in a regular form (cf. Section 2) using the methodology from [35] as follows: Let µ ∈ N denote
the maximum number of messages that any party Pi might send to all its hybrids during some
round.32 Every party in the protocol uses exactly µ activations in each round. That is, once
a party Pi observes that the round has changed, i.e., the indicator-bit b of the clock has being
flipped, Pi starts its next round as described above. However, this round finishes only after Pi
receives µ additional activations. Note that Pi uses these activations to execute his current round
instructions; since µ is a bound to the number of hybrids used in any round by any party, µ are
enough activations for the party to complete its round (If Pi finishes the round early, i.e., in less
than µ activations, it simply does nothing until the µ activations are received.) Once µ activations
are received in the current round, Pi sends clock-update to the clock and then keeps sending
clock-read message, as described above, until it observes a flip of b indicating that Pi can go to
the next round.

In addition to the regular form of protocol execution, Katz et al. described a way of capturing
in UC the property that a protocol is guaranteed to terminate in a given number of rounds.
The idea is that a synchronous protocol in regular form which terminates after r rounds realizes
the following functionality F. F keeps track of the number of times every honest party sends µ
activations/messages and delivers output as soon as this has happened r times. More concretely,
imitating an r-round synchronous protocol with µ activations per party per round, upon being
instantiated, F initiates a global round-counter λ = 0 and an indicator variable λi := 0 for each
Pi ∈ P; as soon as some party Pi sends µ messages to F, while the round-counter λ is the same, F
sets λi := 1 and does the following check:33 if λi = 1 for all honest Pi then increase λ := λ+ 1 and
reset λi = 0 for all Pi ∈ P. As soon as λ = r, F enters a “delivery” mode. In this mode, whenever
a message fetch-output is received by some party Pi, F outputs to Pi its output. (If F has no
output to Pi is outputs ⊥.)

We refer to a functionality that has the above structure, i.e., which keeps track of the current
round λ by counting how many times every honest party has sent a certain number µ of messages,
as a synchronous functionality. To simplify the description of our functionalities, we introduce the
following terminology. We say that a synchronous functionality F is in round ρ if the current value
of the above internal counter in F is λ = ρ.

We note that protocols in the synchronous model of [35] enjoy the strong composition properties
of the UC framework. However, in order to have protocols being executed in a lock-step mode,
i.e., where all protocols complete their round within the same clock-tick, Katz et al. make use of
the composition with joint-state (JUC) [12]. The idea is the parties use an Fclock-hybrid protocol
π̂ that emulates towards each of the protocols, sub-clocks and assigns to each sub-clock a unique

31In fact, in Section 3 we introduce a more liberal variant of the UC SFE functionality that we call canonical
synchronous functionality (in short CSF,) that allows us to abstract several (even more complicated) tasks such as
Byzantine agreement.

32In the simple case where the parties only use point-to-point channels, µ = 2(n− 1), since each party uses n− 1
channels as sender and n− 1 as receiver to exchange his messages for each round with all other n parties.

33To make sure that the simulator can keep track of the round index, F notifies S about each received input,
unless it has reached its delivery state defined below.
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sub-session ID (ssid). Each of these sub-clocks is local to its calling protocol, but π̂ makes sure that
it gives a clock-update to the actual (joint) clock functionality Fclock, only when all sub-clocks
have received such a clock-update message. This ensures that all clocks will switch their internal
bits at the same time with the bigger clock, which means that the protocols using them will be
mutually synchronized. This property can be formally proved by direct application of the JUC
theorem. For further details the interested reader is referred to [35, 12].

C Composition Theorem

This section contains the complementing definitions and proofs for Section 4.

Notations. In this section, let Ff1,l1
csf , . . . ,Ffm,lmcsf and Ff,lcsf be CSFs and denote Fi := Ffi,licsf as well

as F := Ff,lcsf for brevity. Moreover, let D1 . . . , Dm and D be arbitrary distributions over traces.
Finally, let π be an SNF protocol that UC-realizes the strictly-wrapped functionality WD

strict(F)
(resp. the flexibly-wrapped functionality WD

flex(F)) in the (F1, . . . ,Fm)-hybrids model.

C.1 Using Actual Round Complexities

Each CSF Fi takes exactly two rounds, and as such, cannot be implemented in general by any real-
world protocol. The first step towards having the protocol π be realizable is to increase the round
complexity of each hybrid Fi according to the distributions Di. We denote by π′ be the protocol
that replaces each call to a CSF hybrid Fi by a call to WDi

strict(Fi). We show in Lemma C.1 that
this modified protocol still UC-realizes the wrapped functionality WD′

strict(F) (resp. WD′
flex(F)), for a

distribution D′ that corresponds to the output of the following procedure:

1. Sample a trace T ← Samp(D). The output T is a depth-1 tree with rootWD′
strict(F) and leaves

from the set {Fi}i.
2. For each leaf node F ′ = Fi for some i, sample a trace Ti ← Samp(Di) and replace node F ′

by Ti.
3. Output the resulting trace T ′.

The distribution D′ is also denoted by full-trace(D, {Di}i).

Lemma C.1. Protocol π′ UC-realizes WD′
strict(F) (resp. WD′

flex(F)) in the {WDi
strict(Fi)}i-hybrid

model.

Proof. Assume that π UC-realizes the flexibly-wrapped functionality WD′
flex(F) (the proof for the

case where π UC-realizes the strictly-wrapped functionality is similar).
Let S be the simulator for protocol π running with the dummy adversary (recall that proving

security with respect to the dummy adversary [8, Claim 10]). Consider the following simulator S ′
for π′:

• Internally run a copy of S.

• In round ρ = 1, forward all (leakage, sid, ·) messages fromWD′
flex(F) to S. Moreover, S ′ receive

a trace T ′ from WD′
flex(F). At depth 1, T ′ has wrapped hybrids, each of which is the root of a

subtree Ti. Replace each such subtree by its unwrapped root node to obtain a depth-1 tree
T . Pass T to S.

• Simulate the execution of all wrapped hybrids Hi in the order they appear in T ′ as follows34

(the first such hybrid must be simulated as early as in round ρ = 1):

34Recall that the children at each node in a trace are ordered.
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– Let ρi be the (simulated) round counter of Hi and let Ti be the corresponding subtree
in T ′.

– In any round forward the messages (adv-input, sid, ·) (that are directed to Hi) from the
environment to S.

– In round ρi = 1, forward the simulated leakage messages from S to the environ-
ment and add (trace, sid, Ti) to the first such message. Moreover, forward the
(fetch-output, sid, ·) commands from WD′

flex(F) to S and from S to the environment.
Note that by sending these messages S eventually advances to simulate the second round
of the (unwrapped) CSF hybrid.

– In rounds ρi = 2, . . . , (2 · ctr(Ti) − 1), forward all (fetch-output, sid, ·) messages that
are received from WD′

flex(F) to the environment (thus bypassing S).

– In round ρi = 2 · ctr(Ti), forward all (fetch-output, sid, ·) messages from WD′
flex(F) to S

and from S to the environment.

• At any time forward (adv-input, sid, ·) messages and (early-output, sid, ·) messages from S
to WD′

flex(F); note that by the above simulation strategy for hybrids Hi, this only occurs in
the first and last round of the simulated execution of a Hi.

Let Z ′ be an environment distinguishing between an execution of π′ in the {WDi
strict(Fi)}i-hybrid

model and the ideal model with WD′
flex(F) and S ′. We construct the following environment Z

distinguishing between an execution of π in the {Fi}i-hybrid model and the ideal model with F
and S:

• Internally run a copy of Z ′. Denote by G the system of ITMs Z interacts with.

