Encoding Rational Numbers for FHE-based Applications

HeeWon Chung' and Myungsun Kim?*

! Department of Mathematical Sciences
Seoul National University, Seoul 08826, South Korea
runghyun@snu.ac.kr
2 Department of Information Security
The University of Suwon, Hwaseong 18323, South Korea
msumkim@suwon.ac.kr

Abstract. This work addresses a basic problem of security systems that operate on very sensitive
information, such as healthcare data. Specifically, we are interested in the problem of privately
handling medical data represented by rational numbers. Considering the complicated computations
on encrypted medical data, one of the natural and powerful tools for ensuring privacy of the data
is fully homomorphic encryption (FHE). However, because the plaintext domain of known FHE
schemes is restricted to a set of quite small integers, it is not easy to obtain efficient algorithms
for encrypted rational numbers in terms of space and computation costs. Our observation is that
this inefficiency can be alleviated by using a different representation of rational numbers instead of
naive expressions. For example, the naive decimal representation considerably restricts the choice
of parameters in employing an FHE scheme, particularly the plaintext size.

The starting point of our technique in this work is to encode rational numbers using continued
fractions. Because continued fractions enable us to represent rational numbers as a sequence of
integers, we can use a plaintext space with a small size while preserving the same quality of precision.
However, this encoding technique requires performing very complex arithmetic operations, such as
division and modular reduction. Theoretically, FHE allows the evaluation of any function, including
modular reduction at encrypted data, but it requires a Boolean circuit of very high degree to be
constructed. Hence, we primarily focus on developing an approach to solve this efficiency problem
using homomorphic operations with small degrees.

Keywords: Continued fractions, Gosper algorithm, Rational numbers, Homomorphic encryption

1 Introduction

Consider the following scenario. There is a server that stores patients’ medical data, and it has
considerable computing power such that it can compute a predictive model for each patient and
inform patients on whether they are in the danger range.

For example, a Cox model is a statistical technique for exploring the relationship between
the survival of a patient and several explanatory variables, and it provides an estimate of the
effect of treatment on survival after adjusting for other explanatory variables. In addition, this
technique allows us to estimate the hazard (or risk) of death for an individual given their prog-
nostic variables. The prognostic variables are age, diabetes, smoking, systolic blood pressure,
cholesterol, and HDL cholesterol. For instance, in reference [2], the predictive model for females
is given by the function

Pr (X;) =1 —0.950120%P(2: fiX;—26.1951)

Female

where X; is the input for each risk factor, exp(-) is the exponential function, and §; is the
regression coefficient. Specifically, the regression coefficients for the model for females are given
by
> BiXi =2.32888 - log A 4 1.20904 - log C'—
0.70833 - log H + 2.76157 - log B+ (1)
0.52873 - S +0.69154 - D

* The corresponding author

where A denotes the age, C' denotes the cholesterol level, H denotes the HDL cholesterol level,
B denotes the systolic blood pressure, and D = 1 if diabetes exists and S = 1 if an individual
is a smoker; otherwise, D = 0 and S = 0.

To make this practical scenario work in the real world, we need to satisfy the following two
basic requirements before other technical ones.

Privacy. For privacy reasons, one appealing approach is to have patients keep all medical data
encrypted if possible. However, because decryption on the server side could cause a loss of
privacy, we need to apply an encryption scheme that allows homomorphism to such sensitive
data such that computations on its encryptions do not require decryption.

Inter-Domain Conflict. Again, let us examine Eq. (1). Due to the privacy requirement,
we now need to compute the equation on the ciphertext domain of an underlying encryption
scheme rather than its plaintext domain. The key point here is that the underlying encryption
scheme should be able to take as input rational numbers such as HDL cholesterol values, but in
general, encryption schemes are restricted to encrypt group or ring elements. For example, even
encryption schemes with multiplicative homomorphism only support multiplication between
integers.

To resolve this conflict between the domain of a target function and the domain of an
encryption scheme, message encoding before encryption appears to be the best choice. One
widely accepted approach to encode a rational plaintext r is to use decimal expansion. Let
r € R be a rational number that has ¢-digit below a decimal point. Given a rational number
r =rg.r17r2 - - - ¢, an encryption scheme with decimal expansion first converts each digit r; into
x; =1; - 1071 € Z,1 < i < ¢ and then encrypts each ;. This implies that the plaintext space
of the encryption scheme must be large to represent an integer xz; = r - 10¢~1. For example,
suppose that a predictive algorithm uses a rational number r = 0.1357908642. Then, in this
case, x1p = 2 - 10? ~ 23!, and thus, a proper plaintext space superficially seems to be Zgs1.

However, if we think a little bit more about our choice of the plaintext space, we see that
Z931 is not always a correct one under decimal expansion. To explain why this is so, suppose
that a fully homomorphic encryption (FHE) scheme and a target function f for evaluation are
given. One may simply think that he only has to fix ¢ (e.g., t = 23!) to the FHE’s plaintext
space. Apparently it is not the case. Because the encryption scheme should perform modular
reduction when an evaluation result of f over FHE ciphertexts carries a plaintext larger than
t, the plaintext space can be determined only after estimating the target evaluation function.
For example, when we consider a proper plaintext space for encoding r = 0.1357908642, Z31
may not be a good choice because we may have to encode 8 - r. Specifically, 1357908642 x 8 =
10863269136 ~ 234 and thus 10863269136 mod 23! should be performed. Hence, we need to set
t > 234, The more are required the number of multiplications, the bigger plaintext space should
be chosen. In conclusion, a proper plaintext space depends on a target evaluation function in
order to avoid modular reduction.

Furthermore, since the size of the noise after homomorphic operations is proportional to ¢, it
may lead to an efficiency problem. For example, consider the Brakerski-Gentry-Vaikuntanathan
(BGV) scheme [4]. If Z is taken as the plaintext space, one homomorphic multiplication con-
sumes only one multiplicative depth roughly. However, in the case of Zgs, we see that the same
operation consumes two multiplicative depths, when implemented by the HEIib library [16].

Group homomorphic encryption (e.g., El Gamal [10] and Paillier [21]) can also be considered.
However, this type of encryption scheme is not suitable for bitwise operations because it severely
wastes their plaintext space.

Taking two requirements and the two together, we need to provide a better way of repre-
senting rational numbers to fit in homomorphic evaluations in the predictive model such that
multiplications by rational numbers are needed. Thus, in this work, our technical goal is to rep-

resent rational numbers while using a small-sized plaintext space, but without losing its original
precision.

Overview of our idea. Our starting point is the following observations by considering future
applications while keeping in mind continued fraction.” We guess that the below observations
will be helpful to understand our design directions and implementations, especially when one
applies continued fraction representations of rational numbers to the prediction model, such as

Eq. (1).

