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ABSTRACT

The revision of existing data must always be considered when new data are collected which have known relations with the
old data, thereby taking into account that the two datasheets in question may belong to one and the same, or to two different
hierarchical levels. In the first case, optimal data fusion would amount to ajoint adjustment and, as a result, to modifications
of the existing data which may then be checked for their significance. In the second case, the situation turns out to be
somewhat trickier since, after the integration, the old dataset with a higher position in the hierarchy should still be unaffected,
including the corresponding dispersion matrix. Here we shall explore the optimal procedure for the second case and present a
unifying algorithm which would allow us to go ahead with the revisions until (only in the last step) we have to decide about
the hierarchical behaviour.

Although some of the more theoretical questions must be left unanswered at this point, we do include an example in which
two photogrammetric networks of substantially different scales are to be integrated.

1 INTRODUCTION

To illustrate the issue of hierarchical data revisions let us consider the example of photogrammetric imagery taken at two
substantially different scales from the same scene. Then we could apply one of the following procedures:

- perform a simultaneous bundle adjustment,
- useobject space coordinates from one adjustment as stochastic constraints on the second,
- useobject space coordinates from one adjustment as fixed constraints on the second.

Only the third procedure would truly fulfill the requirements of a hierarchical data revision method insofar as it would leave
the first adjustment results unchanged; the estimated object space coordinates will be reproduced during the second
adjustment indeed, but possibly not their variance-covariance or dispersion matrix.

But even if we modify the , error propagation” for the adjustment formulas with fixed constraints in accordance with the real
stochastic constraints at hand, we could never be certain that this is the optimal way to integrate the two datasets in a
hierarchical manner. We shall therefore try in the following to find the ,best among those (sequential) estimates which
reproduce the , hierarchically superior* estimates along with their dispersion matrix (i.e. the,, reproducing property*).

In the next chapter we shall present a summary of key results as they have been derived in the context of geodetic network
fusion by B. Schaffrin (1997) without employing Bayesian techniques. Hierarchical Bayesian methods have, in contrast, been
proposed by L.M. Berliner (1996) for time series and by C.K. Wikle/L.M. Berliner/N. Cressie (1998) for space-time models.
We would also like to draw the attention to the previous work by K.R. Koch (1983), E. Grafarend/B. Schaffrin (1988), B.
Schaffrin (1989) and F.W.O. Aduol (1993) among many others who have discussed the ,,dynamic’ network densification
problem before, hierarchical or not. In the subsegquent chapter we will then show the effect of the optimal hierarchical
technique on the above-mentioned photogrammetric situation before we draw some (preliminary) conclusions, combined
with an outlook on further research.

2 THE THEORY OF HIERARCHICAL DATA REVISION

For an easy access |et us consider the new dataset be given in the form of (linearized) observation equations, namely

y=Aé&+ A &, +e, rkA, =m-r, e~ (0,Y), (1.1

nxr nx(m-r)

while the existing data are available from

A

&1~ (51’ Zf) ’ 12
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thus representing unbiased information about &, with uncertainties as shown in the dispersion matrix . f . Inthe hierarchical

data revision problem, we try to find optimal estimates El and 5?2 from the new dataset y such that the reproducing
property

621 = é?l' E{él}: & =E {5_1}' D{él}: 22 = D{gl}’ (1.3)

holds true if the index 1 denotes parameters of a higher hierarchical level. The corresponding adjusted observation vector
would then, of course, be given by

Elyj:=A& +A¢ =y-¢© (14)

with the appropriate residual vector € .

For data from equal hierarchical levels, however, we would have to allow changes in 51 as a consequence of the new
information iny. The optimal revisions may then be obtained from ajoint adjustment with the stochastic constraints

~

E=KéE+red =1 -&+0-&, +¢, rk K=r, (15)

rxm

& ~(0.xf), cle.¢=0, E=2). (1.5b)

obviously resulting in reduced uncertainties for the revised estimates of gﬂ, say fl. Following the standard approach we
arrive at the same formulas as given by H.J. Buiten (1978), e.g., namely

A

£- égl = [N +KT(22) Kr [C +KT () 51], (1.68)
o

with [N, c|:= AT [Ay], adif rk A=tk [A,A]=m, a

2 _ _ _ -1 (2 _
E=N7c+NK' (g, + KNK')™ (& - KNTo) (L60)
for the estimated parameters (without the ,,reproducing property*), and at
A 1 I _ _ _ -1 _
D{g}:[N+KT(2§’) K} = N NUKT (20 + KNHKT)T KN 17
for their dispersion matrix. Note that we have not decomposed the dispersion matrix into a so-called ,, cofactor matrix“ and a
variance component.

We may as well identify the residual vector for the stochastic (or fiducial) constraints as

I

% = 621 _KEZ 621 - 621 = [Ir + KN7 KT (2(1))71_

with its dispersion matrix

(51 - KN’lc) (18)

D{&,) = {Ir + KNTKT (Zf)flj(ﬁf +KNTKT) I+ (zf)’lKNflKTJ=

=30 (20 + KN'KT )50, (19)



D. Fritsch, M. Englich & M. Sester, eds, '|APRS', Vol. 32/4, ISPRS Commission IV Symposium on GIS - Between Visions and Applications,
Stuttgart, Germany.