• For each two-round CSF hybrid Fi executed by G, proceed as follows to simulate an execution
of WDi

strict(Fi) to Z ′:

– Initialize a round counter ρi ← 1.

– Sample a trace Ti from Di.

– At any time, forward (adv-input, sid, ·) messages from Z ′ to G.

– In round ρi = 1, forward (fetch-output, sid, ·) messages from Z ′ to G (to the cor-
responding party). Moreover, forward (leakage, sid, ·) messages from G to Z ′. Add
(trace, sid, Ti) to the first such message.

– In rounds ρi = 2, . . . , (2 · ctr(Ti)− 1), when Z ′ sends a (fetch-output, sid, ·) message to
a party Pi, discard it and pass (fetch-output, sid, Pi) to Z ′ on behalf of the adversary
(thus bypassing G).

– In round ρi = 2 · ctr(Ti), forward (fetch-output, sid, ·) messages from Z ′ to G (to the
corresponding party). Moreover, forward (fetch-output, sid, ·) messages from G to Z ′.

• At any time, forward (output, sid, ·) messages from G to Z ′; note that by the above simulation
strategy for hybrids, this occurs only during the last round of such a simulated execution.

• Output whatever decision bit Z ′ outputs.

It can be seen by inspection that
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• when Z interacts with a real-world execution of π with hybrids Fi, the view of Z ′ is exactly the
view it would have when interacting with a real-world execution of π′ with hybridsWDi

strict(Fi),
and

• when Z interacts with an ideal-world execution of F with simulator S, the view of Z ′ is
exactly the view it would have when interacting with an ideal-world execution of WD′

flex(F)
with simulator S ′.

C.2 Accounting for Slack

Note that with SNF protocols one “communication round” consists of one call to an CSF, whose
evaluation takes two rounds. For convenience, for the remainder of this section, the term round
will refer to such communication rounds.

This section formalizes the intuition provided in Section 4 and shows how protocols can be
modified in order to function properly even if parties initiate them in different rounds and how
slack induced by protocols can be reduced to a single round. Two cases are distinguished:

• Strictly-wrapped case. In this case protocol π realizes a strictly-wrapped CSF WD
strict(F), and

all hybrids are strictly wrapped, i.e., they are all realized by non-slack-inducing protocols.

• Flexibly-wrapped case. In this case protocol π realizes a flexibly-wrapped CSF WD
flex(F), and

some hybrids are strictly wrapped whereas others are flexibly wrapped.

The approaches to adding slack tolerance and slack reduction described in Section 4 are captured
by considering two wrappers Wst and Wstr, where the former takes care of slack tolerance (ST)
and the latter adds both slack tolerance and reduction (STR). Looking ahead, the general idea is
that strictly-wrapped CSFs are additionally wrapped with Wst while flexibly-wrapped ones are
wrapped with Wstr.

Strictly-wrapped case. The slack-tolerance wrapper, formally defined in Figure 8, is parame-
terized by a non-negative integer c, which denotes the amount of slack tolerance that is added.
The wrapper ensures that all inputs that are provided within c rounds of the first input will be
considered in the computation. Wrapper Wst then essentially increases the termination round by
a factor of (3c+ 1), which is due to the slack tolerance technique used (cf. Section 4). In the end,
Wst ensures that parties obtain output with the same amount of slack they had initially. Note that
the notation (y1, . . . , yn) ← F stands for advancing the internally run copy of F until it produces
output.

29



Wrapper Functionality Wc
st(F)

Wc
st, parameterized by a non-negative integer c, internally runs a copy of F and proceeds as follows:

• At all times, forward (adv-input, sid, ·) messages from the adversary to F.

• Record trace T when it is output by F.

• In rounds 1, . . . , 2c+ 1: Upon receiving a message from some party Pi ∈ P, proceed as follows:

– Upon receiving the first message from Pi, record it and set Pi’s local slack ci ← ρ − 1, where ρ is
the current round.

– If ρ = (c+ 1) + ci, forward the message initially recorded for Pi to F. Forward the (leakage, sid, ·)
message F subsequently outputs to the adversary.

– Else, send (fetch-output, sid, Pi) to the adversary.

• In rounds ρ > 2c+ 1: Upon receiving a message from some party Pi ∈ P, proceed as follows:

– If ρ = (3c + 1)ctr(T ) + ci, compute (y1, . . . , yn) ← F (if not already done so), and output
(output, sid, yi) to Pi.

– Else, output (fetch-output, sid, Pi) to the adversary.

Figure 8: The slack-tolerance wrapper functionality

Let π′′ be the protocol obtained from π′ by replacing each call to a hybridWDi
strict(Fi) by a call to

Wc
st(WDi

strict(Fi)). In Lemma C.2 we show that this modified protocol UC-realizesWc
st(WD′

strict(F)).

Lemma C.2. Protocol π′′ securely realizes Wc
st(WD′

strict(F)) in the {Wc
st(WDi

strict(Fi))}i-hybrid
model.

Proof. Let S ′ be the simulator for protocol π′ (running with the dummy adversary). Denote by
WD′

dt (F) the wrapped functionality Wc
st(WD′

strict(F)) for brevity. Consider the following simulator
S ′′ for π′′:

• Internally run a copy of S ′ and set slack indicators c1, . . . , cn ← 0.

• During rounds ρ = 1, . . . , c+1: Upon receiving the first (fetch-output, sid, Pj) fromWD′
dt (F),

set cj ← ρ− 1.

• In rounds ρ = (c+ 1) + cj for each Pj , forward all leakage messages from WD′
dt (F) to S ′.

• Simulate the execution of all wrapped hybrids Hi in the order they appear in trace T ′35

(output by WD′
dt (F) with the first leakage command) as follows (the first such hybrid must

be simulated as early as in round ρ = 1):

– Let ρ′ be the (simulated) round counter of Hi.

– At any time forward (adv-input, sid, ·) messages from the environment to S.

– In rounds ρ′ = 1, 2, . . .: Upon receiving (fetch-output, sid, Pj) from WD′
dt (F):

∗ If ρ′ ≡ (c+ 1) + cj (mod 3c+ 1), input (fetch-output, sid, Pj) to S ′ and output to
the environment whatever S ′ outputs.36

35Recall that the children at each node in a trace are ordered.
36Note that for the very first hybrid simulated in this way, this instruction is executed upon receiving

(leakage, sid, Pj , ·) from WD′
dt (F).
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∗ Otherwise, output (fetch-output, sid, Pj) to the environment (thus bypassing S ′).

• At any time forward (adv-input, sid, ·) messages and (early-output, sid, ·) messages from S ′
to WD′

strict(F).

Let Z ′′ be an environment distinguishing between an execution of π′′ in the {WDi
dt (Fi)}i-hybrid

model and the ideal model with WD′
dt (F)) and S ′′. Consider the following environment Z ′ distin-

guishing between an execution of π′ in the {WDi
strict(Fi)}i-hybrid model and the ideal model with

WD′
strict(F) and S:

• Internally run a copy of Z ′′. Denote by G′ the system of ITMs Z ′ interacts with .

• Set slack indicators c1, . . . , cn ← 0.

• During rounds ρ = 1, . . . , c + 1: Upon Z ′′ outputting the first (fetch-output, sid, Pi) for
party Pj , set cj ← ρ− 1.

• For each hybrid WDi
strict(Fi) executed by G′, proceed as follows to simulate an execution of

Wc
st(WDi

strict(Fi)) to Z ′′:

– Initialize a round counter ρ′ ← 1.

