
Closing the Gap in RFC 7748:
Implementing Curve448 in Hardware

Pascal Sasdrich1, Tim Güneysu2

1 Horst Görtz Institute for IT-Security, Ruhr-Universität Bochum, Germany
pascal.sasdrich@rub.de

2 University of Bremen and DFKI, Germany
tim.gueneysu@uni-bremen.de

Abstract. With the evidence on comprised cryptographic standards in
the context of elliptic curves, the IETF TLS working group has issued
a request to the IETF Crypto Forum Research Group (CFRG) to rec-
ommend new elliptic curves that do not leave a doubt regarding their
rigidity or any backdoors. This initiative has recently published RFC
7748 proposing two elliptic curves, known as Curve25519 and Curve448,
for use with the next generation of TLS. This choice of elliptic curves
was already picked up by the IETF working group curdle for adoption
in further security protocols, such as DNSSEC. Hence it can be expected
that these two curves will become predominant in the Internet and will
form one basis for future secure communication.

Unfortunately, both curves were solely designed and optimized for pure
software implementation; their implementation in hardware or their
physical protection against side-channel attacks were not considered at
any time. However, for Curve25519 it has been shown recently that ef-
ficient implementations in hardware along with side-channel protection
are possible. In this work we aim to close this gap and demonstrate that
fortunately the second curve can be efficiently implemented in hardware
as well. More precisely, we demonstrate that the high-security Curve448
can be implemented on a Xilinx XC7Z7020 at moderate costs of just 963
logic and 30 DSP slices and performs a scalar multiplication in 2.5ms.

Keywords: RFC7748, Curve448, hardware implementation, FPGA,
side-channel protection

1 Introduction

Elliptic Curve Cryptography has emerged to a predominant choice for today’s
asymmetric cryptography. Cryptosystems such as the ECDSA providing digital
signatures or the TLS ciphersuite defining an ephemeral Elliptic Curve Diffie-
Hellman Key Agreement are in widespread use worldwide. Unfortunately recent
revelations have shown that some cryptographic standards in domain of ECC (to
be precise, the NIST Dual EC DRBG random number generator [28, 31]) were

deliberately manipulated to enable backdoor access to the randomness genera-
tion process for a knowing external party. These doubts about the trustworthi-
ness of the standardized elliptic curves has led to significant efforts to analyze
the rigidity of the curve generation process – what finally emerged into a discus-
sion among researchers and standardization bodies to provide and select a next
generation of elliptic curves for future cryptography.

In this context, the IETF TLS working group has issued a request to the IRTF
Crypto Forum Research Group (CFRG) [15] asking for a recommendation of new
elliptic curves, focusing on finding replacements for TLS. The intense discussions
within the CFRG have finally led to a selection of elliptic (Edwards) curves for
which their rigidity argument was primarily obtained from their optimality for
software implementation. Thus, the two elliptic curves Curve25519 and Curve448
have now become part of the RFC 7748 [14] and will form new ciphersuites for the
next generation of TLS. Nearly at the same time this choice was picked up by the
IETF curdle working group for proposing both curves also for further protocols,
such as DNSSEC [13]. Hence we can expect that both elliptic curves will become
among the most predominant curves in the Internet (and possibly even beyond)
and thus will play a central role in our future secure communication.

Unfortunately it should be highlighted that both curves were originally de-
signed to almost exclusively be implemented in software and thus have excluded
several other very hardware-related scenarios, such as implementations on em-
bedded devices, hardware platforms and broad considerations about side-channel
analysis. In particular, with the advent of the Internet of Things, many embed-
ded hardware devices will certainly need to also support TLS – sometimes even
with challenging requirement to provide high throughput. This said, we like to
recall the situation with Data Encryption Standard (DES) that was purely op-
timized for hardware implementation at its design phase and turned out to be
rather unsuitable for other (software) platforms. Thus we urgently need to vali-
date the suitability of the two curves as defined in the RFC7748 with respect to
their hardware implementation.

Contribution: In this work we present the first implementation of Curve448
on reconfigurable hardware that was formerly proposed by Mike Hamburg as
Ed448-Goldilocks [12]. We focus on the implementation and side-channel secu-
rity of Curve448 since a few aspects of Curve25519 have been recently addressed
Sasdrich and Güneysu [26, 27]. Interestingly, we can show that Curve448 has ben-
eficial properties in hardware so that some parts, such as the modular multiplica-
tion can be considered as slightly superior to Curve25519Ȧccording to our find-
ings, the single-core implementation achieves a throughput of 400 ECDH scalar
multiplications per second on a mid-range Xilinx XC7Z7020 (Zynq) FPGA.

Outline: The remainder of this article is organized as follows: Section 2 summa-
rizes previous work of relevance. In Section 3 we briefly recapitulate the basics
of Elliptic Curve Cryptography (ECC) in general and present the mathematical
background in particular for the Curve448 elliptic curve. Design rationales of our

2

implementation are discussed in Section 4 before presenting the final realization
on reconfigurable hardware in Section 5. Performance and implementation re-
sults are summarized and given in Section 6 along with a detailed comparison
to related work. Finally, our work concludes in Section 7.

2 Previous work

Since the introduction by Neal Koblitz [17] and Victor Miller [20], Elliptic Curve
Cryptography (ECC) has established as a viable field of research and made its
way into a myriad of products. In terms of ECC hardware implementations a
wealth of publications exist that cannot all be discussed within the scope of this
work. Hence, we would like to restrict our consideration only to the most relevant
related works and refer the interested reader to an overview in [5].

Orlando and Paar presented one of the first implementations for ECC in [22]
for reconfigurable hardware, applying Montgomery multiplications and pre-
computations in order to improve performance. Other designs use dedicated
multipliers [23] or algorithmic optimizations [25] to increase performance and
efficiency. Using integrate Digital Signal Processing abilities of modern FPGAs
was initially proposed by Güneysu and Paar [11] and exemplary shown for NIST
primes P-224 and P-256. Recently, Sasdrich and Güneysu [26, 27] proposed an
implementation that realizes Curve25519 in hardware, the second candidate of
the RFC 7748. With respect to physical protection and countermeasures for
ECC, Fan et al. provided an excellent survey investigating the different attack
vectors such as side-channel analysis and fault injection attacks [9, 10].