1. Carefully looking into specific target functions used in the practical side, coefficients and
input values are given in rational numbers after truncating their lower digits, but not in real
numbers.

2. Regression formulas of our interest perform multiplication between the encrypted medical
data and some known constant values (e.g., coefficients 2.32888 and 1.20904 of Eq. (1)).
This makes us free from performing multiplication of two encrypted medical data.

Roughly, continued fractions (CFs) can represent the same rational numbers using only
relatively quite small integers. Thus we expect that it can provide significant efficiency gains,
even in the case where elements of the set should be encrypted, with respect to the size of
ciphertexts and later homomorphic arithmetic operations. For example, consider the same r =
0.1357908642 as above. Then, we can represent the r as a sequence of integers

[0;7,2,1,2,12,2,2,7,7,2,2,1,11, 2]

and indeed, it is a sequence of only 4-bit integers. That is, we can take Zos rather than Zoas:
as the plaintext domain. We will discuss how to obtain each integer of the sequence in later
sections. Accordingly, when we wish to homomorphically evaluate a function f on encrypted
data, we first encode all inputs into a sequence of small integers and encrypt each small integer
under an underlying FHE scheme. This allows the FHE scheme to be instantiated with a small-
sized plaintext space. We notice that the second observation states that the coefficients of f
need not be encrypted, unlike the input values.

Regarding a class of target functions with which we can efficiently deal, we restrict our
interest to a linear multivariate polynomial f. Even though all partial quotients are bounded
after arithmetic operations, in case of polynomials of high degree we have to run with a large-
sized plaintext space. Then we can no longer utilize benefits of using FHE while enjoying a
proper level of efficiency. This is the primary reason for only considering rational polynomials
of low degree at the cost of applicability’s limitation.

When encoding a rational number into CF, we use the so-called Gosper algorithm [14].
However, some nontrivial problems arise when one has to perform computations on encrypted
rational numbers that were encoded by the algorithm. The essential technical obstacle among
these problems is that the algorithm requires modular arithmetic and division. Theoretically,
FHE can compute arbitrary functions on encryptions, but in practice, both operations are
fairly difficult to efficiently implement when their operands are ciphertexts. Throughout the
remainder of the paper, we thus seek a solution to replace modular arithmetic and division
with other operations with a small degree, i.e., efficiently realized. Indeed, we develop a variant
of Gosper’s algorithm that works on ciphertexts of rational numbers encoded using the CF
technique. Throughout the paper, by degree, we mean the multiplication depth required to
perform a function.”

3 Precisely speaking, we only consider finite, simple continued fraction. That is, the number of partial quotients
is finite and all partial quotients and the integral part are integers.
4 Of course, the function should first be transformed into a binary Boolean circuit or an arithmetic circuit.

One may think that FHE is overkill for this application and that Paillier’s cryptosystem is
the best solution while using decimal expansion of rational numbers.? If an encryption scheme
were chosen only for target functions, this may be a correct choice. However, if we should
evaluate a target function at encrypted data while invoking some other functions with the
same inputs, this choice may be incorrect. For example, consider an equality check between two
encrypted hematocrit values. In general, an equality comparison cannot be efficiently performed
over Paillier ciphertexts. Moreover, it is not clear whether we can enforce patients to provide
multiple ciphertexts of the same plaintext that are encrypted by different encryption schemes.

Summary of Our Results. In summary, our contributions are as follows:

1. We show that we can enable to divide an integer by an encrypted integer with a special
case of Gosper algorithm. Further, we can compute a linear polynomial evaluation whose
variables are rational numbers represented by continued fractions and its computational
complexity is almost the same cost regardless of polynomial’s coefficient.

2. We address some efficiency challenges posed by using the Gosper algorithm during the encod-
ing of rational numbers. Specifically, modular reduction over ciphertexts is very expensive in
terms of multiplicative depth and thus we develop an approach to substitute a combination
of other operations requiring a quite less multiplicative degree for modular reduction. We
apply this technique to the original Gosper algorithm.

3. On the practical side, we provide an implementation of our version of the Gosper algorithm
running on encrypted rational numbers. We provide experimental results to demonstrate
that CF representations of rational numbers can have a potentially wide range of FHE-
based applications.

The Structure of the Paper. Section 2 provides a series of materials for better understanding
our work and it consists of two parts: . We describe our main result in Section 3 and Section 4,
along with analysis of correctness and computational costs. In Section 5, we describe our proof-
of-concept implementation and its experimental results. We provide a survey of closely related
works in Section 6. We end with some concluding remarks in Section 7.

2 Model and Toolkits

In this section, we provide some basic materials to better understand the remainder of the
paper. Background of the two different fields is required: one is mathematics, and the other is
cryptography. In the following, we begin by describing the simple model that we are considering.

2.1 System Model

We demonstrate the models that we focus on in this paper. For this purpose, we first identify
all participants of the system model. Then, we discuss our definition of security.

Participants and System Model. We consider a simple system model that consists of two
participants: server and user. Specifically, a server is a logical entity that has both powerful
computing and storage capabilities for evaluating known linear polynomials whose coeflicients
over rational numbers and a user wants to accomplish some computation with his private input
data.

Security Model. As with any cryptographic protocol, we require completeness and soundness
to hold. Thus, a securely real-valued function evaluating scheme should meet the following
security requirements:

5 Regarding the Boneh-Goh-Nissim encryption scheme [1], we can also apply the same argument as above.

Correctness. The secure evaluation should be performed correctly, i.e., the computation indeed
returns the same result as the evaluation of the function in the clear.

Security. The server should not learn any information about the data they store in its storage
and information about the data contained in the results. However, we allow the server to
learn the specifications of a target function.

In the cryptography literature, two standard security models are considered: semi-honest and
malicious adversarial models. Semi-honest participants are allowed to attempt to learn some
information from the data they receive, including intermediate values, but not allowed to de-
viate from the protocol instructions. Malicious participants, on the other hand, are allowed to
arbitrarily deviate from the computation specified in a protocol.

In this work, we only consider security against semi-honest servers. This is a natural as-
sumption in practice because the server would run a high risk of penalty for compromising a
users medical information with coalition.

We follow the standard security used in secure multiparty computation for semi-honest
adversaries. Because a target function is fixed by a server, its coefficients should be interpreted
as no private input to the function that the server is evaluating. For the purpose of defining
security, all data the server receives before or during the evaluation will be considered to be a
part of the function evaluation and therefore must not leak information.

