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Abstract. AnoNotify is a service for private, timely and low-cost on-
line notifications. We present the design and security arguments behind
AnoNotify, as well as an evaluation of its cost. AnoNotify is based on mix-
networks, Bloom filters and shards. We present a security definition and
security proofs for AnoNotify. We then discuss a number of applications,
including notifications for incoming messages in anonymous communica-
tions, updates to private cached web and Domain Name Service (DNS)
queries and finally, a private presence mechanism.

1 Introduction

A number of on-line applications require timely notifications about remote
events: for example common mail delivery protocols notify users when new mail
has arrived so that it can be retrieved. Other examples include updates of pres-
ence associated with social networking or instant messaging applications, and
even notifications related to updates of cached records such as DNS or cached
web records.

Traditionally, notification services provide no privacy vis-à-vis the notifica-
tion service itself, that can observe both the content and the routing of notifica-
tions from the emitter of the event to the receiver. However, privacy preserving
alternatives, such as anonymous communication systems [7], or private presence
systems [5], rely on private notifications: an adversary should not be able to
observe what events a user subscribes to.

AnoNotify provides such a private notification service, based on crypto-
graphic constructions and the use of anonymous communication channels. In
brief, publishers and subscribers of events share cryptographic keys, that allow
them to share ever changing and unpredictable identifiers for events of inter-
est. Subscribers can poll for events of interest privately using an anonymity
system. To scale, subscribers only retrieve small parts of the event database,
which we refer to as shards; we use Bloom filters to compress the size of each
shard. AnoNotify provides privacy properties, as defined using a cryptographic
and differentially private metric.

This paper is organized as follows: Section 3 presents the design of AnoNotify.
In Section 4 we describe the dynamics of AnoNotify. Section 5 defines private



notification systems, and games used to show security. Section 6 contains the key
security theorems. Section 7 discusses the costs of AnoNotify and compares it
to PIR / DP5 [5]. Section 8 measures costs in the implementation of AnoNotify.
Finally, in Section 9, we discuss applications in detail.

2 Related Work

Bloom Filters. The AnoNotify design is based on Bloom filters [3], used for
representing a set membership of elements with some tunable false positive prob-
ability. The false positive error means that even if the element was not added
to the filter, the check procedure may indicate its presence. A Bloom filter is
defined as a bit array and constructed using several hash functions, which map
an inserted element to the filter bits. To test if a particular element was added
to the set, one should compute values of the hash functions for this element and
check if all corresponding bits in the filter are set. A positive answer of the check
procedure may yield a false positive error. Extensions of Bloom filters support
additional functionalities, like deletion [27,15,4] or representing multisets [9].
In [2] authors present metrics as K-anonymity and γ−deniability to measure
the privacy and utility of Bloom filters but the resulting privacy properties are
weak. RAPPOR [14] allows the private collection of crowd sourced statistics as
randomized responses in Bloom filters, while guaranteeing ε-differential privacy.
RAPPOR uses input perturbation locally on the client side, however extracting
results requires sophisticated statistical techniques.

Privacy in Remote Storage. Private information retrieval (PIR) allows a
client to retrieve privately a single record from a remote public database. The
naive solution retrieves all records from the database, but PIR protocols are
more efficient in terms of bandwidth [8,19,10].

Social applications have required private presence notifications. Traditional
implementations of presence give a central server the social graph of users. Pro-
tocols like Apres [22] and DP5 [5] offer privacy-preserving notification services.
Apres splits the time into epochs and hides the correlation between the connec-
tivity of the clients in every two epochs. DP5 offers stronger privacy guarantees,
by using PIR to hide all information about the social graph.

Anonymity. The most widely deployed anonymity system is Tor [12]. In Tor,
communications are routed through a network of relays using onion routing,
which hides the senders location and ensures unlinkability between the user and
the visited website. Although Tor is popular it is vulnerable to traffic analysis
attacks, and for stronger anonymity properties mix networks have to be used [7]
at the expense of latency. Receiver anonymity systems, such as nymservers [24],
may also be used to route notifications to users. Pynchon Gate [28] proposes a
pseudonymous message retrieval system based on a distributed PIR scheme. It
allows the pseudonym holders to receive messages, while ensuring unlinkability
among messages and their recipients with forward secrecy.
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3 The Design of AnoNotify

AnoNotify protects the relationship privacy of publishers that send notifica-
tions, and subscribers that request notifications, from a hostile network and
infrastructure. The system operates in sequential epochs denoted by t, for time.
Our techniques are, in this respect, inspired by Ben Laurie’s Apres [22], and the
subsequent DP5 [5].

Straw-man Design. We first present a straw-man design, loosely inspired by
DP5, and argue informally for its security but also its inefficiency. A single server
acts as the infrastructure. Publishers and subscribers of notifications privately
agree on a secret random identifier for a specific notification event. When a pub-
lisher wishes to send a notification, she simply sends the pre-arranged random
identifier to the server which stores it forever. Meanwhile, subscribers of notifi-
cations access the single server, and periodically download the full database of
stored notification identifiers, looking for identifiers they recognize as events.

This näıve design is secure: since subscribers of notification always download
the full database, an adversary at the server could not distinguish which notifi-
cation they seek. However, performance is very poor: the database grows forever,
and downloading the full database is very expensive. One option is to use PIR,
for more efficient private download. However, DP5 [5] illustrates that PIR also
has scalability limitation.

