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Abstract

In 1999, Boneh and Durfee introduced the small inverse problem, which solves the bivariate
modular equation x(N + y) ≡ 1 (mod e). Absolute values of solutions for x and y are bounded
above by X = Nδ and Y = Nβ , respectively. They solved the problem for β = 1/2 in the
context of small secret exponent attacks on RSA and proposed a polynomial time algorithm
that works when δ <

(
7− 2

√
7
)
/6 ≈ 0.284. In the same work, the bound was further improved

to δ < 1 − 1/
√
2 ≈ 0.292. Thus far, the small inverse problem has also been analyzed for an

arbitrary β. Generalizations of Boneh and Durfee’s lattices to obtain the stronger bound yielded
the bound δ < 1−

√
β. However, the algorithm works only when β ≥ 1/4. When 0 < β < 1/4,

there have been several works where the authors claimed their results are the best.
In this paper, we revisit the problem for an arbitrary β. At first, we summarize the previous

results for 0 < β < 1/4. We reveal that there are some results that are not valid and show that
Weger’s algorithms provide the best bounds. Next, we propose an improved algorithm to solve

the problem for 0 < β < 1/4. Our algorithm works when δ < 1− 2
(√

β(3 + 4β)− β
)
/3. Our

algorithm construction is based on the combinations of Boneh and Durfee’s two forms of lattices
and it is more natural compared with previous works. For the cryptographic application, we
introduce small secret exponent attacks on Multi-Prime RSA with small prime differences.

1 Introduction

The Small Inverse Problem. In [BD00], Boneh and Durfee introduced the small inverse problem
(SIP). Given two distinct large integers N and e, the goal of the problems is to find x̃ and ỹ such
that x̃ is an inverse of N + ỹ mod e where x̃ and ỹ are small, i.e., absolute values of x̃ and ỹ are
bounded by X := N δ and Y := Nβ, respectively. The SIP can be formulated as the following
modular equation,

x(N + y) ≡ 1 (mod e)
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whose solution is (x, y) = (x̃, ỹ). In this paper, we call the problem the (δ, β)-SIP.
One of the typical cryptographic applications of the SIP is the small secret exponent attack on

RSA. Recall RSA key generation ed ≡ 1 (mod ϕ(N)) where ϕ(N) = (p−1)(q−1) = N−(p+q)+1.
We can rewrite the equation as ed+ℓ(N−(p+q)+1) = 1 with some integer ℓ < N δ. If we can solve
the (δ, 1/2)-SIP, i.e., x(N+y) ≡ 1 (mod e), whose solution is (x, y) = (ℓ,−(p+q)+1), we can factor
the RSA modulus N . When public exponents e are full size, the size of the secret exponent d is
≈ ℓ < N δ. Boneh and Durfee [BD00] proposed lattice-based polynomial time algorithms to solve the
(δ, 1/2)-SIP. At first, they proposed an algorithm that works when δ <

(
7− 2

√
7
)
/6 = 0.28474 · · · .

This result improved the previous bound δ < 1/4 = 0.25 proposed by Wiener [Wie90]. In the same
work, Boneh and Durfee further improved the bound to δ < 1 − 1/

√
2 = 0.29289 · · · . To obtain

the stronger bound, they extracted sublattices from the previous lattices that provided the weaker
bound. However, the analysis to compute the determinant of the sublattice is involved since the
basis matrix is not triangular.

Boneh and Durfee [BD00] claimed that their bound may not be optimal. They estimated
that the bound should be improved to δ < 1/2. Although several papers [BM01, HM10, KSI11]
have followed the work, no results that improved the Boneh-Durfee bound have been reported and
Aono et al. [AASW12] showed some evidence of the optimality of the attack. Blömer and May
[BM01] considered different lattice constructions to solve the (δ, 1/2)-SIP. Their algorithm works
when δ <

(√
6− 1

)
/5 = 0.28989 · · · . Although the bound is inferior to the Boneh-Durfee stronger

bound, it is superior to the weaker bound. Moreover, dimensions of the Blömer-May lattices are
smaller than those of the Boneh-Durfee lattices. However, the analysis to compute the determinant
of the lattice is also involved since the basis matrix is not triangular.

Herrmann and May [HM10] revisited the Boneh-Durfee algorithms [BD00]. They used a tech-
nique called unravelled linearization [HM09] and analyzed the determinant of the lattice to obtain
the stronger bound. They used linearization z = −1 + xy and transformed the basis matrices that
were not triangular to be triangular. The proof is very simple compared with Boneh and Dur-
fee’s original proof [BD00]. Kunihiro, Shinohara, and Izu [KSI11] followed the work and provided
a simpler proof for the Blömer-May algorithm [BM01] by using unravelled linearization. Hence,
unravelled linearization is a key technique to maximize solvable root bounds of the SIP.
General Bounds for the Small Inverse Problem. The SIP is an important problem in the
context of RSA cryptanalysis and has been analyzed in a number of papers. Several variants of the
problem have been considered, small secret exponent attacks on variants of RSA [DN00, IKK08b],
partial key exposure attacks [BM03, EJMW05, Aon09, SGM10, TK14a], and more. To analyze
the problem in detail, mathematical generalizations of the SIP [Kun11, Kun12] have also been
considered. One of the well considered generalizations is the (δ, β)-SIP for an arbitrary 0 < β < 1,
not only β = 1/2. For the attack, generalizations of lattices for the (δ, 1/2)-SIP [BD00, BM01] have
been analyzed.

Weger [Weg02] studied small secret exponent attacks on RSA for a small difference of prime
factors, e.g., |p− q| < Nγ with γ ≤ 1/2. In this case, they revealed that the RSA modulus can be
factored when we solve the (δ, 2γ − 1/2)-SIP. They extended the Boneh-Durfee lattice constructions
and constructed algorithms to solve the (δ, β)-SIP for an arbitrary β. Their algorithms solve the
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(δ, β)-SIP when

δ < 1−
√

β for
1

4
≤ β < 1, (1)

δ < 1− 1

3

(
2
√
β(β + 3)− β

)
. (2)

The first (resp. the second) bound can be obtained by lattice constructions to obtain the Boneh-
Durfee stronger (resp. weaker) bound. Weger [Weg02] also extended Wiener’s algorithm [Wie90]
for the attack. The algorithm works when

δ <
3

4
− β. (3)

Although the bound (1) is the best among the three bounds, the algorithm works only when
1/4 ≤ β < 1. The bound (2) (resp. (3)) is the better when 0 < β < 1/8 (resp. 1/8 ≤ β < 1/4).