Definition 1 ([13]) Let f:{0,1}*x{0,1}* — {0,1}*x{0,1}* be a function, and let i € {1,2}.
Let two participants Py and Ps engage in a protocol w that evaluates f(x1,x2) = (y1,y2), where x;
and y; denote the input and output, respectively, of P;. Then, the view of P; during an execution
of m on (x1,x2), denoted by VIEW, p,(x1,22), is (x4, 75, M1, ..., my), where r; is the outcome of
P;’s internal coin tosses and m; is the j-th message that it has received. The output of each
participant following the execution of m on (x1,x2), denoted by OUT, p,(x1,x2), is implicit in the
participant’s own view of the execution, OUTx(x1,22) = (OUTx p, (21, 22), OUTx p, (21, 22)). We
say that m securely computes f if there exist probabilistic polynomial-time simulators, denoted
by S1 and Sz, such that for xi,zo € {0,1}*

{Si(xs, f(x1,72)} = {VIEW, p, (21, 22), OUT (21, 72)}

where =~ denotes computational indistinguishability.

2.2 Mathematical Tools

A set of integers is closed under addition and multiplication, but not division. However, there
are some methods representing rational numbers to integers, e.g., continued fractions and dec-
imal representations. Continued fractions are more mathematically natural representations of
rational numbers than decimal representations. First of all, the continued fraction representa-
tion for a rational number is finite, but decimal representation for a rational number may be
infinite. Moreover, every rational number has an unique continued fraction representation with
some restrictions. The successive approximations generated in finding the continued fraction
representation of a number, i.e., by truncating the continued fraction representation, are in a
certain sense (described below) the best possible. Therefore, it has occasionally been considered
to be a great tool in mathematics and it has been researched for a long time in a variety of
topics. Here, we rephrase only those related to our works.

Continued Fractions. A continued fraction can be obtained through an iterative process of
representing a number as the sum of its integer part and the reciprocal of remaining part, and

then writing the remaining part as the sum of its integer part and remaining part, and so on.
In other words, given a real number x and r; > 1 for all ¢, we have

1 1 1
T=x0+ — =x0+ =0+ ——3— ="
70 x1 + o x1 + oot L
2
and use x = [zg; 1, x2,...] to denote this. Note that zp can be any integer, but for i € N, z;

must be positive and with this restriction, the continued fraction of x is unique. We can define
further terminologies related to continued fractions.

Definition 2 ([17]) For a continued fraction x = [xg;x1,...],

— x; 1s called a partial quotient of x for all i.
— A continued fraction x is finite if the number of partial quotients of some x is finite.

Keeping this definition in mind, the following theorem states that the correspondence be-
tween rational numbers and a finite continued fraction [ag;ay,...,a,] with an integer ap and
positive integer a; for ¢ > 0 and a,, > 1 is one-to-one. We consider the situation that an integer
is divided by another integer, so only rational numbers are considered in this paper.

Theorem 1 ([17]) Any rational number can be represented as a finite continued fraction and
the continued fraction representation is unique when the last partial quotient is larger than 1.

Theorem 2 ([17]) Let o = [agp;a1,a9,- -] and p;/q; = [ao; a1, - -, a;].7 For any rational num-
ber ¢ with a € Z and b € N, and 1 < b < g;,
w5l
qi

_a’

@
b
with equality if and only if a/b = p;/q;.

Theorem 2 indicates that p;/¢; is the best possible approximation to o among all rational
numbers with the same or smaller denominator. In other words, a continued fraction is a best
approximation tool of real numbers.

Lastly, we give a assertion that the partial quotients have the small in terms of bits. With
some restriction in Theorem 1, continued fractions and rational numbers have one-to-one cor-
respondence, however, one can find two different continued fractions for a rational number
when restrictions are weaken. For some k € N, we can easily derive that |...,a + agy1,...] =
[...,ak,0,ak41,...] because

1 1
1 1
Gk42 @+ 0+—r
1t ag

ap + Qg1+

By the reason, we insist that one can find a continued fraction with bounded partial quotient
for an arbitrary rational number and it causes the length of partial quotients is longer. Thus,
the maximum of partial quotients can be determined by user’s environment.

Arithmetics over CF Representations Given two rational numbers z and y represented by
decimal expansion, it is easy to compute z = x + y, as we have learned. However, we have not
learned an arithmetic algorithm if one of the rational numbers is given by continued fraction
form. In 1972, Bill Gosper [14] proposed the general arithmetic algorithm on continued fractions.

This algorithm enables arithmetics between two continued fractions as well as a continued

fraction and a rational number. We recall a brief description of Gosper’s algorithm.

Gosper Algorithm. The goal of Gosper’s algorithm is, for a real number z, computing Zigi for

a, b, c,d € Z because every elementary single operation of two rational numbers, such as addition,
subtraction, multiplication and division, can be replaced by a linear fractional transformation.
Of course, it can also represent various equations in addition to the elementary single operations,
and thus, we can calculate more complex arithmetic than elementary operations.

Suppose that z is a rational number with a continued fraction form and that z := Zigi
a,b,c,d € Z. The main idea is that z has a value between £ and g for almost everywhere, and
thus, if 2 and g have the same integer part, the integer part of z is [2]| = L%J; otherwise, z
requires more information about x. Because z behaves differently for each case, it requires two

sub-algorithms, say InTake and OutTake. For convenience, we denote z by ‘c‘g .

for

The following is the Gosper algorithm for an arithmetic algorithm on continued fractions
using the above idea. For each iteration, call either OutTake or InTake according to the condition
of whether two truncations are the same.

Algorithm 1 Gosper’s algorithm

Input: x = [zg; 21, 22,...], f(X) = ‘Clj_rg§

Output: f(z) = [yo; y1,92, - -]

Lo25]) « (4

2. ¢ 0,70

3. while (z3 and z3 are not all zero)

4. q1 < 20/22], q2 < 21/ 23]

5. if (fh = Q2)

6. then y; + ¢1

7 [Zo 21] (_ [22 Z3]
22 23 Z0 — Z2Yi 21 — Z3Yi

8. 1+—1+1

9. else [ZO Zl] — [Z1 0+ zlxj]
22 23 z3 22 + 237,

—
e

Jjg+1

11. return [yo;y1,y2,.. .|

The Details of OutTake Algorithm. It occurs when z exactly knows its own integer part,
as we stated above. The integer part of z should be ¢ := [£2] if the value of the flooring two
ratios is the same. Thus, z can determine its own integer part by comparing the two values, and

when they have the same value, z must emit ¢ and becomes the reciprocal of z — ¢.
Let 2/ = Z%q. Then,

S I a+bx_ _1_ a —cq + bx — dgx -t
2z—q \cHdx 1 N c+dx

c+dr
a—cq+ (b—dq)z

— c d
- a—cq b—dq

Because a = ¢q + a mod ¢, a mod ¢ = a — cq; thus, OutTake actually performs the modular

arithmetic. In summary, if z = (P] knows its own integer part, then it becomes

29 23
[zg mod 2o z1 mod 23] (2)

7

The Details of InTake Algorithm. It occurs when z does not exactly know its own integer
part. If the value of the two ratios is not the same, then z cannot determine which integer is
correct, and thus, z requires more information of z and thus requests a term from z. In this
case, additional information of x is its partial quotient.