3.1 Goals and Setting

AnoNotify is a service connecting notification publishers with specific notification
subscribers. By convention we call a notification source Alice (as the traditional
publisher in cryptography) and a notification subscriber Bob.

The AnoNotify protocols make use of a number of infrastructure servers
managing the routing of one or more shards each. We denote those shards as
si and their total number as S. Publishers and subscribers connect through
this infrastructure, as illustrated in Figure 1. AnoNotify aims to scale well: the
capacity of the system should increase as we add more servers to the infrastruc-
ture. The goal is to keep the relationship between publishers and subscribers of
notifications private from the servers.

3.2 The AnoNotify System Design

The (basic) AnoNotify system. A number of servers collaborate to provide
the private notification system by each managing one or more shards of noti-
fications. A publisher Alice who wishes to send a notification to a subscriber
Bob, simply provides Bob with a secret channel key (ck) (which could also be
the result of a Diffie-Hellman [11] key exchange). Upon sending a notification to
Bob, Alice derives an epoch specific identifier for the event as IDt = PRFck(t).

The publisher Alice then selects a shard si, using i ← IDt mod S, and
sends IDt anonymously to the server managing this shard. This spreads different
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Fig. 1. The AnoNotify architecture

identifiers for notifications across servers. Upon receiving IDt a server adds it to
a Bloom filter for the shard si at epoch t, of bit size l, which includes all received
notification identifiers for a particular epoch t. The server makes this available
to download immediately or at the start of the next epoch.

At the beginning of epoch t + 1 Bob reconstructs IDt for the notifications
he wishes to check for the previous period by computing IDt = PRFck(t), and
computes the shard i in which IDt might be stored. Bob then anonymously
downloads the filter for shard si and epoch t and checks whether IDt is in the
filter or not. This may yield a false positive match, misleading Bob into thinking
that the notification was present when it was not.

The (continuous) AnoNotify system. The basic system results in a long
waiting period of one epoch between when a notification is sent and when a
notification is received, depending on the epoch length at the server. We present
a variant of the AnoNotify (basic) system that does not require the server and
publisher-subscriber epochs to be synchronized and allows the servers to serve
notifications corresponding to an arbitrary moving time-window: over time each
server constructs a Bloom filter that contains all notifications within a fixed past
period. It does so incrementally, and may also wish to modify the Bloom filter
parameters to ensure a fixed error rate – which adds security considerations.

Instead of having a server side fixed epoch each served by a fresh Bloom
filter, notifications are added and deleted continuously as events are included
and excluded from a time-window. The length of this time window is applica-
tion dependent. Since standard Bloom filters cannot be efficiently updated, we
use a counting Bloom filter: the server keeps a count of the number of items
contributing to each bin of the Bloom filter [15,4]. Hence, adding an element to
the Bloom filter involves increasing the appropriate bins by one, and removing
an element decreasing them. The counting Bloom filter can then be quantized
to take no more space, and is similarly susceptible to false positives.
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4 Dynamics of AnoNotify

We assume that all servers globally agree on an acceptable range of false
positive error rate for the Bloom filter [fmin, fmax]. Servers then compute the
optimal parameters of the filter, given at any time the number of notifications
to be included to maintain the error rate within acceptable range. However, all
servers must agree on identical parameters for the filter, to ensure that its length
does not leak the shard Alice requests. Thus, we propose a distributed protocol
for servers to communicate with each other their predicted error rates, and reach
a consensus on the parameters of the Bloom filter used by all.

A server, decides whether it needs to change the new Bloom filter parameters
in the following manner:

– At time ti with incoming notification rate vi, the server has Bloom filter
parameters (li - length of Bloom filter, ki - number of hashes), that have
a false positive rate of fi which is within some system-wide agreed false
positive range fmin ≤ fi ≤ fmax.

– If at time ti+1 with rate vi+1, fi+1 ∈ [fmin, fmax] the original Bloom filter
parameters are kept, since the error is within bounds.

– If however, at time ti+1 and rate vi+1, the error rate given the old parameters
(li, ki) is not acceptable (fi+1 /∈ [fmin, fmax]) then the server initiates a re-
parameterization (l′i+1, k

′
i+1) of the Bloom filter to yield an error rate f ′i+1

within bounds. Only upon correct completion of the consensus protocol can
new filter parameters be used.

The aim of the above mechanism is to minimize communication costs (Bloom
filter size), and thus the parameters of the filter will fluctuate upwards and
downwards to keep the error rate within acceptable bounds and communication
costs low.

If a servers notification rate fluctuates to the extent that the false positive
rate falls outside of the system-wide error bounds, the server will notify all other
servers in the system that they must change their Bloom filter parameters and all
other servers must choose the largest parameter. Once all servers have agreed on
the new Bloom filter length, this is posted to a public bulletin board and digitally
signed by all servers. If a subscriber subsequently receives a Bloom filter of a
different length to the one they expect, they mark that server as untrusted. The
server can also send, along with the Bloom filter, the expected false positive rate
to the subscriber. This allows the subscriber to be judicious about whether to
perform a subsequent action based on whether the Bloom filter informs them of
a notification.