– At any time, forward (adv-input, sid, ·) messages from Z ′′ to G′.
– In rounds ρ′ = 1, 2, . . .: Upon Z ′′ outputting (fetch-output, sid, Pj):

∗ If ρ′ ≡ (c+ 1) + cj (mod 3c+ 1), input (fetch-output, sid) to G′ for Pj and output
to the Z ′′ whatever G′ outputs on behalf of the adversary.

∗ Otherwise, output (fetch-output, sid, Pj) to Z ′′ on behalf of the adversary.37

• At any time, forward (output, sid, ·) messages from G′ to Z ′.

It can be seen by inspection that

• when Z ′ interacts with a real-world execution of π′ with hybrids WDi
strict(Fi), the view of Z ′′

is exactly the view it would have when interacting with a real-world execution of π′′ with
hybrids Wc

st(WDi
strict(Fi), and

• when Z ′ interacts with an ideal-world execution of WD′
strict(F) with simulator S ′, the view

of Z ′′ is exactly the view it would have when interacting with an ideal-world execution of
Wc

st(WD′
strict(F)) with simulator S ′′.

Flexibly-wrapped case. The slack-tolerance and reduction wrapper, formally defined in Figure 9,
is parameterized by a non-negative integer c, which as before denotes the amount of slack tolerance
that is added. The wrapper ensures that all inputs that are provided within c rounds of the
first input will be considered in the computation. After the initial phase, wrapper Wstr proceeds
differently than Wst. Firstly, it computes the termination round as

ρterm ← (3c+ 1)ctr(T ) + (c+ 1) + 2ν,

37Note that for the very first hybrid simulated in this way, this instruction is executed upon G′ outputting
(input, sid, ·).
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where ν is the number of flexibly-wrapped CSFs in the trace T initially output by the functionality
being wrapped. The term 2ν is due to the fact that after each invocation of such a hybrid, the
slack-reduction protocol described in Section 4 must be executed, which lasts for two rounds; the
term (c+ 1) ensures that there are enough rounds for the slowest parties to terminate. Note that
the notation y ← G stands for advancing the internally run copy of G until it produces output.

Wrapper Functionality Wstr(F)

Wc
str, parameterized by a non-negative integer c, internally runs a copy of F (where F is a public-output

functionality) and proceeds as follows:

• Initially, set termination indicators term1, . . . , termn ← 0.

• At all times, forward adv-input-messages from the adversary to F.

• Upon receiving the first message from Pi, record it and set Pi’s local slack ci ← ρ− 1, where ρ is the
current round.

• Record trace T when it is output by F. Set ρterm ← (3c+1)ctr(T )+(c+1)+2ν, where ν is the number
of flexibly-wrapped functionalities in T .

• In rounds 1, . . . , 2c+ 1: Upon receiving a message from some party Pi ∈ P, proceed as follows:

– If ρ = (c+ 1) + ci, forward the message initially recorded for Pi to F. Forward the leakage-message
F subsequently outputs to the adversary.

– Else, output (fetch-output, sid, Pi) to the adversary.

• In rounds ρ > 2c+ 1:

– Upon receiving (fetch-output, sid) from some party Pi ∈ P, proceed as follows:

∗ If termi = 1, output (output, sid, y) to Pi.

∗ Otherwise, send (fetch-output, sid, Pi) to the adversary.

– Upon receiving (early-output, sid, Pi) from the adversary, set termi ← 1 and ρterm ← min{ρterm, ρ+
1}, compute y ← F, and output (output, sid, y) to the adversary.

• In round ρ = ρterm: Upon receiving (fetch-output, sid) from some party Pi ∈ P, compute y ← F (if
not already done so) and output (output, sid, y) to Pi.

Figure 9: The slack-tolerance and reduction wrapper functionality

Recall that in this case some of the hybrids Fi need to be strictly wrapped and others flexibly.
Let I be a set indexing the hybrids that need to be wrapped flexibly. Let π′′ be the protocol
obtained from π′ by

• replacing each call to a hybrid WDi
strict(Fi) with i /∈ I by a call to Wc

st(WDi
strict(Fi)),

• replacing each call to a hybrid WDi
strict(Fi) with i ∈ I by a call to Wc

str(WDi
flex(Fi)), and

• by executing the termination protocol described in Section 4.

This modified protocol realizes Wc
st(WD′

flex(F)), as shown below.

Lemma C.3. Protocol π′′ securely UC-realizes Wc
str(WD′

flex(F)) in the

({Wc
st(WDi

strict(Fi))}i/∈I , {Wc
str(WDi

flex(Fi))}i∈I)-hybrid model.
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Proof. Let S ′ be the simulator for protocol π′ (running with the dummy adversary). Denote by
WD′

pt (F) the wrapped functionality Wc
str(WD′

flex(F)) for brevity. Consider the following simulator
S ′′ for π′′:

• Internally run a copy of S ′. Set slack indicators c1, . . . , cn ← 0.

• During rounds ρ = 1, . . . , c+ 1: Upon receiving the first (fetch-output, ·, Pj) from WD′
pt (F),

set cj ← ρ− 1.

• In rounds ρ = (c+ 1) + cj for each Pj , forward all leakage messages from WD′
pt (F) to S ′.

• Simulate the execution of all wrapped hybrids H in the order they appear in trace T ′38

(output by WD′
pt (F) with the first leakage command; the first such hybrid must be simulated

as early as in round ρ = 1). If the hybrid is not indexed by I, proceed as follows:

– Let ρ′ be the (simulated) round counter of H.

– At any time forward adv-input-messages from the environment to S.

– In rounds ρ′ = 1, 2, . . .: Upon receiving (fetch-output, sid, Pj) from WD′
pt (F):

∗ If ρ′ ≡ (c+ 1) + cj (mod 3c+ 1), input (fetch-output, sid, Pj) to S ′ and output to
the environment whatever S ′ outputs.39

∗ Otherwise, output (fetch-output, sid, Pj) to the environment (thus bypassing S ′).

If the hybrid is indexed by I, proceed as follows:

– Let ρ′ be the (simulated) round counter of H.

– At any time forward adv-input-messages from the environment to S.

– In rounds ρ′ = 1, 2, . . .: Upon receiving (fetch-output, sid, Pj) from WD′
pt (F):

∗ If ρ′ ≡ (c+ 1) + cj (mod 3c+ 1), input (fetch-output, sid, Pj) to S ′ and output to
the environment whatever S ′ outputs.40 Record the trace TH output by S ′ the first
time this instruction is executed and compute ρ′term = (3c+ 1)ctr(T ) + (c+ 1) + 2ν.

∗ Otherwise, output (fetch-output, sid, Pj) to the environment (thus bypassing S ′).
– If the environment issues early-output commands for certain parties before round ρ′term,

set ci ← 0 for these players and ci ← 1 for the others and end the simulation of H one
round later. If the environment does not issue such a command for any players, set
ci ← 0 for all players and end the simulation of H in round ρ′term.

• At any time forward adv-input-messages from S ′ to WD′
flex(F).

• When S ′ wants to output (early-output, sid, Pj) to WD′
pt (F), proceed as follows:

– Forward (early-output, sid, Pj) to WD′
pt (F) and obtain (output, sid, y). Record y (the

first time).

– Simulate Pj sending (end, y) to all parties.

38Recall that the children at each node in a trace are ordered.
39Note that for the very first hybrid simulated in this way, this instruction is executed upon receiving

(leakage, sid, Pj , ·) from WD′
pt (F).

40Note that for the very first hybrid simulated in this way, this instruction is executed upon receiving
(leakage, sid, Pj , ·) from WD′

pt (F).
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– For every party Pj , keep track of how many end-messages it has received (including
those by corrupted parties).