Let z = p+ % for some z’. Then,

a+ br
c+dr
a+blp+1/z") b+ (a+bp)a’
c+d(p+1/z') d+ (c+dp)a’

_ b a+bp
- d c+dp
20 21

In summary, if z = (79 73] requests more information from x and obtains p, then it becomes

(o igigg] . Additionally, InTake takes a partial quotient of x one at a time. Because

1 1

Tn Tn + >
it is a fact that [,...,x,] = [,..., 2z, 00]. Note that co is just a symbolic of the last partial
quotient of any rational number and so we do not need to store and encrypt oco. When InTake
takes an input oo, z = [0] becomes (2 a] because b - oo and d - oo dominate any a

and ¢, respectively; thus, two columns of z always behave in the same way after taking co. This
implies that z always has the same integer part, and thus, x = oo is the last input of InTake.

A Toy Example. We will provide a brief example of how this algorithm actually works. Let
z=23=[1;52] and f(X) =X + & = 12X,
OutTake
] Yo =1

[1 2] InTake [2 3] InTake [3 17]
—_— —_—
wo=1 o=5 (210

715] OutTake [1022] InTake [210]
y1 =1 7 15 Lo =2 17

37
OutTake
Y2 =2
[3 7] InTake [7 7] OutTake [1 1]
—_— —

11 T3 =00 11 ys =17 00

Fig. 1. A toy example of Gosper’s algorithm

Because OutTake yields zg = 1,21 = 1,20 = 2 and 23 = 7, y = f(z) = [yo;v1,Y2,Y3] =
[1;1,2,7] = 37/22. It is trivial that 13/11 + 1/2 = 37/22 and thus we can verify this algorithm
works correctly in this case.

2.3 Cryptographic Tools

Private information such as medical data and location information should not be leaked to
any others. To prevent leakage of information by hacking or carelessness, all private information
should be stored as encrypted. One may consider a trivial approach to store only hashed private
information in the server through a one-way hash function such as SHA3 [19]. However, a hash
function can only judge the equality, but does not have the homomorphic property. By the
reason, a service range the server provided will be strictly restricted.

A strong candidate for fixing this problem is homomorphic encryptions which enable to
evaluate without decryption. In the following, we proceed to recalling the notion of fully homo-
morphic encryption which can evaluate any function without knowing the decryption key.

Fully Homomorphic Encryption. In 2009, Gentry constructed the first FHE scheme [11]
based on ideal lattices, and subsequently, many cryptosystems achieved the homomorphic prop-
erty such as schemes (e.g., [22,7,9]) based on integers and schemes (e.g., [6,5,4,12,3]) based on
learning with errors (LWEs).

An FHE scheme, denoted by FHE = (Kg, E, D, Ev), is a quadruple of probabilistic polynomial-
time algorithms, as follows.

Key generation. The algorithm takes the security parameter A and outputs a public encryption
key pk, a public evaluation key ek and a secret decryption key sk. We write the algorithm
as (pk, ek, sk) < Kg(1?) and assume that the public key specifies the plaintext space P and
the ciphertext space C.

Encryption. The algorithm Z < E,;(x) takes the public key pk and a message z € P and
outputs a ciphertext z € C.

Decryption. The algorithm z* < D (Z) takes the secret key sk and a ciphertext ¢ and outputs
a message r* € P.

Homomorphic evaluation. The algorithm takes the evaluation key ek, a function f : ({0,1}*)" —
{0,1}*, and a set of n ciphertexts ai,...,a, and outputs a ciphertext @y, denoted by
ayp < Evep(f,an, ..., an).

We defer the security definition of FHE to the Appendix B. We do not consider an FHE

scheme satisfying circuit privacy simply because of our efficiency requirement. However, there
have been known techniques to achieve circuit privacy (e.g., [11,22,20]).
A Concrete Instantiation. Our implementation uses the HElib library [16] implementing
the Brakerski-Gentry-Vaikuntanathan (BGV) cryptosystem [4]. We provide our parameter se-
lections for the FHE implementation in Section 5. However, we defer the full description of the
BGYV cryptosystem to Appendix C.

Definition 3 Multiplicative depth of the circuit under homomorphic encryption is the total
number of reduced levels in a circuit that is being evaluated homomorphically.

Multiplicative depth has a significant effect on the performance, and thus, it plays an im-
portant role in terms of complexity.

3 Division by an Encrypted Integer

In this section, we demonstrate a method for dividing an integer by an encrypted integer. Since
a set of integers is not closed under division, a rational number comes out with high probability.
The message space of FHE is a set of integers, so one may think that FHE is not suitable for
this setting. However, a rational number can be represented in various ways. We usually use
a decimal representation to represent a rational number, but continued fraction representation
can also represent a rational number and it consists of a set of integers. Thus, dividing an
integer by encrypted integer is possible when an outcome comes out in a continued fraction
form. Fortunately, we can achieve this by a special case of Gosper’s algorithm.

Notation. For readability, we define some notations and terminologies for this section.

— A bar over some integer means that the integer is encrypted by an underlying FHE scheme,
that is, for x € 7Z,
z = E(x)
].

where E(-) is an FHE encryption algorithm [4

— A mazimum of a continued fraction signifies that the largest integer among its partial
quotients, namely, for a continued fraction x = [xo; 21, 2, . .],

max x := max|x;|
3

— A continued fraction is encrypted means that each partial quotient of the continued fraction
is encrypted, and homomorphic encryption is used to allow arithmetic on partial quotients
with each other. In other words, for a continued fraction x = [z¢; 21, 2, . .],

E(x) := [E(x0); E(z1), E(x2), ..]

and it can sometimes be abbreviated as T := [ZTo; Z1, T, . . .].
— For a rational number x, denote its fractional linear transformation ?Ifzi for a,b,c,d € Z by
(¢4)
cd)"
— For two algorithms A and B, A(z) means that A takes as an input z and B o A(z) means call
A and B in order as an input z.

A representation of continued fraction for an integer is the same as the decimal representation
and it means that the number of partial quotient of the integer is the only one. Consequently,
InTake occurs the only once and then a couple of OutTake are followed. Originally, the Gosper
algorithm requires that determining which sub-algorithm should be invoked and it is big problem
when adopting FHE to the Gosper algorithm. But, in this case, the sequence of sub-algorithm
is already determined and thus it does not matter anymore.