Sarkar et al. [SMS08] studied small secret exponent attacks on RSA for the case when attackers
know the most significant bits of a prime factor p. They solved the (δ, β)-SIP for an arbitrary β for
the attack. In addition to Weger’s results [Weg02], Sarkar et al. extended the Blömer-May lattice
constructions. Their algorithm solves the (δ, β)-SIP when

δ <
2

5

(√
4β2 − β + 1− 3β + 1

)
. (4)

The bound is superior to Weger’s bound (2) and (3) when 3/35 ≤ β < 1/4.
Kunihiro, Shinohara, and Izu [KSI11] considered a broader class of lattices and not just gener-

alizations of lattices for the (δ, 1/2)-SIP [BD00, BM01]. To solve the (δ, β)-SIP for an arbitrary β,
Kunihiro et al. analyzed hybrid lattice constructions that included the Boneh-Durfee lattices for
the stronger bound [BD00, Weg02] and the Blömer-May lattices [BM01, SMS08]. To be precise,
Kunihiro et al. considered a broader class of lattices, and the previous two lattices [SMS08, Weg02]
were special cases of the class. Therefore, there may be chances to improve the previous result
by making use of the structures of two lattices, simultaneously. However, their result becomes the
same as Weger’s bound (1) for 1/4 ≤ β < 1 and Sarkar et al.’s bound (4) for 0 < β < 1/4.
Small Secret Exponent Attacks on Multi-Prime RSA with Small Prime Differences.
Multi-Prime RSA is a variant of RSA whose public modulus N =

∏k
j=1 pj is a product of k distinct

primes p1, p2, . . . , pk. The bit length of all prime factors are the same. Key generations of Multi-
Prime RSA are the same as that of standard RSA, ed = 1 (mod ϕ(N)) where ϕ(N) =

∏k
j=1(pj−1).

Multi-Prime RSA becomes efficient for its low cost decryption of a large k since the main com-
putation costs are modular exponentiations with logN/k bits moduli when Chinese Remaindering
is used. Moreover, most algebraic attacks become less efficient for a larger k such as small secret ex-
ponent attacks [Wie90, BD00] and partial key exposure attacks [BM03, EJMW05, TK14a]. As the
standard RSA, Multi-Prime RSA becomes insecure when extremely small secret exponents d < N δ

are used. Ciet et al. [CKL+02] extended Wiener’s [Wie90] and Boneh and Durfee’s attacks [BD00].
Extensions of Wiener’s attacks work when δ < 1/2k. To extend Boneh and Durfee’s attacks, they
solved the (δ, 1 − 1/k)-SIP. The algorithms work when δ < 1 −

√
1− 1/k. Both bounds become

the same as the previous results [Wie90, BD00] for k = 2.
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Zhang and Takagi [ZT13] analyzed small secret exponent attacks on Multi-Prime RSA with
small prime differences1. Assume p1 > p2 > · · · > pk without loss of generality. Zhang and Takagi
analyzed the case when |p1 − pk| < Nγ , 0 < γ ≤ 1/k and revealed that Multi-Prime RSA becomes
insecure when we can solve the (δ, γ + 1 − 2/k)-SIP. After that the same authors [ZT14] gave an
improved analysis. Multi-Prime RSA becomes insecure when we can solve the (δ, 2γ+1−3/k)-SIP.
When γ = 1/k, the results [ZT13, ZT14] becomes the same as that of Ciet et al.’s results [CKL+02]
that solves the (δ, 1−1/k)-SIP. In addition, the improved result [ZT14] becomes the same as Weger
[Weg02] that solves the (δ, 2γ − 1/2)-SIP for k = 2.
Our Contributions. In this paper, we study the (δ, β)-SIP for an arbitrary β. At first, we sum-
marize previous lattice constructions [BD00, BM01, Weg02, SMS08, KSI11] to obtain the bounds
(1) to (4). We reveal that a generalization of the Blömer-May lattices to obtain the bound (4)
is not valid for β < 1/4. Therefore, although Sarkar et al. [SMS08] and Kunihiro et al. [KSI11]
claimed that the bound (4) is the best when 3/35 < β < 1/4, the results are incorrect. Among
previous results, Weger’s bound (2) (resp. (3)) is the best for 0 < β ≤ 1/8 (resp. 1/8 < β < 1/4).

Next, we propose an improved algorithm to solve the (δ, β)-SIP for arbitrary β. We consider a
broader class of lattices that include Weger’s three lattices to obtain the bounds (1)-(3) [Weg02]
for special cases. Therefore, there may be chances to improve the previous results by making use
of the structures of previous lattices, simultaneously. Indeed, when 0 < β < 1/4, our algorithm
works when

δ < 1− 2

3

(√
β(3 + 4β)− β

)
(5)

and the bound is superior to the previous bounds. This means that our lattice constructions make
better use of algebraic structures of polynomials than previous analyses to solve the (δ, β)-SIP
[Weg02]. As several previous works [HM10, KSI11, ZT14], we analyze the determinant of lattices
using unravelled linearization. Therefore, the proof is rather simple.

Figure 1 compares recoverable sizes of δ for our algorithm and previous ones [Weg02, SMS08]
to solve the (δ, β)-SIP for 0 ≤ β ≤ 1/4. Table 1 shows the numerical data. When β = 1/4 and
β = 0, our bound becomes the same as Weger’s result δ < 0.5 and δ < 1, respectively. However,
our algorithm is better than the two results for 0 < β < 1/4.

As an application of our algorithm, we analyze small secret exponent attacks on Multi-Prime
RSA with small prime differences. It is clear that we can improve previous results since our
algorithm to solve the (δ, β)-SIP is better than that which was used in [ZT14].
Organizations. In Section 2, we introduce lattice-baesd Coppersmith’s method to solve modular
equations [Cop96, How97]. In Section 3, we define the (δ, β)-SIP and recall previous lattice con-
structions to solve the (δ, β)-SIP. In Section 4, we propose our lattice constructions to solve the
(δ, β)-SIP for an arbitrary β. In Section 5, we analyze small secret exponent attacks on Multi-Prime
RSA with small prime differences.

1See also Bahig et al.’s work [BBN12]. They extended Weger’s attacks that are based on Wiener’s work [Wie90].
The attacks work when δ < 1/k − γ/2.

4



!

"#$!

"%$! &'()!

Figure 1: The comparison of the recoverable sizes of δ for 0 ≤ β ≤ 1/4. Our algorithm works in
the left below of the solid line.

2 Preliminaries

In this section, we briefly explain Coppersmith’s method to solve modular equations [Cop96]. We
introduce the simpler modification of the method proposed by Howgrave-Graham [How97].
The LLL Algorithm. Given linearly independent m-dimensional n vectors b1, . . . , bn ∈ Rm, a
lattice spanned by the basis vectors are defined as integer linear combinations of the vectors,

L(b1, . . . , bn) :=


n∑

j=1

cjbj | cj ∈ Z for all j = 1, 2, . . . , n

 .

Matrix representations of bases are also used where basis matrices of lattices are defined as n×m
matrices each of whose rows consists of the basis vector b1, . . . , bn. Lattices spanned by basis
matrices B are denoted as L(B). The values n (resp. m) represent a rank (resp. a dimension)
of a lattice. When n = m, we call lattices full-rank. Parallelepiped of a lattice is defined by
P(B) := {cB : c ∈ Rn, 0 < cj ≤ 1 for all j = 1, 2, . . . , n}. The determinant of a lattice det(L(B))
is defined as the n-dimensional volume of the parallelepiped. In general, the determinant can be
calculated as det(L(B)) =

√
det(BBT) where BT represents a transpose of B. For full-rank

lattices, we can compute the determinant as det(L(B)) = | det(B)|.
Lattices are used in many ways in the context of cryptanalysis. See [Cop97, Cop01, May10,

NS01] for detailed information. One of the cryptanalytic applications that use lattices is Cop-
persmith’s method to solve modular equations [Cop96]. To use the method, finding short lattice
vectors is essential. In this paper, we introduce the celebrated LLL algorithm [LLL82] as other
previous works. In 1982, Lenstra, Lenstra, and Lovász proposed a lattice reduction algorithm that
finds short lattice vectors in polynomial time.