∗ When a party receives t+ 1 such messages (for the same y) and hasn’t sent any of
its own, it sends them at this point.

∗ When a party partyj receives n − t such messages (for the same y), S ′′ outputs
(early-output, sid, Pj) to WD′

pt (F).

Let Z ′′ be an environment distinguishing between an execution of π′′ in the {Wc
str(WDi

flex(Fi))}i∈I)-
hybrid model and the ideal model withWstr(WD′

flex(F)) and S ′′. Consider the following environment

Z ′ distinguishing between an execution of π′ in the {WDi
strict(Fi)}i-hybrid model and the ideal model

with WD′
flex(F) and S:

• Internally run a copy of Z ′′. Denote by G′ the system of ITMs Z ′ interacts with.

• Set slack indicators c1, . . . , cn ← 0.

• During rounds ρ = 1, . . . , c+ 1: Upon Z ′′ outputting the first (fetch-output, ·, Pi) for party
Pj , set cj ← ρ− 1.

• For each hybrid WDi
strict(Fi) with i /∈ I executed by G′, proceed as follows to simulate an

execution of Wc
st(WDi

strict(Fi)) to Z ′′:

– Initialize a round counter ρ′ ← 1.

– At any time, forward adv-input-messages from Z ′′ to G′.
– In rounds ρ′ = 1, 2, . . .: Upon Z ′′ outputting (fetch-output, sid, Pj):

∗ If ρ′ ≡ (c+ 1) + cj (mod 3c+ 1), input (fetch-output, sid) to G′ for Pj and output
to the Z ′′ whatever G′ outputs on behalf of the adversary.

∗ Otherwise, output (fetch-output, sid, Pj) to Z ′′ on behalf of the adversary.41

• For each hybrid WDi
strict(Fi) with i ∈ I executed by G′, proceed as follows to simulate an

execution of Wc
str(WDi

flex(Fi)) to Z ′′:

– Initialize a round counter ρ′ ← 1.

– At any time, forward adv-input-messages from Z ′′ to G′.
– In rounds ρ′ = 1, 2, . . .: Upon Z ′′ outputting (fetch-output, sid, Pj):

∗ If ρ′ ≡ (c+ 1) + cj (mod 3c+ 1), input (fetch-output, sid) to G′ for Pj and output
to the Z ′′ whatever G′ outputs on behalf of the adversary. Record the trace TH
output by S ′ the first time this instruction is executed and compute ρ′term = (3c +
1)ctr(T ) + (c+ 1) + 2ν.

∗ Otherwise, output (fetch-output, sid, Pj) to Z ′′ on behalf of the adversary.42

– If Z ′′ issues early-output commands for certain parties before round ρ′term, set ci ← 0
for these players and ci ← 1 for the others and end the simulation of H one round later
(by sending fetch-output-messages on behalf of the parties to G′). If the environment
does not issue such a command for any players, set ci ← 0 for all players and end the
simulation of H in round ρ′term.

41Note that for the very first hybrid simulated in this way, this instruction is executed upon G′ outputting
(input, sid, ·).

42Note that for the very first hybrid simulated in this way, this instruction is executed upon G′ outputting
(input, sid, ·).
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• When WD′
pt (F) outputs (output, sid, y) to a party Pj , proceed as follows:

– Simulate to Z ′′ that Pj sends (end, y) to all parties.

– For every party Pj , keep track of how many end-messages it has received (including
those by corrupted parties).

∗ When a party receives t+ 1 such messages (for the same y) and hasn’t sent any of
its own, it sends them at this point.

∗ When a party Pj receives n − t such messages (for the same y), Z ′ outputs
(output, sid, y) to Z ′′ (for party Pi).

It can be seen by inspection that

• when Z ′ interacts with a real-world execution of π′ with hybrids WDi
strict(Fi), the view of Z ′′

is exactly the view it would have when interacting with a real-world execution of π′′ with
hybrids Wc

st(WDi
strict(Fi), and

• when Z ′ interacts with an ideal-world execution of WD′
flex(F) with simulator S ′, the view

of Z ′′ is exactly the view it would have when interacting with an ideal-world execution of
Wc

st(WD′
strict(F)) with simulator S ′′.

C.3 The Composition Theorem

Set WD
dt(·) := Wst(WD

strict(·)) and WD
pt(·) := Wstr(WD

flex(·)). Moreover, denote by Compdt(π) the
“compiled” protocol π′′ resulting in the first case and by Comppt(π) the “compiled” protocol π′′

resulting in the second case above.

Round complexity. Consider first the strictly-wrapped case. The expected round complexity of
the compiled protocol Compdt(π) is (cf. Section C.1)∑

i

di · (3c+ 1) · 2 · E[ctr(Ti)],

where di is the expected number of calls to hybrid Fi and Ti is a trace sampled from Di. This
follows from the fact that each hybrid called by π is replaced by WDi

dt (Fi), which increases the
round complexity by a factor of (3c+ 1).

Note that (recursively) the round complexity of a protocol realizing WDi
dt (Fi) already contains

the factor 2(3c+ 1), and, therefore, these factors do not accumulate when one replaces hybrids by
their realizing protocols!

In the flexibly-wrapped case, the expected round complexity of the compiled protocol Comppt(π)
is (cf. Section C.2) ∑

i

di · (3c+ 1) · 2 · E[ctr(Ti)] + (c+ 1) + 2ν,

where di is the expected number of calls to hybrid Fi, Ti is a trace sampled from Di, and where ν
is the expected number of flexibly-wrapped CSF in T ′.

In summary, note in particular that in either case, if π and all the protocols realizing the hybrids
are expected-constant-round protocols, so is the compiled protocol.

Therefore, overall we have proven the following two theorems:
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Theorem 4.2. Let {Fi}i and F be arbitrary CSFs, D and {Di}i arbitrary distributions over traces,
and D′ = full-trace(D, {Di}i). If an SNF protocol π securely realizes WD

strict(F) in the {Fi}i-hybrid

model, then Compcdt(π) securely realizes WD′
dt (F) in the {WDi

dt (Fi)}i-hybrid model.
The expected round complexity of the compiled protocol Compcdt(π) is

2(3c+ 1)
∑
i

di · E[ctr(Ti)],

where di is the expected number of calls to hybrid Fi and Ti is a trace sampled from Di.

Theorem 4.3. Let {Fi}i and F be arbitrary CSFs, D and {Di}i arbitrary distributions over traces,
and D′ = full-trace(D, {Di}i). Moreover, let I be a set indexing a subset of the CSFs Fi. If an SNF
protocol π securely realizes WD

flex(F) in the {Fi}i-hybrid model, then Compcpt(π) securely realizes

WD′
pt (F) in the ({WDi

dt (Fi)}i/∈I , {WDi
pt (Fi)}i∈I)-hybrid model.

The expected round complexity of the compiled protocol Compcpt(π) is

2(3c+ 1)
∑
i

di · E[ctr(Ti)] +O(1),

where di is the expected number of calls to hybrid Fi and Ti is a trace sampled from Di.

C.4 Wrapping SMTs

Note that with SNF protocols one “communication round” consists of one call to an CSF, whose
evaluation takes two rounds. For convenience, for the remainder of this section, the term round
will refer to such communication rounds.

This section shows how from (unwrapped) parallel-SMF CSFs Fpsmt, one can realize
WD

dt(Fpsmt),43 where D is the distribution that always samples the trace with root WD
strict(Fpsmt)

and a single child Fpsmt.

Output-round wrapping. The dummy protocol realizes WD
strict(Fpsmt) using Fpsmt as hybrid.