However, there are still some obstacles to directly applying FHE to Gosper’s algorithm. Al-
though FHE theoretically supports both addition and multiplication, it is very difficult to divide
two ciphertexts and to compute its remainder because it requires many ciphertext multiplica-
tions. The bigger problem is that Gosper’s algorithm requires division due to the condition that
determines which sub-algorithm should be invoked. In addition, Eq. (2) in OutTake also incurs
modular-reduction operations. In the following, we show how to substitute modular arithmetic
with low degree homomorphic operations and our construction of arithmetic algorithm based
on Gosper’s algorithm.

3.1 Efficient Modular Arithmetic on FHE Ciphertexts

To apply FHE, some additional theorems and tools are required. In general, however, over FHE
ciphertexts, there are no efficient division and modular arithmetic algorithms. Unfortunately,
the OutTake sub-module to run the Gosper algorithm requires modular arithmetic and hence,
we need to replace modular arithmetic with some other operations of low degrees.

Our idea for an alternative to modular arithmetic is to use a greater-than comparison circuit.
According to reference [8], a circuit exists that enables the comparison of two encryptions, say a
GT circuit. Furthermore, the authors show that we can construct a GT circuit of depth [logn]+1
when a plaintext z represented by a binary string (zoxj - - - x,—1) has been encrypted in a bit-
by-bit manner. By writing Z for an integer x, recall that we mean z := (Zo, Z1,...,Tp—1)-

A GT circuit takes as inputs two encryptions my and mo and outputs an encryption of 1 if
m1 > mg and an encryption of 0 otherwise. Namely,

I ifm1 ZTH,Q

GT(m1, M) = {6 if my < ma

The output of the GT circuit is an encryption of 0 or 1, and thus, any information about two
input integers is not revealed. We provide a way to construct the GT circuit of [logn]| 4+ 1 in
Appendix A.1.

10

Then, the following theorem indicates that we can find the upper bound of partial quotients
of resulting value in terms of maximum partial quotient and a coefficient of a fractional linear
transform. Thus, we can perform modular reduction by iteratively running only the greater-than
comparison test at most the number of upper bound partial quotient according to Theorem 3.

Theorem 3 ([18]) Let x = [xo;x1, T2, ...,2y] be a continued fraction. Then,
b
max +or < |ad — be|- max x.
c+dx

As stated in the example in Section 2.2, x = % = [1;5,2] and maxx = 5. By Theorem 3,

we may assume that the maximum partial quotient of %igi

|1 x0—2x2|-maxz =20

18

and it can easily be verified that max # =7 < 20 because % =[1;1,2,7].

In summary, it is a considerable burden to divide two ciphertexts even if efficient FHE
schemes are used because its multiplicative depth is too much large. However, by applying
Theorem 3, modular arithmetic can be replaced by GT circuits, which require significantly

smaller multiplicative depth. This results from the fact that every partial quotient is bounded.

3.2 Our Suggestion

An integer has the same form regardless of a decimal representation and a continued fraction and
it has the only one partial quotient. Hence, InTake invokes only once and then OutTake invokes
several times depending on the desired accuracy. To perform OutTake, a modular arithmetic is
required and Section 3.1 is the solution. In Algorithm 2, we provide a modified algorithm that
enables to divide an integer by an encrypted integer.

Algorithm 2 Our variant of Gosper’s Algorithm
Input: z, f(X) = £, MAX
OUtput: f(:z') = [g07 gla o 7ﬂn—1]

[ZOZ1 — aa] /* InTake */

Z9 23 Trx
2. fori=0ton—1/* OutTake */
3 i < 0

4 do tmp + z;

5. for j =0 to MAX

6. do ¢ «+ GT(tmp, z3)

7 Ui < Y+t

8 tmp < tmp —t - 23
9

20 21 - zZ3 z3
29 23 tmp tmp

10. return [Jo; U1, .- -, Un—1]

3.3 Analysis

In this section, we analyze the performance of Algorithm 2 in terms of the number of multipli-
cations. Note that multiplication over HE ciphertext is the most expensive operation.
Correctness. We first need to argue the correctness of our suggestion, which is a special case
(n =1) of the Gosper algorithm. Algorithm 2 is fundamentally based on the Gosper algorithm
and thus we compare the Gosper algorithm and our suggestion.

11

Without loss of generality, we may assume that two truncate ratios are different and so InTake
always incurs at first. This is the same procedure that the Gosper algorithm, but only differs
whether or not encryption. After executing InTake, the remaining step is to run OutTake until
the algorithm is over. OutTake requires modular reductions, but we do not perform modular
reductions because we know the upper bound of partial quotients by Theorem 3. Modular
reductions between a and b (a > b) in the clear can be viewed as continually subtracting b from
a until b is larger and the number of subtract is quotient of a and b. In this sense, this should
be the same value compared with the output of OutTake, which corresponds to line 7 to line 12.

To sum up, every line of Algorithm 2 corresponds to the original algorithm and every step
does not influence the result. Therefore, the resulting value of our suggestion is the same as the
output of the Gosper algorithm which implies that Algorithm 2 works correctly. This completes
the proof of correctness.

Security. Next, we show that our variant of Gosper’s algorithm is secure against a semi-honest
server. Although security is straightforward, for completeness we provide the security analysis.
A server’s computations consist of repetitive applications of our variant to each term of a
prediction model and thus it suffices to prove the security of our variant in the semi-honest
security model. Thus, we formally prove in the next theorem the security of Algorithm 2 run
by a semi-honest server.

Theorem 4 Assuming that the underlying FHE scheme FHE = (Kg, E, D, Ev) provides semantic
security, Algorithm 2 is secure in the presence of a semi-honest server.

Proof. To show the security, we construct a polynomial-time algorithm S that, given the server’s
input and output, produces the server’s view, which is indistinguishable from the algorithm
execution. The server’s input consists of the specification of a target function f(X) and an
encryption Z, and at the conclusion of the execution, the server learns an evaluation result
f(z), denoted by f..

The simulator S first invokes Kg(1*) and sends (pk,ek) to the server while keeping the
secret key sk. Following the specification of the function f, S chooses a set of random small
integers in the plaintext space, i.e., (ro,71,...,7,—1), and outputs the corresponding encryptions
7 := (T, 71,...,7n—1). To simulate the evaluation of f, S sends 7 to the server. Then, the server
runs the variant of Gosper’s algorithm working on the encryptions, and S can be modified to
produce the evaluation result f,. as its output.

It is quite clear that the simulator runs in polynomial time. Next, we examine whether the
server can distinguish the above simulation and the real execution of the algorithm. The public
keys (pk,ek) that the server receives during the simulation are distributed identically to the
real algorithm execution, and thus, the server cannot tell the difference. Moreover, the server
cannot distinguish the ciphertext 7 that it receives during the simulation from the ciphertext
Z in the real algorithm execution due to the semantic security of the underlying FHE scheme.
Finally, the server also cannot distinguish the result f, that it produces during the simulation
from the result f, that it outputs during the real execution due to the semantic security of the
FHE scheme. Hence, we can conclude that no polynomial-time semi-honest adversary can learn
anything about the private input and its evaluation result.

