
Partition-Based Trapdoor Ciphers

Arnaud Bannier, Nicolas Bodin, and Eric Filiol

ESIEA, (C + V )O Lab, Laval, France,
{bannier, bodin, filiol}@esiea.fr

Abstract. This paper deals with block ciphers embedding a trapdoor
which consists to map a partition of the plaintext space to a partition
of the ciphertext space. In a first part, this issue is reduced to the study
of the S-boxes of the cipher satisfying a few criteria. Then, differential
and linear properties of such S-boxes are assessed and an algorithm to
build optimal S-boxes is provided. Finally, these primitives are used to
design a small trapdoor cipher resistant to linear and differential crypt-
analysis. This trapdoor allows to recover the κ-bit master key with only
one plaintext/ciphertext pair and an effort of 2κ2 encryptions.
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1 Introduction

1.1 Motivation

Trapdoors are a two-face, key concept in modern cryptography. It is primarily
related to the concept of “trapdoor function” – a function that is easy to com-
pute in one direction, yet difficult to compute in the opposite direction without
special information, called the “trapdoor”. This first “face” relates most of the
time to asymmetric cryptography algorithms. It is a necessary condition to get
reversibility between the sender/receiver (encryption) or the signer/verifier (dig-
ital signature). The trapdoor mechanism is always fully public and detailed. The
security and the core principle is based on the existence of a secret information
(the private key) which is essentially part of the trapdoor. In other words, the
private key can be seen as the trapdoor.

The second “face” of the concept of trapdoor relates to the more subtle and
perverse concept of “mathematical backdoor” and is a key issue in symmetric
cryptography (even if it may be extended to asymmetric cryptography; see for
example the case of the DUAL EC_DRBG [15]). In this case, the aim is to
insert hidden mathematical weaknesses which enable one who knows them to
break the cipher. If possible, these weaknesses should be independent from the
secret key. In this context, the existence of a backdoor is a strongly undesirable
property.

In the rest of the present section, we will oppose the term of trapdoor (de-
sirable property) to that of backdoor (undesirable property). However, in the



subsequent sections of the paper we will keep the term of trapdoor which has
been already used in the very few literature covering this second face of this prob-
lem. We suggest however to use the term of backdoor to describe the issue of
hidden mathematical weaknesses. This would avoid ambiguity and maybe would
favor the research work around a topic which is nowadays mostly addressed by
governmental entities in the context of cryptography control and regulations.

Inserting backdoors in encryption algorithms underlies quite systematically
the choice of cryptographic standards (DES, AES. . . ). The reason is that the
testing, validation and selection process is always conducted by governmental
entities (NIST or equivalent) with the technical support of secret entities (NSA
or equivalent). So an interesting and critical research area is: “how easy and
feasible is it to design and insert backdoor (at the mathematical level) in en-
cryption algorithms?” This paper intends to address one very particular case
of this question. It is important to keep in mind that a backdoor may be itself
defined in the following two ways.

– As a “natural weakness” known – but non disclosed – only by the tester/vali-
dator/final decision-maker (e.g. the NSA). The best historic example is that
of the differential cryptanalysis. Following Biham and Shamir’s seminal work
in 1991, NSA acknowledged that it was aware of that cryptanalysis years ago.
Most of experts estimate that it was nearly 20 years ago.

– As an intended design weakness put by the author of the algorithm. To the
authors knowledge, there is no known cases for public algorithms yet.

As far as symmetric cryptography is concerned, there are two major families
of cipher systems for which the issue of backdoor must be considered differently.

– Stream ciphers. Their design complexity is rather low since they mostly rely
on algebraic primitives (LFSRs and Boolean functions which have intensely
been studied in the open litterature). Until the late 70s, backdoors relied
on the fact that quite all algorithms were proprietary and hence secret. It
was then easy to hide non primitive polynomials, weak combining Boolean
functions. . . The Hans Buehler case in 1995 [16] shed light on that particular
case.

– Block ciphers. This class of encryption algorithm is rather recent (end of the
70s for the public part). They exhibit so a huge combinatorial complexity
that it is reasonable to think to backdoor. As described in [6, section 5.5] for
a κ-bit secret key and a m-bit input/output block cipher there are ((2m)!)2κ

possible such block ciphers. For such an algorithm, the number of possible
internal states is so huge that we are condemned to have only a local view of
the system, that is, the round function or the basic cryptographic primitives.
We cannot be sure that there is no degeneration effect at a higher level. This
point has been addressed in [6, pp 124] when considering correlation attacks.
Therefore, it seems reasonable to think that this combinatorial richness of
block cipher may be used to hide a backdoor.
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1.2 Previous Work

One of the first trapdoor cipher was created in 1997 by Rijmen and Preneel
in [14]. The S-boxes are selected randomly and then modified to be weak to
the linear cryptanalysis. They are finally applied to a Feistel cipher such as
CAST or LOKI91. But because of the big size of the S-boxes, the linear table
of such an S-box cannot be computed. However the knowledge of the trapdoor
gives a good linear approximation of the S-boxes which is then used in a linear
cryptanalysis. As an example, the authors created a 64-bit block cipher based
on CAST cipher, and four 8×32 S-boxes. If the parameters of the trapdoors are
known, a probabilistic algorithm allows to recover the key easily. Such a family
of trapdoor ciphers leads to recover only a part of the key, and the authors
claim that the trapdoor is undetectable. But in [17], Wu and al. discovered a
way to recover the trapdoor if the attacker knows its global design but not the
parameters. They also showed that there exists no parameter allowing to hide
the trapdoor. Nevertheless, it is worthwhile to mention that in practice, if a real
cipher containing a trapdoor is given, the presence of the trapdoor will certainly
not be revealed. Thereby, we will not focus in this section and in the rest of this
article on ways to recover the trapdoor, but still propose strong enough S-boxes
to hide this trapdoor if its global design is not revealed.

Our work is mainly a generalization of the ideas presented by Patterson in
[13]. In this article, a DES-like trapdoor cipher exploiting a weakness induced by
the round functions is presented. The group generated by the round functions
acts imprimitively on the message space to allow the design of the trapdoor.
In other words, this group preserves a partition of the message space between
input and output of the round function. Such a construction leads to the de-
sign of a trapdoor cipher composed of 32 rounds and using a 80 bits key. The
knowledge of the trapdoor allows to recover the key using 241 operations and 232

plaintexts. Even if the mathematical material to build the trapdoor is given, no
general algorithm is detailed to construct such S-boxes. Furthermore, as author
says, S-boxes using these principles are incomplete (half of the cipher text bits
are independent of half of the plaintext bits). Finally, the security against the
differential attack is said not as high as one might expect. These three points
are corrected or improved in our work, in which we also answer to the author’s
question in which he wondered whether the structure of trapped S-boxes acting
imprimitively on the message space had to be linear.

More recently in [1], the authors created non-surjective S-boxes embedding
a parity check to create a trapdoor cipher. The message space is thus divided
into cosets and leads to create an attack on this DES-like cipher in less than 223

operations. The security of the whole algorithm, particularly against linear and
differential cryptanalysis is not given and the authors admit that their attack
is dependent on the first and last permutation of the cipher. Finally, the non-
surjective S-boxes may lead to detect easily the trapdoor by simply calculating
the image of each input vector. This problem is naturally avoided in a SPN in
which S-boxes are bijective by definition.
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In a slightly different context, Caranti and al. answer to Patterson’s question
by the affirmative in [4], by proving that the imprimitivity of the group generated
by round functions is actually related to the cosets of a linear subspace. They
also give some conditions to create such a primitive group to design a secure
cipher that cannot contain such trapdoor, and finally show that AES respects
these conditions. They add in [3] an algorithm to verify this last condition simply
and show that AES and Serpent S-boxes verify this property.

1.3 Contributions

As detailed in the previous section, we intend to generalize the work of [13]
and [7] for Substitution-Permutation Networks (SPN). We study such encryp-
tion systems which map a partition of the plaintext space to a partition of the
ciphertext space, independently from the round keys. To this end, the next sec-
tion introduces some notations and definitions. Then, our results are organized
as follows.

First, we show in Section 3 that the round function of such an encryption
system must necessarily map a partition to another one. Moreover, this partition
must be linear (the set of vector space cosets). Then we show that the subtitution
layer must necessarily map a linear partition to another one.

Second, we show in Section 4 that at least one S-box must map a linear
partition to another one. When combining all these results, we prove that any
encryption system which maps a partition to another one, must involve a S-box
which itself maps a linear partition to another one. In practical terms, it means
that we can restrict the study of the global encryption algorithm to the that of
a single S-box.

Then, we study in Section 5 the linear and differential properties of S-boxes
which map a linear partition to another one. We obtain several structural the-
orems as well as lower bounds regarding the linear and differential uniformity
of such S-boxes. We also give an algorithm to build this kind of S-boxes which
reach these bounds, effectively.

As a practical application, we give in Section 6 an example (a toy cipher) of
a trapdoor encryption system, based on our results. We explain how it works
and its design rationales. Let us mention the fact that our attack used then to
break this system (with the knowledge of the trapdoor) has been suggested by
Paterson who never used it practically.

Eventually, the conclusion and future works are presented in Section 7. Fur-
thermore, it should be stressed that almost all the proofs of our results will be
given in Appendices.

2 Preliminaries

Let us begin with some notations and conventions.

Notation. Let n and s denote positive integers. For two maps f and g, the
composition g ◦ f (or simply gf) denotes the evaluation of f followed by g. For
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any set E, let #E denotes its cardinality. If F is a subset of E, F c denotes its
complement.

Let us denote the Galois field of order two by F2 and 0n = (0, . . . , 0) the zero
vector of Fn2 . All the vector spaces considered in this paper are over the finite
field F2. It is worthwhile to mention that (Fn2 )s will be often identified with Fns2 .
The concatenation of two vectors x and y is denoted [x ‖ y].

A n-bit S-box is any permutation of Fn2 . If x and y are two elements of Fn2 ,
then 〈x, y〉 =

∑n
i=1 xiyi. If L : Fn2 → Fm2 is a linear map, define Lᵀ : Fm2 → Fn2

by 〈Lᵀ(x), y〉 = 〈x, L(y)〉 for every (x, y) ∈ Fn2 × Fm2 . In other words, Lᵀ is the
transpose of L for the bilinear form 〈·, ·〉.

Since we are concerned with ciphers which associate a partition of the ci-
phertext space to another partition of the plaintext space, let us introduce the
following definition.
Definition 2.1. Let f be a permutation of E and A, B be two partitions of
E. Let f(A) denote the set {f(A) | A ∈ A}. We say that f maps A to B if
f(A) = B.

The two partitions {{x} | x ∈ E} and {E} are called the trivial partitions of
E. Observe that, for any permutation f of E,

f({{x} | x ∈ E}) = {{x} | x ∈ E} and f({E}) = {E} .

That is, every permutation maps a trivial partition to another one. Moreover it
should be highlighted that if f maps A to B and if A is non-trivial, then so is B.

In this paper, we are going to use a special kind of partitions which consists
of cosets of a linear subspace. Such partitions have already been introduced by
[7, Definition 4.4] and are recalled below.
Definition 2.2 (linear partition). Let A be a partition of Fn2 . Let V denote
its part containing 0n. The partition A is said linear if V is a subspace of Fn2
and if every part of A is a coset of V in Fn2 , in other words, if

A = {x+ V | x ∈ Fn2} = Fn2 / V .

We denote L(V ) such a partition.
It turns out that the linear partitions associated to the two trivial subspaces

of Fn2 , that is {0n} and Fn2 , correspond with the two trivial partitions of Fn2 .
Moreover, if V is a non-trivial subspace of Fn2 , then the linear partition L(V ) is
also non-trivial.

The following two propositions are interesting properties of linear partitions
which will be used in the rest of the paper.
Proposition 2.3. Let V1, V2,W1,W2 be four subspaces of Fn2 and f be a per-
mutation of Fn2 which maps L(V1) to L(W1) and L(V2) to L(W2). Then f maps
L(V1 ∩ V2) to L(W1 ∩W2).
Proposition 2.4. Let V , W be two subspaces of Fn2 and f be a permutation of
Fn2 which maps L(V ) to L(W ). There exists an automorphism L of Fn2 such that
L(V ) = W . In particular, V and W are isomorphic.
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3 Substitution-Permutation Networks and Partitions

Substitution-Permutation Networks, or SPN for short, belong to the class of
iterated block ciphers. As every iterated block ciphers, the encryption function
consists to apply a simple keyed operation called round function several times. A
different round key is used for each iteration of the round function. In practice,
these rounds keys are extracted from a master key using an algorithm called
key schedule. In a SPN, the round function is made of three distinct stages:
a key addition, a substitution layer and a permutation or diffusion layer. The
substitution layer consists of the parallel evaluation of several S-boxes and is the
only part of the cipher which is not linear or affine. Then, the diffusion layer is
the evaluation of some linear maps (generally one).