3 Background

Although the basic concepts are well known, we briefly introduce the mathe-
matical background of ECC to keep this work self-contained. The section is laid
out to put particular emphasis on the specification of Curve448 [12] so that we
will detail mostly the necessary background information on group operations
and ECDH on Curve448. Note that, although we focus on ECDH in this work,
the results can be directly used to derive performance results for ECDSA [3] for
digital signatures.

3.1 Elliptic Curve Cryptography

Note that throughout this work, we only consider ECC over GF (p) and exclude
other curves explicitly targeting binary or other extension fields.

In general, we can define an elliptic curve over Fp = GF (p), given its Short
Weierstrass equation, as:

Ew : y2 ≡ x3 + ax+ b (mod p)

3

with p prime, p > 3 and a, b ∈ Fp and satisfying 4a3 + 27b2 6= 0. Furthermore
we can define tuples of affine coordinates (xi, yi) as points Pi ∈ E on an elliptic
curve E . Considering two points P1,P2 on an elliptic curve E we can define the
basic arithmetic group operation for ECC as point addition P3 = P1 +P2 using
the so called tangent-and-chord rule to compute the resulting point P3. However,
the group operation distinguishes two different cases. First, if P1 = P2 this is
considered as point doubling and second, if P1 6= P2 this is considered as point
addition. Note, that both operations use different formulas to perform the group
operation. Moreover, by introducing projective coordinate representations defin-
ing points on elliptic curves as tuples of (xi, yi, zi), we can relax the elliptic curve
equation and relinquish costly modular inversion within the formulas for point
addition and doubling at cost of additional multiplications. Hence, in practice
we often use projective rather than affine coordinate representation to improve
efficiency and performance of implementations.

In order to apply elliptic curves for cryptography, the Elliptic Curve Dis-
crete Logarithm Problem (ECDLP) is defined as the problem to find a scalar
k, given two points P and Q, such that Q = k · P holds whereas the point
multiplication is defined as a sequence of k additions of a base point P. In par-
ticular, the ECDLP is the fundamental problem that allows to employ elliptic
curves for cryptographic protocols and schemes such as e.g., the Elliptic Curve
Diffie-Hellman (ECDH) key exchange [6], the Elliptic Curve Digital Signature
Algorithm (ECDSA) [16] or the ElGamal encryption [8].

3.2 Curve448 Specification

Curve448, originally introduced as Ed448-Goldilocks by Mike Hamburg [12] and
specifically designed as an alternative to existing NIST [19] (based on General-
ized Mersenne Primes) or Brainpool curves [18], targeting the high-end security
range between 384 to 521 bits. During the design phase of Curve448 the au-
thor followed the SafeCurves policies and criteria [4] and optimized parameters
for optimal implementation in software. Technically, Curve448 is an untwisted
Edwards Curve [7] defined by following equation:

Ed : y2 + x2 = 1 + dx2y2 (mod p)

with d = −39081 and the p being a Solinas prime of shape p = 2448−2224−1 with
its golden ratio φ = 2224. Due to its design process according to the SafeCurves
requirements, this curve aims to facilitate secure implementations by eliminating
common vulnerabilities and flaws by construction.

It is striking that the security level of Curve448 with 448 bits is higher than
used in many contemporary systems. Nevertheless it offers a high versatility
and flexible implementation for a wide range of different software platforms.
Due to the fact that 224 = 56 × 4 = 28 × 8 = 14 × 16, Curve448 has an
inherent support for different architectures ranging from 8- to 64-bit processors.
In addition, the Solinas prime with its golden ratio φ allows efficient Karatsuba-
based multiplications for two values A = (a0 + a1φ), B = (b0 + b1φ) using:

4

Algorithm 1 Single step of Montgomery ladder

Input : A = −d, Q1 = (X1, Z1), Q2(X2, Z2) and Q3 = Q1 −Q2 = (X3, 1)
Output : Q4 = 2Q1 = (X4, Z4) and Q5 = Q1 +Q2 = (X5, Z5)

1: T1 ← X1 + Z1 (X1 + Z1)
2: T2 ← X1 − Z1 (X1 − Z1)
3: Z1 ← X2 − Z2 (X2 − Z2)
4: X1 ← T1 · Z1 (X1 + Z1)(X2 − Z2)
5: Z1 ← X2 + Z2 (X2 + Z2)
6: X2 ← T2 · Z1 (X1 − Z1)(X2 + Z2)
7: Z2 ← X1 −X2 ((X1 + Z1)(X2 − Z2)− (X1 − Z1)(X2 + Z2))
8: Z1 ← Z2

2 ((X1 + Z1)(X2 − Z2)− (X1 − Z1)(X2 + Z2))2

9: Z5 ← X3 · Z1 X3((X1 + Z1)(X2 − Z2)− (X1 − Z1)(X2 + Z2))2

10: Z1 ← X1 +X2 ((X1 + Z1)(X2 − Z2) + (X1 − Z1)(X2 + Z2))
11: X5 ← Z2

1 ((X1 + Z1)(X2 − Z2) + (X1 − Z1)(X2 + Z2))2

12: Z1 ← T 2
1 (X1 + Z1)2

13: T1 ← T 2
2 (X1 − Z1)2

14: X4 ← Z1 · T1 (X1 + Z1)2(X1 − Z1)2

15: T2 ← Z1 − T1 ((X1 + Z1)2 − (X1 − Z1)2)
16: T1 ← T2 ·A A((X1 + Z1)2 − (X1 − Z1)2)
17: T1 ← T1 + Z1 (A((X1 + Z1)2 − (X1 − Z1)2) + (X1 + Z1)2)
18: Z4 ← T1 · T2 4X1Z1(X2

1 +AX1Z1 + Z2
1)

Return : Q4 = (X4, Z4) and Q5 = (X5, Z5)

(a0 + a1φ) · (b0 + b1φ) = (a0b0 + a1b1) + ((a0 + a1)(b0 + b1)− a0b0)φ.

However, in this work we are going to show that not only software imple-
mentations allow fast computations but also implementing Curve448 efficiently
in hardware is possible.