Schaffrin & Cothren 517

A

knowing that & and €, will be uncorrelated:

c {5 éo} _o, 110

Now, as soon as we concentrate ourselves on the class of linear estimates with the ,reproducing property”, however, the
optimal estimates will be dightly different from (1.6a — b), but can be easily found via updates using the above results. As
shown previously by B. Schaffrin (1997), we obtain

= = 1~
E=E+KT (KKT) g, (1.12)
for the best ,, hierarchically estimated” parameters with

A
~

D&} = D{g} +KT(KKT)" D&} (KKT)'K (112)

as corresponding dispersion matrix. Introducing our particular matrix K = [Ir ) 0], these formulas can be further
simplified using the identities

. . I, 0
KK =1, , K K = , (1.13)
00
so that we eventually get the following estimates
— = I, ~ 2 921
§=§+{ }(a—a} al L
0
2

clearly exhibiting the , reproducing property”, and their dispersion matrix

a 0 (50 1 TYigo0 |
}+ 222 +KNKT)'E? 1 O w15

D)= D {5 o) 0
with

D{&|= D{Ké + é‘o} = KN'K" -KN?KT (20 + KN'KTJ"KN KT +
+30 (22 + KNPKT)H (20 + KN KT —KNKT)=
—KN'K' - (KNKT +30) (22 + KNP*KTJ'RKNIKT +32 = =3¢ (1)
in the upper left hand corner as expected, whereas all the other three blocks remain the same asin D {é}

As a consequence, we see that the best hierarchical data revision is exactly the same as the optimal (non-hierarchical) data
revision unless a higher level isinvolved in which case the old information is reproduced. This, however, should not be done

~

without properly testing the difference between 5_1 = £, and &, viathe null hypothesis
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Hy B{f - &) =B (&) -0

which is not too difficult to do, but will be left for a subsequent paper. Instead, let us see how the above theory worksin a
(simulated) photogrammetric example.

3 AN EXAMPLE: THE JOINT ANALYSIS OF PHOTOGRAMMETRIC IMAGERY WITH
TWO DIFFERENT SCALES

In the following let us describe the simulated datasets along with the parameters of the exterior orientation. The object space
point field consisted of two distinct arrangements of three-dimensional points (see Figure 1).
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1. 27 points equally spaced within a cube centered on the point (0,0,2000) mm, 4000 mm on aside. The points on the cube
are numbered 21-47.

2. 20 points forming the perimeter of a circle with a 200 mm radius, rotated about its vertical axis, also centered on the
point (0,0,2000). The points on the circle are numbered 1-20 and should be considered densification points of the cube
network, i.e. lower in the hierarchy.

We generated two synthetic sets of photogrammetric images using this object space field, FAR3 and NEARS3. Each set was
composed of three images with afocal length of 60 mm, a principal point at the image coordinate system origin, and a format
of 36 mm x 24 mm. These parameters are typical of an off-the-shelf 35 mm camera and lens arrangement.

FAR3 consisted of images of the cube only, with exterior orientation parameters given in Table 1. The average scale of the
images in this set was approximately 235:1.

FAR3 Xo(mm) |Yo(mm) |Zo(mm) omega (deg) phi (deg) kappa (deg) Range (mm)
Image 1 6000 - 10000 8000 51.35 25.10 18.74 14,142
Image 2 6000 10000 8000 -51.3 25.10 -18.74 11,313
Image 3 8000 0 8000 0 45 -90 14,142

Table 1, FARS Data, exterior orientation parameters
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NEAR3 consisted of images of the entire visible field (cube and circle) with the exterior orientation parameters given in
Table 2. The average scale of the images in this set was approximately 88:1.

NEAR3 Xo (mm) Yo (mm) Z0 (mm) omega (deg) phi (deg) kappa (deg) Range (mm)
Image 1 2000 2500 2000 -51.35 32.00 -22.99 3775
Image 2 2000 - 4500 2000 66.00 22.10 9.51 5315
Image 3 2000 4500 2000 - 66.00 22.00 -9.51 5315

Table 2, NEARS Data, exterior orientation parameters

The closer range of these photographs resulted in images of al the points on the circle (points 1-20), but the appearance on
multiple images of only eight points on the cube (points 24, 25, 27, 33, 34, 35, 36, and 43). These eight points are thus
common to both datasets.

We applied the following random errors to compute image coordinates of the projected object space points visible in each
image:

Exterior Orientation Parameters, rotation angles: o =+ 1arc second
Exterior Orientation Parameters, camera position: c=110mm
Interior Orientation Parameters, (Xp, Yp, C): 6 =%10.01 mm
Projected Image Coordinates: o =+ 0.004 mm

In order to isolate network geometry effects and keep the model parameters to a minimum, the simulation did not model
other interior orientation parameters such asradial lens distortion or film unflatness.