It is easily verified that the simulator that hides the trace output by WD
strict(Fpsmt) but otherwise

forwards between WD
strict(Fpsmt) and the environment is adequate.

Adding slack tolerance. The protocol in Figure 10 in the WD
strict(Fpsmt)-hybrid model is based

on the intuition provided in Section 4: Every round is expanded into 2c + 1 rounds, during all
of which a party listens for round-r messages from other parties while it sends its own round-r
messages in round c+ 1. In addition, to ensure that once some honest party has produced output,
no party receives adversarial messages, every party waits (without listening) for an additional c
rounds in the end before outputting the values received during the first 2c+ 1 rounds.

43Recall that WD
dt(·) =Wst(WD

strict(·)).
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Protocol π (realizing wrapped Fpsmt)

Each party Pi ∈ P = {P1, . . . , Pn} proceeds as follows:

• Initially, obtain input (input, sid, (x
(i)
1 , . . . , x

(i)
n )) from the environment. Set y1, . . . , yn ← ⊥.

• In every round ρ = 1, . . . , c:a Send (input, sid,⊥) to (a fresh instance of) Fpsmt. Obtain output
(output, sid, (u1, . . . , un)) from Fpsmt with ui ∈ {0, 1}∗ ∪{⊥}. For each i with ui 6= ⊥, set yi ← ui.

• In round ρ = c + 1: Send (input, sid, (x
(i)
1 , . . . , x

(i)
n )) to Fpsmt. Obtain output

(output, sid, (u1, . . . , un)) with ui ∈ {0, 1}∗ ∪ {⊥}. For each i with ui 6= ⊥, set yi ← ui.

• In every round ρ = c + 2, . . . , 2c + 1: Send (input, sid,⊥) to Fpsmt. Obtain output
(output, sid, (u1, . . . , un)) with ui ∈ {0, 1}∗ ∪ {⊥}. For each i with ui 6= ⊥, set yi ← ui.

• In every round ρ = 2c+ 2, . . . , 3c: Do nothing.

• In round ρ = 3c+ 1: Output (output, sid, (y1, . . . , yn)).

Figure 10: The wrapped parallel secure message transmission protocol, in the Fpsmt-hybrid
model

aNote that ρ is the local round counter of party Pi.

Lemma C.4. Protocol π UC-realizes Wst(WD
strict(Fpsmt)) in the WD

strict(Fpsmt)-hybrid model.

Proof. Set WD
dt(Fpsmt) := Wst(WD

strict(Fpsmt)) for brevity. Consider the following simulator (run-
ning with the dummy adversary):

• Initialize variables uij ← ⊥ for i, j = 1, . . . , n and slack variables c1, . . . , cn ← 0.

• Upon receiving (leakage, sid, Pi, li) fromWD
dt(Fpsmt), record li, set ci ← ρ−1, where ρ is the

current round number.

• Simulate ρ = 3c+ 1 sequential instances of Fpsmt. In particular:

– If the environment instructs a corrupted party Pi to send a message m to a party Pj ,
set uij ← m.

– For each party Pi, starting in round ci and ending in round (2c + 1) + ci, output
(leakage, sid, Pi, l), where l = li if the current round is ρ = (c + 1) + ci and l = 0
otherwise.

• After completion of the above simulation, use the adversary input of WD
dt(Fpsmt) to set the

values sent by corrupted players according to the variables uij .

By inspection it can be seen that a real-world execution of π is indistinguishable from an execution
of WD

dt(Fpsmt) with the above simulator.

D Applications of our Fast Composition Theorem (Cont’d)

This section includes complementary material to Section 5.
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D.1 Fast and Perfectly Secure Byzantine Agreement (Cont’d)

In Section 5.1 we presented the randomized binary Byzantine agreement protocol πrba, we now
proceed to prove Lemma 5.1.

Lemma 5.1. Let p = 0.35 and t < n/3. Denote by Drba the distribution that outputs a depth-1

trace, where the root is WDrba
flex (F{0,1}ba ), and the leaves are set as follows: initially sample an integer

r from the geometric distribution with parameter p and support {1 . . . , τ+1} (representing the phase
where Foc samples a fairness bit 1, plus the option that Foc samples 0 in all τ phases). The first
leaf in the trace is Fpsmt, followed by min(r, τ) sequences of (Foc,Fpsmt,Fpsmt,Fpsmt). Finally, if

r ≥ τ add the leaf F{0,1}ba to the trace.
Then, assuming all honest parties receive their inputs at the same round, protocol πrba UC-

realizes Frba = WDrba
flex (F{0,1}ba ), in the (Fpsmt,Foc,F{0,1}ba )-hybrid model, with perfect security, in

the presence of an adaptive malicious t-adversary.

Proof (sketch). We first claim correctness, i.e., that all honest parties output the same value and
that if n− t of the inputs are the same, this value will be the common output. The protocol πrba
consists of two parts, the first is running (up to) τ phases of the Feldman-Micali protocol and the
second (which only occurs if there exists an honest party that did not receive output, i.e., has value
term = 0, in the first part, or if there exists an honest party that received output in phase τ , i.e.,
has value term = τ) consists of calling a BA functionality. As shown in [22, Thm. 4], the Feldman-
Micali protocol satisfies the consistency and validity properties in the property-based definition of
Byzantine agreement. In addition, if some honest party received output b in some phase α (i.e.,
if it sets term = α), then the value bi of every honest party Pi equals b at the end of phase α. It
follows that:

• In case n − t honest parties (in particular if all honest parties) start with the same input,
they will agree on this value as their output and terminate in the first phase. (In all other
cases it remains only to show show that all honest parties agree on the output.)

• In case the first honest party received output in phase α < τ − 1, it holds that by phase
α + 1 < τ all honest parties will receive the same output (i.e., 0 < term < τ for all honest
parties), and so correctness follows from [22].

• In case no honest party received output in all τ phases (i.e., term = 0 for all honest parties),
all honest parties send their internal values to Fba and output the result, hence, correctness
follows from the Fba functionality.

• In case all honest parties receive their output in phase τ (i.e., term = τ for all honest parties),
then by [22] they receive the same value. In this case, this is the value they will output after
calling Fba and so correctness is satisfied.

• In case some honest parties receive their output in phase τ (i.e., term = τ) and the other
honest parties do not (i.e., term = 0), then it holds that all honest parties send the same
value to Fba, and correctness is satisfied.

• In case some honest parties receive their output in phase τ − 1 (i.e., term = τ − 1) and they
do not send any input to Fba. However, the remaining honest parties will receive the same
output in phase τ (i.e., term = 0), and will output this value, regardless of the output they
receive from Fba. Therefore, correctness is satisfied.
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Regarding termination, [22, Claim T4-4] showed that for any positive integer m, if all honest
parties agree on the same bit at the beginning of the m’th phase, then they will all terminate at
the end of the phase with probability at least p. It follows that in case all honest parties start
with the same input value, they will terminate within the first iteration. Otherwise, the probability
distribution of terminating in less than τ = log1.5(k) + 1 phases is geometric with parameter p. In
the negligible probability that the parties did not receive output in less than τ phases, termination
is guaranteed by Fba.

We now prove that πrba UC-realizes Frba. Let A be the dummy adversary. We construct a
simulator S that simulates the honest parties in πrba, the environment and the ideal functionalities
Fpsmt,Foc and Fba to A, as follows.

• S forwards all messages from the environment to A (and vice versa).