3.3 Group Operation of Curve448

Edwards curves can be transformed (bidirectionally) into Montgomery curves
and support the application of Montgomery ladder [21] algorithms in order to
compute point multiplications. A single step of the Montgomery ladder, as shown
in Algorithm 1, computes a combined point addition and point doubling of two
points Q1,Q2 provided that the point Q3 = Q1 − Q2 is known. In total, each
step of the Montgomery ladder involves 4 squaring, 5 general multiplications,
1 constant multiplication, 4 additions and 4 subtractions in GF (p) and can
be computed using projective coordinate representations of the points while
omitting the y-coordinate. Eventually, each step returns two points Q4 = 2Q1

and Q5 = Q1 +Q2 as:

X4 = (X1 − Z1)2(X1 + Z1)2

Z4 = 4X1Z1(X2
1 +AX1Z1 + Z2

1)
X5 = Z3((X1 − Z1)(X2 + Z2) + (X1 + Z1)(X2 − Z2))2

Z5 = X3((X1 − Z1)(X2 + Z2)− (X1 + Z1)(X2 − Z2))2

5

3.4 ECDH on Curve448

For running the ECDH protocol for key agreement, two point multiplications
Q = k · P using a publicly known base point P and a secret scalar k need to be
performed. Applying the previously mentioned group operations in terms of sin-
gle steps of the Montgomery ladder, an entire scalar multiplication on Curve448
can be performed in 448 steps. However, this does not include transformation
from affine to projective coordinate representations and back, although it is nec-
essary in practice. Therefore, using the affine coordinates of a base point P, the
projective coordinates are initialized as (X,Y, 1). Eventually, after performing
the Montgomery ladder using projective coordinates, the result is converted back
as (X · Z−1, Y · Z−1) using the modular inverse of Z.

However, modular inversions are relatively expensive operations in hardware
and thus often performed exploiting Fermat’s Little theorem (FLT) to avoid a
costly implementation of the Extended Euclidean Algorithm (EEA). Another
approach is the following trick to compute inverse square roots in order to find
the inverse in GF (p) provided that p ≡ 3 mod 4:

1
±
√
x

= x
p−3
4 then 1

x = x · (1
±
√
x

)2

Hence, one can compute the modular inverse x−1 as

x−1 = x · (x
p−3
4)2 = x

p−1
2 mod p

which is slightly faster than using FLT and still not as expensive as EEA.

4 Rationales for Curve448 in Hardware

In this section, we discuss how we mapped the software-oriented design and pa-
rameter selection of Curve448 to an implementation in reconfigurable hardware.
Common design strategies for ECC co-processor usually follow a bottom-up ap-
proach, separating the architecture into three or four different layers: Finite Field
Arithmetic, Elliptic Curve Arithmetic, Scalar Multiplication, and Protocol Layer
(optional). We adopt this approach as described in the following.

For the very basic arithmetic layer, we need to briefly review the components
of FPGA devices that can support the design high-performance and/or low-area
implementation of Curve448. We therefore explain and discuss our picks for
the Finite Field Arithmetic and Elliptic Curve Arithmetic and briefly outline
how our choices help to improve resistance against implementation attacks. Our
decision taken in this section obviously have a direct consequence in terms of
the resource cost and runtime as presented in Section 6.

4.1 FPGA Components

Modern FPGAs are highly sophisticated integrated circuits that provide large
programmable facilities to nearly implement any user-defined digital logic cir-
cuit. Besides the general-purpose logic resources and the dynamic interconnec-
tion network, FPGAs usually come with dedicated memory blocks (BRAM) and

6

hardcores such as e.g., Digital Signal Processing (DSP) accelerators or high-
bandwidth transceivers.

Digital Signal Processing (DSP) Hardcores. DSP hardcores were inte-
grated in recent FPGA families to primarily accelerate signal processing appli-
cations. As shown in [30, 11] they can be also used to support multi-precision
modular integer arithmetic as required in asymmetric cryptography. Note that
DSP hardcores continuously improved over time so that additional arithmetic
functions as well as asymmetric data paths are supported in latest FPGA de-
vices.

Each DSP harcore itself can be considered as a run-time configurable proces-
sor providing several arithmetic operations including addition and subtraction,
multiplication (combined with pre-additions) and accumulation. For modern Xil-
inx FPGA families, the DSP accelerators support up to 25×18-bit signed multi-
plications and up to 48-bit wide additions and subtractions. In order to maximize
performance and throughput of the accelerators, several pipelining stages can be
enabled allowing to operate the DSP cores at maximum device frequency.

Block Memory (BRAM) Instances. Besides fast and efficient computations,
many applications have massive memory demands and fast and compact storage
is required. For this reason, modern FPGAs provide dedicated low-power and
area-optimized BRAM instances. Each BRAM can be configured as a true dual-
port memory providing up to 36 Kbits of storage with several configuration
alternatives ranging from 1K × 32-bit to 32K × 1-bit.

4.2 Finite Field Arithmetic

For ECC, modular addition, modular subtraction, modular squaring, modular
multiplication and modular inversion are essential finite field operations required
for the basic group operation. Modular addition and subtraction are related and
can be realized in a single hardware instance. Similar, modular squaring is usu-
ally performed as modular multiplication in hardware to save the resources for
an additional arithmetic unit. Besides, modular inversion is the most expensive
operation and is realized by building a dedicated arithmetic unit for the Ex-
tended Euclidean Algorithm (EEA). Alternatively, by applying Fermat’s Little
Theorem (FLT) or finding Inverse Square Roots (ISR) it can be implemented
as a sequence of multiplications and squarings. Hence, finite field arithmetic can
be realized by two different units, one for modular addition and subtraction and
another one for modular squarings, multiplications and inversions, which both
should be accelerated by DSP hardcores to maximize performance.