Definition 3.1 (SPN). Let s, n ≥ 1 be two integers. Let σ1, . . . , σs be n-bit
S-boxes and π : Fns2 → Fns2 be an isomorphism. Define the map

σ : (Fn2 )s −→ (Fn2 )s

(x1, . . . , xs) 7−→ (σ1(x1), . . . , σs(xs)) .

For any round key k in Fns2 , let αk : Fns2 → Fsn2 defined by αk(x) = x + k. The
maps αk, σ and π are called the key addition, the substitution layer and the
diffusion layer respectively.

The round function Fk associated with the round key k in Fns2 is defined by
Fk = πσαk. Let r ≥ 1 be an integer. The r-round encryption function associated
with the round keys (k1, . . . , kr+1) in (Fns2 )r+1 is defined by

E(k1,...,kr+1) = αkr+1Fkr . . . Fk1 .

It is worth recalling that we consider a SPN which maps a partition to another
one independently from the round keys used. Thus, we consider round keys which
are not necessarily derived from a master key by a key schedule. Consequently,
the key schedule will be deliberately omitted throughout the article.

Now, we turn our attention to the key addition and to the diffusion layer. The
next proposition explains the fundamental property of linear partitions according
to the key addition. This result was introduced by Harpes in [7]. Later, Caranti et
al. gave a similar result expressed for imprimitive groups in [4]. For convenience,
we restate this result with our own notations.

Proposition 3.2. Let m be a positive integer. Let A and B be two partitions of
Fm2 . For each k in Fm2 , let αk denote the permutation of Fm2 defined by αk(x) =
x + k. Then, the permutation αk maps A to B for any k in Fm2 if and only if
A = B and A is a linear partition.

The, we focus on the diffusion layer in the next proposition.

Proposition 3.3. Let m be a positive integer. Let L be an automorphism of Fm2
and V a subspace of Fm2 . Then, L(L(V )) = L(L(V )). In particular, L maps a
linear partition to another one.
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Using the previous two propositions, we can now state our first main result
about the structure of SPN which maps a partition of the plaintext space to a
partition of the ciphertext space independently of the round keys.
Theorem 3.4. Let A and B be two partitions of Fns2 . Suppose for any (k +
1)-tuples of round keys (k1, . . . , kr+1) in (Fns2 )r+1 that the encryption function
E(k1,...,kr+1) maps A to B. Define A1 = A and for all 2 ≤ i ≤ r + 1, Ai =
(πσ)i−1(A). Then,
– Ar+1 = B;
– for any 1 ≤ i < r + 1 and for any ki in Fns2 , Fki(Ai) = Ai+1;
– for any 1 ≤ i ≤ r + 1, Ai is a linear partition.
The result of this theorem can be restated in the following way. Firstly, the

partitions A and B must be linear. However, the number of linear partitions is
well below the number of any partition. Hence, the apparent and initial combi-
natorial aspect of our study is reduced to an algebraic one.

Secondly, we only suppose that the encryption function maps A to B after
r rounds. Nevertheless, Theorem 3.4 ensures that any reduced version of this
function also maps the partition A to another linear partition. In particular,
the round function necessarily maps one linear partition to another one. As a
consequence, our study of the full cipher is reduced to the study of the round
function. Moreover, we have the following result.

A

=

A1

α
k

1 A1 σ π A2 . . . Ar α
k
r Ar σ π Ar+1

α
k
r

+
1 B

=
Ar+1

Fk1 Fkr

E(k1,...,kr+1)

Fig. 1. Representation of Theorem 3.4

Corollary 3.5. Keep the notations of Theorem 3.4. For all 1 ≤ i ≤ r + 1, let
Vi denote the part of Ai containing 0. According to Theorem 3.4, Ai = L(Vi).
Let 1 ≤ i ≤ r be an integer. Then,

σ(L(Vi)) = L(Wi) .
where Wi denotes the subspace π−1(Vi+1). In particular, the substitution layer
must at least map one linear partition to another one.

Combined with Theorem 3.4, this corollary ensures that if a cipher maps a
partition A to a partition B, then the substitution layer has to map at least one
linear partition to another one. Our study is thus reduced to the substitution
layer, which is the aim of the following section.
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4 Structure of the Substitution Layer

In the remainder of this section, V and W denote two subspaces of (Fn2 )s. Recall
that the substitution layer is itself composed of several cryptographic primitives,
the S-boxes. Suppose that the substitution layer σ maps L(V ) to L(W ). At first
sight, this hypothesis implies properties over all the S-boxes and not over each S-
box independently of the others. The goal of this section is to highlight properties
which only apply to one S-box.

4.1 Truncating a Few S-Boxes

Let E be any non-empty subset of J1, sK. Let us define the following maps

TE : (Fn2 )s −→ (Fn2 )E σE : (Fn2 )E −→ (Fn2 )E

(xi)1≤i≤s 7−→ (xi)i∈E (xi)i∈E 7−→ (σi(xi))i∈E .

If E has cardinalitym, then we identify (Fn2 )E with (Fn2 )m. The map TE allows to
shorten a vector of (Fn2 )s to keep only the coordinates whose indices belongs to E.
Note that TE is a linear map. The application σE is a substitution layer limited
to the S-boxes whose indices lies in E. Observe that σJ1,sK is the substitution
layer of the SPN. Moreover, the maps σ{i} and σi are equal for all 1 ≤ i ≤ s.

Proposition 4.1 (Truncating a few S-boxes). Suppose that σ maps L(V )
to L(W ). Let E be a non-empty subset of J1, sK. Then, the permutation σE maps
L(TE(V )) to L(TE(W )).

Choosing E = {i} in the previous proposition gives that the i-th S-box σi
maps a linear partition to another one. Therefore, the hypothesis on σ implies
one property on each S-box. Nonetheless, these properties can be trivial.

Let I be a partition of J1, sK. According to Proposition 4.1, for any part I
of I, the limited substitution layer σI maps a linear partition to another linear
one. However, the converse being false in general, this proposition alone cannot
characterize the whole substitution layer. The next subsection intends to obtain
the equivalence.

Example 4.2. Consider the subspace V = {(x, x) | x ∈ F3
2} of (F3

2)2. Define the
permutations f and g of F3

2 by the following tables. Here, the elements of F3
2 are

given in hexadecimal. For instance, 3 stands for (0, 1, 1).

x 0 1 2 3 4 5 6 7
f(x) 0 4 2 6 1 5 3 7

x 0 1 2 3 4 5 6 7
g(x) 2 6 4 1 5 7 0 3

It is easy to verify that f is a linear map whereas g is not.
Firstly, let the 3-bit S-boxes σ1 and σ2 be both equal to f . Thus, the sub-

stitution layer σ is also a linear map on (F3
2)2. According to Proposition 3.3, σ

maps L(V ) to L(V ) as σ(V ) = V . However, the previous proposition does not
imply anything on the S-boxes σ1 and σ2. Indeed, T{1}(V ) and T{2}(V ) are both
equal to F3

2, and hence L(T{1}(V )) and L(T{2}(V )) are trivial partitions.
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Secondly, let σ1 and σ2 be both equal to g. By contradiction, suppose that σ
maps L(V ) to L(W ) where W is a subspace of (F3

2)2. As σ(V ) = V , we obtain
that V = W . Then, σ(0, 1) = (2, 6). Using Lemma A.2 given in Appendix, it
follows that σ((0, 1) + V ) = (2, 6) + V . However, (1, 2) belongs to (0, 1) + V
and σ(1, 2) = (6, 4) does not lies in (2, 6) + V . This is a contradiction. Let
I denote {{1}, {2}}. As explain above, σI maps L(TI(V )) to L(TI(V )) but σ
does not maps L(V ) to any linear partition. This illustrates that the converse of
Proposition 4.1 does not hold.

4.2 Structure of the Subspaces V and W

Let I be a subset of J1, sK. Let us define

TrivI =
s∏
i=1

Triv(i)
I with Triv(i)

I =
{
{0n} if i ∈ Ic

Fn2 if i ∈ I .

In other words, TrivI = {x ∈ (Fn2 )s | ∀i ∈ Ic, xi = 0n}. We call TrivI the trivial
product subspace associated to I. It is indeed easily seen that TrivI is a subspace
of (Fn2 )s. Note that any trivial product subspaces is the Cartesian product of
trivial spaces for each S-box. They are essential in our study because σ always
maps L(TrivI) to L(TrivI), no matter the S-boxes σi are.

Moreover, we define VI = V ∩ TrivI = {v ∈ V | ∀i ∈ Ic, vi = 0n} and
WI = W ∩ TrivI . Note that both VI and WI are subspaces of (Fn2 )s since they
are the intersection of two subspaces. It is worthwhile to note that σ maps L(VI)
to L(WI) according to Proposition 2.3.

Finally, let us define the linear map PI : (Fn2 )s → TrivI which maps the vector
(x1, . . . , xs) to (y1, . . . , ys) where yi = xi if i belongs to I and 0n otherwise.
Observe that PI is a projection from (Fn2 )s onto the subspace TrivI . Note also
that VI is always a subspace of PI(V ). Moreover, TI(V ) = TI(PI(V )).

The next lemma gives some relations between the above notations. It will be
then especially used in the proof of the main theorem of Subsection 4.4.

Lemma 4.3. Let I be a partition of J1, sK. Then V equals the internal direct
sum

⊕
I∈I VI if and only if VI = PI(V ) for any part I of I. In this case, the

decomposition of an element v of V is v =
∑
I∈I PI(v).

Lemma 4.4. Suppose that σ maps L(V ) to L(W ). Let I be a partition of J1, sK.
Then V =

⊕
I∈I VI if and only if W =

⊕
I∈IWI .

The previous lemma allows to focus only on partitions I of J1, sK such that
V =

⊕
I∈I VI instead of partitions satisfying both V =

⊕
I∈I VI and W =⊕

I∈IWI .

Proposition 4.5 (Substitution layer structure). Let I be a partition of
J1, sK such that V =

⊕
I∈I VI . The permutation σ maps L(V ) to L(W ) if and

only if σI maps L(TI(V )) to L(TI(W )) for any I in I.
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In the case where V =
⊕

I∈I VI , this proposition gives the converse of Propo-
sition 4.1. Recall that if I and J are two partitions of J1, sK, then the partition I
is said finer than J if for any I in I, there exists J in J such that I ⊆ J . Thus,
the finer the partition I is, the less S-boxes are involved in the limited substi-
tution layers σI , the closer we are to the primitives of the SPN. Fortunately, we
have the following lemma.

Lemma 4.6. The set of the partitions I of J1, sK satisfying V =
⊕

I∈I VI has
a least element (or a minimum) denoted Imin.

Consequently, we consider this minimal partition Imin is the remainder of
this section.

4.3 Linked and Independent S-Boxes

Proposition 4.5 and Lemma 4.6 then suggest the following definition.

Definition 4.7 (Linked and independent S-boxes). Suppose that σ maps
L(V ) to L(W ). Let I be a part of Imin.

– If I = {i} with i in J1, sK, the S-box σi is said independent. Moreover, if
V{i} = {0nb} or V{i} = Triv{i}, the S-box σi is said inactive. Otherwise, σi
is said active.

– If #I ≥ 2, then the S-boxes whose indices lie in I are said linked together.

Actually, if an S-box σi is independent with regards to the subspaces V and
W , then it can be replaced with any other S-box which maps L(T{i}(V )) to
L(T{i}(W )) and the substitution layer σ still maps L(V ) to L(W ). Furthermore,
if σi is inactive, then it can be replaced with any other n-bit S-box. On the
contrary, if only one of the linked S-boxes is replaced, then the desired property
of the substitution layer may not hold.

Example 4.8. Let us go on with Example 4.2. It is easy to check that Imin =
{{1, 2}}, and thus, the two S-boxes are linked together. If σ1 denotes the map f
and σ2 the map g, it can be verified that σ does not map L(V ) to L(V ) anymore.
Thus, linked S-boxes cannot be replaced independently.

Lemma 4.9. Let I be a part of Imin and E be a non-empty proper subset of I.

– If VE is a trivial product subspace, then VE = Triv∅ = {0ns}.
– If PE(V ) is a trivial product subspace, then PE(V ) = TrivE.

The next lemma states an important result about a particular case of linked
S-boxes.