Complexity. We provides an analysis of the computation complexity and space complexity
without relying on any asymptotic notation. We first examine computational complexity for
Algorithm 2. For readability, the remainder of this section does not use the bar notation, so
instead of Z, ¥, etc. we will use x,y, etc.

12

Computation Complexity. For any z = (oA] , let us define 2’ = InTake(z) = (2 2] . Since
21 = zo+z1x and 2 = 2z + 23z, there are two multiplications required. After then, when taking
o0, there needs no multiplication and just substitute.

Similarly, during one instance of OutTake running, z{ mod z5 could support the number
of MAX multiplications because we replace modular arithmetic by GT circuits. Moreover, the
upper line, that is, ciphertexts z({, and z, are not affected because there is no operation, only
substitution; thus, the required depth of each component during k times OutTake is kMQAX, where
k is determined by the desired accuracy.

In total, when performing Algorithm 2, the total number of multiplications for each compo-

nent is 1 + "MQAX, and thus HE scheme supports at least this number of multiplications.

Space Complezity. Let x be an integer and thus it has the only one partial quotient. In our
suggested algorithm, the storage requires that a ciphertext corresponding to z and additional

four ciphertexts corresponding to [zg ps] . Let v denote a bit-size of a ciphertext. Since the

total number of ciphertexts are 5, the memory requires that 5y-bit to perform our proposed
algorithm.

4 Extending Our Proposal

Section 3 indicates that a method for dividing an integer by an encrypted integer. In this section,
we extend our idea described in Section 3 to enable computation when rational numbers are
encrypted in the form of continued fractions. We only examine a special case (the only one
partial quotient) of Gosper algorithm in Section 3, but we can also apply the same idea for
general case (several number of partial quotients) of Gosper algorithm.

4.1 Tuning the Gosper algorithm

A rational number has a couple of partial quotients and thus InTake should be occurred as many
as the number of partial quotients. Then, according to Algorithm 1 described in Section 2.2,
the order of OutTake and InTake is determined by the condition of whether two truncations
are the same. However, it is a big burden to check the condition for each iteration, so prior to
presenting the specific description of our construction, we slightly modify the Gosper algorithm
to reduce the complexity.

In this section, we will provide two theorems to reduce the complexity of Gosper algorithm
by removing the condition of whether two rational numbers have the same integer part, and
these might be very helpful for our construction.

Theorem 5 If 2| = |2], then LZISZJ =[2] =[] for any q € Z.

Proof. Denote p = [2]| = LgJ. Then,

Cc
a=cp+rifor0<ri <ec
b=dp+rofor0<ry<d
For any q € Z,
a+bg =p(c+dq)+rs+raq,
and it implies that

a+bq r1 + T2q
c+dg p c+dg
a+bq

Because 0 < ry + 1r9q < ¢+ dq, L J = p. This completes the proof.

c+dq

13

Theorem 6 For [ZO Zl] with [2] = [2],

22 23 =
InTake o OutTake(z) = OutTake o InTake(z).

20 21
z223)"
p € Z. First, we look at the left-hand side of the equality.

Proof. Suppose that z = q == [22] = [£] and the next input partial quotient is

z3

InTake o OutTake(z) = |nTake([Z2 Z3])

20 — 2249 21 — =3¢

_ [Z3 z9 + 23p]
21 — 23q (20 — 23q) + p(21 — 23q)

By Theorem 5, g = |21/23] = L%J' Thus, the right-hand side of the equality becomes
OutTake o InTake(z) = OutTake([il jo i 21]];])
322+ 23
_ [23 z2 + 23p]
z1 — 23q (20 + 21p) — q(22 + 23p)

Therefore, InTake o OutTake(z) = OutTake o InTake(z), and thus, we may conclude the theorem.

By Theorem 5 and Theorem 6, Gosper’s algorithm can be slightly modified to performing
InTake for all partial quotients of input including oo and then performing OutTake, not alter-
native. Thus, the condition of whether two rational numbers have the same integer part is no
longer required.

4.2 Our Proposal

Although Gosper’s algorithm supports any continued fractions despite an infinite continued
fraction, we limit the input as a finite continued fraction and rational numbers. That is, for
some n € N, a real number is approximated by the first n partial quotients of » whenever the
partial quotients are produced more than n, and thus, InTake and OutTake perform each at
most n times in our construction. In Algorithm 3, we provide a modified algorithm that enables
rational numbers and encrypted continued fractions to be computed.

Algorithm 3 Our variant of Gosper’s algorithm
Input: Z = [Zo; Z1,.. ., Zn-1), f(X) = 55, MAX
OUtPUt: f('f) = [g(b Yiy--- 7:'jn71]
L [zozl] - [ab]

Z9 23 cd

2. fori=0ton—1

3. do [ZO Zl] “ [Zl ZOJFZ”:”]
Z9 Z3 23 22 + 23%;
C)
Z9 23 Z3 23
5. for i=0ton—1/* OutTake */
6. y; <0
7. do tmp + zg

14

8. for j =0 to MAX

9. do t + GT(tmp, 22)
10. Ui < i +1
11. tmp < tmp —1t - 2
12. AN o=

29 23 tmp tmp

13. return [Jo; U1, - ., Yn—1]

4.3 Analysis

Similar to Section 3.3, we also analyze the performance of Algorithm 3. The correctness and
security are almost the same as before, so we omit the proof in this section. Further, we compare
our suggestion to additive homomorphic encryptions (AHE).

Complexity. We provides an analysis of the computation complexity and space complexity
without relying on any asymptotic notation. We first examine computational complexity for
Algorithm 2. For readability, the remainder of this section does not use the bar notation, so
instead of Z, ¥, etc. we will use x,y, etc.

/ !
ZO 21

Computation Complexity. For any z, let us define 2z’ = InTake(z) = (] . Because 2] and 24

zh 2}
are the output of multiplications and zg + z1x and z9 + z3x are store(21 csiuring the next InTake
in 2| and 24 positions, respectively, no multiplications are required when z{, and 2/ are stored.
We would like to emphasize that no multiplications are required when an input of InTake is co.
Hence, if z is the production after performing InTake n + 1 times including input as oo, the left
side of z, that is, ciphertexts z(, and z5, should be supported by at least n — 1 multiplications,
and the right side of z, that is, ciphertexts 2] and 24, should be supported by n multiplications.

Since the computational complexity of OutTake is the same as before, the required total
number of multiplications for each component is n + "MQAX, Hence, an FHE scheme supports at

least this number of multiplications to run our construction of the algorithm.