First, modular addition and subtraction will always compute s = a± b (de-
pending on the selected operation). The result of this operation, given that
0 ≤ a, b < p, can be slightly beyond the bounds of the field and has to be re-
duced. Hence, a second computation s′ = s∓p, is performed. Finally, depending

7

a27 a26 … a15 a14 a13 a12 … a1 a0

a26 a25 … a14 a13	൅	a27 a12 a11 … a0 a27

a25 a24 … a13	൅	a27 a12	൅	a26 a11 … a27 a26a10

a13	൅	a27 … a1	൅	a15 a0	൅	a14 … a15 a14a12	൅	a26 a27 a26

… a0	൅	a14 … a14 a13a12	൅	a26
2a27	൅	
a13

a26 a25a11	൅	a25

… … a13 a12a11	൅	a25
2a27	൅	
a13

2a26	൅	
a12

a25a10	൅	a24 a24

… …a0	൅	a14
2a16	൅		
a2

2a15	൅		
a1

a14
2a27	൅	
a13

a13	൅	a27 a2	൅	a16 a1	൅		a15

DSP27 DSP26 DSP15 DSP14 DSP13 DSP12 DSP1 DSP0
TIM

E

Σ	: p27 p26 … p15 p14 p13 p12 … p1 p0

… … … … … … … … … …

… … … … … … … … … …

… …

b0

b1

b2

x

x

x

b14

b15

b16

x

x

x

b27x

…

…

Fig. 1: Parallel modular multiplication with integrated reduction using DSP ac-
celerators

on the last carry of s, the final result is selected i.e., s′ is returned if a carry oc-
curred and s otherwise. Both computations can be implemented in parallel using
two DSP accelerators which perform the entire modular addition or subtraction
sequentially on 32-bit wide operands. Note, that in case of p ≤ s < 2448 no carry
occurs, although the result has to be reduced. However, this can be ignored since
a subsequent multiplication still works and applies the required reduction to the
result.

Modular multiplication benefits from the Solinas trinomial shape of the
Curve448 prime and is performed in two phases. First, partial products are
computed in parallel and accumulated using DSP accelerators as 16 × 16-bit
multipliers and accumulators. The partial product computation can be inter-
leaved by an integrated pre-reduction using the Solinas prime shape and the
fact that 2448 = 2224 + 1 mod p. In particular, the pre-addition functionality of
DSP accelerators and occasional shifting operations can be used to perform the
integrated reduction as shown in detail in Figure 1. During a second phase, the
DSP accelerators are reused as 32-bit adders to compute the final accumulation
of the partial products and determine the entirely reduced result.

4.3 Elliptic Curve Group Arithmetic.

Point addition and point doubling, the basic elliptic curve group operations, can
be implemented in several ways and using different formulas, depending e.g.,
on the chosen coordinate representation of the points. In its most simple form,
points on elliptic curves are expressed in affine coordinates as a tuple (x, y) which

8

allows to compute the group operations using the tangent-and-chord rule. How-
ever, in order to avoid expensive modular inversions during computation, points
are usually transformed into projective coordinate representations (X,Y, Z) for
which appropriately modified point addition and doubling formulas need to be
applied.

In our implementation, we will use reduced projective coordinates (X,Z) for
internal point representation along with a Montgomery ladder to perform point
additions and doublings. Reduced projective coordinates avoid the additional
use of the Y coordinate in order to reduce memory requirements. However,
knowing the elliptic curve equation Ed and X, the Y coordinate can be entirely
recovered (except for one bit for the sign). Montgomery ladders for reduced
projective coordinates can be implemented in constant time using 10 modular
multiplications and 8 modular additions and subtractions per step (as shown
in Algorithm 1). Each step of the Montgomery ladder performs combined point
addition and point doubling and is executed log2(k) times (depending on the
bit-size of the scalar k).

4.4 Countermeasures against Physical Attacks

The proposals Curve25519 and Curve448 have been developed for software im-
plementation where solely the cache/timing side channel was considered as a
relevant physical threat that should be countered by careful timing-invariant
implementation. For embedded systems, however, this physical threat model is
typically insufficient since many other side channels (e.g., power, electromagnetic
emanations, etc.) may be present and useful for a physical attacker.

As mentioned before, our implementation performs per se time-invariant
scalar multiplications due to the application of the Montgomery ladder and
the constant-time design for basic field arithmetic operations such as modular
addition/subtraction and modular multiplication. In addition, since each Mont-
gomery step function always computes the same operations, only operands are
swapped, inherent resistance against implementation attacks like Simple Power
Analysis (SPA) is given.

As discussed in [9, 10], further protection mechanisms need to be applied
to defeat more sophisticated side-channel attacks, such as Correlation and Dif-
ferential Power Analysis (CPA/DPA). This is optimally achieved by combining
several arithmetic countermeasures like scalar blinding, projective coordinate
randomization or implementation techniques like memory address scrambling.
Certainly, all these countermeasure come with an overhead and additional cost
in terms of area and performance.

We therefore develop a basic core that achieves minimum protection against
timing and SPA attacks by using Montgomery ladder for scalar multiplication.
In a second step, we will add a selection of additional advanced countermeasures
to improve resistance against DPA/CPA attacks. In the following sections we
present details on the type of additional countermeasures and their associated
cost in terms of area and performance.

9

5 Implementation Details

In this section, we provide implementation details of our single core instance of
the Curve448 processor. For comparison reasons with an existing Curve25519
implementation we chose a mid-range Xilinx XC7Z7020 (Zynq) FPGA as target
platform but we like to highlight that the core can be easily ported to Spartan-6
or UltraScale FPGAs as well. We conclude this section with a brief outline about
results for a high-performance multi-core architecture based on our Curve448
core.

5.1 Arithmetic Units

Centerpiece of the ECC co-processor are the two finite field arithmetic units
to compute modular additions/subtractions and modular multiplications. Both
arithmetic units are implemented using the optimal amount of DSP accelerators3

in order to increase efficiency and throughput of the components.Note that the
remaining field operations, i.e., modular squarings and modular inversions, are
implemented by reusing the modular multiplication core.

Modular Addition and Subtraction. In the previous section we already ex-
plained the basic idea for computing additions and subtractions in GF (p) by
always subtracting or adding the prime to the sum or difference and checking
whether the reduced result is correct or not. Figure 2 shows the internal con-
struction of the modular addition and subtraction unit making use of two DSP
accelerators. Depending on an external selection signal, both DSPs can change
their operation mode (addition or subtraction) during runtime. Although all
DSPs support additions and subtractions for up to 48-bit wide operands, we
decided to implement only 32-bit operations for compatibility reasons with the
memory interface. An entire addition or subtraction of two field elements with
448-bit size is computed sequentially and requires 14 clock cycles. However, most
additions and subtractions can be computed in parallel to concurrently running
multiplications which allows to hide most of the computation times. In total,
the addition and subtraction can be implemented in 5 slices (6 LUT, 6 FF) and
2 DSP hardcores.