Lemma 4.10. Let E be a non-empty proper subset of I. Suppose that VE =
VI\E = {0ns} and PE(V ) = TE. Then, for all i in E, σi is an affine map.

Example 4.11. Let us continue Example 4.8. One can check that Lemma 4.10
applies for both E = {1} and E = {2}. As a consequence, σ1 and σ2 must be
affine maps.
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4.4 Reduction to an S-Box

It is now time to present our main result concerning the substitution layer. The
proof is exceptionally put in the body of the paper since it helps to understand
the structure of the subspaces V , W and their relations with the S-boxes.

Theorem 4.12. Let n > 2 and s be two positive integers. Let σ1, . . . , σs be n-bit
S-boxes. Define the permutation σ of (Fn2 )s which maps the element (xi)1≤i≤s to
(σi(xi))1≤i≤s. Let V and W be two subspaces of (Fn2 )s such that σ maps L(V )
to L(W ). Suppose that V is not a trivial product subspace. Then, at least one of
the S-boxes maps a non-trivial linear partition to another one.

Proof. Let us prove this result by complete induction on the number s of S-
boxes. Suppose that s = 1. In this case, σ = σ1. By hypothesis, V is different
from {0n} and Fn2 . Hence, L(V ) is a non-trivial partition and σ1 maps L(V ) to
L(W ).

Let s ≥ 2 be an integer. Suppose that the result holds for any positive integer
strictly lower than s. Firstly, suppose that all the S-boxes are independent. In
other words, Imin = {{i} | i ∈ J1, sK}. If each S-box is inactive, then V is a trivial
product subspace, a contradiction with our hypothesis. Thus, there exists at least
one active S-box σi. In this case, {0ns} ( V{i} ( Triv{i}. According to Lemma
4.3, the equality P{i}(V ) = V{i} holds. Then, T{i}(V{i}) = T{i}(P{i}(V )) =
T{i}(V ) is a non-trivial subspace of Fn2 , so L(T{i}(V )) is also non-trivial. Finally,
Proposition 4.1 states that σi maps L(T{i}(V )) to L(T{i}(W )), and thus the
result holds in this case.

Now, suppose that some S-boxes are linked together. Then, there exists an
element I of Imin such that #I ≥ 2. Next, at least one of the following three
cases holds.

– Suppose that there exists a non-empty proper subset E of I such that PE(V )
is not a trivial product subspace. Let m denote the cardinality of E. Recall
that TE(PE(V )) = TE(V ). It follows that TE(V ) is not a trivial product
subspace of (Fn2 )m. According to Proposition 4.1, σE maps L(TE(V )) to
L(TE(W )). Note that E is a non-empty proper subset of I, so of J1, sK.
Hence m < s, so the induction hypothesis ensures that at least one of the
S-boxes of σE maps a non-trivial partition to another one.

– Suppose that there exists a subset E of I such that VE is not a trivial product
subspace. Recall that σ maps L(VE) to L(WE). Proposition 4.1 ensures that
σE maps L(TE(VE)) to L(TE(WE)). It is easily seen that TE(VE) is not
a trivial product subspace. As before, the result is a consequence of the
induction hypothesis.

– Suppose that PE(V ) and VE are trivial product subspaces for any non-empty
proper subset E of I. Let E be a non-empty proper subset of I. Hence,
PE(V ), VE and VI\E are trivial product subspaces. Then, Lemma 4.9 implies
that PE(V ) = TrivE , VE = VI\E = {0ns}. According to Lemma 4.10, the
S-boxes σ1, . . . , σm are affine maps. Combining Proposition 3.3 and 3.2, we
obtain that these S-boxes maps any non-trivial linear partition to another
linear one.
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In any case, the result holds for this integer s. The result follows by induction.

Combining Theorem 3.4 and Corollary 3.5 with Theorem 4.12, we have
proven that in a cipher which maps a partition to another one, at least one
of the S-boxes must map a linear partition to another linear one.

The following section aims to design such an S-box with the best security
against the main known cryptanalysis of block cipher.

5 Relation with Linear and Differential Cryptanalysis

Differential [2] and linear [11] cryptanalysis are considered as the most impor-
tant attacks against block ciphers [8]. The resistance of a S-box against these
cryptanalysis is assessed with its difference distribution table and its linear ap-
proximation table respectively.

Let f be a permutation of Fn2 . The difference distribution table and the linear
distribution table of f are the two families DTf and LTf indexed by (Fn2 )2 and
defined for any (a, b) in (Fn2 )2 by

(DTf )a,b = #{x ∈ Fn2 | f(x) + f(x+ a) = b}
(LTf )a,b = #{x ∈ Fn2 | 〈a, x〉 = 〈b, f(x)〉} − 2m−1 .

Moreover, the permutation f is said differentially δ-uniform if (DTf )a,b ≤ δ for
any (a, b) in (Fn2 )2 with a 6= 0. Similarly, f is linearly λ-uniform if |(LTf )a,b| ≤
λ for every (a, b) in (Fn2 )2 with a 6= 0. It is worthwhile to mention that the
smaller the differential uniformity is, the more resistant f is against differential
cryptanalysis. The same applies for linear cryptanalysis.

Recall that two permutations f and g of Fn2 are said equivalent is there exist
two linear maps L1, L2 of Fn2 and two elements v1, v2 of Fn2 such that

∀x ∈ Fn2 , g(x) = L2(f(L1(x) + v1)) + v2 .

It is well known that equivalent permutations have the same differential unifor-
mity and the same linear uniformity, see for instance [5] and [12]. More precisely,
their differential tables are equal up to row and column permutations. This result
holds for linear tables up to the sign of the coefficients.

Suppose that f is a permutation of Fn2 which maps L(V ) to L(W ). Proposi-
tion 2.4 ensures that there exists an automorphism L of Fn2 such that L(V ) = W .
According to Proposition 3.3, L−1 maps L(W ) to L(V ). Then, L−1f is equiva-
lent to f and maps L(V ) to L(V ). Consequently, without loss of generality, we
can suppose that V = W in our study of the linear and differential properties of
f .

In this section, we consider the following elements. Let V be a subspace
of Fn2 and f be a permutation of Fn2 which maps L(V ) to L(V ). Recall that
L(V ) = Fn2 / V . Let d denote the dimension of V . To avoid the trivial cases
V = {0n} and V = Fn2 , we suppose that 1 ≤ d ≤ n− 1. Therefore, the subspace
V admits a complement space U of dimension n− d. Thus, the space Fn2 can be
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written as the direct sum U ⊕ V of U and V . In other words, every element x
in Fn2 can be uniquely written as u + v with u and v in U and V respectively.
Hence, the linear partition L(V ) equals {[u] | u ∈ U} where [u] = u+V denotes
the coset u in the quotient space Fn2 / V .

The following theorem is the structure result of permutations preserving a
linear partition. It can be seen as a corollary of the Krasner-Kaloujnine embed-
ding theorem [9]. However, for convenience, a proof of our special case is given
in Appendix.
Theorem 5.1. There exist a unique permutation ρ of U and a unique family of
permutations (τu)u∈U of V such that, for all x = u+ v in Fn2 ,

f(u+ v) = ρ(u) + τu(v) .

Conversely, if ρ is a permutation of U and if (τu)u∈U is a family of permutations
of V , then the map g defined by g(u+ v) = ρ(u) + τu(v) maps L(V ) to L(V ).

This theorem allows one to design a S-box which maps L(V ) to L(V ) using
permutations with smaller domains. Furthermore, these permutations can be
chosen arbitrarily.
Example 5.2. Let us consider the permutation f of F5

2 defined by the following
table.

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F
0. 1F 0D 08 1B 06 15 10 18 14 11 07 04 03 1D 0B 13
1. 1A 19 0E 16 0C 09 1E 00 0F 01 02 17 0A 05 1C 12

For instance, f maps the element 1A to 02, both denoted in hexadecimal. Denote
V = {00, 07, 1A, 1D} and U = {00, 01, 02, 03, 08, 09, 0A, 0B}. It is easy to check
that V is a subspace of F5

2 and that U is a complement subspace of V in F5
2.

Therefore, L(V ) = F5
2 / V = {[u] | u ∈ U}. The different cosets of this quotient

space are given in the following table.
[00] [01] [02] [03] [08] [09] [0A] [0B]

u+ 00 00 01 02 03 08 09 0A 0B
u+ 07 07 06 05 04 0F 0E 0D 0C
u+ 1A 1A 1B 18 19 12 13 10 11
u+ 1D 1D 1C 1F 1E 15 14 17 16

We can easily check that the permutation f maps L(V ) to L(V ). Conse-
quently, f induces a permutation of F5

2 /V and thus a permutation ρ of U . As an
example, f(00) = 1F belongs to [02], so f([00]) = [02]. Therefore, ρ(00) = 02.
In the same way, we obtain the following permutation of U . For each u in U ,
define the permutation τu of V by τu(v) = f(u+v)+ρ(u). We have the following
permutations.

u 00 01 02 03 08 09 0A 0B
ρ(u) 02 0A 08 01 09 0B 00 03

τ00 τ01 τ02 τ03 τ08 τ09 τ0A τ0B

00 1D 07 00 1A 1D 1A 07 07
07 1A 1A 1D 07 1A 00 1D 00
1A 00 1D 07 00 07 1D 1A 1A
1D 07 00 1A 1D 00 07 00 1D
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By construction, we finally have f(u+v) = ρ(u) + τu(v) for any x = u+v in F5
2.

In the rest of this section, let us fix the permutations ρ and the family (τu)u∈U
given by Theorem 5.1.

The goal of this part is to express the linear and differential properties of
f according to the ones of the permutations ρ and (τu)u∈U . However, these
permutations are not defined on Fn2 but on the subspaces U and V of Fn2 . Thus,
the concept of linear or differential table is inexistent for such maps. To solve
this problem, we define two isomorphisms between U and Fn−d2 and between V
and Fd2. Then, we consider the maps induced by ρ and (τu)u∈U on these spaces.

Notation. Let B = (bi)1≤i≤n−d be a basis of U and C = (ci)1≤i≤d a basis of V .
Let us denote

LU : Fn−d2 −→ U LV : Fd2 −→ V

(x1, . . . , xn−d) 7−→
∑n−d
i=1 xibi (y1, . . . , yd) 7−→

∑d
i=1 yici

It is easily seen that LU and LV are both isomorphisms of vector spaces. Define
the permutation ρ′ = L−1

U ρLU of Fn−d2 . Finally, for each u in U , let τ ′u denote
the permutation L−1

V τuLV of Fd2.

Example 5.3. Using the previous example, let us consider the basis B = (07, 1A)
of V and the basis C = (01, 02, 08) of U . Thus, the isomorphisms LU : F3

2 → U
and LV : F2

2 → V are given by:

x 0 1 2 3 4 5 6 7
LU (x) 00 01 02 03 08 09 0A 0B

x 0 1 2 3
LV (x) 00 07 1A 1D

The permutation ρ′ of F3
2 and the permutations τ ′u of F2

2 are given by

u 0 1 2 3 4 5 6 7
ρ′(u) 2 6 4 1 5 7 0 3

τ ′00 τ
′
01 τ

′
02 τ

′
03 τ

′
08 τ

′
09 τ

′
0A τ

′
0B

0 3 1 0 2 3 2 1 1
1 2 2 3 1 2 0 3 0
2 0 3 1 0 1 3 2 2
3 1 0 2 3 0 1 0 3

5.1 Linear Approximation Table

The next theorem relates the linear table of f to the one of ρ′. The coefficients
of the linear approximation table of f taken into account by this result are in
practice the greatest. Thus, they determine the linear uniformity of f .

Theorem 5.4. Let a and b be two elements of V ⊥. Denote at = Lᵀ
U (a) and

bt = Lᵀ
U (b). Then,

(LTf )a,b = 2d × (LTρ′)at,bt .
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Remark 5.5. Let us consider the map Lᵀ
U : Fn2 → Fn−d2 . Then,

ker(Lᵀ
U ) = (ImLU )⊥ = U⊥ .

Observe that U⊥ ∩ V ⊥ = (U + V )⊥ = (Fn2 )⊥ = {0}. Consequently, the restric-
tion Lᵀ

U : V ⊥ → Fn−d2 is one-to-one and thus onto because of the rank-nullity
theorem.

Example 5.6. Let us consider the restriction of Lᵀ
U : F5

2 → F3
2 to V ⊥.

a 00 05 0B 0E 13 16 18 1D
Lᵀ
U (a) 0 1 7 6 3 2 4 5

The linear approximation tables LTf of f and LTρ′ of ρ′ are presented in Section
E of the appendices. The rows and columns of LTf have been rearranged in order
to highlight Theorem 5.4. As an example, (LTf )1D,16 = 23 × (LTρ′)5,2 = −8
because Lᵀ

U (1D) = 5 et Lᵀ
U (16) = 2.