5 Secure Notification System

5.1 Entities, Threats and Assumptions

In AnoNotify we assume, that the system might be exposed to both a passive
adversary, corrupted servers that observe all shards, or malicious users. A passive
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adversary observes part or the whole network and will try to learn relationships
between publishers and subscribers. However, we also assume, that a large num-
ber of AnoNotify concurrent users (publishers and subscribers) are honest, and
follow the protocol faithfully. In fact the security theorem we present relies on
the fact that target users can hide amongst other honest users’ notifications
and queries. In AnoNotify the communication among the publishers and the in-
frastructure as well among the requesting subscribers and the servers should be
done using an anonymity network. The anonymity system is immune to traffic
analysis, namely, from the point of view of the adversary it provides a perfect
secret permutation between its input and output messages. The messages sent
among publishers, servers and subscribers are padded into equal length blocks
to prevent privacy leakage through message size.

5.2 Notification System: Definition

A notification system N is a set of seven probabilistic algorithms:

– N .GenSystem takes as input n ∈ N users, S ∈ N shards, and security
parameters κ ∈ 1∗, ε > 0, δ ≥ 0, and outputs server initial state σ, packet
length l and public information π ∈ {0, 1}∗.

– N .GenChannel takes as input public information π and outputs channel
key ck ∈ {0, 1}∗.

– N .Notify takes as input channel key ck, epoch t ∈ N and state σ, and
outputs a notification µ and new state σ′.

– N .ProcNotify takes as input notification µ, epoch t, state σ, and server
key sk, and outputs response ρ and new state σ′.

– N .Query takes as input channel key ck, epoch t and state σ, and outputs
a query φ, and new state σ′.

– N .ProcQuery takes as input query φ, epoch t, state σ, and server key sk,
and outputs response ρ and new state σ′.

– N .ProcRespose takes as input response ρ, channel key ck, epoch t and
state σ, and outputs return code ψ and new state σ′.

For simplicity we assume that the length of all notifications, queries and
responses, is always a fixed value l, generated as part of the system parameters
(by the N .GenSystem algorithm).

5.3 Security Definition

In this subsection we define an Indisitinguishable-Notification Experiment (Ind-
NotExp), addressing the threats identified in 5.1. In this experiment multiple
rounds of notifications and queries are executed, and the adversary has full
control over which honest users notify and which honest users query for their
respective notifications. Then, the adversary chooses an epoch, and two target
honest users n − 1 and n, of which the adversary knows the secret notification
keys. One of them is included in the round at random. Then, given all informa-
tion gained by observing all epochs queries and notifications, the adversary tries
to guess which of the two users was present in the last round.
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procedure IndNotExp(N ,A, n, κ,∆, b ∈ {0, 1})
(σ, l, π)← N .GenSystem(n, κ,∆).
for i = 0, . . . , n do

cki ← N .GenChannel(π)
end for
Give ckn−1, ckn, n, κ,∆, π to A
for t = 0, . . . do

(notifications, queries)← (0, 0)
for i = 0, . . . , n do

if A(i, ‘notify’) = 1 then . Adv. chooses notifications.
Increment Cn
µi ← N .Notify(cki, t)
σ ← N .ProcNotify(µi, t, σ)

end if
end for
for i = 0, . . . , n do

if i = n− 1 ∧ A(‘done?’) = 1 then
φT ← N .Query(cn−b, t, σ)
Give φT to A
ρT , σ ← N .ProcQuery(φT , t, σ, sk)
return (A(φT , ρT ), Cn, Cr) . Guess of the Adversary.

end if
if A(i, ‘req’) = 1 then

if A(i, ‘notify’) 6= 1 then
Increment Cr . Number of queries with unseen notifications.

end if
φi ← N .Query(cki, t, σ) . A(φi): Adv. sees all queries.
ρi, σ ← N .ProcQuery(φi, t, σ, sk)
N .ProcRespose(ρi, cki, t, σ)

end if
end for

end for
end procedure

We now define a ∆−private notification system. Note that we restrict the ad-
versary in the epoch it issues the challenge: in that round a minimum of u < Cr
queries from honest users must be issued, of which the corresponding notifica-
tions were not observed. This can be relaxed, but requires a more sophisticated
security proof which we leave as future work.

Definition 1. A notification system N is (u, n,∆)-private if for any PPT ad-
versary A holds:

Pr

[
(g, Cn, Cr))← IndNotExp(N ,A, n, κ,∆, b) :

g = b ∧ u < Cr

]
≤ 1

2
+∆+ negl(κ)

The probability is taken over all coin tosses, including uniform choice of bit b, and
where negl(·) is a negligible function; the inequality should hold for sufficiently
large security parameter κ. For simplicity, we write ∆-private.

The threat model captured by the Indisitinguishable-Notification Experiment
is very generous to the adversary: the adversary has full visibility into the pro-
cessing of all notifications and all query requests at all shards of the system for
as many epochs as she wishes. Furthermore, the adversary is given the secrets
associated with the notifications of the two potential target users. Ultimately,
the adversary needs to decide which user took part in the protocol run with full
knowledge of the secrets they share with senders of notifications.
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6 The Security of AnoNotify

In this section we prove that AnoNotify is a secure (i.e., ∆-private) notifica-
tion system, as in Def. 1 in the previous section.

Security Theorem 1 The AnoNotify system is a ∆-private notification sys-
tem, for ∆ > 0 satisfying the following inequality. For any ε > 0,

∆ ≤ 1

2
tanh

( ε
2

)
+ exp

(
− (u− 1)

2S

(
1− e−ε

1 + e−ε

)2
)
.

Proof. See Appendix A.