Modular Multiplication. The modular multiplication mainly is constructed
by 28 DSPs and takes 28 clock cycles to compute and accumulate partial prod-
ucts (with integrated reduction as described in Section 4) and computes and
reduces the final result within another 4 clock cycles. Figure 3 presents the ar-
chitectural details of the modular multiplication unit.

Before any multiplication operation can be started, both operands a, b have
to be loaded into provided shift registers. Although the multiplication internally

3 A more detailed discussion of the optimal number of DSPs and several design options
can be found in Section 6.5.

10

+ / / +

carry carry

si si

ai bi pisub

33

32

1 1 33

32

32 3232 32 1

Fig. 2: Modular addition and subtraction based on two DSP hardcores.

operates on 16-bit values, loading (and storing) can be done in 14 clock cycles
using 32-bit values to increase performance and ensure compatibility with the
memory interfaces. Note that, while storing a result c into attached BRAMs,
new operands can be loaded in parallel. Thus, only the first multiplication result
requires full 60 clock cycles, each subsequently computed result is available and
stored after another 46 clock cycles.

In total, modular multiplication can be implemented in 764 slices (2737 LUT,
1356 FF) and 28 DSP accelerators. All DSP cores provide two different config-
urations that can be exchanged during runtime to allow reutilization of the
multipliers as final accumulation and addition stage.

Inversion. As mentioned before, inversion is realized as a sequence of multi-
plications and squarings. In order to increase performance and decrease latency,
results of previous multiplications do not have to be stored into the BRAM but
can be fed back directly to the operand shift registers using multiplexers.

In total, modular inversion can be implemented by 459 multiplications and
squarings and requires 21 699 clock cycles. Hence, direct feedback of results al-
lows to save at least 459 clock cycles or 2% of computation time.

11

x / Σ

A			B			C			D

P

x2

x / Σ

A			B			C			D

P

x2

x / Σ

A			B			C			D

P

x2

x / Σ

A			B			C			D

P

x2

x / Σ

A			B			C			D

P

x2

x / Σ

A			B			C			D

P

x2

c27 c26 c25 c2 c1 c0

b27 b26 b25 ... b2 b1 b0 a27 a26 a25 ... a2 a1 a0

...x / Σ

Fig. 3: Modular multiplication using DSP accelerators.

5.2 Co-Processor Architecture

Inspired by the fact that virtually every addition or subtraction during a sin-
gle Montgomery ladder step is followed by a multiplication and vice versa, we
decided to implement our global co-processor architecture as depicted in Figure
4 for interleaving operations in a straightforward but highly efficient way. The
two BRAM primitives and both arithmetic cores are connected in butterfly con-
figuration what enables efficient and parallel operation of both arithmetic cores.
Note, however, that in rare cases multiplications are also directly followed by
multiplications. In order to provide the correct BRAM with necessary operands,
dummy additions (i.e., with one operand equal to zero) are used to fit the afore-
mentioned computational scheme.

In total, 448 steps of the Montgomery ladder are executed, each computing
a combined point addition and doubling. Each step intrinsically consist of a
sequence of 10 multiplications and 8 additions or subtractions. Due to data
dependencies and latencies of the BRAM primitives, a single step requires 506
clock cycles in total so that the entire Montgomery ladder is performed in 227 882
clock cycles.

5.3 Side-Channel Protection and Countermeasures

As indicated by the results from [9, 10], we decided to implement a selection
of three different countermeasures to harden our design against advanced side-
channel attacks. To ensure a correct and safe operation of all countermeasures,
we need to add an external (pseudo) random number generator (RNG) that
can provide at minimum 573 bits of entropy per scalar multiplication operation.
As an option, the randomness can be provided by a suitable block cipher (for
example, such as AES) that is used as randomness provider. Although this is
certainly an essential component of the protected design, we will not discuss this
in further detail.

12

Add / Sub Mul / Square

PORTA PORTB

Dual Port RAM1

PORTB PORTA

Dual Port RAM2

P

Q

Arithmetic
Controler

32

32 32

32

32

32

32

Fig. 4: Curve448 core architecture

Scalar Blinding. A common countermeasure that we also adopt is scalar blind-
ing to randomize the secret scalar using the group order #E of Curve448. In
particular, the secret scalar k is rewritten as

k̄ = k + b ·#E

where b is a random blinding factor of size of around 128 bit [29]. Due to per-
formance reasons and the limitation of the DSP hardcores to process only a
maximum of 24-bit at a time, we opted to use marginally smaller blinding fac-
tors of 120 bit. Nevertheless we do not expect that this slight reduction has a
noticeable impact on the overall security of our design.

Coordinate Randomization. Since we employ projective coordinates, this
allows to randomize the base point and subsequent intermediate results. There-
fore, we chose a random co-factor λ and update our base point P = (X,Z) (with
Z = 1) as

λP = (λX, λZ) = (λX, λ)

Fortunately, we ca reuse our modular multiplication unit for this countermeasure.
Since Z has a bit length of 448 bit, this countermeasure requires the major
portion of the supplied randomness.

Address Shuffling. Although the application of the Montgomery ladder avoids
key dependent operations by performing point doubling and point addition op-
erations in any case, it still has some weaknesses that might be exploited for
DPA attacks. Due to the fact, that inputs are swapped depending on the state

13

of current scalar bit, this can be detected in the BRAM addressing. In order to
avoid successful attacks, our design chooses a random 5-bit offset and shuffles
internal addresses for every scalar multiplication. Note that it is also possible to
shuffle addresses at any single step of the Montgomery ladder, but this certainly
comes at the expense of additionally required randomness and higher latency.