• S simulates every honest party by independently sampling random coins for the party and
running the protocol according to the protocol’s specification. Note that S learns the in-
put for each honest party Pi as soon as Pi sends it to Frba by receiving the message
(leakage, sid, Pi, (x1, . . . , xn)). In addition, S learns the trace of the protocol by receiving
the message (trace, sid, T ) from Frba, and can derive the terminating phase rout by counting
the number of sequences (Foc,Fpsmt,Fpsmt,Fpsmt) in T (and setting rout ← τ + 1 if the last
leaf is Fba).

• Whenever A sends a message (sid, bj) on behalf of a corrupted party Pj to some honest party
during the first round, S sends (input, sid, bj) to Frba on behalf of Pj .

• Whenever A requests to corrupt some party Pi ∈ P, S corrupts Pi and sends the simulated
internal state of Pi (consisting of Pi’s input, randomness and incoming messages) to A. Recall
that in case A corrupts a party Pi after it sent its input to some corrupted party, during the
first round, A may instruct Pi to send a different value as its input to all other parties. In
this case, S sends (input, sid, bi) to Frba on behalf of Pi.

• When simulating Foc in the first rout−1 phases, instead of sampling the fairness bit, S acts as
if b = 0, i.e., it allows A to decide on the output values of the parties. In case some subset of
simulated honest parties P ′ terminate in a phase r (prior to phase rout) with value y ∈ {0, 1},
S sends (adv-input, sid, y) to Frba followed by (early-output, sid, Pi) for every Pi ∈ P ′. In
addition, S proceeds based on the following cases:

– In case r < τ , S sends (early-output, sid, Pi) for every Pi ∈ P \ P ′ in the next phase,
ensuring that all honest parties will terminate appropriately.

– In case r = τ , then the honest parties in P \ P ′ proceed to the invocation of Fba, S
simulates all honest parties in P \ P ′ sending y as their input and receives input values
from the adversary. Next, S computes the output just like Fba would, and sends to the
adversary the output values. (Recall that the output value from Fba is not being used
by the honset parties.)

– Note that the case r = τ + 1 can never happen.

• In case no honest party has terminated prior to phase rout, then S proceeds as follows:

– In case rout ≤ τ , S samples a random bit y ∈ {0, 1} in the rout’th phase, sends
(adv-input, sid, y) to Frba, and simulates the next invocation of Foc by setting the
fairness bit b = 1 and with output y, i.e., ensuring that the honest parties will receive
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output y in the simulated protocol. Recall that if rout < τ then indeed all honest parties
will terminate in the simulated protocol, however, if rout = τ the simulator must simu-
late Fba to A. Note that A cannot affect the output value in this scenario (as all honest
parties participate with input value y); S simulates all honest parties sending y as their
input, and responds with y as the output for all corrupted parties.

– In case rout = τ +1, i.e., in case no party received output in all τ phases, S simulates the
functionality Fba to the adversary. Initially, S simulates all honest parties sending their
local intermediate value as their input to Fba, and receives the input values from the
adversary on behalf of the corrupted parties. (Recall that the adversary may dynamically
corrupt honest parties and change their input message.) Next, S computes the result as
in Fba, i.e., it checks whether there exists at least n − t input values that all equal to
some value y, and if so sets it as the output; otherwise, it sets the output based on the
adv-input message sent by the adversary.

It follows using a standard hybrid argument that for every environment Z it holds that

EXECπrba,A,Z ≡ EXECFrba,S,Z .

D.1.1 Multi-Valued Byzantine Agreement Protocol

As presented above, πrba is a binary BA protocol. Using a transformation due to Turpin and
Coan [47], the decision domain can be extended without increasing the expected running time. See
Lemma D.1.

Protocol πmv-ba

The protocol πmv-ba is parameterized by the set V . Each party Pi ∈ P = {P1, . . . , Pn} proceeds as follows:

• Initially, Pi sets the values y ← ⊥, z ← ⊥ and vote← 0.

• In round ρ = 1: upon receiving (input, sid, vi) from the environment, Pi sends (sid, vi) to all the parties
(via Fpsmt).

• In round ρ = 2: send (fetch-output, sid) to Fpsmt and denote by vj the value received from Pj is the
this round.

• In round ρ = 3: if there exists a value v ∈ V that appears more than n− t times in the set {v1, . . . , vn}
then set y ← v. Send (sid, y) to all the parties (via Fpsmt).

• In round ρ = 4: send (fetch-output, sid) to Fpsmt and denote by yj the value received from Pj is this
round.

• In round ρ = 5: if there exists a value v ∈ V that appears more than n− t times in the set {y1, . . . , yn}
then set vote← 1. In addition, set z to be the value that appears the most in {y1, . . . , yn}.
Send (input, sid, vote) to F{0,1}ba .

• In round ρ = 6: send (fetch-output, sid) to F{0,1}ba , and receive (output, sid, b) with b ∈ {0, 1}. If
b = 1 then output (output, sid, z), otherwise output (output, sid, v0) for some default v0 ∈ V .

Figure 11: The multi-valued Byzantine agreement protocol, in the (Fpsmt,F{0,1}ba )-hybrid model

The following lemma follows from Turpin and Coan [47].
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Lemma D.1. Let t < n/3 and V ⊆ {0, 1}∗. Denote by Dmv-ba the distribution that outputs a

depth-1 trace, with three leaves (Fpsmt,Fpsmt,F{0,1}ba ).
Then, assuming all honest parties receive their inputs at the same round, the protocol πmv-ba

UC-realizes WDmv-ba
flex (FVba), in the (Fpsmt,F{0,1}ba )-hybrid model, with perfect security, in the presence

of adaptive malicious t-adversaries.

The proof of the Lemma is straight-forward, it will appear in the full version of the paper.

Theorem 5.3. Let c ≥ 0, t < n/3 and V ⊆ {0, 1}∗. There exists an efficiently sampleable
distribution D such that the functionalityWD

pt(FVba) has an expected-constant-round complexity, and
can be UC-realized in the Fpsmt-hybrid model, with perfect security, in the presence of an adaptive
malicious t-adversary, assuming that all honest parties receive their inputs within c consecutive
rounds.

Proof (sketch). Let Dmv-ba be as in Lemma D.1 and let Dpsmt and Drba as in Theorem 5.2. Let
D′mv-ba, D

′
psmt and D′rba be the translated distributions (respectively).

Then, following Theorem 4.3 and Lemma D.1, the compiled protocol Compcpt(πmv-ba) UC-

realizes WD′mv-ba
pt (FVba), in the (WD′psmt

dt (Fpsmt),WD′rba
pt (F{0,1}ba ))-hybrid model, with perfect security,

in the presence of adaptive malicious adversaries corrupting at most t < n/3 of the parties.

The proof follows since, following Lemma C.4 the functionality WD′psmt
dt (Fpsmt) can be UC-

realized in the Fpsmt-hybrid model, and following Theorem 5.2 the functionalityWD′rba
pt (F{0,1}ba ) can

be UC-realized in the Fpsmt-hybrid model.

D.2 Parallel Broadcast with Probabilistic Termination (Cont’d)

Our construction proceeds in two steps. In a first step we show how to adapt the protocol from
Ben-Or and El-Yaniv [5] to obtain a probabilistic-termination (expected-constant-round) version
of unfair parallel broadcast with perfect security. In step two, we use (and improve on) an idea due
to Hirt and Zikas [30] to transform our unfair protocol into a fair parallel broadcast protocol.