Corollary 5.7. For the linear cryptanalysis, the permutation f is at least

– 2d+1-uniform if d < n− 1,
– 2n−1-uniform if d = n− 1.

Note 5.8. We know that any 4-bit S-box is at least 4-uniform for the linear
cryptanalysis, see for example [10]. As a consequence, the permutation f is at
least 2d+2-uniform si n− d = 4.

Example 5.9. In Section E, we can see that the permutation f is 8-uniform for
the linear cryptanalysis. Thus, we reach the lower bound given by Corollary 5.7
since the parameters of this example are n = 5 et d = 2.

5.2 Differential Distribution Table

Unlike to linear cryptanalysis, where only a local view of the table was provided,
the results for differential cryptanalysis brings both local and global outlooks.

Theorem 5.10. Let a = ua + va and b = ub + vb be elements of Fn2 . Denote
u′a = L−1

U (ua) et u′b = L−1
U (ub). Then∑

i∈[ua]

(DTf )i,b =
∑
j∈[ub]

(DTf )a,j = 2d × (DTρ′)u′a,u′b .

Especially, (DTf )a,b ≤ 2d × (DTρ′)u′a,u′b .

The previous theorem can restated in the following way. If DTf is rearranged
coset by coset, a trivial operation allows to recover DTρ′ . On the other hand,
the next theorem is similar to Theorem 5.4 but for differential cryptanalysis.
Again, it generally highlights the coefficients of DTf involved in the differential
uniformity of f .
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Theorem 5.11. Let va and vb be two elements of V . Denote v′a = L−1
V (va) and

v′b = L−1
V (vb). Then

(DTf )va,vb =
∑
u∈U

(DTτ ′u)v′a,v′b .

Particularly, the subtable ((DTf )va,vb)va,vb∈V can be expressed according to the
differential tables DTτ ′u with u in U .

Example 5.12. To illustrate Theorems 5.10 and 5.11, we rearrange the rows and
the columns of the differential table of f presented in Section E of the appen-
dices. With this order, we can see the differential table of ρ′ by considering the
differential table of f coset by coset. In fact, Theorem 5.10 states that the sum
of all elements in the same row or column of the subtable (DTf )[u1],[u2] is equal
to the coefficient (x1, x2) of DTρ′ multiplied by 22, where xi = L−1

V (ui). For
instance, if we consider the subtable

(DTf )[09],[03] =

03 04 19 1E
09 4 · 4 ·
0E · 4 · 4
13 4 · 4 ·
14 · 4 · 4

we can see that the sum of each row or column equals 8 = 22 × (DTρ′)5,3 since
LV (5) = 09 and LV (3) = 03.

Finally, Theorem 5.11 ensures that the subtable (DTf )V,V = (DTf )[00],[00] is
the sum of the differential tables of the τu.

Corollary 5.13. The permutation f is at least λ-uniform for the differential
cryptanalysis where λ denotes the even integer directly greater than 2n

2d−1 .

Example 5.14. In Section E of the appendices, we can see that f is 12-uniform for
the differential cryptanalysis. Thus, we reach the lower bound given by Corollary
5.13.

5.3 The Design of a Trapdoor S-Box and Further Observations

We now explain how to design such a trapdoor S-box. To this end, let us express
the conditions given by the theorems of this section.

– Theorem 5.4 implies to reduce at most the linear uniformity of ρ′ to keep
the one of f as small as possible.

– In the same way, Theorem 5.10 implies to reduce at most the differential
uniformity of ρ′.

– The same theorem also stresses that the greater the number of non-zero
coefficient of DTρ′ is, the better.

– Finally, Theorem 5.11 teaches us that the sum of the differential distribution
tables DTτ ′u should be as low as possible.
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Now, to design the S-box f , one needs to pick a permutation ρ′ of Fn−d2 that is
4-uniform if n − d is even or 2-uniform otherwise for both linear and differen-
tial cryptanalysis. Then, one searches for permutations τ ′u of Fd2 satisfying the
last condition. This search can be conduced randomly over every d-bit S-boxes.
Finally, construct the S-box f as in Theorem 5.1. If the differential and linear
uniformities of f are too far from the lower bounds given by Corollaries 5.7 and
5.13, then start again. In practice, these bounds are reached (or almost reached)
after a small number of iterations. According to Theorem 5.4, the smaller the
linear uniformity of ρ′ is, the smaller the one of f is.

Moreover, we should emphasize that the closer the dimension d of V from n
is, the weaker the S-box f is against linear cryptanalysis and the stronger f is
against differential cryptanalysis. The lower bounds given by Corollaries 5.7 and
5.13 are represented on Figure 2 for any value of n ≤ 8.

n\d 1 2 3 4 5 6 7
4 4 8 8 . . . .
5 8 8 16 16 . . .
6 4 16 16 32 32 . .
7 4 8 32 32 64 64 .
8 4 8 16 64 64 128 128

n\d 1 2 3 4 5 6 7
4 16 6 4 . . . .
5 32 12 6 4 . . .
6 64 22 10 6 4 . .
7 128 44 20 10 6 4 .
8 256 86 38 18 10 6 4

Fig. 2. Lower bounds for the linear (left) and differential (right) uniformities of f .

Finally, it should be highlighted that the linear and differential uniformities
of the S-box of Rijndeal [6] are far below the lower bounds given by Corollaries
5.7 and 5.13, no matter the dimension d of the subspace V is. As a consequence,
this S-box does not map any linear partition to another linear one.

6 An Illustrative Example of a Trapdoor Cipher

6.1 Description of the Algorithm

In this last part, we use the previous results to design a toy trapdoor cipher.
This cipher is a 24-bit Substitution-Permutation Network with 8 rounds (see
Definition 3.1). The substitution layer σ consists of four parallel evaluations of
the same 6-bit S-box S given in Section F of the appendices. The diffusion layer
π is an isomorphism of (F6

2)4 also defined in Section F.
The key schedule and the round function are represented in Figure 3. This

algorithm derives 8 round keys from a 24-bit master key. Note that the master
key is exactly the first round key k1. The only primitive of the key schedule
is an isomorphism L of (F6

2)2 described in Section F. Every round of the key
schedule follows the same pattern. Suppose that ki = (x1, x2, x3, x4) in (F3

2)4

is the i-th round key. First, a round constant is added to the current round
key. This addition is computed in (F6

2)4, so with the exclusive-or operation.
The round constant ci of the i-th round is defined as the binary decomposition

17



The round function

S S S S

⊕

π

⊕

The key schedule

⊕ ⊕

ki

⊕

L L

ki+1

ci

Fig. 3. Representation of the toy trapdoor cipher

of the 4-tuple (i, 2i, 3i, 4i) of integers. For example, in hexadecimal, we have
c7 = (07, 0E, 15, 1C). Let y = (y1, y2, y3, y4) be the result of this operation. Then
y is seen as the element ((y1, y2), (y3, y4)) and the isomorphism L is evaluated
in parallel. In other words, y is mapped to z = (z1, z2, z3, z4) with (z1, z2) =
L(y1, y2) and (z3, z4) = L(y3, y4). Finally, the (i+ 1)-th round key is defined as
(z1 + z3, z2, z3, z2 + z4).

Before analyzing our cipher resistance to differential and linear cryptanalysis,
we ask the reader to forget for a while that this cipher can obviously be broken
very easily with a single plaintext/ciphertext pair through an exhaustive search.
The purpose is to compare the known key recovery attacks (linear and differ-
ential cryptanalysis) when the attacker is unaware of the trapdoor with attack
which exploit the sole knowledge of the trapdoor. While this comparison is a bit
artificial here and holds only for illustrative purposes, it totally makes sense for
real-life cryptosystems.

6.2 Differential and Linear Cryptanalysis

In [6], Deamen and Rijmen introduced the differential and the linear branch
number of a linear transformation. With an exhaustive search, it can be checked
that the differential and linear branch numbers of π both are both equal to
4. This implies that any 2-round trail has at least 4 active S-boxes. Thus, a
6-round trail involves at least 12 active S-boxes. Note that the S-box S is dif-
ferentially 14-uniform and linearly 16-uniform. Therefore, the probability of a
6-round differential trail is lower bounded by ( 14

64 )12 ≈ 2−26.3 and the bias of a
6-round linear trail is lower bounded by ( 16

32 )12 = 2−12. Consequently, a differ-
ential cryptanalysis of the 6-round version of our cipher would require at least
226 chosen plaintext/ciphertext pairsand a linear cryptanalysis would require 224

known plaintext/ciphertext pairs. Here it does note make sense by definition of
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the cipher block size. Since our cipher is a 24-bit SPN, these cryptanalysis are
ineffective on the 6-round version, so on the full cipher.

6.3 The Trapdoor

Let us define the following two 3-dimensional subspaces of F6
2

V = {00, 0C, 17, 1B, 25, 29, 32, 3E} and W = {00, 07, 11, 16, 2B, 2C, 3A, 3D} .

It can be verified that S maps L(V ) to L(W ), π maps L(W 4) to L(V 4) and
L maps L(V 2) to L(V 2). First, we consider the round function. The partition
L(V 4) is left invariant under the key addition. Next, the substitution layer σ
maps L(V 4) to L(W 4) and the diffusion layer maps L(W 4) to L(V 4). Thus, the
whole round function maps L(V 4) to L(V 4). At this point, the cipher is vulner-
able to the basic attack of [13] which uses 212 chosen plaintext/ciphertext pairs
and gives then partial information about the unknown plaintext of any cipher-
text. Moreover, in contrast to the trapdoor cipher presented in [13], ours has not
the drawback of being incomplete, thanks to the more complicated definition of
the subspace V .

Now, let us present a key schedule dependent attack suggested in [13] but
not realized. Let k1 and k′1 be two keys in (F6

2)4 and suppose that they lie in the
same coset of V 4. Since L(V 4) is equal to the quotient space (F6

2)4/V 4 and as
the cosets [k1] and [k2] are equal, the maps αk1 and αk′1 (representing the two
key additions) induce the same permutation of the cosets in L(V 4).

With a close look to our key schedule, we can see that it also maps L(V 4) to
L(V 4). In other words, if ki and k′i are in the same coset of V 4 in the quotient
space (F6

2)4/V 4, then so are ki+1 and k′i+1. Consequently, if the two first round
keys k1 and k′1 (i.e. the master keys) lies in the same coset, then the two corre-
sponding encryption function induce the same permutations of the cosets of the
message space.

Let U denotes the subspace {00, 01, 02, 03, 04, 05, 06, 07} of F6
2 which is a

complement of V . Then L(V ) = {[u] | u ∈ U}. We can now present the trapdoor.
Suppose that (p, c) is a single known plaintext/ciphertext pair.

– For each k1 in U4, test whether the encryption of p with the master key k1
lies in the same coset of L(V 4) as c.

– For each candidate k1, test for each k′1 in [k1] if the encryption of p with k′1
is equal to c.

Observe that in practice, there is a very small number of candidates. Thus, the
overall complexity of this cryptanalysis is roughly 2× 212 encryptions compared
to 224 for the brute force. Moreover, if there are too many candidates, we can
use two known plaintext/ciphertext pairs instead of one.

The main disadvantage of this cipher is that the linear approximation table
and the difference distribution table of the S-box S can seem very suspicious.
To this end, we define the S-box S′ given in Section F. This other S-box is equal
to S with probability 60

64 . Now, let E and E′ denote the encryption functions
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of our cipher using the S-boxes S and S′ respectively. Assuming that all the
round keys are independent and uniformly distributed (which is false, but works
in practice) and that the plaintext p is chosen uniformly, E(p) = E′(p) with
probability ( 60

64 )32 ≈ 12% since the whole 8-round ciphers involve 32 S-boxes.
Let us explain the trapdoor of this second cipher which is a chosen plaintext
attack.

– Pick roughly 5× 100
12 ≈ 40 plaintexts in the same coset and get the associated

ciphertexts.
– Find the coset containing the greatest number of ciphertexts and let (pi, ci)

be the pairs such that ci lies in this coset.
– For almost all these pairs, E(pi) = ci. The key can then be recovered using

the previous trapdoor.

7 Conclusion and Future Works

In this paper, we have addressed the following issue: “is it possible to design
a mathematical backdoor which would rely mostly on suitable partitionning
techniques of the plaintext and ciphertext spaces, independently from the round
(sub)keys”. We had in mind initially to exploit combinatorial properties of the
core primitives. The overall conclusion we get is that if we want to design such
a backdoor, the only solution is to stay in the algebraic domain and no specially
combinatorial tools or primitive are possible. Let us summarize in detail the
main results.