5.4 Multi-Core Architecture

For high-performance applications such as TLS hardware accelerators, it is desir-
able to maximize the overall throughput by using parallelization techniques. Of
course, the degree of parallelization is limited by the underlying FPGA devices
and its provided resources. For instance, using a mid-range FPGA like Xilinx
XC7Z7020 the limiting factor is the number of available DSP accelerators which
would allow to implement 7 single-core instances (or 6 including side-channel
countermeasures) in parallel. Note that for such a scenario, it might be interest-
ing to implement a dedicated inversion unit which is shared between all cores
or offers the functionality of batch inversion. Since inversions account for nearly
10% of computation time, a dedicated inversion unit would also allow to increase
efficiency and throughput of the overall design. Note that we did not explicitly
implement a multi-core architecture due to the fact that it is highly application-
and device-specific. Yet we provide estimates on the area and performance in
Section 6 to allow an assessment on the expected throughput for a medium-cost
FPGA device (and to allow a comparison to other related works).

6 Results

All implementation results were obtained using Xilinx Vivado 2015.4 after place-
and-route. In this section, we present the implementation and performance re-
sults of our design and compare it to existing work.

6.1 Implementation Results

Table 1 summarizes of the resource consumption for our single-core Curve448
co-processor implemented on a Xilinx XC7Z7020 FPGA. In general, our design
occupies 7% of the general purpose logic in terms of slices what breaks down
to 6% of the Look-Up Tables (LUT) and 2% of the Flip-Flops (FF). Further-
more 30 DSP hardcores (14%) and 2 BRAMs (1%) are consumed by a single
instance of our co-processor. Obviously, the number of available DSP hardcores
is the limiting factor with respect to further parallelization and multi-core in-
stantiations of our design. We still like to emphasize that our architecture has
very moderate requirements in terms of area consumption while providing an
extremely high security level. It seems that it is easily possible to place and run
a variety of different applications in parallel to our ECC co-processor (such as
other cryptographic components or even the full TLS stack), even on low- and
mid-range FPGAs.

14

Table 1: Resource consumption after place-and-route on a Xilinx XC7Z7020.

Resource Used Available Utilization

Number of Look-Up Tables 3360 53 200 6.32%
Number of Flip-Flops 1891 106 400 1.78%
Number of occupied Slices 963 13 300 7.24%

Number of DSP48E1 30 220 13.64%
Number of RAMB36E1 2 140 1.43%

Table 2: Performance of the single-core architecture on a Xilinx XC7Z7020.

Operation Cycles Time

Addition (in GF (p) 14 140 ns
Subtraction (in GF (p)) 14 140 ns
Multiplication (in GF (p)) 32 320 ns

Montgomery Step 506 5 µs

Montgomery Ladder 227 882 2.3 ms
Inversion (in GF (p)) 21 699 0.2 ms

Scalar Multiplication (k × P) 249 581 2.5 ms

6.2 Performance Results

In Table 2 we provide timing and performance results highlighting different as-
pects of our design. In total, our single-core architecture can be operated at
a maximum frequency of 100 MHz, due to the critical path of the modular
multiplication unit, and thus can perform about 400 ECDH operations (scalar
multiplications) per second.

As mentioned before, the most time consuming operation is the modular
multiplication that takes 32 cycles (excluding BRAM access). Since each modu-
lar addition/subtraction takes 14 clock cycles, two additions or subtractions can
be perfectly executed in parallel. Hence, the performance of a single step of the
Montgomery ladder is mainly dependent of the timing of the modular multipli-
cation. Due to further timing and data dependencies the entire step executes
within 506 clock cycles. The total Montgomery ladder, combining 448 calls of
the step function, requires about 228 000 clock cycles and is finalized by a mod-
ular inversion. The inversion requires about 22 000 clock cycles and is eventually
required for the back transformation of the result from projective coordinates
to affine coordinates. In total, a full scalar multiplication requires about 250 000
clock cycles, or 2.5ms at a frequency of 100 MHz.

6.3 Side-Channel Countermeasures

Table 3 summarizes the results of our augmented Curve448 single-core that pro-
vides additional side-channel protection. Obviously, the address scrambling is

15

Table 3: Performance and implementation overhead for the side-channel pro-
tected design obtained for a Xilinx XC7Z7020.

Countermeasure Latency Resources Rand.
Initialization Operation LUT FF DSP Bits

Scalar Blinding 197 61040 954 741 2 120
Coordinate Randomization 47 - - 4 - 448
Address Shuffling - - 124 3 - 5

implemented at virtually no additional cost. On the other side, scalar blinding
is the most costly countermeasure in particular in terms of performance loss,
mainly due 120 additional steps of the Montgomery ladder. Despite the lower
performance, this countermeasure also requires 2 additional DSPs as well as
significant portion of the general purpose logic. However, in terms of random-
ness, only 120 bits of fresh randomness per ECDH computation are necessary.
In contrast to this, randomization of the projective coordinate representation
slows down the overall performance only by a single modular multiplication but
therefore requires 448 bit of fresh randomness per scalar multiplication.

However, only the interaction of all countermeasures ensures an adequate pro-
tection. Considering each countermeasure at its own might improve performance
or reduce area consumption but certainly will result in weaker side-channel re-
sistance.

6.4 Comparison

To the best of our knowledge, this is the first implementation of Curve448 (and
any curve with 448-bit parameters) in hardware. Only very few implementations
that target a security level above 256-bit are publicly available. This makes a
fair and accurate comparison rather difficult. Note, that even the evolution and
newer generations of FPGAs prevents a fair and meaningful discussion of the
results. However, we still would like to place our results in the context of existing
works of ECC co-processors and give an overview on related work – still with
the word of warning that straight comparisons are not possible.

In [2] and [1], two designs implementing standardized NIST primes on newer
Virtex-4 and Virtex-6 devices are reported. In particular performance results for
NIST P-384 and P-521 are of interest since Curve448 provides a similar security
level. Note, that the presented architectures have a generic design and allow a
flexible support for all NIST primes, thus it would be unfair to compare it directly
to our highly optimized architecture. Still, however, we would like to emphasize
the obviously moderate resource requirements of our design, confirming the high
level of optimization and efficiency providing decent performance results.

It can be also observed that most implementations used in todays applica-
tions mostly target prime fields with size of up to around 256-bit, such as [11, 26,
27, 24]. Assuming the time complexity to grow cubic in the field size, we would

16

Table 4: Comparison of different designs for ECC over GF (p) on FPGAs, for
SCA: - means no countermeasures, + only SPA protection, ++ full protection
against SPA and DPA, results marked with * are extrapolated

Device Scheme Implementation Performance SCA Ref.