Space Complexity. For a rational number z, suppose x has n partial quotients. Through Gosper
algorithm, the storage requires that n partial quotients and additional four integers correspond-

ing to | 25 21 | . In the same way, in our suggested algorithm, it requires n ciphertexts corre-

sponding to n partial quotients and an additional four ciphertexts corresponding to [oA] .

Let v denote a bit-size of one ciphertext. Since 4 + n ciphertexts are used, the memory requires
that (4 + n)~v-bit to perform Algorithm 3.

5 Experimental Results

We implemented Algorithm 3 in order to prove that it works well. Since the number of partial
quotients are flexible depending on an input, we made experiments by varying the number of
partial quotients by changing input rational numbers. Firstly, we give a specific implementation
environment and concrete parameters for our underlying FHE scheme.

Test Settings. Our implementation environment is that Intel Core i7 2.3 GHz and 16 GB
RAM under Mac OS X 10.11. The main construction is to apply FHE to Gosper algorithm using
our idea demonstrated in Section 4.1. To our knowledge, because HEIib is the most efficient and
credible FHE open source and it also supports scalar addition, we took HElib as a basic tool
for instantiating the BGV-type FHE scheme.

Parameters for the FHE Implementation. To initialize the BGV cryptosystem via HElib,
we need to choose a security parameter A\, a multiplicative depth L, and a message space Z,.

15

Then HElib determines the N-th cyclotomic polynomial ®x(X) where N € Z. For the security
parameter A = 80, we used Zy10 as the plaintext domain, and set L = 20, and N = 18632.

To use the GT circuit which homomorphically compares two encryptions, we need to first
encode a rational number x into its CF representation [xg;x1,...,x,] and then represent each
integer x; into a sequence of bits. For this reason, we take the plaintext modulus p = 2 and
thus, the message space becomes Zs. In addition, considering a specific calculation as in the toy
example of Section 2.2, we set a multiplicative depth L = 20. Then the value N is automatically
determined by a HEIlib routine; we have N = 18632 as above.

5.1 Implementation Issues

Our implementation of Algorithm 3 mainly relies on two sub-modules. One is a greater-than
comparison circuit and the other is an integer addition circuit of size n for an integer n > n. The
main reason for considering such an integer addition is to support line 10 and line 11 of Algo-
rithm 3. We defer the details of their efficient constructions to Appendix A.1 and Appendix A.2,
respectively.

Precisely, an implementation of line 11 of Algorithm 3 does not require an integer addition
but requires an integer subtraction. To do this, we applied a simple technique to support sub-
traction over encryptions. Let denote by FA(Z,) a full adder over two encryptions z,y. Our
subtraction was implemented as follows:

1. Compute the two’s complement of ¢ by xoring all ¢; and adding 1 to the result. Specifically,
compute 3; = 7; + 1 for all 0 < i # n — 1 and § = FA(1, 7). Here 1 means an encryption of
(0---01).

2. Compute z = FA(7, 7).

The reason for our technique working correctly is that the BGV encryption supports add a
constant to an encryption.

5.2 Results

We give an experiment result for our simple implementation without depending on optimization
techniques to speed up and applying single-instruction and multiple-data (SIMD) techniques
for circuit constructions such as the GT and FA circuits.

Our construction consists of largely two parts; one is InTake and the other is OutTake. As
mentioned above, we implemented = + 1/2 where x = 13/11 = [1;5,2]. In other words, three
InTake steps occurs. (Indeed, four InTake occurs including x5 = oo, but the last InTake just
substitutes.) Moreover, several times OutTake occurs, but nobody knows the exact number of
OutTake because every partial quotients are encrypted. We assume that we need at most five
partial quotients of outputs, which means that we ignore every partial quotients behind the
sixth quotient. Hence, we invoked OutTake only five times in our implementation.

In Table 1, we report on the running times of our main submodules. We presents three types
of the running times; the average time of InTake and OutTake and the total time depending on
the number of input partial quotients, denoted by n.

Table 1. Experiment Results

n| InTake [OutTake [Total Time

315.75 sec|656.51 sec| 4,229.8 sec
289.13 sec|641.35 sec|4,651.82 sec

w

t

16

We would like to note that the primary goal of our experiments is to provide a proof-of-
concept implementation for proving correctness of our idea. Therefore, there is considerable
room for improvement in performance through known optimization techniques including SIMD
techniques and computations on GPU.

6 Related Work

As closely related works, we have Graepel et al.’s result [15] and Bos et al.’s work [2]. In both
works, the authors first fix a desired precision, multiply through by a fixed denominator, and
round to the nearest integer because any real number can be approximated by rational numbers
to arbitrary numbers and subsequently encoded to ring elements. However, this approach to
represent real numbers has some drawbacks. When two encoded rational numbers are multiplied,
it should be performed without any modular reduction and thus the plaintext space of HE must
be sufficiently large.

7 Summary and Future Work

In this paper, we proposed an arithmetic algorithm that enables a constant divided by an en-
crypted integer using a special case of the Gosper algorithm. Our algorithm outputs a rational
number in form of continued fractions form. Continued fractions are a great tool for representing
rational numbers to a sequence of small integers and they are a best approximation of rational
numbers. Further, we can extend our suggestion to an arithmetic with a rational number. With
our extending algorithm, addition, subtraction, and multiplication for encrypted rational num-
bers are possible, and linear fractional transformation also can be evaluated and the complexity
is almost the same because every step is the same for any arithmetic.

We leave it as future work to provide a new version of the current implementation to which
we apply SIMD techniques to construct underlying circuits and further optimization techniques.

References

1. D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-DNF formulas on ciphertexts. In TCC, pages 325-341,
2005. 4

2. J. Bos, K. Lauter, and M. Naehrig. Private predictive analysis on encrypted medical data. Journal of
Biomedical Informatics, 50:234-243, 2014. 1, 17

3. Z. Brakerski. Fully homomorphic encryption without modulus switching from classical gapsvp. In Advances
i Cryptology—Crypto, pages 868-886, 2012. 9

4. 7. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic encryption without boot-
strapping. In ITCS, pages 309-325, 2012. 2, 9, 19

5. Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from (standard) LWE. In
FOCS, pages 97-106, 2011. 9

6. Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from ring-LWE and security for key
dependent messages. In Advances in Cryptology—Crypto, pages 505-524, 2011. 9

7. J. H. Cheon, J. Coron, J. Kim, M. S. Lee, T. Lepoint, M. Tibouchi, and A. Yun. Batch fully homomorphic
encryption over the integers. In Advances in Cryptology—FEurocrypt, pages 315-335, 2013. 9