D.2.1 The Unfair Parallel Broadcast Protocol

In this section we adjust the interactive-consistency protocol of Ben-Or and El-Yaniv [5] (with minor
adjustments) to the UC framework. The protocol πupbc (see Figure 12 for a detailed description)
is parameterized by two integers d and m. Initially, each party distributes its input to all other
parties. The underlying idea of the protocol is to run n · m instances of the BA protocol πrba
in parallel, such that for each Pi, a class of m instances of πrba are executed on the input of
Pi. However, in order to avoid the blowup in the number of rounds, the parallel execution of the
protocols is truncated after d phases. Once the first step concludes, each party checks for each of
the n classes if it received output in at least one of the executions. If so, it arbitrarily selects one
output for each class and distributes the vector of output values to all the parties.

Next, the parties run a leader-election protocol and once some party Pk is elected to be the
leader, all parties run a BA protocol on the output vector that was distributed by the leader Pk
earlier (which might be null). Each party checks if the agreed output corresponds to the output
values it received in the first step and sets a termination indicator accordingly. Finally, the parties
run another BA protocol on the termination indicators and terminate in case the output is 1;
otherwise another iteration is executed.

Ben-Or and El-Yaniv showed that consistency and validity properties are satisfied, and further-
more, if m = log(n) and d is such that at least 5 phases of the truncated randomized BA protocol
are executed, then the protocol will terminate in a constant expected number of rounds.
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We analyze this protocol in a hybrid model, where parties have access to a leader-election
functionality Fle and a Byzantine agreement functionality Fba. We actually require two types of
BA functionalities, the first is a standard BA functionality whereas the second if a “truncated”
BA, which runs for a specific number of rounds and halts even if no output is specified. We now
describe these ideal functionalities as CSFs.

Leader Election In the leader election functionality, the parties agree on a random value k ∈R
[n]. This functionality can be cast as a special case of secure function evaluation (as defined in
Section 3.1), where the parties compute the function gle(λ, . . . , λ) = (k, . . . , k). We denote by Fle

the functionality Fglesfe.

Truncated Byzantine Agreement The truncated Byzantine agreement functionality, is param-
eterized by an efficiently-sampleable distribution D and a non-negative integer d. Each party Pi
has input xi, and receives two output values (yi1, y

i
2). The adversary is allowed to learn all the input

values as the honest parties send them, i.e., the leakage function is lt-rba(x1, . . . , xn) = (x1, . . . , xn).
The function to compute is ft-rba(x1, . . . , xn, a) = ((yi1, y

i
2), . . . , (yi1, y

i
2)) operates as follows:

• If there exists a value y such that y = xi for at least n− t input values xi, then set (yi1, y
i
2)←

(y,⊥) for every i ∈ [n].

• Else, sample a number r ← D. The adversarial input a is parsed as a vector of n+ 1 integer
values (a0, a1 . . . , an). The first coordinate a0 represents the output value, i.e., set y ← a0.
Next, for each party Pi, set a value di ← min(ai, r). Finally, the output values for each party
Pi is defined as follows:

– If di < d then set (yi1, y
i
2)← (y,⊥).

– If di = d then set (yi1, y
i
2)← (⊥, y).

– If di > d then set (yi1, y
i
2)← (⊥,⊥).

In fact, in the protocol πupbc, a parallel version (of s instances, for some s) of the above described
functionality is required. That is, each party Pi has a vector of input values xi = (xi1, . . . , x

i
s), and

receives a vector of s output values (yi1, . . . , y
i
s) where each yij is a pair of values as above. The leakage

function reveals all the input values to the adversary, and the function to compute is essentially
s instances of the above function f , where for each instance the value r is sampled from D using
independent random coins. In addition, the adversarial input a is parsed as a vector of s(n + 1)
integer values, where for each instance, the adversary specifies a different vector (a0, a1 . . . , an).
Note, however, that the value d is the same in all s instances.

We denote by Ft-rba the functionality Fcsf describing the parallel version of truncated random-
ized BA, as described above.

The Protocol We first describe a version of the protocol by [5] augmented with (a simpler version
of) the technique from [27], where all hybrids used are CSFs;44 using Theorem 4.3 we then obtain
our result. Recall that the unfair parallel broadcast functionality Fupbc is defined in Section 5.2.

44Note that although the hybrids are CSFs, the protocol has probabilistic termination.
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Protocol πupbc

Protocol πupbc, parameterized by positive integers d (number of phases to run the truncated BA function-
ality) and m (how many instances of truncated BA to compute for each input value). The functionality
Ft-rba is runs nm instances in parallel, and is parameterized by the distribution Drba and integer d.

1. Initially, Pi sets the phase index α ← 0, and the termination indicator term ← 0. In addition,
denote τ = log1.5(k) + 1.

2. In the first round, upon receiving (input, sid, xi) with xi ∈ V from the environment, Pi sends
(sid, xi) to all the parties (via Fpsmt). Denote by xj the value received from Pj .

3. While term = 0 and α ≤ τ , do the following:

(a) Set α ← α + 1 and send values to Ft-rba, such that the value xj is sent to the m instances
corresponding to the j’th value. Formally, prepare the vector z = (z1, . . . , znm) such that for
every j ∈ [n] and every l ∈ [m] set z(j−1)m+l = xj . Send (input, sidα1 , z) to Ft-rba.

(b) Send (fetch-output, sidα1 ) to Ft-rba and receive (output, sidα1 ,v), where v is a vector of nm
pairs ((v1

1 , v
1
2), . . . , (vnm1 , vnm2 )) with vj1, v

j
2 ∈ V ∪ {⊥}.

(c) For every j ∈ [n], set Sj1 ← {v
(j−1)m+1
1 , . . . , vjm1 } (corresponding to output values before

phase d) and Sj2 ← {v
(j−1)m+1
2 , . . . , vjm2 } (corresponding to output values at phase d).

(d) If Sj1 6= ∅ for every j ∈ [n] (i.e., if for every class of BAs there was at least one output), then

for every j ∈ [n] choose cj ∈ Sj1 (arbitrarily), set ci = (c1, . . . , cn) and send (sid, ci) to all the
parties (via Fpsmt).
Denote by cj the tuple received from Pj ; if no message was received, set cj = ∅.

(e) Send (input, sidα2 ) to Fle. Next, send (fetch-output, sidα2 ) to Fle and receive
(output, sidα2 , k) with k ∈ [n].

(f) Send (input, sidα3 , ck) to Fba, parameterized by the set V n ∪ {∅}.
Send (fetch-output, sidα3 ) to Fba and receive (output, sidα3 , c) (with c = (c1, . . . , cn) ∈ V n
or c = ∅).

(g) If c 6= ∅ and for every j ∈ [n], cj ∈ Sj1 ∪ Sj2 then set b← 1; otherwise set b← 0.

(h) Send (input, sidα4 , b) to Fba, parameterized by the set {0, 1}.
Send (fetch-output, sidα4 ) to Fba and receive (output, sidα4 , β) with β ∈ {0, 1}. If β = 1 then
set term← 1.

4. If term = 1, then output (output, sid, c) and halt.

5. Else, proceed as follows:

(a) Set the vector xi = (λ, . . . , λ, xi, λ, . . . , λ) (the vector of length n whose ith coordinate is xi
and all other cooridinates are the empty string λ) and send (input, sid,xi) to Fupbc.

(b) Send (fetch-output, sid) to Fupbc and receive (output, sid, c).
Output (output, sid, c) and halt.