XC4VFX12 224-bit 1580 LS/26 DSP 2739 OP/s, 487MHz - [11]
XC4VFX12 256-bit 1715 LS/32 DSP 2020 OP/s, 490MHz - [11]
XC4VFX12 224-bit 24452 LS/468 DSP 37735 OP/s, 372MHz - [11]
XC4VFX12 256-bit 24574 LS/512 DSP 24691 OP/s, 375MHz - [11]

XC7Z7020 255-bit 1029 LS/20 DSP 2519 OP/s, 200MHz + [26]
XC7Z7020 255-bit 1169 LS/22 DSP 2402 OP/s, 200MHz ++ [27]
XC7Z7020 255-bit 11277 LS/220 DSP 32304 OP/s, 100MHz + [26]
XC7Z7020 255-bit 10903 LS/220 DSP 27695 OP/s, 100MHz ++ [27]

XC5VLX330 256-bit 4505 LS/16 DSP 1754 OP/s, 125MHz - [24]

XC4VFX100 192-bit 20793 LS/32 DSP 238 OP/s, 60MHz - [2]
XC4VFX100 224-bit 20793 LS/32 DSP 196 OP/s, 60MHz - [2]
XC4VFX100 256-bit 20793 LS/32 DSP 163 OP/s, 60MHz - [2]
XC4VFX100 384-bit 20793 LS/32 DSP 57 OP/s, 60MHz - [2]
XC4VFX100 521-bit 20793 LS/32 DSP 25 OP/s, 60MHz - [2]

XC6VLX760 192-bit 11200 LS/289 DSP 3333 OP/s, 100MHz - [1]
XC6VLX760 224-bit 11200 LS/289 DSP 2857 OP/s, 100MHz - [1]
XC6VLX760 256-bit 11200 LS/289 DSP 2500 OP/s, 100MHz - [1]
XC6VLX760 384-bit 11200 LS/289 DSP 847 OP/s, 100MHz - [1]
XC6VLX760 521-bit 11200 LS/289 DSP 625 OP/s, 100MHz - [1]

XC7Z7020 448-bit 963 LS/30 DSP 400 OP/s, 100MHz + new
XC7Z7020 448-bit 1146 LS/32 DSP 322 OP/s, 100MHz ++ new
XC7Z7020 448-bit 6750* LS/210* DSP 2800* OP/s, 100MHz + new
XC7Z7020 448-bit 6900* LS/192* DSP 1932* OP/s, 100MHz ++ new

expect a performance loss of about factor 5. According to Table 4 this perfor-
mance factor is indeed around 5-6 which implies that Curve448 can be at least
as good implemented in hardware as any other (highly optimized) curves.

Eventually, we can state that our design provides performance that should
match the need of most application while preserving a moderate resource foot-
print which is in terms of CLBs even smaller than that presented in [26]. Besides,
for dedicated resources such as DSP hardcores, we can report an additional over-
head of only 50% although field size is almost doubled. We attribute this mainly
to the straightforward reduction scheme of Curve448 that allows a slightly more
efficient hardware implementation.

6.5 Discussion

Although the general design of Curve25519 (as implemented in [11]) and
Curve448 is similar, we would like to highlight some fundamental differences

17

that require different design choices. In particular the arithmetic unit that per-
forms the modular multiplication should be optimized for the underlying prime
of Curve448.

For that reason, our multiplier implementation is superior to the multiplier
implemented for Curve25519 since multiplication takes only 32 clock cycles while
authors in [11] report 34 clock cycles for their implementation of the (smaller)
Curve25519. This is interesting since Curve448 has almost twice the bit size
of Curve25519, but can be attributed to modified operation interleaving and
an expense of 10 additional DSP hardcores. Still the authors employ pipelining
for their implementation of Curve25519 what again increases the throughput
of each Montgomery step dramatically. Applying pipelining to our multiplier
design, however, would results in a gain of only 4 clock cycles per multiplication
(28 cycles rather than 32) at the cost of two additional DSPs. Hence, we decided
to not implement pipelining, but instead reuse the DSP hardcore as wide adder.

Yet our design is complex and uses several (unregistered) multiplexers. For
future work it might be interesting to investigate register balancing to improve
the critical path inside the multiplication unit.

7 Conclusion

In this work we present the first hardware implementation of Curve448. Curve448
has become recently part of RFC 7748 is thus recommended for use in future
ciphersuites of TLS and other protocols. Although Curve448 was designed for
being highly efficient in software, we demonstrated that it can be similarly ef-
ficient mapped onto reconfigurable hardware. In addition to that we provided
results regarding the cost of additional countermeasures thwarting side-channel
analysis. Yet our single-core implementation achieves a throughput of 400 ECDH
scalar multiplications per second on Xilinx XC7Z7020 (Zynq) what we expect
to be sufficient for most practical applications.

References

1. H. Alrimeih and D. N. Rakhmatov. Fast and flexible hardware support for ECC
over multiple standard prime fields. IEEE Trans. VLSI Syst., 22(12):2661–2674,
2014.

2. K. Ananyi, H. Alrimeih, and D. N. Rakhmatov. Flexible hardware processor for
elliptic curve cryptography over NIST prime fields. IEEE Trans. VLSI Syst.,
17(8):1099–1112, 2009.

3. D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B. Yang. High-speed high-
security signatures. J. Cryptographic Engineering, 2(2):77–89, 2012.

4. D. J. Bernstein and T. Lange. SafeCurves: choosing safe curves for elliptic-curve
cryptography, 2016. https://safecurves.cr.yp.to/.

5. G. M. de Dormale and J. Quisquater. High-speed hardware implementations of
Elliptic Curve Cryptography: A survey. Journal of Systems Architecture, 53(2-
3):72–84, 2007.

18

6. W. Diffie and M. E. Hellman. New directions in cryptography. Information Theory,
IEEE Transactions on, 22(6):644–654, 1976.

7. H. Edwards. A normal form for elliptic curves. Bulletin of the American Mathe-
matical Society, 44(3):393–422, 2007.

8. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In Advances in cryptology, pages 10–18. Springer, 1984.