Propostition 1 (LLL algorithm [LLL82]). Given m-dimensional basis vectors b1, . . . , bn, the LLL
algorithm finds short lattice vectors b′1 and b′2 that satisfy

∥b′1∥ ≤ 2(n−1)/4(det(L(B)))1/n and ∥b′2∥ ≤ 2n/2(det(L(B)))1/(n−1),
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Table 1: Numerical data of solvable δ for the (δ, β)-SIP.

β Ours (3) of [Weg02] (2) of [Weg02]

1/4 = 0.25 0.5 0.5 0.482408121

0.225 0.5255002 0.525 0.507109165

0.2 0.552146808 0.55 0.533333333

0.175 0.580217435 0.575 0.561398283

0.15 0.610102051 0.6 0.591742431

1/8 = 0.125 0.642374781 0.625 0.625

0.1 0.67793654 0.65 0.662149042

0.075 0.718337521 0.675 0.704843788

0.05 0.766666667 0.7 0.756325011

0.025 0.831074521 0.725 0.825

0 1 0.75 1

in polynomial time in input length and n,m.

Howgrave-Graham’s Lemma. To solve modular equations h(x, y) = 0 mod e whose roots are
(x, y) = (x̃, ỹ) is difficult for the existence of the modulus e. Howgrave-Graham [How97] revealed
that we can find polynomials h′1(x, y) and h′2(x, y) that have the same roots as h(x, y) (mod e) over
the integers. For bivariate polynomials h(x, y) :=

∑
hi,jx

iyj , we define norms of polynomials as

∥h(x, y)∥ :=
√∑

h2i,j . Howgrave-Graham showed the following lemma that implies that norms of

polynomials h′1(x, y) and h′2(x, y) should be low.

Lemma 1 (Howgrave-Graham’s Lemma [How97]). Given integers X,Y , and t, if a polynomial
h′(x, y) that has at most n monomials satisfies following two conditions,
1. h′(x̃, ỹ) = 0 (mod et) where |x̃| < X and |ỹ| < Y ,
2. ∥h′(x, y)∥ < et/

√
n,

then h′(x̃, ỹ) = 0 holds over the integers.

For solving the modular equation h(x, y) = 0 (mod e), we can find such low norm polynomials
h′1(x, y) and h′2(x, y) by using the LLL algorithm. We construct n polynomials h1(x, y), . . . , hn(x, y)
that have roots (x, y) = (x̃, ỹ) modulo et, and construct a basis matrix B where each basis vector
b1, . . . , bn consists of coefficients of a polynomial h1(xX, yY ), . . . , hn(xX, yY ). By the definitions
of h1(x, y), . . . , hn(x, y) and lattices, all polynomials modulo et whose coefficients correspond to
lattice vectors in L(B) have the roots (x, y) = (x̃, ỹ). Therefore, we can find low norm polynomials
h′1(x, y) and h′2(x, y) whose roots modulo et are the same as the original solutions by using the
LLL algorithm. If the polynomials h′1(x, y) and h′2(x, y) satisfy Howgrave-Graham’s Lemma, we
can find the roots by finding the roots of the polynomials over the integers. The operation is easy
by computing Gröbner bases or resultants of h′1(x, y) and h′2(x, y). In this paper, we focus on the
lattice constructions to solve modular equations as in previous works [BD00, BM01, SMS08, HM10].
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To solve modular bivariate equations, a heuristic argument is required since there are no assur-
ance that the polynomials h′1(x, y) and h′2(x, y) will be algebraically independent. In this paper,
we assume the fact as previous works [BD00, HM10, KSI11, SMS08, Weg02] since there exist few
negative reports of the assumption. See [BJ07, BCC+13] for more information. Moreover, lattices
that we use in this paper are sublattices of the lattices that have been previously used. Hence,
validities of previous algorithms justify the validity of our algorithm.

3 Previous Lattice Constructions to Solve the (δ, β)-SIP

In this section, we formally define the (δ, β)-SIP.

Definition 1 (The (δ, β)-SIP). Given two distinct integers N and e with the same bit size and real
numbers δ, β ∈ (0, 1), the goal of the the (δ, β)-SIP is to find integers x̃ and ỹ that satisfy |x̃| < N δ

and |ỹ| < Nβ, and
x(N + y) ≡ 1 (mod e).

In this paper, we also use X := N δ and Y := Nβ that denote upper bounds of the absolute
values of the solutions. Although we only consider the case when two integers N and e are the
same bit sizes, it is easy to extend to more general cases.

To solve the modular equation

f(x, y) = −1 + x(N + y) = 0 (mod e),

Boneh and Durfee [BD00] used two forms of shift-polynomials,

gx[i,u](x, y) := xi−uf(x, y)uet−u and gy[u,j](x, y) := yjf(x, y)uet−u.

Each polynomial gx[i,u](x, y) (resp. g
y
[u,j](x, y)) is called x-shifts (resp. y-shifts). When all indices i, u,

and j are non-negative integers, both polynomials modulo et have roots (x̃, ỹ), e.g., gx[i,u](x̃, ỹ) =

0 (mod et) and gy[u,j](x̃, ỹ) = 0 (mod et). Let Sx and Sy denote sets of indices and B be the

basis matrices that consist of coefficients of shift-polynomials gx[i,u](x, y) with indices in Sx and

gy[u,j](x, y) with indices in Sy . The selection of shift-polynomials Sx and Sy is essential to maximize
the solvable root bounds X and Y . In the rest of this section, we summarize previous lattice
constructions [BD00, BM01, Weg02, SMS08, HM10, KSI11] to solve the problem.
Weaker Boneh-Durfee Lattices. We introduce the Boneh-Durfee lattices [BD00] to obtain the
weaker bound δ < (7 − 2

√
7)/6 and its generalization by Weger [Weg02] to obtain the bound (2),

δ < 1
3(β + 3− 2

√
β(β + 3)). Boneh and Durfee defined sets of indices,

SwBD
x := {(i, u)|i = 0, 1, . . . , t;u = 0, 1, . . . , i} and SwBD

y := {(u, j)|u = 0, 1, . . . , t; j = 1, 2, . . . , ⌊ηt⌋}

with a parameter η ≥ 0. They constructed basis matrices B that consist of coefficients of gx[i,u](x, y)

with indices in SwBD
x and gy[u,j](x, y) with indices in SwBD

y . The matrices become triangular with

diagonals XiY uet−u for gx[i,u](x, y) and XuY u+jet−u for gy[u,j](x, y). Ignoring low order terms of t,
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the dimension and the determinant of the lattices are computed as n = (12 + η)t2 and det(B) =

X( 1
3
+ η

2
)t3Y ( 1

6
+

η(1+η)
2

)t3e(
1
3
+ η

2
)t3 , respectively. The conditions for the (δ, β)-SIP to be solved, i.e.,

(det(B))1/n < et, become

δ

(
1

3
+

η

2

)
+ β

(
1

6
+

η(1 + η)

2

)
+

(
1

3
+

η

2

)
<

1

2
+ η,

δ <
1− β + 3(1− β)η − 3βη2

2 + 3η
.