The experiment consisted of four separate adjustments:

1. Thefree network adjustment of the NEAR3 images,

2. Thefree network adjustment of the FAR3 images, providing the ,, prior information*,

3. Thefree network adjustment of both, FUSES, following (1.6a— b), and

4. The adjustment of the NEAR3 with stochastic constraints using the optimal reproducing estimator, which we designate
NEAR3K reflecting the inclusion of the constraint matrix K. This adjustment recomputed adjustment 1, but updated the
parameter vector with the constraint matrix K and constraint observation vector z, at each iteration, eventually leading to
the solution (1.11) or (1.14), respectively.

The first two adjustments serve as basis from which to measure the effects of the network integration. In all adjustments the
interior orientation parameters (x,, Yp, and c) were added to the adjustment as pseudo-observations with a variance of 0.0001
mm?. We did not consider any other interior orientation parameters. The exterior orientation of each image and all multi-ray
object space points were the parameters to be estimated in each adjustment. We assumed the a priori image coordinate
observation precision to be + 0.005 mm. Note that the a priori reference variance, the so-called , variance component*, was
1.00.

The results of the four adjustments are shown in Table 3:

o2 RMS X RMSY RMSZ Max Var X Max Var Y Max Var Z
0 (mm) (mm) (mm) (mm?) (mm?) (mm?)
NEAR3 0.92 +0.61 +0.88 +0.52 7.38 12.13 6.92
20 points @ pt 25 @ pt 20 @ pt 20
FAR3 1.00 +0.58 +0.71 +0.86 1.50 1.37 1.23
27 points @ pt 26 @ pt21 @ pt 36
FUSE6 0.80 +0.32 +0.06 +0.17 0.97 111 0.95
47 points @ pt 36 @ pt21 @ pt 21
NEAR3K 354 +0.36 +0.30 +0.39 6.91 335 5.72
28 points @ pt 25 @ pt 34 @ pt 36

It should be noted that all the adjustments resulted in exterior orientation parameters that differed from the synthetic values
by no more than one degree (angles) and four millimetres (camera position). The variance-covariance matrix of all exterior
orientation parameters can be provided upon request.

It is clear from an analysis of the summarised results that the FUSE6 network yielded the best precision of al the
adjustments. We thought the inclusion of the large-scale dataset would increase the variances of some points imaged only in
the FAR3 network. However, this was not the case.

One measure of the precision of the estimated object space coordinates is the Helmert point error. A comparison of the
FUSE6 and FAR3 point errors reveals that the precision of the entire network (by this measure) was improved in the
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combined adjustment. Points 1-20 improved slightly over the NEAR3 adjustment, as did the common points. The other
points on the cube, however, where we expected to see larger point errors, were either unchanged or slightly improved. The
image observations in all six images were equally weighted at £ 0.005 mm. It might be that applying larger weights to the
NEAR3 images (as might occur with real data) would have this effect.
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NEARSBK Helmert Point Error {reference variance = 3.542)

A comparison of the point errors of the NEAR3K and FUSEG networks shows a definite loss of precision using the optimal
reproducing estimator. Point errorsin the NEAR3K adjustment were 2 to 2.5 times larger than in the FUSE6 adjustment. This
is to be expected from the optimal reproducing estimator because it is only optimal in the class of estimators that result in no
change on the constrained parameters.
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As second quality measure of the adjustments might be considered, especially in the case of synthetic data, the Root Mean
Square (RMS) error. The RMS errors in each coordinate axis are shown in Table 3 above. A comparison of NEAR3K and
FUSES using this measure shows a very small differencein the X-axis RMS error, a substantial difference in the Y-axisRMS
error, and a substantial difference in the Z-axis RMS error. These computations in the NEARS3K adjustment include the zero
differences of the common point parameters.

The RMS errors for points 1-20, the points that densify the FAR3 network, are shown in Table 4.

RMS X RMSY RMSZ

(mm) (mm) (mm)
FUSE6 0.26 0.52 0.26
NEARSK 0.43 0.36 0.46

Table 4, RMSfor points 1-20 only

This provides a dlightly different view of the adjustment. The RMS difference between the estimates of the densification
points in the two adjustments s less pronounced than the difference shown in Table 3.

4 Conclusions and Outlook

A significant loss of overal precision resulted from the use of the optimal reproducing estimator compared with a
simultaneous adjustment when integrating the two datasets, FAR3 and NEAR3. This loss of precision must be weighed
against the amount of change in the common points that is a result of a simultaneous adjustment, an effect that the optimal
reproducing estimator is designed to eliminate.

Future experiments might proceed as follows:

1. Design other networks with different geometries. The data used in this experiment simulated a close range network. An
aerial or space scene could be used to simulate different space and airborne sensors currently in use.

2. Apply different weight to the image coordinate observations in the different scale images. This is perhaps a more
realistic situation.

3. Compute the mapping function from image observations to residuals and compare the inner and outer reliability of the
two integration methods.

4. Perform the experiment with real data from one or more close range scenes and aerial scenes. This, along with more
simulations, will provide a more robust measure of the effects of the sub-optimal estimator.
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