If one wishes to design any encryption system which maps any (plaintext)
partition A to any other (ciphertext) partition B, independently from the round
keys (here the knowledge of the pair (A,B) is precisely the trapdoor) then

– the round function must map a linear partition to another linear one, and
– at leat one S-box must do the same.

This means that the partitions considered for trapdoor are in the algebraic do-
main and not in the combinatorial one. We are condemned to consider highly
structured algebraic objects.

From that, we have been able to design and to propose a trapdoored encryp-
tion system which is weak for the cryptanalysis suggested by Paterson [13] and
which enables to recover the secret κ-bit key with a single plaintext/ciphertext
pair and with computing complexity in O(2κ2 ).

For the candidates S-boxes enabling to design such a trapdoor (partition-
ning trapdoor), we have performed a detailed study with respect to their linear
and differential properties (tables). We have given lower bounds with respect to
their linear and differential uniformities and we have explained how to achieve
them totally (linear) or nearly totally (differential). Finally, we have designed
an almost optimal trapdoored system with respect to our approach and initial
goal.

This study shows that the linear and differential tables we have obtained
are highly structured. Thus we have proved that our trapdoor class implies
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necessarily a high algebraic structure. In terms of trapdoor detectability, we
conjecture that it is easy to detect and identify our trapdoor from the results
presented in this paper.

As future works, we would primarily address the two following issues. Firstly,
what would be the results if we consider non independent round keys? In other
words, we would like to consider a key schedule algorithm which therefore would
be part of the trapdoor.

Secondly, we want to explore and formalize exhaustively a criterion which
would enable either to design better hidden trapdoors or in the contrary to
evaluate the presence of a potential hidden backdoor in the same way as linear
and differential tables do (refer to Harpes work [7]). The idea with respect to this
criterion is the following: let denote S the set of S-boxes which map any linear
partition to any other linear partition. For any S-box f we define the distance
with respect to S as follows

min{#Supp(τ) | τ ∈ S(Fn2 ), f ◦ τ ∈ S} .

This represents the minimal number of points we have to modify in the S-box
to obtain a S-box which lies in S. In other words, the aim is to have a dis-
tance measure to a trapdoored S-box. In the second version of our toy trap-
doored system (Section 6) we have indeed deteriorated the S-box (modified a
few points). This second version “behaves” similarly to the original version with
a probability 0.12. As a consequence, recovering the secret key will require more
plaintext/ciphertext pairs.
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A Proofs for Section 2

Proposition A.1. Let f be a permutation of E and A, B be two partitions of
E. If for any part A of A, f(A) lies in B, then f maps A to B.

Proof. Suppose that for all A in A, f(A) lies in B. By hypothesis, f(A) is
included in B. It remains to show that B is a subset of f(A). Let B be a part of
B and let y be an element of B. Since f is onto, there exists x in E such that
f(x) = y. Furthermore, there exists a unique part A of A which contains x as
A is a partition de E. Then, y belongs to f(A) and B. Observe that f(A) and
B are two non-disjoint parts of B. Consequently, f(A) = B and B belongs to
f(A). The result follows.

Lemma A.2. Let V , W be two subspaces of Fn2 and f be a permutation of Fn2
which maps L(V ) to L(W ). For any x in Fn2 , f maps x+ V to f(x) +W .

Proof. Let x be an element of Fn2 . By hypothesis, there exists y in Fn2 such that
f(x+ V ) = y+W . Observe that x lies in x+ V , so f(x) lies in both y+W and
f(x) +W . Since y+W and f(x) +W are two non-disjoint parts of L(W ), they
must be equal. Thus, f(x+ V ) = f(x) +W .

Proof (of Proposition 2.3). Let x+ (V1 ∩V2) be a part L(V1 ∩V2). Observe that
x+ (V1 ∩ V2) = (x+ V1) ∩ (x+ V2). Now,

f(x+ (V1 ∩ V2)) = f((x+ V1) ∩ (x+ V2)) = f(x+ V1) ∩ f(x+ V2)

as f is one-to-one. Then, Lemma A.2 ensures that f(x + V1) = f(x) + W1 and
f(x+ V2) = f(x) +W2. Next,

f(x+ (V1 ∩ V2)) = (f(x) +W1) ∩ (f(x) +W2) = f(x) + (W1 ∩W2) .

This show that the image of any part of L(V1 ∩ V2) under f lies in L(W1 ∩W2).
The result is then a consequence of Proposition A.1.

Proof (of Proposition 2.4). By definition, f(V ) belongs to L(W ). Thus, there
exists an element x of Fn2 such that f(V ) = x+W . Consequently, V andW have
the same finite cardinality. Hence, V and W have the same dimension denoted
by d. Let (vi)i≤d and (wi)i≤d be two basis of V andW respectively. According to
the incomplete basis theorem, there exist two families (vi)d<i≤n and (wi)d<i≤n
such that BV = (vi)i≤n et BW = (wi)i≤n are two basis of Fn2 . Denoting by L the
linear map which maps vi to wi for all 1 ≤ i ≤ n, we get an automorphism of
Fn2 satisfying the equality L(V ) = W .

B Proofs for Section 3

Proof (of Proposition 3.2). Suppose that αx(A) = B for any x in Fm2 . Especially,
A = α0m(A) = B as α0m is the identity map. Let V denote the part of A
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containing 0m. It is sufficient to show that V is a subgroup of Fm2 because any
subgroup of Fm2 is also F2-linear subspace of Fm2 . Let v1 and v2 be two elements
of V . Since αv1(0n) = v1, the intersection αv1(V ) ∩ V is non-empty. We know
that αv1 maps A to A, so αv1(V ) lies in A. Thus, αv1(V ) = V since A is a
partition. It follows that αv1(v2) = v1 + v2 is an element of V . Therefore, the
subset V of Fm2 is closed under the operation of addition and because every
element of Fn2 is its own inverse, V is a subgroup of Fm2 . Furthermore, for any x
in Fm2 , αx(V ) = x+ V must be a part of A. Thus, A is linear.

Conversely, suppose that A is linear and that A = B. Let V denotes the part
containing 0m and let x be an element of Fm2 . Then,

αx(A) = αx({y + V | y ∈ Fm2 }) = {(x+ y) + V | y ∈ Fm2 } = A .

The result is proven.

Proof (of Proposition 3.3). Since L is an automorphism, we have

L(L(V )) = L({x+ V | x ∈ Fm2 }) = {L(x+ V ) | x ∈ Fm2 }
= {L(x) + L(V ) | x ∈ Fm2 } = {x+ L(V ) | x ∈ Fm2 } .

Moreover, L(V ) is a subspace of Fm2 because L is a linear map. Consequently,
L(L(V )) = L(L(V )).

Proof (of Theorem 3.4). Observe that α0 = Id, and thus F0 = πσα0 = πσ. Now,
choosing (k1, . . . , kr+1) = (0, . . . , 0) gives

B = E(k1,...,kr+1)(A1) = αkr+1Fkr . . . Fk1(A1) = α0(F0)r(A1)
= (πσ)r(A1) = Ar+1 .

Let 1 ≤ i ≤ r be an integer. Let ki be any element of Fns2 . Define kj = 0ns for
all j 6= i. By hypothesis, the equality αkr+1Fkr . . . Fk1(A1) = Ar+1 holds. Thus,
Fki . . . Fk1(A1) = (αkr+1Fkr . . . Fki+1)−1(Ar−1). On one hand,

Fki . . . Fk1(A1) = Fki(Fki−1 . . . Fk1)(A1) = Fki(F0)i(A1)
= Fki(πσ)i(A1) = Fki(Ai) .

On the other hand,

(αkr+1Fkr . . . Fki+1)−1(Ar+1) = (α0(F0)r−i−1)−1(Ar+1)
= ((πσ)r−i−1)−1(Ar+1) = Ai+1 .

Therefore, Fki(Ai) = Ai+1, or equivalently αki(Ai) = (πσ)−1(Ai+1). Since this
equality holds for every ki, Proposition 3.2 states that Ai is a linear partition.

It remains to show that Ar+1 is linear. Let kr+1 be an element of Fns2 . Define
ki = 0 for any 1 ≤ i ≤ r. Then,

Ar+1 = αkr+1Fkr . . . Fk1(A1) = αkr+1(F0)r(A1) = αkr+1(Ar+1) .

Again, Proposition 3.2 implies that Ar+1 is linear and the result is proven.
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Proof (of Corollary 3.5). By definition, πσ(Ai) = Ai+1. This equality can be
restated as πσ(L(Vi)) = L(Vi+1), or equivalently σ(L(Vi)) = π−1(L(Vi+1)).
As π is an automorphism of Fns2 , then so π−1 is. By Proposition 3.3, we have
π−1(L(Vi+1)) = L(π−1(Vi+1)). The result follows.

C Proofs for Section 4

C.1 Proofs for Subsection 4.1

Proof (of Proposition 4.1). Let x = (xi)i∈E be an element of (Fn2 )E . Let y be
the element of (Fn2 )s defined by yi = xi if i belongs to E and yi = 0n otherwise.
Thus, TE(y) = x. By hypothesis, σ maps L(V ) to L(W ). Hence, Lemma A.2
implies that, σ(y + V ) = σ(y) +W . Next,

TE(σ(y + V )) = TE(σ(y)) + TE(W )

since TE is a linear map. Furthermore,

TE(σ(y + V )) = TEσ({y + v | v ∈ V }) = {TEσ(y + v) | v ∈ V }
= {σE(TE(y + v)) | v ∈ V } = σE({TE(y + v) | v ∈ V })
= σE({TE(y) + TE(v) | v ∈ V }) = σE(TE(y) + TE(V )) .

Therefore, σE(x + TE(V )) = TE(σ(y)) + TE(W ). In other words, the image of
any part of L(TE(V )) under σ lies in L(TE(W )). The result is a consequence of
Proposition A.1.

C.2 Proofs for Subsection 4.2

Proof (of Lemma 4.3). Suppose that V =
⊕

I∈I VI . Let v = (v1, . . . , vs) be an
element of V . By hypothesis, v can be uniquely written as

∑
I∈I vI where vI

belongs to VI for every I in I Let I be a part of I. For every i in I, we have

(PI(v))i = vi =
∑
I′∈I

(vI′)i = (vI)i ,

since (vI′) = 0n for all part I ′ of I distinct from I. As PI(v)i = 0n = (vI)i for
every i in Ic, we obtain that PI(v) = vI . Thus, PI(v) is included in VI . The
equality follows because the other inclusion always holds.

Conversely, suppose that VI = PI(V ) for all I in I. Let v be an element of
V . Clearly, v =

∑
I∈I PI(v). By hypothesis, PI(v) belongs to VI for any I in I.

The uniqueness of this decomposition directly follows from the definition of the
VI . Therefore, V =

⊕
I∈I VI .

Proof (of Lemma 4.4). Suppose that V =
⊕

I∈I VI . Firstly, let us prove that
W =

∑
I∈IWI . Since the WI are subspaces of W , the inclusion

∑
I∈IWI ⊆

W clearly holds. Now, let w be an element of W . Define x = σ−1(0ns) =
(σ−1
i (0n))1≤i≤n. According to Lemma A.2, we have σ(x+V ) = σ(x) +W = W .
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Hence, there exists an element v of V satisfying the equality σ(x+v) = w. Then,
Lemma 4.3 ensures that v =

∑
I∈I PI(v). For any 1 ≤ i ≤ s, we have

σ(x+ PI(v))i = σi(xi + PI(v)i) =
{

0n if i ∈ Ic ,
σi(xi + vi) if i ∈ I ,

because σi(xi) = 0n. Consequently, σ(x+ PI(v)) lies in TrivI and W , so in WI .
Note that

w = σ(x+ v) =
∑
I∈I

σ(x+ PI(v))

since I is a partition of J1, sK. The inclusion W ⊆
∑
I∈IWI follows. Finally, the

definition of the WI implies that W =
⊕

I∈IWI .
Conversely, suppose that W =

⊕
I∈IWI . Following the previous reasoning

with σ−1 instead of σ gives the equality V =
⊕

I∈I VI , as desired.

Proof (of Proposition 4.5). The implication is an immediate consequence of
Proposition 4.1. Conversely, suppose that σI maps L(TI(V )) to L(TI(W )) for
any I in I. According to Lemma 4.3, for any part I of I, VI = PI(V ) and thus
TI(V ) = TI(PI(V )) = TI(VI). Then Lemma 4.4 ensure that the same result
holds of the subspace W .