To maximize the right hand side of the inequality, we set the parameter η =
(
−2β +

√
β(β + 3)

)
/3β

and the condition becomes

δ <
1

3

(
β + 3− 2

√
β(β + 3)

)
.

Stronger Boneh-Durfee Lattices. To improve the bound, Boneh and Durfee [BD00] extracted
sublattices from the previous weaker Boneh-Durfee lattices and constructed an algorithm that
solves the (δ, 1/2)-SIP when δ < 1 − 1/

√
2. Weger [Weg02] generalized the lattice constructions

and constructed an algorithm that solves the (δ, β)-SIP when the condition (1) δ < 1−
√
β holds.

Boneh and Durfee redefined sets of indices,

SsBD
x := {(i, u)|i = 0, 1, . . . , t;u = 0, 1, . . . , i} and SsBD

y := {(u, j)|u = 0, 1, . . . , t; j = 1, 2, . . . , ⌊τu⌋}

with a parameter 0 ≤ τ ≤ 1. They selected shift-polynomials gx[i,u](x, y) with indices in SsBD
x and

gy[u,j](x, y) with indices in SsBD
y . Although the basis matrices generated by the polynomial selections

are not triangular, Herrmann and May [HM10] showed that the matrices can be transformed into
triangular with a linearization z = −1 + xy. As the Boneh-Durfee weaker lattice, polynomials in
SsBD
x generate a triangular matrix with diagonals XiY uet−u. When the linearization z = −1 + xy

is applied to the polynomials, the matrix is still triangular with diagonals Xi−uZuet−u. Although
the matrix with extra polynomials in SsBD

y becomes non-triangular, the linearization preserves the
matrix to be triangular with diagonals Y jZuet−u. In short, existences of monomials Xi−uZu for
i = 0, 1, . . . , t, u = 0, 1, . . . , i (that are equivalent to XiY u for the same set of indices) enable the
transformation. Notice that the analysis requires a restriction τ ≤ 1. See [HM10] for the detailed
analysis.

Ignoring low order terms of t, the dimension and the determinant of the lattices are computed

as n = (12 + τ
2 )t

2 and det(B) = X
1
6
t3Y

τ2

6
t3Z( 1

6
+ τ

3
)t3e(

1
3
+ τ

6
)t3 , respectively. The conditions for the

(δ, β)-SIP to be solved, i.e., (det(B))1/n < et, becomes

δ · 1
6
+ β · τ

2

6
+ (δ + β)

(
1

6
+

τ

3

)
+

(
1

3
+

τ

6

)
<

1

2
+

τ

2
,

δ <
1− β + 2(1− β)τ − βτ2

2 + 2τ
.
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To maximize the right hand side of the inequality, we set the parameter τ =
√

1/β − 1 and the
condition becomes

δ < 1−
√

β.

Although the bound is the best, the algorithm does not work for an arbitrary 0 < β < 1. Since the
restriction 0 ≤ τ =

√
1/β − 1 ≤ 1, the algorithm works only when 1/4 ≤ β ≤ 1.

Wiener Lattices. Weger [Weg02] also considered the generalization of Wiener’s algorithm [Wie90]
and obtained the bound (3).2 The bound can be obtained by the special case of the Boneh-Durfee
lattice. We fix the parameter τ = 1 and obtain the condition (3),

δ <
3

4
− β.

By the definition, the Wiener lattice is the special case of the stronger Boneh-Durfee lattices.
Blömer-May Lattices. Blömer and May [BM01] extracted other sublattices from the weaker
Boneh-Durfee lattices and constructed an algorithm that solves the (δ, 1/2)-SIP when δ < (

√
6 −

1)/5. Sarkar et al. [SMS08] generalized the lattice constructions and constructed an algorithm that

solves the (δ, β)-SIP when the condition (4) δ < 2
5

(√
4β2 − β + 1− 3β + 1

)
holds.

Blömer and May defined sets of indices,

SBM
x := {(i, u)|i = ⌊(1− µ)t⌋, ⌊(1− µ)t⌋+ 1, . . . , t;u = 0, 1, . . . , i} and

SBM
y := {(u, j)|u = ⌊(1− µ)t⌋, ⌊(1− µ)t⌋+ 1, . . . , t; j = 1, 2, . . . , ⌊u− (1− µ)t⌋}

with a parameter 0 ≤ µ < 1. As the Boneh-Durfee lattices, the basis matrices generated by
the polynomial selections are not triangular. Following the work of Herrmann and May [HM10],
Kunihiro et al. [KSI11] used the same linearization z = −1 + xy and transformed the basis
matrices to be triangular. Applying the linearization appropriately and the basis matrices become
triangular with diagonals Xi−uZuet−u for gx[i,u](x, y) and ZuY jet−u for gy[u,j](x, y). See [KSI11] for
the detailed analysis. Ignoring low order terms of t, the dimension and the determinant of the

lattices are computed as n = µt2 and det(B) = X
3µ−3µ2+µ3

6
t3Y

µ3

6
t3Z

µ
2
t3e

µ
2
t3 , respectively. The

conditions for the (δ, β)-SIP to be solved, i.e., (det(B))1/n < et, become

δ · 3µ− 3µ2 + µ3

6
+ β · µ

3

6
+ (δ + β) · µ

2
+

µ

2
< µ,

δ <
3− 3β − βµ2

6− 3µ+ µ2
.

To maximize the right hand side of the inequality, we set the parameter µ =
(
1 + β −

√
4β2 − β + 1

)
/β

and the condition becomes

δ <
2

5

(√
4β2 − β + 1− 3β + 1

)
.

2In Boneh and Durfee’s work [BD00], they obtain the Wiener’s bound δ < 1/4 for the (δ, 1/2)-SIP [Wie90]. The
bound can be obtained by the special case of the Boneh-Durfee lattice with the fixed parameter τ = 0.
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Although Sarkar et al. [SMS08] claimed the bound is the best when 3/35 ≤ β < 1/4 for the

(δ, β)-SIP, it is incorrect. Since the restriction of the parameter 0 ≤ µ =
(
1 + β −

√
4β2 − β + 1

)
/β <

1, the algorithm works only when 1/4 < β ≤ 1. In this range, the bound (4) is weaker than the
generalization of the Boneh-Durfee stronger bound (1).
Kunihiro-Shinohara-Izu Lattices. Kunihiro et al. [KSI11] considered a broader class of lattices
for the (δ, β)-SIP. They defined sets of indices,

SKSI
x := {(i, u)|i = ⌊(1− µ)t⌋, ⌊(1− µ)t⌋+ 1, . . . , t;u = 0, 1, . . . , i} and

SKSI
y := {(u, j)|u = ⌊(1− µ)t⌋, ⌊(1− µ)t⌋+ 1, . . . , t; j = 1, 2, . . . , ⌊τ(u− (1− µ)t)⌋} ,

with two parameters 0 ≤ τ ≤ 1 and 0 ≤ µ < 1. The sets are hybrid sets consisting of the stronger
Boneh-Durfee lattices and the Blömer-May lattices. More concretely, the previous two lattices are
the special cases of the Kunihiro-Shinohara-Izu lattices; when τ = 1 (resp. µ = 1), the sets SKSI

x

and SKSI
y become the same as the sets SsBD

x and SsBD
y (resp. SBM

x and SBM
y ).