The proof depends on a key lemma, proving a differentially private [13] security
bound for the final challenge round of IndNotExp. In the challenge round u
honest users whose corresponding notifications were not observed send queries.
These include either user n or user n − 1 according to the challenge b. Since
all other users query a previously unseen ID through an anonymous channel,
they each download a random shard from S. Based on the volume of queries the
adversary wants to distinguish which user, n−1 or n, was present. We can prove
the following lemma for this simple setting:

Lemma 1. Let X0, X1 be the query volumes observed by the adversary at shards
s0, s1 and let n−1, n define events when a particular challenge user participates
in the round. An (ε, δ)-differential privacy bound by which:

Pr[X0, X1|n− 1] ≤ eε Pr[X0, X1|n]

is ensured for ε > 0 with probability at least 1− δ:

δ ≤ exp

(
− (u− 1)τ2

S

)
+ exp

(
− (u− 1)

2S

(
1− e−ε

1 + e−ε

)2
)

for τ ∈ [0, 1].

Proof. See Appendix B.

Interestingly, we also derive a generic result linking an (ε, δ)-differentially private
mechanism to the advantage of an adversary in the context of trying to guess
the outcome of a binary challenge.

Lemma 2. Let K be an (ε, δ)-differentially private mechanism, on two private
inputs E1 and E2 for which Pr[K|E1] ≤ eε Pr[K|E2] with probability at least 1−δ.
If the adversary is provided with K resulting from either E1 or E2, and tries to
guess the input, she succeeds with probability:

Pr

 b← {0, 1};K ← K(Eb);
guess← A(K, E1, E2) :

b = guess

 ≤ 1

2
+

1

2

(
eε − 1

eε + 1

)
+ δ + negl(κ)
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Fig. 2. The maximum number of shards for an increasing number u of requesting users,
ε = 0.2 and selected values of δ and ∆.

Proof. See Appendix C.

In Figure 2, we illustrate the maximum number of shards allowed to ensure
that AnoNotify guarantees (ε, δ)-differential privacy for specific values of ε, δ,
with increasing number of querying users. We also estimate the concrete value
of the adversary advantage ∆ based on Theorem 1. Note that the upper bound
on δ in Lemma 1 is constant as long as the ratio u−1

S is constant, which justifies
a linear plot.

7 Analytical Performance Evaluation

Bandwidth. We evaluate the bandwidth cost of multi-shard AnoNotify against
the näıve design using a multi-server IT-PIR [8] scheme inspired by DP5 [5]. Let
the number of servers in AnoNotify be S, and the number of servers in the PIR
scheme be S′. Since in AnoNotify all Bloom filters are of equal size, say l, the
number of bits transferred is nl ·mx where n is the number of subscribers that
downloaded the Bloom filter and mx is the cost of using a mixnet to transport
data (to be fair we will assume mx = S′). For the IT-PIR scheme the cost is
nS′
√
v, where v is the number of bits in the server’s database.

Additionally, since AnoNotify may yield false positives, we must consider the
bandwidth cost of a subsequent action of a subscriber given that they received
a notification, which we denote as a. We intentionally do not specify what this
action is, as AnoNotify could be used in a variety of applications. Let k ≤ n be
the number of subscribers who received a notification. Let f be the error rate of
Bloom filter, then h = nf subscribers will incorrectly think they have received
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Table 1. The cost of action a for particular parameters of the system.

Servers
PIR

Shards
AnoNotify

Bloom filter
size [bits]

Mixing
Cost

Notifications
Number

Error
Rate

a
[bits]

ε δ ∆

10 5000 104 10 107 0.091 2.9 · 105 0.2 0.0001 0.049
10 6500 104 10 107 0.044 6.1 · 105 0.2 0.001 0.051
10 9000 104 10 107 0.013 2.0 · 106 0.2 0.01 0.057
10 16000 104 10 107 0.0005 5.8 · 107 0.2 0.1 0.135

10 104 104 10 107 0.008 3.2 · 106 0.2 0.014 0.063
10 107 104 10 1010 0.008 5.7 · 108 0.2 0.014 0.063

a notification. Hence the cost of performing actions in AnoNotify is a(k + h),
whereas in the PIR scheme the cost is ak since no false positives will occur.

The total cost of AnoNotify is nl · mx + a(k + h) = nl · mx + a(k + nf).
The total cost of the PIR scheme is nS′

√
v+ak. We want to estimate the cutoff

cost a for AnoNotify to be less expensive than a PIR scheme, hence we require

nl ·mx + a(k + nf) < nS′
√
v + ak. This gives a < S′

√
v−(l·mx)
f .

We note that the false positive rate f and the size of the Bloom filter l are
related by f ≈ (1/2)l log 2/m, where m is the number of messages in the filter, that
we assume are approximately N/S where N is the total number of notifications.
Similarly, the database in an IT-PIR system would need at least v = N logN
bits to store a list of up to N distinct notifications. Thus, it is preferable to use
the AnoNotify system over IT-PIR when the cost of an action a is lower than
the following threshold: a < (S′

√
N logN − (l ·mx))2

lS
N log 2.

In Table 7, we present the threshold cost of action a in AnoNotify under
different system and security parameters and estimate the values ε, δ,∆ using
Theorem 1. AnoNotify can support thousands or even millions of users at a
lower cost than PIR for actions costing kilobites to megabytes respectively. Fur-
thermore, the security parameters are mostly affected by the ratio of shards to
queries which can be kept constant to achieve satisfactory privacy.