Even if it means to change the order of the S-boxes and the coordinates of
the spaces V and W , we can assume that every part of I is an integer interval.
Denote I = {I1, . . . , Im} such that x = [TI1(x) ‖ . . . ‖ TIm(x)] for every x in
(Fn2 )s. Let x and v be elements of (Fn2 )s and V respectively. By hypothesis, for
all 1 ≤ i ≤ m, there exists an element wIi of TIi(WIi) such that

σIi(TIi(x) + TIi(v)) = σIi(TIi(x)) + wIi .

As W =
⊕m

i=1 WIi , the vector w = [wI1 ‖ . . . ‖ wIm ] belongs to W . Observe
that TIi(w) = wIi for any 1 ≤ i ≤ m. Hence,

σ(x+ v) = [σI1(TI1(x) + TI1(v)) ‖ . . . ‖ σIm(TIm(x) + TIm(v))]
= [σI1(TI1(x)) + wI1 ‖ . . . ‖ σIm(TI1(x)) + wIm ]
= [σI1(TI1(x)) ‖ . . . ‖ σIm(TI1(x))] + [wI1 ‖ . . . ‖ wIm ] = σ(x) + w .

Consequently, σ(x+V ) ⊆ σ(x)+W . Furthermore, Proposition 2.4 states that V
and W are isomorphic. Thus, #σ(x+ V ) = #(σ(x) +W ) because σ is bijective.
The equality σ(x + V ) = σ(x) + W follows. Finally, the result comes from
Proposition A.1.

Minimal Partition

Notation (partition intersection). Let I and J be two partitions of J1, sK. We
denote by I ∩ J the set {I ∩ J | I ∈ I et J ∈ J } \ {∅}. Note that I ∩ J is a
partition of J1, sK finer than I and J .
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Lemma C.1. Let I and J be two partitions of J1, sK such that V =
⊕

I∈I VI =⊕
J∈J VJ . Then, V =

⊕
K∈I∩J VK .

Proof. Le v be an element of V and K be an element of I ∩ J . According to
Lemma 4.3, we have to prove that PK(v) belongs to VK . By definition, there
exists elements I and J of I and J such that K = I ∩ J . Since V =

⊕
I′∈I VI′ ,

the same lemma ensures that PI(v) lies in VI , hence in V . In the same way, using
the equality V =

⊕
J′∈J VJ′ , we obtain that PJ(PI(v)) lies in VJ , so in V . The

result follows because PJ(PI(v)) = PI∩J(v) = PK(v).

Proof (of Lemma 4.6). Let P denote the set of the partitions I of J1, sK satisfying
V =

⊕
I∈I VI . By virtue of Lemma C.1, the set P is closed under the operation

of intersection. Then, it is sufficient to define Imin as the intersection of all the
elements of P.

C.3 Proofs for Subsection 4.3

Generality on Linked S-Boxes

Lemma C.2. Let I be an element of Imin. Let E be a non-empty proper subset
of I. Then VE ( PE(V ) and PE(V ) 6= {0ns}.

Proof. By construction, VE is a subset of PE(V ). Let us prove that VE 6= PE(V ).
By contradiction, suppose that VE = PE(V ). Let v be an element of V . By
hypothesis, PE(v) belongs to VE . Especially, PE(v) lies in V , so v + PE(v) also
lies in V . Since v + PE(v) = PEc(v), we obtain that PEc(v) belongs to VEc .
Define J = {E,Ec}. Form Lemma 4.3, we have that V =

⊕
J∈J VJ . Then, V =⊕

K∈Imin∩J VK follows from Lemma C.1. Observe that the partition Imin∩J is
strictly finer than Imin because E is a proper subset of I. This is a contradiction,
and therefore VE ( PE(V ).

By contradiction, suppose that PE(V ) = {0ns}. From the previous result,
we have that {0ns} ⊆ VE ⊆ PE(V ) = {0ns}, which is a contradiction. Thus,
PE(V ) 6= {0ns}.

Proof (of Lemma 4.9). By contradiction, suppose that VE is any trivial product
space different from {0ns}. Hence, there exists a non-empty subset F of E such
that VE = TrivF . Therefore TrivF ⊆ V and so TrivF = VF . Next, TrivF = VF ⊆
PF (V ) = TrivF , and thus VF = PF (V ). Since F is a non-empty proper subset
of P , we have a contradiction with Lemma C.2. Consequently, VE = {0bm}.

By contradiction, suppose that PE(V ) is any trivial product space different
from TrivE . There exists a proper subset F of E such that PE(V ) = TrivF .
Thus, for every v in V and every i in E \ F , PrjE(v)i = 0n. As a consequence,
PE\F (V ) = {0ns}. This is a contradiction with Lemma C.2 because E \ F is a
non-empty proper subset of I. The result follows.
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Study of a Special Case of Linked S-Boxes Without loss of generality,
Proposition 4.5 allows to suppose that Imin = {I} with I = J1, sK.

Lemma C.3. Let E be a subset of J1, sK. Then #V = #TE(V )×#VEc .

Proof. Let m denote #E. Consider the restriction of the linear map TE to V .
Its kernel is

ker(TE) = {v ∈ V | TE(v) = 0nm} = {v ∈ V | ∀i ∈ E, vi = 0n} = VEc .

From the first isomorphism theorem, the quotient space V/VEc is isomorphic to
the image TE(V ). Particularly, the equality #V/#VEc = #TE(V ) holds.

Lemma C.4. Let E = J1,mK with 1 ≤ m < s. Suppose that VE = VEc = {0ns}
and TE(V ) = (Fn2 )m. There exist two isomorphisms ϕ : TE(V ) → TEc(V ) and
ψ : TE(W )→ TEc(W ) such that

V = {[a ‖ ϕ(a)] | a ∈ (Fn2 )m} et W = {[b ‖ ψ(b)] | b ∈ (Fn2 )m} .

Proof. Lemma C.3 ensures that #V = #TE(V )×#VEc . By hypothesis, VEc =
{0ns}, so #VEc = 1. It follows that #V = #TE(V ). Therefore, V and TE(V )
have the same dimension d. Let B = (b1, . . . , bd) be a basis of TE(V ). By defini-
tion, there exist elements c1, . . . , cd of V such that TE(ci) = bi for all 1 ≤ i ≤ d.
That is, ci = [bi ‖ TEc(ci)]. Note that c1, . . . , cd are linearly independent as the bi
are and thus (bi)1≤i≤d is a basis of V . Define the linear map ϕ : TE(V )→ TEc(V )
that associates TEc(ci) with bi. Let v be an element of V . Then x can be written
as x =

∑d
i=1 λic

i where the λi are elements of F2. Next,

v =
d∑
i=1

λic
i =

d∑
i=1

[λiTE(ci) ‖ λiTEc(ci)] =
[ d∑
i=1

λib
i ‖ ϕ(

d∑
i=1

λib
i)
]

= [a ‖ ϕ(a)]

where a denotes the element
∑d
i=1 λib

i of TE(V ). Consequently, every element
of V can be written in the desired form. As the converse inclusion is obvious, the
equality V = {[a ‖ ϕ(a)] | a ∈ (Fn2 )m} follows. Hence, the map ϕ is onto. Apply-
ing Lemma C.3 with the subset Ec gives #V = #TEc(V ) ×#VE = #TEc(V ),
and thus TEc(V ) is also a d-dimensional subspace. Therefore, ϕ is a isomorphism.

Recall that σ maps L(VE) to L(WE). Then, Proposition 2.4 states that VE
and WE are isomorphic, and so WE = {0ns}. In the same way, we obtain
that WEc = {0ns}. Next, Proposition 4.1 implies that σE maps L(TE(V )) to
L(TE(W )). Again, we get that TE(W ) = (Fn2 )m. The preceding argument gives
an isomorphism ψ : TE(W )→ TEc(W ) such that W = {[b ‖ ψ(b)] | b ∈ (Fn2 )m}.

Lemma C.5. Let m be a non-negative integer. Let f : (Fn2 )m → (Fn2 )m be a
map such that there exists τ : (Fn2 )m → (Fn2 )m satisfying

∀x ∈ (Fn2 )m, ∃y ∈ (Fn2 )m, ∀z ∈ (Fn2 )m, f(x+ z) = y + τ(z) .

Then f is an affine map.
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Proof. By hypothesis, choosing x = 0 gives the existence of an element y0 of
(Fn2 )m such that f(z) = y0 + τ(z) for every z in (Fn2 )m. Thus,

∀z ∈ (Fn2 )m, τ(z) = f(z) + y0 . (1)

Let x be an element of (Fn2 )m. By hypothesis, there exists an element y of (Fn2 )m
such that f(x + z) = y + τ(z) for any z in (Fn2 )m. Especially, choosing z = x
gives f(0) = f(x+x) = y+ τ(x), and thus y = τ(x) + f(0). Let z be an element
of (Fn2 )m. Hence,

f(x+ z) = y + τ(z) = τ(x) + τ(z) + f(0) . (2)

Then we can combine equations (1) and (2) to obtain

f(x+ z) =
(
f(x) + y0

)
+
(
f(z) + y0

)
+ f(0) = f(x) + f(z) + f(0) .

Since this equality holds for every x and z in (Fn2 )m, f is an affine map.

Proof (of Lemma 4.10). Firstly, we have TE(V ) = (Fn2 )m since PE(V ) = TE .
Even if it means to change the order of the S-boxes and the coordinates of the
spaces V and W , we can assume that E = J1,mK with 0 < m < s. According
to Lemma C.4, there exist two isomorphisms ϕ : TE(V ) → TEc(V ) and ψ :
TE(W )→ TEc(W ) such that

V = {[a ‖ ϕ(a)] | a ∈ (Fn2 )m} et W = {[b ‖ ψ(b)] | b ∈ (Fn2 )m} .

Let τ denotes the permutation ψ−1σEcϕ of (Fn2 )m because TE(V ) = TE(W ) =
(Fn2 )m. Let x be an element of (Fn2 )m. From Lemma A.2, we have

σ([x ‖ 0b(n−m)] + V ) = y +W .

with y = σ([x ‖ 0b(n−m)]). Then, let c denotes the element TE(y) + ψ−1TEc(y)
of (Fn2 )m. On one hand,

σ([x ‖ 0b(n−m)] + V ) = σ({[x ‖ 0b(n−m)] + [a ‖ ϕ(a)] | a ∈ (Fn2 )m})
= σ({[x+ a ‖ ϕ(a)] | a ∈ (Fn2 )m})
= {[σE(x+ a) ‖ σEc(ϕ(a))] | a ∈ (Fn2 )m} .

On the other hand,

y +W = {y + [b ‖ ψ(b)] | b ∈ (Fn2 )m}
= {[TE(y) + b ‖ TEc(y) + ψ(b)] | b ∈ (Fn2 )m} .

Let a be an element of (Fn2 )m. Since [σE(x+ a) ‖ σEc(ϕ(a))] belongs to y +W ,
there exists an element b of (Fn2 )m such that

[σE(x+ a) ‖ σEc(ϕ(a))] = [TE(y) + b ‖ TEc(y) + ψ(b)] .
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This is equivalent to the equalities σE(x + a) = TE(y) + b and σEc(ϕ(a)) =
TEc(y) + ψ(b). This last one can be restated as

b = ψ−1σEcϕ(a) + ψ−1TEc(y) = τ(a) + ψ−1TEc(y) .

When combined with the first equality it gives

σE(x+ a) = TE(y) + b = TE(y) + τ(a) + ψ−1TEc(y) = τ(a) + c .

We have proven that for any x in (Fn2 )m, there exists c in (Fn2 )m such that, for
all a in (Fn2 )m, σE(x + a) = τ(a) + c. Then, Lemma C.5 states that σE is an
affine map.

Let i be an element of E. The map Ii : Fn2 → (Fn2 )s, x 7→ (δi,1x, . . . , δi,nx) is
clearly linear (where δi,j = 1 if i = j and 0 otherwise). Observe that σi = TiσEIi.
Therefore, σi is the composition of several affine maps and thus it is an affine
map.

D Proofs for Section 5

Proof (of Theorem 5.1). Let us demonstrate the implication. By hypothesis, f
maps L(V ) to L(V ). Thus, f induces a permutation ρ of U defined as follows. Let
u be an element of U . Hence, there exists a unique u′ in U such as f([u]) = [u′].
Define then ρ(u) = u′. For each element u of U , define the permutation τu of V
which maps v to f(u+ v) + ρ(u). By construction, for any u in U and any v in
V the following equalities hold:

τu(v) = f(u+ v) + ρ(u) and hence f(u+ v) = ρ(u) + τu(v) .