As the stronger Boneh-Durfee lattices and the Blömer-May lattices, the basis matrices generated
by the polynomial selections are not triangular. Kunihiro et al. [KSI11] used a linearization
z = −1 + xy and transformed the basis matrices to be triangular. Applying the linearization
appropriately and the basis matrices become triangular with diagonals Xi−uZuet−u for gx[i,u](x, y)

and ZuY jet−u for gy[u,j](x, y). See [KSI11] for the detailed analysis. Ignoring low order terms

of t, the dimension and the determinant of the lattices are computed as n = (2µ−µ2)+µ2τ
2 t2 and

det(B) = X
3µ−3µ2+µ3

6
t3Y

µ3τ2

6
t3Z

(3µ−3µ2+µ3)+(3µ2−µ3)τ
6

t3e
(3µ−µ3)+µ3τ

6
t3 , respectively. The conditions for

the (δ, β)-SIP to be solved, i.e., (det(B))1/n < et, become

δ · 3µ− 3µ2 + µ3

6
+ β · µ

3τ2

6
+ (δ + β) · (3µ− 3µ2 + µ3) + (3µ2 − µ3)τ

6
+

(3µ− µ3) + µ3τ

6

<
(2µ− µ2) + µ2τ

2
,

δ <
(1− β)((3− 3µ+ µ2) + (3µ− µ2)τ)− βµ2τ2

2(3− 3µ+ µ2) + (3µ− µ2)τ
.

When 1/4 ≤ β < 1, we set the parameter µ = 1, τ =
√

1/β−1, and obtain the bound δ < 1−
√
β

that is the same as the stronger Boneh-Durfee lattices. When 0 < β < 1/4, we set the parameter
µ = 1, τ = 1, and obtain the bound δ < 3/4− β that is the same as Wiener’s Lattice.3

4 New Lattice Constructions to Solve the (δ, β)-SIP

In this section, we propose an improved algorithm to solve the (δ, β)-SIP. Inspired by the work of
[KSI11], we consider a broader class of lattices that contains the weaker and stronger Boneh-Durfee
lattices, and the Wiener lattices for special cases. The three lattices provide the best results among

3Although Kunihiro et al. [KSI11] claimed the lattices yield the bound (4) when 0 < β < 1/4, the result is not
correct as noted above.
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previous results [Weg02, SMS08, KSI11]. When 1/4 ≤ β < 1, our hybrid lattices become the same
as the stronger Boneh-Durfee lattices and yield the bound (1). When 0 < β < 1/4, our lattices
make use of the properties of the three lattices, i.e., the weaker and stronger Boneh-Durfee lattices,
and the Wiener lattices, simultaneously and obtain the following improved result.

Theorem 1. We can solve the (δ, β)-SIP when

δ < 1−
√

β for 1/4 ≤ β < 1,

δ < 1− 2

3

(√
(3 + 4β)β − β

)
for 0 < β <

1

4
,

in polynomial time.

4.1 The Lattice Construction

To solve the SIP, we define sets of indices

Sx := {(i, u)|i = 0, 1, . . . , t;u = 0, 1, . . . , i} and Sy := {(u, j)|u = 0, 1, . . . , t; j = 1, 2, . . . , ⌊ηt+ τu⌋}

with two parameters η ≥ 0 and 0 ≤ τ ≤ 1. The sets are hybrid sets with the weaker and stronger
Boneh-Durfee lattices, and the Wiener lattices. More concretely, the previous three lattices are the
special cases of our lattices; when τ = 0 (resp. η = 0), the sets Sx and Sy become the same as the
sets SwBD

x and SwBD
y (resp. SsBD

x and SsBD
y ). Since the Wiener lattice is the special case of the

stronger Boneh-Durfee lattices, the Wiener lattice is the special case of our lattices.
Our selections of polynomials generate basis matrices B that are not triangular. However,

as Herrmann and May’s analysis, we use a linearization z = −1 + xy and the matrices can be
transformed into triangular with diagonals Xi−uZuet−u for gx[i,u](x, y) and ZuY jet−u for gy[u,j](x, y).
The analysis is almost trivial from the previous analyses. At first, as the case of the weaker Boneh-
Durfee lattice, polynomials in Sx and Sy for j = 1, 2, . . . , ⌊ηt⌋ generate a triangular matrix with
diagonals XiY uet−u for Sx and XuY u+jet−u for Sy and j = 1, 2, . . . , ⌊ηt⌋. When the linearization
z = −1+xy is applied to the polynomials, the matrix is still triangular with diagonals Xi−uZuet−u

for gx[i,u](x, y) and ZuY jet−u for gy[u,j](x, y). Hence, what we have to show is that the matrix is still

triangular when we use extra polynomials in Sy for u = 0, 1, . . . , t, j = ⌊ηt⌋+1, ⌊ηt⌋+2, . . . , ⌊ηt+τu⌋.
Notice that there are monomials XiY u for i = 0, 1, . . . , t, u = ⌊ηt⌋, ⌊ηt⌋ + 1, . . . , ⌊ηt⌋ + i that
correspond to diagonals for Sx and for Sy and j = 1, 2, . . . , ⌊ηt⌋. The extra polynomials gy[u,j](x, y)

for u = 0, 1, . . . , t, j = ⌊ηt⌋ + 1, ⌊ηt⌋ + 2, . . . , ⌊ηt + τu⌋ are (almost) equivalent to y⌊ηt⌋ times
gy[u,j](x, y) with indices in SsBD

y . Therefore, as the Boneh-Durfee stronger lattice, the existences of

the monomials XiY u for i = 0, 1, . . . , t, u = ⌊ηt⌋, ⌊ηt⌋+1, . . . , ⌊ηt⌋+ i preserve the matrix with the
extra polynomials to be triangular by using the linearization z = −1 + xy. The diagonals for the
extra polynomials are ZuY jet−u.

The dimension and the determinant of the lattices det(B) = XsXY sY ZsZese are computed by

n =
t∑

i=0

i∑
u=0

1 +
t∑

u=0

⌊ηt+τu⌋∑
j=1

1 =

(
1

2
+ η +

τ

2

)
t2 + o(t2),
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sX + sZ =

t∑
i=0

i∑
u=0

i+

t∑
u=0

⌊ηt+τu⌋∑
j=1

u =

(
1

3
+

η

2
+

τ

3

)
t3 + o(t3),

sY + sZ =

t∑
i=0

i∑
u=0

u+

t∑
u=0

⌊ηt+τu⌋∑
j=1

(u+ j) =

(
1

6
+

η

2
+

τ

3
+

η2

2
+

τη

2
+

τ2

6

)
t3 + o(t3),

se =

t∑
i=0

i∑
u=0

(m− u) +

t∑
u=0

⌊ηt+τu⌋∑
j=1

(t− u) =

(
1

3
+

η

2
+

τ

6

)
t3 + o(t3).