Latency. In the basic AnoNotify, a notification sent by a publisher in epoch ei,
will become available to a subscriber in epoch ei+1. The time between when a
notification is sent and when it can be read is |e|+ t, where t is the time taken
by the notification to be routed through the mix network and |e| denotes the
server epoch length. Note, that this time t is dependent on the amount of traffic
passing through the mix network, and the mix networks flushing mechanism.
In the continuous AnoNotify, unlike the basic version, the latency is dependent
solely on the mix network since notifications are added to the Bloom filter as
soon as they are received by the server.

Refresh rate, epoch length, cost and privacy. In both the basic and con-
tinuous AnoNotify systems publishers and subscribers must decide on an epoch
length, based on which their notification identifiers will change. There is a clear
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trade-off: shorter epochs mean shorter wait times but result in the subscribers
requesting more often.

In the basic AnoNotify, although all notifications received in an epoch are
available at the start of the next epoch, if a publisher-subscriber epoch is much
smaller than the server epoch, the subscriber will have to request many times
to check if a notification was received in any of the possible publisher-subscriber
epochs. For example, let the publisher-subscriber epoch length be denoted |sr|,
and let 5|sr| = |e|. During one server epoch, the publisher and subscriber gener-
ate five epoch specific identifiers {ID0, ID1, ID2, ID3, ID4}. Then, at the start
of the next epoch the subscriber will have to request each of the five identi-
fiers. Clearly the smaller the publisher-subscriber epoch length, the more often
a subscriber will have to request the system for notifications. In the continuous
AnoNotify instead of a fixed server epoch there is a moving time window in
which notifications are deleted and added. Publisher-subscriber epochs will be
set depending on the granularity of activity they wish to capture.

Publisher-subscriber epoch lengths are entirely context dependent; a social
network presence notification system will likely have much shorter publisher-
subscriber epoch lengths than a storage system.

8 Experimental Evaluation

Three key advantages of AnoNotify over previous work [5] are efficiency, ex-
tremely low cost (even in large scale), and ease of implementation. In this section
we describe a prototype implementation of AnoNotify, based on web technologies
for the server components, and Tor as an anonymity system, and in particular,
discuss design decisions to improve performance.

8.1 Distributing the Load

In epoch-based presence mechanisms, such as DP5 [5], we expect a high load
of queries at the beginning of every epoch. At that time, clients both update
their presence and retrieve the presence of their friends. To distribute the load,
AnoNotify follows a different approach to distribute load without increasing
average latency.

An AnoNotify client periodically sends a single request to both send a notifi-
cation and perform a query. Assume epochs of |e| minutes each. Every AnoNotify
client uniformly chooses an offset time from (0, |e|) from the beginning of the
epoch and at that time sends the combined notification and query to the shard.

To implement the basic AnoNotify scheme, each AnoNotify server maintains
two Bloom filters for each shard it controls, the current and the next. Upon
receiving a notification the server always adds elements to the next Bloom filter
and returns the current filter. At the end of every epoch, the next becomes the
current and next is set to be an empty Bloom filter.

The data in the current Bloom filter that users receive is updated to |e|
minutes before the response is generated on average. This latency is the same,
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on average, as for clients accessing the server at the beginning of the epoch
(like in DP5): since the client sends the requests uniformly within each epoch,

there is an average delay of |e|2 minutes from the beginning of the current epoch.
The subscriber is interested in notifications from a previous epoch, which were
also posted at a uniform time within the previous epoch. Therefore, there is

additional delay of |e|2 minutes on average. Hence, the total delay is a single
epoch (|e| minutes) on average, as predicted by the theoretical latency analysis
for the basic mechanism.

8.2 Implementation & Infrastructure

We implement AnoNotify as a web-server that clients can easily access through
the most popular anonymity network today, Tor [12]. We are aware that Tor
only provides anonymity properties against a local or limited passive adversary,
and thus the experimental system inherits this limitation. Since we are con-
cerned with performance we focus on supporting as many clients as possible,
and decreasing the connection time between the client and the server.

Our implementation of AnoNotify consists of two servers: a front-end with
whom the clients communicate, and a back-end server that maintains the Bloom
filters. We designed the basic AnoNotify such that queries are served as requests
for a static resource: since those only need to retrieve the Bloom filter corre-
sponding to a previous epoch. Leveraging this, the task of the front-end server
is no harder than a simple web-server serving static large resources; caching and
content distribution network may be used to speed this up. We expect the size
of the Bloom filter served to be similar to the size of an image, between several
kilobytes to a few megabytes.

To perform a query and retrieve the Bloom filter, AnoNotify clients just send
an HTTP GET request to the front-end server. To optionally register a notifica-
tion, the clients can additionally send the notification identifier for the current
epoch as a parameter to the HTTP request. The front-end server immediately
responds with the relevant current Bloom filter, that is stored as a static file,
and forwards the request to the back-end server to update the next filter. At
the beginning of every epoch, the back-end server sends the next Bloom filters,
one for each shard, to the front-end server, and the front-end server replaces the
current Bloom filter with it.

We used Nginx4 for the front-end server due to its high performance in serv-
ing static resources. We implemented the back-end server in Java, relying on
Netty5netty, a non-blocking I/O (NIO) client-server framework. We relied on
Google Guava’s implementation of Bloom filter6. The front-end implementation
simply consists of the Nginx configuration file, and the back-end is 300 lines of
Java code.

4 The NGINX Web Serverhttps://www.nginx.com/
5 The Netty Framework http://netty.io/
6 Guava: Google Core Libraries for Java https://github.com/google/guava
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Fig. 3. AnoNotify’s implementation evaluation summary. The system scales perfectly
for the increasing number of clients. Larger shards implies higher bandwidth and cost
per client. The cost evaluation was done according to Amazon EC2 m4.large instances.