9. J. Fan, X. Guo, E. D. Mulder, P. Schaumont, B. Preneel, and I. Verbauwhede.
State-of-the-art of secure ECC implementations: A survey on known side-channel
attacks and countermeasures. In J. Plusquellic and K. Mai, editors, HOST 2010,
Proceedings of the 2010 IEEE International Symposium on Hardware-Oriented Se-
curity and Trust (HOST), 13-14 June 2010, Anaheim Convention Center, Cali-
fornia, USA, pages 76–87. IEEE Computer Society, 2010.

10. J. Fan and I. Verbauwhede. An updated survey on secure ECC implementations:
Attacks, countermeasures and cost. In D. Naccache, editor, Cryptography and Se-
curity: From Theory to Applications - Essays Dedicated to Jean-Jacques Quisquater
on the Occasion of His 65th Birthday, volume 6805 of Lecture Notes in Computer
Science, pages 265–282. Springer, 2012.

11. T. Güneysu and C. Paar. Ultra High Performance ECC over NIST Primes on Com-
mercial FPGAs. In E. Oswald and P. Rohatgi, editors, Cryptographic Hardware
and Embedded Systems - CHES 2008, 10th International Workshop, Washington,
D.C., USA, August 10-13, 2008. Proceedings, volume 5154 of Lecture Notes in
Computer Science, pages 62–78. Springer, 2008.

12. M. Hamburg. Ed448-Goldilocks, a new elliptic curve. Cryptology ePrint Archive,
Report 2015/625, 2015. http://eprint.iacr.org/.

13. IETF. CURves, Deprecating and a Little more Encryption (curdle), 2016. https:
//datatracker.ietf.org/wg/curdle/charter/.

14. IETF. Elliptic Curves for Security, Jan 2016. https://tools.ietf.org/html/

rfc7748.
15. IRTF. Crypto Forum Research Group (CFRG), 2016. https://irtf.org/cfrg.
16. D. Johnson, A. Menezes, and S. Vanstone. The elliptic curve digital signature

algorithm (ECDSA). International Journal of Information Security, 1(1):36–63,
2001.

17. N. Koblitz. Elliptic curve cryptosystems. Mathematics of computation,
48(177):203–209, 1987.

18. M. Lochter and J. Merkle. Elliptic curve cryptography (ECC) brainpool standard
curves and curve generation. Technical report, 2010.

19. G. Locke and P. Gallagher. Fips pub 186-3: Digital Signature Standard (DSS).
Federal Information Processing Standards Publication, 3:186–3, 2009.

20. V. S. Miller. Use of elliptic curves in cryptography. In Advances in Cryptology-
CRYPTO85 Proceedings, pages 417–426. Springer, 1985.

21. P. L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of computation, 48(177):243–264, 1987.

22. G. Orlando and C. Paar. A Scalable GF(p) Elliptic Curve Processor Architecture
for Programmable Hardware. In Ç. K. Koç, D. Naccache, and C. Paar, editors,
Cryptographic Hardware and Embedded Systems - CHES 2001, Third International
Workshop, Paris, France, May 14-16, 2001, Proceedings, volume 2162 of Lecture
Notes in Computer Science, pages 348–363. Springer, 2001.

23. S. B. Örs, L. Batina, B. Preneel, and J. Vandewalle. Hardware Implementation of
an Elliptic Curve Processor over GF(p). In 14th IEEE International Conference on
Application-Specific Systems, Architectures, and Processors (ASAP 2003), 24-26

19

June 2003, The Hague, The Netherlands, pages 433–443. IEEE Computer Society,
2003.

24. D. B. Roy, D. Mukhopadhyay, M. Izumi, and J. Takahashi. Tile before multiplica-
tion: An efficient strategy to optimize DSP multiplier for accelerating prime field
ECC for NIST curves. In The 51st Annual Design Automation Conference 2014,
DAC ’14, San Francisco, CA, USA, June 1-5, 2014, pages 177:1–177:6. ACM,
2014.

25. K. Sakiyama, N. Mentens, L. Batina, B. Preneel, and I. Verbauwhede. Recon-
figurable Modular Arithmetic Logic Unit for High-Performance Public-Key Cryp-
tosystems. In K. Bertels, J. M. P. Cardoso, and S. Vassiliadis, editors, Reconfig-
urable Computing: Architectures and Applications, Second International Workshop,
ARC 2006, Delft, The Netherlands, March 1-3, 2006, Revised Selected Papers, vol-
ume 3985 of Lecture Notes in Computer Science, pages 347–357. Springer, 2006.

26. P. Sasdrich and T. Güneysu. Efficient Elliptic-Curve Cryptography Using
Curve25519 on Reconfigurable Devices. In D. Goehringer, M. D. Santambrogio,
J. M. P. Cardoso, and K. Bertels, editors, Reconfigurable Computing: Architectures,
Tools, and Applications - 10th International Symposium, ARC 2014, Vilamoura,
Portugal, April 14-16, 2014. Proceedings, volume 8405 of Lecture Notes in Com-
puter Science, pages 25–36. Springer, 2014.

27. P. Sasdrich and T. Güneysu. Implementing Curve25519 for Side-Channel-Protected
Elliptic Curve Cryptography. TRETS, 9(1):3, 2015.

28. B. Schneier. The Strange Story of Dual EC DRBG. https://www.schneier.com/
blog/archives/2007/11/the_strange_sto.html.

29. N. P. Smart, E. Oswald, and D. Page. Randomised representations. IET Informa-
tion Security, 2(2):19–27, 2008.

30. D. Suzuki. How to maximize the potential of FPGA resources for modular expo-
nentiation. In P. Paillier and I. Verbauwhede, editors, Cryptographic Hardware and
Embedded Systems - CHES 2007, 9th International Workshop, Vienna, Austria,
September 10-13, 2007, Proceedings, volume 4727 of Lecture Notes in Computer
Science, pages 272–288. Springer, 2007.

31. Wired. RSA Tells Its Developer Customers: Stop Using NSA-Linked Algorithm,
Sept 2013. http://www.wired.com/2013/09/rsa-advisory-nsa-algorithm/.

20