Ignoring low order terms of t, the conditions for the (δ, β)-SIP to be solved, i.e., (det(B))1/n < et,
become

δ <
1− β + 3(1− β)η + 2(1− β)τ − 3βη2 − 3βτη − βτ2

2 + 3η + 2τ
.

When 1/4 ≤ β < 1, to maximize the right hand side of the inequality, we set the parameter
η = 0 and τ =

√
1/β − 1, and obtain the bound

δ < 1−
√

β

that is the same as the bound (1).
When 0 < β < 1/4, we set the parameter

η =
−4β +

√
β(3 + 4β)

3β
and τ = 1,

and obtain the bound

δ < 1− 2

3

(√
(3 + 4β)β − β

)
.

This bound is the best among all known results [Weg02, SMS08, KSI11] when 0 < β < 1/4.

4.2 An Observation of the Lattice

Although the lattice construction is obtained by a simple combination of the previous three lat-
tices, i.e., the weaker and the stronger Boneh-Durfee lattice and the Wiener lattice, the construction
should be appropriate. To show the fact, we introduce helpful polynomials. The notion was intro-
duced by May [May10] and Takayasu and Kunihiro [TK13] made use of the notion and proposed
improved lattice constructions. In lattice constructions to solve modular equations, we call poly-
nomials helpful if the absolute values of the diagonals are smaller than the modulus in triangular
basis matrices. Helpful polynomials enable us to solve modular equations for larger solutions since
the polynomials reduce the norm of vectors output by the LLL algorithm. Takayasu and Kunihiro
suggested that as many helpful polynomials as possible should be selected in lattice constructions
as long as the basis matrices are triangular.

To solve the (δ, β)-SIP for 1/4 ≤ β < 1 and δ < 1−
√
β, the above lattice (that is equivalent to

the stronger Boneh-Durfee lattice) contains as many helpful polynomials as possible. That means all
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gy[u,j](x, y) in the lattice basis are helpful polynomials and other gy[u,j](x, y) are not helpful since the

diagonals ZuY jet−u for the polynomials gy[u,j](x, y) with indices in u = 0, 1, . . . , t, j ≤
(√

1/β − 1
)
u

are always equivalent to or smaller than the modulus et and and those for the polynomial with

indices in j >
(√

1/β − 1
)
u are larger than et:

ZuY jet−u ≤ et ⇔
(
1−

√
β + β

)
u+ βj ≤ u ⇔ j ≤

(√
1/β − 1

)
u.

Although not all gx[i,u](x, y) in lattice basis are helpful, they contribute the basis matrices to be
triangular.

As we explained, the lattice construction is valid only when
√
1/β − 1 ≤ 1, i.e., β ≥ 1/4, since

the unravelled linearization does not work well otherwise. Then we consider to solve the (δ, β)-SIP

for 0 < β < 1/4 and δ < 1− 2
3

(√
(3 + 4β)β − β

)
. In this case, not all gy[u,j](x, y) in the lattice basis

are helpful and not all helpful gy[u,j](x, y) are in the lattice basis. However, our lattice construction

is the best possible. For the series of gy[u,j](x, y) for u = 0, 1, . . . , t, j = ηt + u with some η, the
corresponding diagonals in the lattice basis are

ZuY ηt+uet−u = N (β+δ)u+β(ηt+u)+t−u ≤ N
− 2

3

(√
(3+4β)β−4β

)
u+(1+ηβ)t

.

Since β < 1/4,
√
(3 + 4β)β − 4β > 0 and the diagonals become smaller for larger u. Hence, if

possible, we want to select only gy[u,j](x, y) for larger u in the lattice basis, however, unravelled

linearization does not work well without gy[u,j](x, y) for smaller u. Therefore, the best possible

lattice construction is collecting as many helpful series of gy[u,j](x, y) for u = 0, 1, . . . , t, j = ηt+u as

possible. The helpful series of gy[u,j](x, y) for u = 0, 1, . . . , t, j = ηt + u means the geometric mean

of all the diagonals is smaller than the modulus et. The geometric mean is calculated as(
t∏

u=0

ZuY ηt+uet−u

)1/(t+1)

≤N
− 1

3

(√
(3+4β)β−4β

)
t+(1+ηβ)t

= N

(
1− 1

3

(√
(3+4β)β−(4+3η)β

))
t
.

Hence, the series of gy[u,j](x, y) becomes helpful when the geometric mean is smaller than et ≈ N t,
that is,

√
(3 + 4β)β − (4 + 3η)β ≥ 0 ⇔ η ≤

−4β +
√

β(3 + 4β)

3β
.

The analysis suggests that our lattice contains all helpful series of gy[u,j](x, y) for u = 0, 1, . . . , t, j =
ηt+ u.

5 On the Security of Multi-Prime RSA

In this section, we consider the security of Multi-Prime RSA for small differences of the prime factors
of the Multi-Prime RSA modulus. We write the Multi-Prime RSA modulus as N = p1p2 · · · pk
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and assume the following two conditions p1 > p2 > · · · > pk without loss of generality, and
|p1 − pk| < Nγ . Define p′j = N/pj and

∆k =

k∑
j=1

p′j − k

 k∏
j=1

p′j

1/k

.

By definition, p′1 < p′2 < · · · < p′k and k
(∏k

j=1 p
′
j

)1/k
= kN (k−1)/k holds.

In [ZT13, ZT14], Zhang and Takagi analyzed the security. They revealed that Multi-Prime RSA
becomes insecure if we can solve the (δ, β)-SIP.

Lemma 2 (Proposition 1 and Theorem 2 of [ZT13]). Let N = p1p2 · · · pk with p1 > p2 > · · · > pk
be a Multi-Prime RSA modulus. All prime factors of N are the same bit size and p1 − pk < Nγ,
0 < γ < 1/k. Let e be a full size public exponent whose corresponding secret exponent d is smaller

than N δ. When ∆k =
∑k

j=1 p
′
j −k

(∏k
j=1 p

′
j

)1/k
is smaller than Nβ, if we can solve the (δ, β)-SIP,

we can factor the Multi-Prime RSA modulus N .

For the attack, bounding the size of ∆k is crucial. Although Zhang and Takagi [ZT14] obtained
a similar bound, i.e., 0 < ∆k < poly(k) ·N2γ+1−3/k from Proposition 1 of [ZT14], we show a slightly
better bound.

Lemma 3. Let N = p1p2 · · · pk be composite integers and ∆k be defined as in Lemma 2, then

0 < ∆k < 2(k − 1) ·N2γ+1−3/k.

We prove the lemma in A although the bound is almost the same as that of [ZT14] and the
improvement is not very important.

Since we proposed an improved algorithm for the (δ, β)-SIP, i.e., Theorem 1, we can improve
the cryptanalysis of Multi-Prime RSA. Combining Lemma 2, Lemma 3, and Theorem 1, we obtain
the following result.