8.3 Evaluation and Comparison to DP5

To evaluate AnoNotify, we ran an AnoNotify server on a single Windows7 OS,
8GB RAM machine. The back-end and the front-end ran as two processes. From
another machine, we ran our client program from several processes to simulate
100K requests in epochs of 5 minutes. We tested the system for shards from
10 to 100Kb. Larger shards mean larger Bloom filters to retrieve and higher
bandwidth.

A single machines served 100K clients for a shard size was up to 30Kb.
For larger shards we encountered sporadic failures for some clients, and had to
add additional servers to handle some shards. The design of AnoNotify allows
distributing the shards among several machines without overhead. The yearly
cost of an Amazon EC2 m4.large instance (in April 2016), which is equivalent to
the machine we used, is $603 per year. Dividing the cost of additional machine
to 100K clients implies minimal additional cost of less than a single cent per
client. Our measurements indicate an additional server is required for each 30Kb
increase of the shard size.

We calculated the cost of running AnoNotify in the Amazon cloud. The main
factor in the cost calculation was the bandwidth that is increased linearly as a
function of the shard size. However, the bandwidth cost per byte is decreased
as the system consumes more bandwidth, e.g., for larger shards and for more
clients.

Figure 3 illustrates our costs estimation, extrapolated from measurements
using our experimental setup, for a full year of operation in the Amazon cloud.
The costs are illustrated in monetary values, on the basis of the cost of an
Amazon EC2 m4.large instances. The results shows that AnoNotify is indeed
very efficient, and extremely cheap to operate in the real world. Figure 3(a)
shows that the yearly cost per client ranges from a few cents (shards of 10Kb)
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to less than a quarter (shards of 100Kb). Figure 3(b) shows the linear growth
in the yearly bandwidth used by AnoNotify client as a function of the shard
size. However, as depicted by Figure 3(c), the AnoNotify scales perfectly in the
number of clients, such that the cost per client even decreases as there are more
clients in the system.

Compared to the thousands of C++ lines in the DP5 [5] implementation,
AnoNotify was significantly easier to implement. Although implemented in Java,
our implementation efficiently supports a hundred thousand clients, and can be
scaled to millions of clients easily with significantly lower yearly cost of a few
cents. Moreover, unlike DP5, the cost per client does not grow when more clients
are using the system.

9 Applications

Notification-only Applications. The first application is a privacy-preserving
version of event-notification services, such as the popular Yo application [31].
Yo and similar applications allow one user to send a content-free notification
to peer(s). In Yo, the receiving applications notify the user by transmitting the
word “Yo”, in text and audio. Such event notification services can be used for
social purposes, as well as to provide simple information about events, e.g., Yo
was used to warn Israeli citizens of missile strikes [1].

The second application is Anonymous Presence Services. The goal of anony-
mous presence services is to allow users to indicate their ‘presence’, i.e., availabil-
ity for online communication to their peers. It is one of the functionalities usually
provided by social networks such as Skype and Facebook. A privacy-preserving
presence protocol, providing presence indications to users while hiding their rela-
tionships, was presented in [5]. Their solution relies on cryptography and is rather
complex to implement, whereas AnoNotify provides an easier-to-implement and
more efficient solution.

The third application is privacy-preserving blacklists, e.g., of phishing domain
names. The goal is to allow a relying party, e.g., a browser or email server, to
check if a given domain name (or other identifier) is ‘blacklisted’, without expos-
ing the identity of the domain being queried. In particular, all major browsers
use some ‘safe browsing’ blacklist to protect users from phishing and malware
websites. Google Safe Browsing (GSB) alone accounts for a billion users to date
[21]. To protect users privacy, clients do not lookup the suspect URL or domain-
name, instead the query is for a cryptographic hash of the domain-name or
URL. However, as already observed [18], providers can still identify the query.
AnoNotify provides an alternative which truly protects privacy, and with com-
parable overhead. We note that Bloom filters are already widely used to improve
efficiency of blacklists, e.g., see [25,17].

In all applications, AnoNotify allows preserving the privacy of users, by hiding
the relationships between users and the notifications they receive or send. The
use of AnoNotify is easy, and has insignificant performance overhead in addition
to the use of anonymous channels. However, notice that AnoNotify exposes the
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total number of clients currently connected to the system. We believe this is not
a concern in many applications. Indeed, many services publish an estimate of
the number of online clients, e.g., see Tor metrics [26].

Privacy-Preserving Caching and Storage Services. A classical use for
Bloom filters, is to improve the efficiency of caching and storage mechanisms,
by allowing efficient detection when cached items were updated (or not). In
particular, Bloom filters were used to improve the efficiency of web-caches [15,6].

AnoNotify can similarly improve the efficiency of caching and storage mech-
anisms - while also protecting privacy. This is especially important for privacy-
preserving storage mechanisms such as Oblivious RAM [20,30] and PIR [8],
where each access involves significant overhead - hence, avoiding unnecessary
requests has a large impact on performance.

Due to its high efficiency, AnoNotify can also be used to improve the privacy
of web and DNS caches. In particular, web-users may use AnoNotify to improve
the efficiency of anonymous-browsing mechanisms such as Tor [26] and the use
of AnoNotify seems to offer significant performance improvements compared to
existing proposals for protecting privacy of DNS users, see [23,29,16]. However,
to fully benefit from AnoNotify it would have to be extended to a group notifi-
cation setting, ensuring only one publisher may post a notification, an multiple
subscribers can receive it privately. This is a challenging area for future work.