The existence of the permutations ρ and τu is now proven. Now, let show their
uniqueness. Suppose that there exist a permutation ρ̃ of U and a family of
permutations (τ̃u)u∈U of V satisfying the result. Let (u, v) be an element of
U × V . By hypothesis, we have

ρ(u) + τu(v) = ρ̃(u) + τ̃u(v) .

Because the sum of U and V is direct, it follows that ρ(u) = ρ̃(u) and τu(v) =
τ̃u(v). The uniqueness of ρ and the τu follows.

Conversely, let ρ be a permutation of U and (τu)u∈U be a family of permuta-
tions of V . Denote g the map from Fn2 to Fn2 defined by g(u+ v) = ρ(u) + τu(v).
Since Fn2 = U ⊕ V and ρ and the τu are permutations of U and V respectively,
The map g is a permutation of Fn2 . Let u be an element of U . Therefore,

g([u]) = {g(u+ v) | v ∈ V } = {ρ(u) + τu(v) | v ∈ V }
= {ρ(u) + v | v ∈ V } = [ρ(u)] .

Hence, g maps L(V ) to L(V ).
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The following lemma explains how the linear properties of ρ′ and the τ ′u are
expressed according to the applications ρ and τu.

Lemma D.1. LetW be a m-dimensional subspace of Fn2 and L : Fm2 →W be an
isomorphism. Let µ be a permutation of W . Denote µ′ the permutation L−1µL
of Fm2 . Let a and b be elements of W . Finally, Define a′ = L−1(a), b′ = L−1(b),
at = Lᵀ(a) and bt = Lᵀ(b). Then,

(DTµ′)a′,b′ = #{w ∈W | µ(w) + µ(w + a) = b} ,
(LTµ′)at,bt = #{w ∈W | 〈a,w〉 = 〈b, µ(w)〉} − 2m−1 .

Proof. Let us begin with the linear table of µ′. By definition,

(LTµ′)at,bt + 2m−1 = #{x ∈ Fm2 | 〈at, x〉 = 〈bt, µ′(x)〉}
= #{x ∈ Fm2 | 〈Lᵀ(a), x〉 = 〈Lᵀ(b), L−1µL(x)〉} .

Using the property of the transposed map, it follows

(LTµ′)at,bt + 2m−1 = #{x ∈ Fm2 | 〈a, L(x)〉 = 〈b, µ(L(x))〉} .

Let E denote the set of the right side of the previous equality. Then, #E =
#L(E) because L is a bijection. Consequently,

(LTµ′)at,bt + 2m−1 = #{w ∈W | 〈a,w〉 = 〈b, µ(w)〉} .

It remains to prove the result about the differential table of µ′. By definition,

(DTµ′)a′,b′ = #{x ∈ Fm2 | µ′(x) + µ′(x+ a′) = b′}
= #{x ∈ Fm2 | L−1µL(x) + L−1µL(x+ L−1(a)) = L−1(b)} .

Because L is one-to-one, L(x) = L(y) if and only if x = y. Furthermore, using
the linearity of L, it follows that

(DTµ′)a′,b′ = #{x ∈ Fm2 | L(L−1µL(x) + L−1µL(x+ L−1(a))) = LL−1(b)}
= #{x ∈ Fm2 | µ(L(x)) + µ(L(x) + a) = b} .

Again, considering the image of the last set under L, we obtain

(DTµ′)a′,b′ = #{w ∈W | µ(w) + µ(w + a) = b} .

This concludes the proof.

D.1 Proofs for Subsection 5.1

Proof (of Theorem 5.4). By definition,

LTa,b + 2n−1 = #{x ∈ Fn2 | 〈a, x〉 = 〈b, f(x)〉} .
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Let x = u+v be an element of Fn2 . According to Theorem 5.1, the equality f(u+
v) = ρ(u) + τu(v) holds. The following equivalences come from the bilinearity of
the map 〈·, ·〉,

〈a, x〉 = 〈b, f(x)〉 ⇔ 〈a, u+ v〉 = 〈b, f(u+ v)〉
⇔ 〈a, u〉+ 〈a, v〉 = 〈b, ρ(u)〉+ 〈b, τu(v)〉 .

Then, 〈a, v〉 = 〈b, τu(v)〉 = 0 because a and b belong to V ⊥. We then obtain that

LTa,b + 2n−1 = #{u+ v ∈ Fn2 | 〈a, u〉 = 〈b, ρ(u)〉}
= #V ×#{u ∈ U | 〈a, u〉 = 〈b, ρ(u)〉}
= 2d ×#{u ∈ U | 〈a, u〉 = 〈b, ρ(u)〉} .

Finally, Lemma D.1 implies that

LTa,b = 2d
(
#{u ∈ U | 〈a, u〉 = 〈b, ρ(u)〉} − 2n−d−1) = 2d × (LTρ′)at,bt .

The desired result is proven.

Proof (of Corollary 5.7). Suppose that d < n − 1. Observe that there exist
necessarily two elements at and bt of Fn−d2 both non-zero such that |(LTρ′)at,bt | ≥
2. Let a and b denote the elements (Lᵀ

U )−1(at) and b = (Lᵀ
U )−1(bt) of Fn2 . Then,

Theorem 5.4 implies that (LTf )a,b ≥ 2d+1. Observing moreover that a and b are
non-zero, the corollary is proven. The same reasoning applies for d = n− 1, but
this time, |(LTρ′)at,bt | ≥ 1.

D.2 Proofs for Subsection 5.2

Lemma D.2. Let a = ua + va and b = ub + vb be two elements of Fn2 . Define
U = {u ∈ U | ρ(u) + ρ(u+ ua) = ub}. Then,

(DTf )a,b =
∑
u∈U

#{v ∈ V | τu(v) + τu+ua(v + va) = vb} .

Proof. By definition, we have

(DTf )a,b#{x ∈ Fn2 | f(x) + f(x+ a) = b}
= #{u+ v ∈ Fn2 | ρ(u) + τu(v) + ρ(u+ ua) + τu+ua(v + va) = ub + vb} .

Observe that ρ(u)+ρ(u+ua) and τu(v)+τu+ua(v+va) lie respectively in U and
V . Since any element of Fn2 can be uniquely written as u+v, the previous equality
holds if and only if ρ(u)+ρ(u+ua) = ub and P (u, v) : τu(v)+τu+ua(v+va) = vb
are satisfied. Note that the first equality is equivalent to u ∈ U . Thus,

(DTf )a,b = #{u+ v ∈ Fn2 | u ∈ U et P (u, v)} =
∑
u∈U

#{v ∈ V | P (u, v)} .

The result is proven.
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Lemma D.3. Let λ, µ be two permutations of V and va, vb be two elements of
Fn2 . Then, ∑

v0∈V #{v ∈ V | µ(v) + λ(v + va) = v0}
=
∑
v0∈V #{v ∈ V | µ(v) + λ(v + v0) = vb} = #V .

Proof. For each v0 in V , define Ev0 = {v ∈ V | µ(v) + λ(v + va) = v0}. Firstly,
let us prove that

⋃
v0∈V Ev0 = V . The inclusion is immediate. It remains to

prove that the converse inclusion holds. Let v be an element of V . Then, v
belongs to Eµ(v)+λ(v+va). The sets Ev0 are obviously pairwise disjoint, and thus
#V = #

⋃
v0∈V Ev0 =

∑
v0∈V #Ev0 .

For each v0 in V , define Fv0 = {v ∈ V | µ(v) + λ(v + va) = v0}. It remains
to prove that

⋃
v0∈V Fv0 = V . As previously, we only have to prove the converse

inclusion. Let v in V . Since λ is onto, there exists an element x of V such that
λ(x) = µ(v) + vb. Then, v lies in Fx+v. Moreover, the sets Fv0 are pairwise
disjoint as λ is one-to-one. Finally, #V =

∑
v0∈V #Fv0 as desired.

Proof (of Theorem 5.10). Let U denotes the set {u ∈ U | ρ(u)+ρ(u+ua) = ub}.
According to Lemma D.2, we have∑

i∈[ua]

(DTf )i,b =
∑
v0∈V

(DTf )ua+v0,b

=
∑
v0∈V

(∑
u∈U

#{v ∈ V | τu(v) + τu+ua(v + v0) = vb}
)
.

Since these sums are finite, they can be exchanged. Hence,∑
i∈[ua]

(DTf )i,b =
∑
u∈U

( ∑
v0∈V

#{v ∈ V | τu(v) + τu+ua(v + v0) = vb}
)
.

In the same way, it can be proven that∑
j∈[ub]

(DTf )a,j =
∑
u∈U

( ∑
v0∈V

#{v ∈ V | τu(v) + τu+ua(v + va) = v0}
)
.

By virtue of Lemma D.3, we obtain∑
i∈[ua]

(DTf )i,b =
∑
j∈[ub]

(DTf )a,j =
∑
u∈U

#V = #U × 2d .

Finally, Lemma D.1 ensures that #U = (DTρ′)u′a,u′b . The result follows.

Proof (of Theorem 5.11). Applying Lemma D.2 with a = 0 + va and b = 0 + vb,
we obtain

(DTf )va,vb =
∑
u∈U

#{v ∈ V | τu(v) + τu(v + va) = vb} ,

since U = {u ∈ U | ρ(u) + ρ(u + 0) = 0} = U . Then, the result comes from
Lemma D.1.
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Proof (of Corollary 5.13). According to Theorem 5.11, the difference distribution
subtable ((DTf )va,vb)va,vb∈V of f is the sum of the differential tables of several
d-bit S-boxes. Consider the second row of this subtable. Necessarily, its first
coefficient is zero. Hence, there are at most 2d − 1 non-zero coefficients. Recall
that the sum of all the coefficients of the differential table of a d-bit S-box
equals 2d. Consequently, the sum of the coefficient of the second row of the
subtable equals #U × 2d = 2n. In the perfect case where this sum is uniformly
distributed over all the coefficients, they all equal to 2n

2d−1 . The result follows
since any coefficient is the sum of even integer, so must also be an even integer.
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E Differential Distribution and Linear Approximation
Tables of Examples 5.6 and 5.12

In every table given is this section, the dots “·” stand for the integer 0. This
helps to emphasize the structures of the tables. The next tables represent the
linear approximation tables LTf of f and LTρ′ of ρ′. As explained in Example
5.6, that the rows and columns of LTf does not follow the natural order in F6

2.