Theorem 2. Let the Multi-Prime RSA modulus N , public (resp. secret) exponent e (resp. d) as
in Lemma 2. We can factor the Multi-Prime RSA modulus N when

δ < 1−
√

1 + 2γ − 3/k for
3

2

(
1

k
− 1

4

)
≤ γ <

1

k
,

δ < 1− 2

3

(√
(7 + 8γ − 12/k)(1 + 2γ − 3/k)− 1− 2γ + 3/k

)
for 0 < γ <

3

2

(
1

k
− 1

4

)
.

6 Conclusion

In this paper, we studied the (δ, β)-SIP for an arbitrary β that relates to the security of Multi-
Prime RSA. Unlike the results of the (δ, 1/2)-SIP [BD00, BM01, HM10], the results for the general
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(δ, β)-SIP are not widely known. Indeed, some previous results reconstruct the algorithm to solve
the problem, which had already been proved, and did not refer to the previous works. Therefore,
one of the contributions of this paper is to summarize the previous results [BD00, BM01, Weg02,
SMS08, HM10, KSI11]. Moreover, we revealed that the bound (4) proposed by previous works
[SMS08, KSI11] is not valid.

The main contribution of the paper was to provide the improved lattice construction for the
(δ, β)-SIP. Our lattice covers a broader class and previous results [BD00, Weg02] that provide the
best bounds among previous works are special cases of our lattice. The lattice makes better use of
the algebraic structures of modular polynomials and we improved the previous bound.

Based on the improvement, we also showed the improved analysis for the security of Multi-Prime
RSA. Our result showed that Multi-Prime RSA is vulnerable than expected when differences of
prime factors are small.

Acknowledgement. We would like to thank members of the study group “Shin-Akarui-Angou-
Benkyou-Kai” for their helpful comments.
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See [ZT14] for detailed information. Since small k = 3, 4, 5 are used in standard settings of Multi-
Prime RSA, the term poly(k) can be assumed to be much smaller than N . Therefore, Zhang and
Takagi did not analyze the term in detail.
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We give an alternative proof for Lemma 3 that does not use Newton’s Generalized Binomial
Theorem. Moreover, our proof shows poly(k) = 2(k−1). Hence, our result justifies the assumption,
e.g., the term poly(k) is much smaller than N . To prove it, we use the following Lemma 4 and
Lemma 5. In all following equations, if all indices j for pj in summations are larger than k, let j
be j − k.

Lemma 4. Let N = p1p2 · · · pk be composite integers and ∆k be defined as in Lemma 2, then

∆k =
1

2

k−2∑
u=0

k∑
j=1

k−u−2∑
l=0

P1/k
u,j p

′(k−u−l−2)/k
j p

′l/k
j+u+1

(
p
′1/k
j − p

′1/k
j+u+1

)2
,

where

Pu,j =

{
1 for u = 0,

p′j+1p
′
j+2 · · · p′j+u for u = 1, 2, . . . , k − 2.

The proof of Lemma 4 is written at the end of this section.

Lemma 5. Let N = p1p2 · · · pk be composite integers, then∣∣∣p′1/ki − p
′1/k
j

∣∣∣ ≤ 2(k+1)/k

k
·Nγ−1/k2 ,

for all i, j = 1, 2, . . . , k, i ̸= j.

Proof. By definition,

∣∣∣p′1/ki − p
′1/k
j

∣∣∣ = ∣∣∣∣∣ 1

p
1/k
i

− 1

p
1/k
j

∣∣∣∣∣ ·N1/k =

∣∣∣∣∣p
1/k
j − p

1/k
i

p
1/k
i p

1/k
j

∣∣∣∣∣ ·N1/k.

By definition, since p1 > p2 > · · · > pk,

<
p
1/k
1 − p

1/k
k

p
2/k
k

·N1/k =
p1 − pk

p
2/k
k

∑k−1
l=0 p

(k−l−1)/k
1 p

l/k
k

·N1/k <
p1 − pk

p
2/k
k

∑k−1
l=0 p

(k−1)/k
k

·N1/k

=
p1 − pk

kp
(k+1)/k
k

·N1/k.

By definition, all prime factors p1, p2, · · · , pk are the same bit size. Hence, pk > 1
2N

1/k holds, and

<
Nγ

k
(
1
2N

1/k
)(k+1)/k

·N1/k =
2(k+1)/k

k
·Nγ−1/k2

as required.

Combining Lemma 4 and Lemma 5, we can prove Lemma 3 as follows.
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Proof. From Lemma 4,

∆k =
1

2

k−2∑
u=0

k∑
j=1

k−u−2∑
l=0

P1/k
u,j p

′(k−u−l−2)/k
j p

′l/k
j+u+1

(
p
′1/k
j − p

′1/k
j+u+1

)2
.

By splitting the summation into two parts with respect to u = 0 and u = 1, 2, . . . , k,

=
1

2

k∑
j=1

k−2∑
l=0

p
′(k−l−2)/k
j p

′l/k
j+1

(
p
′1/k
j − p

′1/k
j+1

)2
+

1

2

k−2∑
u=1

k∑
j=1

k−u−2∑
l=0

(
p′j+1p

′
j+2 · · · p′j+u

)1/k · p′(k−u−l−2)/k
j p

′l/k
j+u+1

(
p
′1/k
j − p

′1/k
j+u+1

)2
. (6)

By definition, since p′1 < p′2 < · · · < p′k, we bound the first summation of equation (6) as

1

2

k∑
j=1

k−2∑
l=0

p
′(k−l−2)/k
j p

′l/k
j+1

(
p
′1/k
j − p

′1/k
j+1

)2
<
1

2

k∑
j=1

k−2∑
l=0

p
′(k−2)/k
k

(
p
′1/k
k − p

′1/k
1

)2
=
1

2
k(k − 1)p

′(k−2)/k
k

(
p
′1/k
k − p

′1/k
1

)2
.

As the proof of Lemma 5, since pk > 1
2N

1/k, p′k = N/pk < 2N (k−1)/k holds, then

<
1

2
k(k − 1)

(
2N (k−1)/k

)(k−2)/k
·
(
p
′1/k
k − p

′1/k
1

)2
=

1

22/k
k(k − 1)N (k−1)(k−2)/k2 ·

(
p
′1/k
k − p

′1/k
1

)2
.

By Lemma 5,

<
1

22/k
k(k − 1)N (k−1)(k−2)/k2 ·

(
2(k+1)/k

k
Nγ−1/k2

)2

=
4(k − 1)

k
N2γ+1−3/k.

Next, we bound the second summation of equation (6). By definition, since p′1 < p′2 < · · · < p′k,

1

2

k−2∑
u=1

k∑
j=1

k−u−2∑
l=0

(
p′j+1p

′
j+2 · · · p′j+u

)1/k · p′(k−u−l−2)/k
j p

′l/k
j+u+1

(
p
′1/k
j − p

′1/k
j+u+1

)2
<
1

2

k−2∑
u=1

k∑
j=1

k−u−2∑
l=0

p
′(k−2)/k
k

(
p
′1/k
k − p

′1/k
1

)2
=

(k − 2)(k − 1)k

4
· p′(k−2)/k

k

(
p
′1/k
k − p

′1/k
1

)2
.