8. J. H. Cheon, M. Kim, and M. Kim. Search-and-compute on encrypted data. In WAHC, LNCS 8976, pages
1-18, 2015. 10, 18

9. J. H. Cheon and D. Stehlé. Fully homomophic encryption over the integers: Revisited. In Advances in
Cryptology—FEurocrypt, pages 513-536, 2015. 9

10. T. El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In G. R.
Blakley and D. Chaum, editors, Advances in Cryptology-Crypto, LNCS 196, pages 10-18, 1984. 2

11. C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169-178, 2009. 9

12. C. Gentry, S. Halevi, and N. Smart. Homomorphic evaluation of the AES circuit. In Advances in Cryptology—
Crypto, pages 850-867, 2012. 9

17

13. O. Goldreich. Foundations of Cryptography-Volume II Basic Applications. Cambridge University Press, 2004.

5

14. R. Gosper. Continued fraction arithmetic. In HAKMEM Item 101B, MIT Artificial Intelligence Memo 239,
1972. 3, 6

15. T. Graepel, K. Lauter, and M. Naehrig. ML confidential: Machine learning on encrypted data. In ICISC,
volume 7839, pages 1-21, 2013. 17

16. S. Halevi and V. Shoup. HE1ib-An implementation of homomorphic encryption. 2, 9

17. G. Hardy and E. Wright. An Introduction to the Theory of Numbers. Oxford science publications. Clarendon
Press, 1979. 6

18. J. Lagarias and J. Shallit. Linear fractional transformations of continued fractions with bounded partial
quotients. Journal de théorie des nombres de Bordeauz, 9(2):267-279, 1997. 11

19. NIST. SHA-3 standard: Permutation-based hash and extendable-output functions. In FIPS 202, 2015. 8

20. R. Ostrovsky, A. Paskin-Cherniavsky, and B. Paskin-Cherniavsky. Maliciously circuit-private FHE. In
Advances in Cryptology—Crypto, pages 536-553, 2014. 9

21. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In J. Stern, editor,
Advances in Cryptology-EuroCrypt, LNCS 1592, pages 223-238, 1999. 2

22. M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic encryption over the integers.
In Advances in Cryptology—Eurocrypt, pages 24—43, 2010. 9

A Circuit Construction

We provide a brief description of each circuit construction for our construction. The below two
circuits are used in replacing modular reduction with cheaper operations in terms of multiplica-
tive depth.

A.1 Greater-than Comparison

We provide a brief description of an approach to construct an efficient greater-than circuit in
depth.

For two n-bit integers, a greater-than circuit GT(Z,) outputs 1 if z > y and 0 otherwise.
This operation can be recursively defined as follows:

GT(z,y) =1—¢p1,

where ¢; = (1 + ;) - y; + (L + Z; + 4;) - ¢;—1 for ¢ > 1 with an initial value ¢y = (1 4 Zo) - go.

The naive construction of this circuit incurs O(n?) homomorphic multiplications. However,
using an FHE scheme such as the BGV scheme that supports the single-instruction multiple-
data (SIMD) technique enables us to construct a circuit that requires only 2n — 2 homomorphic
multiplications. This means that the circuit has multiplicative depth [logn]+1. See reference [8]
for the details of construction and its analysis.

A.2 Full Adder

We briefly describe an approach to construct an efficient full-adder circuit in depth. As above,
let = and y be n-bit integers. We then obtain two 7-bit integers by padding zeros on the left
for an integer n > n. We define a full-adder of size n, denoted by FA, in a recursive manner as
follows:

FA(z,9) = (20, 21, - .-, Z3a—1)
where a sum z; = &; + y; + ¢;—1 and a carry-out ¢; = (z; - 4;) + ((Z; + 9i) - ¢i—1) for 1 <ien—1
with initial values zg = Zo + 9o and ¢y = Zg - yo- The more important thing with respect to

efficiency is that using the SIMD technique allows us to construct the integer addition circuit
of depth [log(n — 2)] + 1 [8].

18

B Semantic Security

We define the security game for FHE between a challenger C' and an adversary A. In the
security game the adversary A is allowed to adaptively choose the plaintext on which it will be
challenged. Precisely, the security of FHE is defined as follows:

Definition 4 (Semantic Security Game) Consider the following game played by an adver-
sary A and a challenger C':

1. The challenger C' runs Kg(1*) and obtains a secret key sk for FHE.

2. The adversary determines the number of encryption queries adaptively. In each encryption
query, the adversary A sends x; and receives its encryption T;.

3. Once the adversary A decides that query is over, A outputs two equal length plaintext x|
and x7 on which it wishes to be challenged. The only restriction is that xf and x7 has never

been queried before.
4. The challenger C picks b € {0,1} randomly and encrypts my, under the secret key sk. It then

sends the ciphertext Ty to the adversary A.
5. The adversary A outputs his guess b € {0,1} of which message he received and wins if

b=10.

Now, we define the advantage of an adversary A playing the security game by Adva(\) :=
|Pr[b =] — 3.

Definition 5 (Semantic Security) We say that FHE is semantically secure if no polynomially-
bounded adversary has a non-negligible advantage in the above game.

C The BGV Cryptosystem

For the security parameter A\, we choose an N € Z that defines the N-th cyclotomic polynomial
¢ N (X). For a polynomial ring R = Z[X]/(®n (X)), we set the message space to R; := R/tR for
some fixed ¢t > 2 and the ciphertext space to R, := R/qR for an integer q. We choose a chain
of moduli g9 < ¢1 < --- < qr, = q whereby the leveled FHE scheme can evaluate a depth-L
arithmetic circuit. The BGV FHE scheme based on the hardness of the Ring-LWE (RLWE)
problem is constructed as follows:

Key generation. The algorithm Kg chooses a Hamming-weight h and the secret key s and gen-
erates an RLWE instance (Jg, 1) relative to that secret key. We set the secret key sk = s
and the public key pk = (do, 91).

Encryption. To encrypt a message © € Ry, the algorithm chooses a small polynomial v and
two Gaussian polynomials eg, e; (with variance o2). It outputs the ciphertext ¢ = (cg, ¢1) by
computing

(co,c1) = (z,0) + (01v + teg, dov + ter) mod qr..

Decryption. Given a ciphertext ¢ = (cp,c1) at level [, the algorithm outputs z = ¢y — s -
¢1) mod ¢ mod ¢.

Homomorphic evaluation. If the function f is an addition over ciphertexts, the algorithm out-
puts the ciphertext performed by simple component-wise addition of the two ciphertexts. If
f is a multiplication over ciphertexts, it outputs the one performed using a tensor product.

In fact, our description may offer a big picture of the BGV cryptosystem because we inten-
tionally omitted many details of the encryption scheme. We thus recommend that the readers
refer to reference [4].

19

	Encoding Rational Numbers for FHE-based Applications