00 05 16 13 18 1D 0E 0B 01 02 03 04 06 07 08 09 0A 0C 0D 0F 10 11 12 14 15 17 19 1A 1B 1C 1E 1F

00 16 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
05 · 8 8 · · 8 -8 · · · · · · · · · · · · · · · · · · · · · · · · ·
16 · · -8 -8 -8 8 · · · · · · · · · · · · · · · · · · · · · · · · · ·
13 · -8 · -8 8 · -8 · · · · · · · · · · · · · · · · · · · · · · · · ·
18 · 8 · -8 · -8 · -8 · · · · · · · · · · · · · · · · · · · · · · · ·
1D · · -8 8 · · -8 -8 · · · · · · · · · · · · · · · · · · · · · · · ·
0E · 8 -8 · 8 · · 8 · · · · · · · · · · · · · · · · · · · · · · · ·
0B · · · · 8 8 8 -8 · · · · · · · · · · · · · · · · · · · · · · · ·
01 · · · · · · · · 6 -6 4 -2 · -2 -4 -2 2 2 · 2 4 -2 -6 2 · 2 -2 -6 -4 -2 · -2
02 · · · · · · · · -6 4 -6 -2 -2 -4 -2 · 2 · -6 6 2 · -2 · -2 2 -2 -4 -2 2 2 4
03 · · · · · · · · 4 -6 6 · -2 -2 2 2 · -2 -6 4 -2 2 4 -2 -2 · · 2 2 4 2 6
04 · · · · · · · · -2 -2 · -2 4 -6 · 2 2 -2 -4 -6 · 2 2 -2 4 2 -2 -2 · 6 -4 -6
06 · · · · · · · · · 2 2 4 2 -2 -2 2 4 6 -2 · -6 -6 · -2 2 4 4 2 -2 · 6 -2
07 · · · · · · · · -2 · 2 -6 -2 · -2 4 6 -4 2 2 -6 -4 2 4 -2 -2 2 · -2 -2 -6 ·
08 · · · · · · · · 4 2 -2 · 6 6 -6 2 · -2 2 4 -2 2 4 -2 -2 · · -6 2 4 2 -2
09 · · · · · · · · 2 · -2 -2 2 · 2 -4 2 4 -2 -2 -2 4 6 -4 -6 2 -2 · -6 -6 -2 ·
0A · · · · · · · · -2 -2 · -2 -4 -6 · 2 -6 -2 4 2 · 2 2 -2 -4 2 6 -2 · -2 4 -6
0C · · · · · · · · -2 -4 -2 2 -6 4 -6 · -2 · -2 2 -2 · 2 · 2 6 -6 4 2 -2 -2 -4
0D · · · · · · · · · 2 2 4 2 -2 -2 -6 4 -2 -2 · 2 2 · 6 -6 4 4 2 6 · -2 -2
0F · · · · · · · · -2 -6 -4 6 · -2 4 -2 2 2 · 2 -4 -2 2 2 · -6 -2 -6 4 -2 · -2
10 · · · · · · · · -4 2 6 · -2 6 2 2 · -2 -6 -4 -2 2 -4 -2 -2 · · -6 2 -4 2 -2
11 · · · · · · · · -2 · 2 2 6 · 6 4 -2 -4 2 2 2 -4 2 4 -2 6 -6 · -2 -2 2 ·
12 · · · · · · · · 2 -2 -4 -6 · 2 4 2 -2 6 · -2 -4 2 -2 6 · 6 2 -2 4 2 · 2
14 · · · · · · · · 2 4 2 -2 -2 -4 -2 · 2 · 2 -2 2 · 6 · 6 2 -2 -4 6 -6 2 4
15 · · · · · · · · · 2 2 -4 2 -2 -2 -6 -4 -2 -2 · -6 2 · 6 2 -4 -4 2 -2 · 6 -2
17 · · · · · · · · 2 2 · 2 -4 -2 · 6 6 2 4 -2 · 6 -2 2 -4 -2 -6 2 · 2 4 -2
19 · · · · · · · · 2 2 · 2 4 -2 · 6 -2 2 -4 6 · 6 -2 2 4 -2 2 2 · -6 -4 -2
1A · · · · · · · · -2 -4 -2 -6 2 4 2 · 6 · -2 2 6 · 2 · 2 -2 2 4 2 -2 6 -4
1B · · · · · · · · -4 -6 -2 · 6 -2 -6 2 · -2 2 -4 -2 2 -4 -2 -2 · · 2 2 -4 2 6
1C · · · · · · · · -6 -2 4 2 · 2 -4 2 -2 6 · -2 4 2 6 6 · -2 2 -2 -4 2 · 2
1E · · · · · · · · · 2 2 -4 2 -2 -2 2 -4 6 -2 · 2 -6 · -2 -6 -4 -4 2 6 · -2 -2
1F · · · · · · · · -6 · 6 -2 2 · 2 -4 2 4 6 6 -2 4 -2 -4 2 2 -2 · 2 2 -2 ·

0 1 2 3 4 5 6 7

0 4 . . . . . . .
1 . 2 2 . . 2 -2 .
2 . . -2 -2 -2 2 . .
3 . -2 . -2 2 . -2 .
4 . 2 . -2 . -2 . -2
5 . . -2 2 . . -2 -2
6 . 2 -2 . 2 . . 2
7 . . . . 2 2 2 -2

ρ′

V ᵀ

V ᵀ
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In the same way, the next tables represent the difference distribution tables
DTf of f and DTρ′ of ρ′ and the DTτ ′u of the τ ′u.. As explained in Example 5.12,
that the rows and columns of DTf does not follow the natural order in F6

2.

00 07 1A 1D 01 06 1B 1C 02 05 18 1F 03 04 19 1E 08 0F 12 15 09 0E 13 14 0A 0D 10 17 0B 0C 11 16

00 32 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
07 · 12 8 12 · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
1A · 8 12 12 · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
1D · 12 12 8 · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
01 · · · · · · · · · 4 4 · 4 · · 4 2 2 2 2 · 4 4 · · · · · · · · ·
06 · · · · · · · · 4 · · 4 · 4 4 · 2 2 2 2 · 4 4 · · · · · · · · ·
1B · · · · · · · · 4 · · 4 4 · · 4 2 2 2 2 4 · · 4 · · · · · · · ·
1C · · · · · · · · · 4 4 · · 4 4 · 2 2 2 2 4 · · 4 · · · · · · · ·
02 · · · · · · · · · · · · · · · · 2 2 2 2 2 2 2 2 · 4 · 4 · · · 8
05 · · · · · · · · · · · · · · · · 2 2 2 2 2 2 2 2 4 · 4 · 8 · · ·
18 · · · · · · · · · · · · · · · · 2 2 2 2 2 2 2 2 4 · 4 · · 8 · ·
1F · · · · · · · · · · · · · · · · 2 2 2 2 2 2 2 2 · 4 · 4 · · 8 ·
03 · · · · · · · · · 4 4 · 2 2 2 2 · · · · · · · · · · 4 4 · 4 · 4
04 · · · · · · · · · 4 4 · 2 2 2 2 · · · · · · · · · · 4 4 · 4 · 4
19 · · · · · · · · 4 · · 4 2 2 2 2 · · · · · · · · 4 4 · · 4 · 4 ·
1E · · · · · · · · 4 · · 4 2 2 2 2 · · · · · · · · 4 4 · · 4 · 4 ·
08 · · · · 2 2 2 2 2 2 2 2 · · · · 2 2 2 2 · · · · · · · · 4 4 · ·
0F · · · · 2 2 2 2 2 2 2 2 · · · · 2 2 2 2 · · · · · · · · 4 4 · ·
12 · · · · 2 2 2 2 2 2 2 2 · · · · 2 2 2 2 · · · · · · · · · · 4 4
15 · · · · 2 2 2 2 2 2 2 2 · · · · 2 2 2 2 · · · · · · · · · · 4 4
09 · · · · · · 4 4 · · · · 4 · 4 · · · · · 2 2 2 2 · · · · · 4 · 4
0E · · · · 4 4 · · · · · · · 4 · 4 · · · · 2 2 2 2 · · · · 4 · 4 ·
13 · · · · 4 4 · · · · · · 4 · 4 · · · · · 2 2 2 2 · · · · 4 · 4 ·
14 · · · · · · 4 4 · · · · · 4 · 4 · · · · 2 2 2 2 · · · · · 4 · 4
0A · · · · 2 2 2 2 · 4 4 · · · · · · · · · 2 2 2 2 2 2 2 2 · · · ·
0D · · · · 2 2 2 2 4 · · 4 · · · · · · · · 2 2 2 2 2 2 2 2 · · · ·
10 · · · · 2 2 2 2 · 4 4 · · · · · · · · · 2 2 2 2 2 2 2 2 · · · ·
17 · · · · 2 2 2 2 4 · · 4 · · · · · · · · 2 2 2 2 2 2 2 2 · · · ·
0B · · · · · · 8 · · · · · · · 4 4 · 4 · 4 · · · · 4 4 · · · · · ·
0C · · · · · · · 8 · · · · 4 4 · · 4 · 4 · · · · · · · 4 4 · · · ·
11 · · · · · 8 · · · · · · · · 4 4 · 4 · 4 · · · · · · 4 4 · · · ·
16 · · · · 8 · · · · · · · 4 4 · · 4 · 4 · · · · · 4 4 · · · · · ·

0 1 2 3 4 5 6 7

0 8 . . . . . . .
1 . . 2 2 2 2 . .
2 . . . . 2 2 2 2
3 . . 2 2 . . 2 2
4 . 2 2 . 2 . . 2
5 . 2 . 2 . 2 . 2
6 . 2 2 . . 2 2 .
7 . 2 . 2 2 . 2 .

ρ′

0 1 2 3

0 4 . . .
1 . 4 . .
2 . . . 4
3 . . 4 .

0 1 2 3

0 4 . . .
1 . . . 4
2 . . 4 .
3 . 4 . .

0 1 2 3

0 4 . . .
1 . . . 4
2 . 4 . .
3 . . 4 .

0 1 2 3

0 4 . . .
1 . . . 4
2 . . 4 .
3 . 4 . .

0 1 2 3

0 4 . . .
1 . 4 . .
2 . . 4 .
3 . . . 4

0 1 2 3

0 4 . . .
1 . . 4 .
2 . 4 . .
3 . . . 4

0 1 2 3

0 4 . . .
1 . . 4 .
2 . . . 4
3 . 4 . .

0 1 2 3

0 4 . . .
1 . 4 . .
2 . . . 4
3 . . 4 .

[00]

[00]

[01]

[01]

[02]

[02]

[03]

[03]

[08]

[08]

[09]

[09]

[0A]

[0A]

[0B]

[0B]

τ ′00 τ ′01 τ ′02 τ ′03

τ ′08 τ ′09 τ ′0A τ ′0B
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F Primitives of the Toy Trapdoor Cipher of Section 6
The permutation S of F6

2 is given by the following table.
S .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F
0. 38 21 24 3C 25 20 2C 28 0E 0C 11 12 3F 0C 0F 3B
1. 3E 16 1A 34 10 23 37 02 2A 35 0A 2E 2F 3A 27 18
2. 31 33 03 3C 30 05 2C 1E 1B 29 17 08 0B 09 04 07
3. 32 06 13 1C 2B 39 1F 36 00 15 22 1C 19 01 14 26

For instance, S(25) = 05. The permutation S′ of F6
2 is then defined in a similar

way.
S′ .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F
0. 38 21 24 3C 25 20 2C 28 0E 0C 11 12 3F 0C 1C 3B
1. 3E 16 1A 34 10 23 37 02 2A 35 0A 2E 2F 3A 27 18
2. 31 33 03 3C 30 05 2C 1E 1B 29 17 08 0B 09 04 07
3. 32 06 15 13 2B 39 1F 36 00 0F 22 1C 19 01 14 26

Observe that S(x) 6= S′(x) if x lies in {0E, 32, 33, 39} and that S(x) = S′(x) for
any other element x of F6

2.
The diffusion layer π is an isomorphism of (F6

2)4. Because of the linearity of
this map, π is define only a a basis of (F6

2)4. The following table gives the images
under π of the elements of the standard basis of (F6

2)4.
x 7→ π(x) x 7→ π(x)

(00, 00, 00, 01) 7→ (3B, 3D, 30, 26) (00, 01, 00, 00) 7→ (08, 33, 18, 2D)
(00, 00, 00, 02) 7→ (2E, 05, 16, 01) (00, 02, 00, 00) 7→ (39, 14, 1F, 2F)
(00, 00, 00, 04) 7→ (19, 11, 3D, 3C) (00, 04, 00, 00) 7→ (0F, 02, 2E, 19)
(00, 00, 00, 08) 7→ (01, 01, 38, 04) (00, 08, 00, 00) 7→ (20, 04, 0D, 03)
(00, 00, 00, 10) 7→ (05, 0F, 02, 2A) (00, 10, 00, 00) 7→ (2D, 28, 03, 1F)
(00, 00, 00, 20) 7→ (31, 1C, 12, 0A) (00, 20, 00, 00) 7→ (23, 34, 06, 16)
(00, 00, 01, 00) 7→ (2D, 04, 0E, 1A) (01, 00, 00, 00) 7→ (0A, 10, 24, 09)
(00, 00, 02, 00) 7→ (09, 1D, 16, 12) (02, 00, 00, 00) 7→ (0B, 1D, 19, 04)
(00, 00, 04, 00) 7→ (1A, 30, 3D, 04) (04, 00, 00, 00) 7→ (28, 16, 2A, 16)
(00, 00, 08, 00) 7→ (3D, 14, 21, 26) (08, 00, 00, 00) 7→ (05, 3A, 04, 15)
(00, 00, 10, 00) 7→ (04, 1F, 15, 0D) (10, 00, 00, 00) 7→ (1D, 39, 16, 3B)
(00, 00, 20, 00) 7→ (3C, 01, 0B, 10) (20, 00, 00, 00) 7→ (21, 09, 10, 14)

For example,
π(00, 00, 00, 03) = π(00, 00, 00, 01) + π(00, 00, 00, 02)

= (3B, 3D, 30, 26) + (2E, 05, 16, 01) = (15, 38, 26, 27) .
In the same way, we define the isomorphism L of (F6

2)2.
x 7→ L(x) x 7→ L(x) x 7→ L(x) x 7→ L(x)

(00, 01) 7→ (15, 08) (00, 08) 7→ (0B, 26) (01, 00) 7→ (19, 2B) (08, 00) 7→ (07, 08)
(00, 02) 7→ (0A, 09) (00, 10) 7→ (31, 15) (02, 00) 7→ (13, 31) (10, 00) 7→ (1A, 2C)
(00, 04) 7→ (1C, 31) (00, 20) 7→ (12, 07) (04, 00) 7→ (0B, 13) (20, 00) 7→ (20, 11)
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