Since p′k < 2N (k−1)/k,

<
(k − 2)(k − 1)k

4
·
(
2N (k−1)/k

)(k−2)/k
·
(
p
′1/k
k − p

′1/k
1

)2
=

(k − 2)(k − 1)k

2(k+2)/k
·N (k−1)(k−2)/k2 ·

(
p
′1/k
k − p

′1/k
1

)2
.
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By Lemma 5,

<
(k − 2)(k − 1)k

2(k+2)/k
·N (k−1)(k−2)/k2 ·

(
2(k+1)/k

k
Nγ−1/k2

)2

=
2(k − 2)(k − 1)

k
N2γ+1−3/k.

Therefore, ∆k is bounded above by

∆k <
4(k − 1)

k
N2γ+1−3/k +

2(k − 2)(k − 1)

k
N2γ+1−3/k = 2(k − 1)N2γ+1−3/k

as required.

In the rest of the paper, we prove Lemma 4.

Proof. We show the following equation

k∑
j=1

p′j =
1

2

k∑
j=1

k−2∑
l=0

(
p
′1/k
j − p

′1/k
j+1

)2
p
′(k−l−2)/k
j p

′l/k
j+1 + k

 k∏
j=1

p′j

1/k

+
1

2

k−2∑
u=1

k∑
j=1

k−u−2∑
l=0

(
p′j+1p

′
j+2 · · · p′j+u

)1/k · p′(k−u−l−2)/k
j p

′l/k
j+u+1

(
p
′1/k
j − p

′1/k
j+u+1

)2
that is equivalent to the equation of Lemma 4.

For all u = 2, 3, · · · , k,

(
p
′1/k
i − p

′1/k
j

)2 u−2∑
l=0

p
′(u−l−2)/k
i p

′l/k
j =

(
p
′1/k
i − p

′1/k
j

)(
p
′(u−1)/k
i − p

′(u−1)/k
j

)
=p

′u/k
i + p

′u/k
j − p

′1/k
i p

′(u−1)/k
j − p

′(u−1)/k
i p

′1/k
j .

Hence,

p
′u/k
i + p

′u/k
j =

(
p
′1/k
i − p

′1/k
j

)2 u−2∑
l=0

p
′(u−l−2)/k
i p

′l/k
j + p

′1/k
i p

′(u−1)/k
j + p

′(u−1)/k
i p

′1/k
j . (7)

Next, by the equation (7),

k∑
j=1

(
p′j+1p

′
j+2 · · · p′j+u

)1/k (
p
′(k−u)/k
j + p

′(k−u)/k
j+u+1

)

=

k∑
j=1

(
p′j+1p

′
j+2 · · · p′j+u

)1/k
·

((
p
′1/k
j − p

′1/k
j+u+1

)2 k−u−2∑
l=0

p
′(k−u−l−2)/k
j p

′l/k
j+u+1 + p

′1/k
j p

′(k−u−1)/k
j+u+1 + p

′(k−u−1)/k
j p

′1/k
j+u+1

)
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=
k∑

j=1

k−u−2∑
l=0

(
p′j+1p

′
j+2 · · · p′j+u

)1/k · (p′1/kj − p
′1/k
j+u+1

)2
p
′(k−u−l−2)/k
j p

′l/k
j+u+1

+

k∑
j=1

(
p′j+1p

′
j+2 · · · p′j+u

)1/k · (p′1/kj p
′(k−u−1)/k
j+u+1 + p

′(k−u−1)/k
j p

′1/k
j+u+1

)
.

From the standard calculation, we slide the indices of the second term as

=
k∑

j=1

k−u−2∑
l=0

(
p′j+1p

′
j+2 · · · p′j+u

)1/k · (p′1/kj − p
′1/k
j+u+1

)2
p
′(k−u−l−2)/k
j p

′l/k
j+u+1

+

k∑
j=1

((
p′jp

′
j+1 · · · p′j+u

)1/k · p′(k−u−1)/k
j+u+1 +

(
p′j+1p

′
j+2 · · · p′j+u+1

)1/k
p
′(k−u−1)/k
j

)

=
k∑

j=1

k−u−2∑
l=0

(
p′j+1p

′
j+2 · · · p′j+u

)1/k · (p′1/kj − p
′1/k
j+u+1

)2
p
′(k−u−l−2)/k
j p

′l/k
j+u+1

+

k∑
j=1

(
p′j+1p

′
j+2 · · · p′j+u+1

)1/k (
p
′(k−u−1)/k
j + p

′(k−u−1)/k
j+u+2

)
. (8)

Again, by the equation (7) for u = k,

k∑
j=1

p′j =
1

2

k∑
j=1

(
p′j + p′j+1

)
=
1

2

k∑
j=1

k−2∑
l=0

(
p
′1/k
j − p

′1/k
j+1

)2
p
′(k−l−2)/k
j p

′l/k
j+1 +

1

2

k∑
j=1

(
p
′1/k
j p

′(k−1)/k
j+1 + p

′(k−1)/k
j p

′1/k
j+1

)
.

From the standard calculation, we slide the indices of the second term as

=
1

2

k∑
j=1

k−2∑
l=0

(
p
′1/k
j − p

′1/k
j+1

)2
p
′(k−l−2)/k
j p

′l/k
j+1 +

1

2

k∑
j=1

(
p
′1/k
j+1p

′(k−1)/k
j+2 + p

′(k−1)/k
j p

′1/k
j+1

)

=
1

2

k∑
j=1

k−2∑
l=0

(
p
′1/k
j − p

′1/k
j+1

)2
p
′(k−l−2)/k
j p

′l/k
j+1 +

1

2

k∑
j=1

p
′1/k
j+1

(
p
′(k−1)/k
j + p

′(k−1)/k
j+2

)
.

For the second term, we recursively apply the transformation of the equation (8) for u = 1, 2, . . . , k−
1 and obtain

=
1

2

k∑
j=1

k−2∑
l=0

(
p
′1/k
j − p

′1/k
j+1

)2
p
′(k−l−2)/k
j p

′l/k
j+1 +

k∑
j=1

(
p′j+1p

′
j+2 · · · p′j+k−2

)1/k
p
′1/k
j p

′1/k
j+k−1

+
1

2

k−2∑
u=1

k∑
j=1

k−u−2∑
l=0

(
p′j+1p

′
j+2 · · · p′j+u

)1/k · p′(k−u−l−2)/k
j p

′l/k
j+u+1

(
p
′1/k
j − p

′1/k
j+u+1

)2
.

21



From the fact that
(
p′j+1p

′
j+2 · · · p′j+k−2

)1/k
p
′1/k
j p

′1/k
j+k−1 =

(∏k
j=1 p

′
j

)1/k
for all j = 1, 2, . . . , k,

=
1

2

k∑
j=1

k−2∑
l=0

(
p
′1/k
j − p

′1/k
j+1

)2
p
′(k−l−2)/k
j p

′l/k
j+1 + k

 k∏
j=1

p′j

1/k

+
1

2

k−2∑
u=1

k∑
j=1

k−u−2∑
l=0

(
p′j+1p

′
j+2 · · · p′j+u

)1/k · p′(k−u−l−2)/k
j p

′l/k
j+u+1

(
p
′1/k
j − p

′1/k
j+u+1

)2
as required.
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