Figure 12: The unfair parallel broadcast protocol, in the (Fpsmt,Fba,Fle,Ft-rba,Fupbc)-hybrid
model

Lemma D.2. Let d ≥ 5 and m = log(n). Denote by D the geometric distribution with parameter
2q/3 and support {1 . . . , τ + 1}, where q is the probability that when independently sampling nm
values (r1, . . . , rnm) from the distribution Drba then for every j ∈ [n] it holds that at least one of
the values (r(j−1)m+1, . . . , r(j−1)m+m) is smaller than d. (The distribution D outputs the phase in
which the event where Fle returned a party that was honest before the Fle invocation and received
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output in each BA occurs, plus the option that this event did not occur in all τ phases.)
Denote by Dupbc the distribution that outputs a depth-1 trace, where the leaves are set as follows:

initially sample an integer r ← D. The first leaf is Fpsmt, followed by min(r, τ) sequences of
(Ft-rba,Fpsmt,Fle,Fba,Fba). Finally, if r = τ + 1 add the leaf Fupbc.

Then, assuming all honest parties receive their inputs at the same round, the protocol πupbc
UC-realizes Fpt-upbc = WDupbc

flex (Fupbc), in the (Fpsmt,Fba,Fle,Ft-rba,Fupbc)-hybrid model, with
perfect security, in the presence of adaptive malicious adversaries corrupting at most t < n/3 of
the parties.

Proof (sketch). We first claim correctness. The protocol πupbc consists of two parts, the first is
running (up to) τ phases of the Ben-Or and El-Yaniv [5] protocol and the second (which only
occurs if no output was generated in the first part, i.e., if all honest parties have value term = 0)
consists of calling an unfair parallel broadcast functionality. As shown in [5, Thm. 5], the Ben-
Or and El-Yaniv protocol satisfies the consistency and validity properties in the property-based
definition of interactive consistency (i.e., parallel Byzantine agreement). In addition, since the last
step in each phase is invoking the BA functionality in order to agree whether all honest parties
received output and can safely terminate, or whether an additional phase should be executed, it
follows that if one honest party has received output in some phase then so do the rest of the honest
parties. It follows that:

• In case some honest party received output in phase α ≤ τ , then all honest parties also receive
the same output at this phase (i.e., term = 1 for all honest parties), and so correctness follows
from [5].

• In case no honest party received output in all τ phases (i.e., term = 0 for all honest parties),
all honest parties send their initial values to Fupbc and output the result, hence, correctness
follows from the Fupbc functionality.

Regarding termination, Ben-Or and El-Yaniv showed that for d ≥ 5 and m = log(n), all
honest parties agree receive their output within a constant number of phases in expectation. In the
negligible probability that the parties did not receive output in less than τ phases, termination is
guaranteed by Fupbc.

We now prove that πupbc UC-realizes Fpt-upbc. Let A be the dummy adversary. We construct a
simulator S that simulates the honest parties in πupbc, the environment and the ideal functionalities
Fpsmt,Fba,Fle,Ft-prba and Fupbc to A, as follows.

• S forwards all messages from the environment to A (and vice versa).

• S simulates every honest party by independently sampling random coins for the party and
running the protocol according to the protocol’s specification. Note that S learns the in-
put for each honest party Pi as soon as Pi sends it to Fpt-upbc by receiving the message
(leakage, sid, Pi, (x1, . . . , xn)). In addition, S learns the trace of the protocol by receiving
the message (trace, sid, T ) from Fpt-upbc, and can derive the guaranteed-terminating phase
rout by counting the number of sequences (Ft-prba,Fpsmt,Fle,Fba,Fba) in T (and setting
rout ← τ + 1 if the last CSF is Fupbc).

• Whenever A sends a message (sid, xj) on behalf of a corrupted party Pj to some honest party
during the first round, S sends (input, sid, xj) to Fpt-upbc on behalf of Pj .

• Whenever A requests to corrupt some Pi ∈ P, S corrupts Pi and sends the simulated internal
state of Pi (consisting of Pi’s input, randomness and incoming messages) to A. Recall that
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in case A corrupts a party Pi after it sent its input to some corrupted party, during the first
round, A may instruct Pi to send a different value xi as its input to all other parties. In this
case, S sends (input, sid, xi) to Fpt-upbc on behalf of Pi.

• In the first rout − 1 phases, S simulates Ft-rba according to the behavior of the ideal func-
tionality, i.e., by independently sampling nm values from Drba. Next, when simulating the
functionality Fle, instead of sampling a random index k ∈ [n], S samples k such that in
case Ft-rba was succsessful (i.e., if the honest parties received output) k is uniformly dis-
tributed conditioned on Pk is corrupted, i.e., S allows A to decide whether the protocol will
successfully terminate or not in this phase. In case A instructs Pk to follow the protocol,
then all honset parties will terminate in this phase (prior to phase rout) with value c; S sends
(adv-input, sid, c) to Fpt-upbc followed by (early-output, sid, Pi) for every Pi ∈ P.

• In case no honest party has terminated prior to phase rout, then S proceeds as follows:

– In case rout ≤ τ , when simulating Ft-rba in the rout’th phase, S ensures that honest
parties will receive output, and when simulating Fle, S uniformly selects an index k such
that Pk was honest before the simulation of Fle. Next, S sends (adv-input, sid, ck) to
Fpt-upbc, and continues simulating the protocol. Since Pk was honest when distributing
ck, this ensures that the honest parties will receive output ck in the simulated protocol.

– In case rout = τ +1, i.e., in case no party received output in all τ phases, S simulates the
functionality Fupbc to the adversary. Initially, S simulates all honest parties sending their
initial inputs as their input to Fupbc, and receives the input values from the adversary
on behalf of the corrupted parties. (Recall that the adversary may dynamically corrupt
honest parties and change their input message.) Next, S computes the result as in Fupbc,
i.e., it provide the output (x1, . . . , xn) to each party.

It follows using a standard hybrid argument that for every environment Z it holds that

EXECπupbc,A,Z ≡ EXECFpt-upbc,S,Z .

Using Theorem 4.3 we obtain the following as a result.

Theorem D.3. Let c ≥ 0 and t < n/3. There exists an efficiently sampleable distribution D
such that the functionality WD

pt(Fupbc) has an expected-constant-round complexity, and can be UC-
realized in the Fpsmt-hybrid model, with perfect security, in the presence of adaptive malicious
t-adversaries, assuming that all honest parties receive their inputs within c consecutive rounds.

Proof (sketch). Let Dupbc, Dpsmt, Drba, Dmv-ba be as in Lemma D.2, Theorem 5.2 and Theorem 5.3.
Denote by Dt-rba the deterministic distribution that outputs a trace consisting of a constant num-
ber of leaves Fpsmt (corresponding to d phases of πrba). Denote by Dle the distribution that outputs
a trace consisting of an expected constant number of leaves Fpsmt (this follows from [22]). Denote
by Ddt-upbc the deterministic distribution that outputs a trace consisting of O(n) leaves Fpsmt.
Let D′upbc, D

′
psmt, D

′
rba, D

′
mv-ba, D

′
t-rba, D

′
t-rba, D

′
le, D

′
dt-upbc be the translated distributions, re-

spectively.
Then, following Theorem 4.3 and Lemma D.2, the com-

piled protocol Compcpt(πupbc) UC-realizes WD′upbc
pt (Fupbc), in the

(WDpsmt
dt (Fpsmt),WD′rba

pt (F{0,1}ba ),WD′mv-ba
pt (FVba),WD′t-rba

dt (Ft-rba),WD′dt-upbc
dt (Fupbc))-hybrid model,
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with perfect security, in the presence of adaptive malicious adversaries corrupting at most t < n/3
of the parties.

The proof follows since each of the functionalities WD′upbc
pt (Fupbc), in the

(WDpsmt
dt (Fpsmt),WD′rba

pt (F{0,1}ba ),WD′mv-ba
pt (FVba),WD′t-rba

dt (Ft-rba),WD′dt-upbc
dt (Fupbc)) can be UC-

realized in the Fpsmt-hybrid model.
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