10 Conclusions

AnoNotify provides efficient and private notifications in a scalable manner,
unlike previous approaches like DP5 [5] that could not scale past 1 million users.
In contrast AnoNotify benefits from many users and the number of shards and
size of the underlying anonymity system used may be tuned to provide mean-
ingful, but not perfect, privacy protection. Using Bloom filters allows for more
efficient downloads and notification lookups, leading to a system that can sup-
port a large number of users at a lower cost than PIR. AnoNotify lowers the
quality of protection to achieve scalability, but does so in a controlled and well
understood manner: the concrete security theorems indicate the advantage of the
adversary, and the differentially private lemmas may also be used in the future
to estimate the loss due to repeated queries.
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A Proof of Main Theorem

Proof. To prove the main security theorem, and ultimately show that AnoNotify
is ∆-private, we need to show that the adversary can only win the game in
Definition 1, with an advantage ∆ over a random guess. We do so by first arguing
that the adversary learns nothing from rounds preceding the challenge round,
and then computing the advantage given the information in this final round.

We proceed through “game hopping” with slight modifications over the initial
security Definition 1, including the IndNotExp experiment (Game0). We first
note that in the concrete protocol N .Notify and N .Query act on notification
IDs generated using a Pseudo-random function (PRF) keyed with an unknown
key to the adversary and the epoch number (IDt = PRFck(t)). Thus, we can
replace all instances of the first invocation of the PRF by true random functions
(Game1). The adversary can only distinguish between the original experiment
Game0 and Game1 with negligible advantage due to the properties of secure
PRFs. In Game1 the information within each epoch is statistically independent,
and thus an adversary cannot learn anything about the final round from previous
ones. Thus, we define Game2 that consists only of the final challenge round, and
the advantage of the adversary winning this game is equal to winning Game1.

In the final round the security definition restricts the adversary to not issue
notifications for a number of queries seen. Thus we define Game3 in which we
provide the random IDt for all notifications that have been requested in the
final round. We argue that this additional information increases the adversary
advantage in winning Game3 over Game2.

Finally, Game3 consists of the final challenge epoch and the only uncertainty
of the adversary are the exact IDt of non observed but queried notifications, and
also whether user n− 1 or user n has acted (depending on the challenge bit b).
All IDt of non-target users are random, and the IDt of the two potential target
users are known. Thus the adversary now has to decide on the basis of the
volume X0 and X1 observed in the shard s0, s1 corresponding to n − 1 and n
respectively, what the challenge b was.

We compute the adversary advantage in Game3 directly. We denote S0, S1

the events that the target user queried shards s0, s1 corresponding to users n−
1, n with notification identifiers IDt

n−1, ID
t
n. Lemma 1 then shows that given

two known shards and u − 1 random shards we can find ε, δ such that for user
n−1 and n and all query volumes observed by the adversary: Pr[X0, X1|n−1] ≤
eε Pr[X0, X1|n] with probability at least 1−δ. Lemma 2 then concludes the proof
by showing this differentially private property can be translated to a concrete
adversary advantage ∆, and the proof concludes.
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B Proof of Lemma 1

Proof. We define as S0, S1 the events that either shard s0 or s1 was queried. For
a mapping function F , which maps the users identifiers to the storing shards,
such that F (n− 1) = s0 we have

Pr[X0 = x0, X1 = x1|n− 1] = Pr[X0 = x0, X1 = x1|n− 1, S0]. (1)

Using the properties of the conditional probability7 we obtain the following
equality (proof in Lemma 3 in Appendix B), and using (1) we have:

Pr[X0 = x0, X1 = x1|n− 1, S0] = Pr[X0 = x0, X1 = x1|S0]⇒ (2)

Pr[X0 = x0, X1 = x1|n− 1] = Pr[X0 = x0, X1 = x1|S0]. (3)

Now, we can prove that the events when either subscriber n − 1 or n is
requesting in the challenge is (ε, δ) - differentially private, so the adversary who
wants to infer which subscriber is querying is not able to distinguish this two
events with significant probability.

The probability density function of the binomial distribution Bin
(
n, 1

p

)
is Pr[X =

k] =
(
n
k

) (
1
p

)k (
1− 1

p

)n−k
. The probabilities that either subscriber n − 1 or n

request for identifier IDn1
and IDn are denoted as

Pr[X0 = x0, X1 = x1|S0] =

(
u− 1

k

)(
2

S

)k (
S − 2

S

)u−k−1(
k

x0 − 1

)(
1

2

)x0−1(
1

2

)k−x0+1

Pr[X0 = x0, X1 = x1|S1] =

(
u− 1

k

)(
2

S

)k (
S − 2

S

)u−k−1(
k

x1 − 1

)(
1

2

)x1−1(
1

2

)k−x1+1

.

Thus, we have

Pr[X0 = x0, X1 = x1|S0] =
x0

x1
Pr[X0 = x0, X1 = x1|S1].

So we would like to ensure, that x0

x1
≤ eε, which implies x1 ≥ e−εx0.

Let C = 2(u−1)
S − γ, where γ = τ · 2(u−1)

S and τ ∈ (0, 1). We define the value of δ
(related to the events when it is easy to distinguish the two observations in our
challenge) as below

δ =
(I)

Pr[X0 +X1 ≤ C]︸ ︷︷ ︸
Bin(u−1, 2S ]

+
(II)

Pr[X1 ≤ e−εX0|X0 +X1 ≥ C]︸ ︷︷ ︸
Bin(C, 12 )

. (4)

From the Chernoff bound for a random variable X, which is a sum of independent
variables with Bernoulli distribution, we have

Pr[X ≤ (1− d)E[X]] ≤ e
−E[X]d2

2 .

7 Pr[A|C,B] · Pr[C|B] = Pr[A,C|B] =⇒
∑

C (Pr[A|C,B] · Pr[C|B]) = Pr[A|B], for
the events A,B,C, such that Pr[C,B] > 0,Pr[B] > 0.
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First, we estimate the part I of equation (4)

Pr [X0 +X1 ≤ C]
X=X0+X1= Pr [X ≤ C] = Pr

[
X ≤ 2(u− 1)

S
− γ
]

= Pr

[
X ≤ (1− τ)

2(u− 1)

S

]
≤ exp

(
−2(u− 1)τ2

2S

)
= exp

(
− (u− 1)τ2

S

)
.

Now, we estimate part II

Pr[X1 ≤ eεX0|X0 +X1 ≥ C] ≤
u∑
i=C

Pr[X1 ≤ eεX0|X0 +X1 = i] Pr[X0 +X1 = i]

≤
u∑
i=C

Pr[X1 ≤ e−εX0|X0 +X1 = C] Pr[X0 +X1 = i] ≤ Pr[X1 ≤ e−εX0|X0 +X1 = C].

Thus, X1 ≤ e−ε(C −X1), which implies X1 ≤ e−εC
1+e−ε .

Applying this to the upper equation we have

Pr

[
X1 ≤

e−εC

1 + e−ε

]
= Pr

[
X1 ≤

C

2
· 2e−ε

1 + e−ε

]
= Pr

[
X1 ≤

C

2
·
(

1− 1− e−ε

1 + e−ε

)]
≤ exp

(
−C

2
· 1

2

(
1− e−ε

1 + e−ε

)2
)

= exp

(
− (u− 1)

2S

(
1− e−ε

1 + e−ε

)2
)
.

Taking these two equations together, we obtain

δ ≤ exp

(
− (u− 1)τ2

S

)
+ exp

(
− (u− 1)

2S

(
1− e−ε

1 + e−ε

)2
)
.

The above bound gives us the estimation of the value of δ, which bounds
the probability of very rare events which can destroy our differential privacy
guarantee. Note, that we have a dependency between δ and ε in this equation,
so we can select both values to work the best for us. In the next sections, we
present the experimental evaluations of the security parameters ε, δ.

Lemma 3. For random variables X0, X1 and events n − 1, n, S0, S1 defined as
in Section 6 we have the following dependency

Pr[X0, X1|n− 1, S0] = Pr[X0, X1|S0].

Proof. From conditional probability properties and the fact, that Pr[S0] = 1
2 ,

Pr[n− 1, S0] > 0 we can write that∑
i

(Pr[X0, X1|i, S0] · Pr[i|S0]) = Pr[X0, X1|S0].

The sum of the probabilities over requesting subscribers can be considered as a
sum of the probabilities for the users i which map to shard s0 and those who do
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not. As N0 we denote a set of users whose identifiers map to shard s0. Following
this, we can present the previous equation as∑
i∈N0

Pr[X0, X1|i, S0] · Pr[i|S0] +
∑
i/∈N0

Pr[X0, X1|i, S0] · Pr[i|S0] = Pr[X0, X1|S0].

Because Pr[i|S0] = 0 for each i /∈ N0 we have

Pr[X0, X1|n− 1, S0] ·
∑
i∈N0

1

|N0|
= Pr[X0, X1|S0]⇒

Pr[X0, X1|n− 1, S0] = Pr[X0, X1|S0].

C Proof of Lemma 2

In this section, we present the proof of Lemma 2. From Lemma 1 we know, that a
differentially private bound holds for the that probability an adversary observes
volumes of the shards resulting from events S0, S1 (with some probability 1−δ).
On the basis that since Pr[S0] = Pr[S1] = 1

2

Pr[X0, X1|S0] ≤ eε Pr[X0, X1|S1]

Pr[X0, X1|S0] Pr[S0] ≤ eε Pr[X0, X1|S1] Pr[S1]

Pr[S0|X0, X1] ≤ eε Pr[S1|X0, X1].

Since the probabilities of all possible outcomes of an event must sum up to 1,
Pr[S0|X0, X1] = (1/2 +∆ε) = 1− Pr[S1|X0, X1]. Following this, we obtain

1

2
+∆ε ≤ eε

(
1

2
−∆ε

)
⇒ ∆ε ≤

eε − 1

2 (eε + 1)
=

1

2
tanh

( ε
2

)
.

The total value of ∆, which is the probability that the adversary guesses suc-
cessfully is bounded as

∆ ≤ (1− δ) · eε − 1

2 (eε + 1)
+ δ.

since the differential privacy holds with probability 1− δ and otherwise we can
even assume that she automatically can guess correctly.

D Known Theorems

Theorem 1. False positive probability for a Bloom filter of size n constructed
using k hash functions after inserting m elements is defined as fp(n, k,m) =(

1−
(
1− 1

n

)km)m ≈ (1− e−mkn
)m

.

Theorem 2. The number of hash functions, which minimizes the probability of
false positive error is k = n

m log 2.
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