Static Error Detection using Semantic Inconsistency Inference *

Isil Dillig Thomas Dillig Alex Aiken

Computer Science Department
Stanford University

{isil, tdillig, aiken}@cs.stanford.edu

Abstract

Inconsistency checking is a method for detecting software errors
that relies only on examining multiple uses of a value. We propose
that inconsistency inference is best understood as a variant of the
older and better understood problem of type inference. Using this
insight, we describe a precise and formal framework for discover-
ing inconsistency errors. Unlike previous approaches to the prob-
lem, our technique for finding inconsistency errors is purely se-
mantic and can deal with complex aliasing and path-sensitive con-
ditions. We have built a null dereference analysis of C programs
based on semantic inconsistency inference and have used it to find
hundreds of previously unknown null dereference errors in widely
used C programs.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.2.5 [Software Engineer-
ing]: Testing and Debugging

General Terms Languages, Reliability, Verification, Experimen-
tation

Keywords Static analysis, error detection, satisfiability, inconsis-
tency

1. Introduction

Much recent work in static analysis focuses on source-sink proper-
ties: For safety policy S, if S is violated when a value constructed
at location [; is consumed at location 2, then is there a feasible
path from I; to [2? If the answer is “yes,” then the program has a
bug (violates policy S). Some typical specifications are:

e Does a null value assigned to a pointer or reference reach a
pointer dereference?

e Does any closed file reach a file read?

e Does a tainted input reach a security critical operation?

To be concrete, consider the following C-like code:

* This work was supported by grants from DARPA, NSF (CCF-0430378
and SA4899-10808PG-1), and equipment grants from Dell and Intel.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’07 June 11-13, 2007, San Diego, California, USA.

Copyright © 2007 ACM 978-1-59593-633-2/07/0006. . . $5.00.

foo(...) {
if (Q) p = NULL; (1)
{J;.]’:‘(P);
}
bar(x) {
if (R) *x; (2)
}

The null value assigned at (1) reaches the dereference at (2) if pred-
icates Q and R can both be true, resulting in a program crash. Several
model checkers incorporating predicate abstraction and refinement
[2, 3] and type-based systems [10] target such specifications. These
systems work by searching for a path from a source to a sink vio-
lating the specification.

There is a complementary approach to these problems. Instead
of trying to prove that a source can reach a sink, we can look at a set
of sinks that a value = reaches and see if they express inconsistent
beliefs about x [6]. In the example above, assume we did not have
the function foo available, but that the function bar is:

bar (x) {
if (x !'= NULL) *x; (2)

wx; 3
}

Something is clearly not quite right with this function. At best bar
is never called with a null value, in which case the test at (2) is just
unnecessary and might confuse readers of the code about the actual
possible values of x. At worst bar has a latent crashing bug waiting
to happen, as the unprotected dereference at line (3) must cause an
error if x is null.

Previous work on inconsistency checking is informal in nature,
and it is not clear how it relates to standard semantics-based ap-
proaches to software analysis [6], but it is clear that relying only
on the uses of a value for clues about program errors is something
different from what source-sink systems do. The purpose of this pa-
per is to clarify what inconsistency checking is, how it is different
from source-sink analysis, and to illustrate by example its potential
in practice.

We propose that inconsistency checking is best thought of as a
form of an older and better developed idea, type inference. Type
inference systems already find type errors based only on the use of
values; for example, in any functional language with type inference
(e.g., ML or Haskell) the following code

x + cons(y, x)

will be flagged as having a type error just because the two uses of
x are type inconsistent (one as a number and the other as a list);
note that the type declaration of x (the source) is not needed to

discover this error. From this starting point we make the following
contributions:

e The insight that checking consistency of uses is a type infer-
ence problem shows a fundamental difference between type in-
ference and source-sink systems, such as most model check-
ers. Type inference systems find inconsistency errors in open
programs, such as libraries (e.g., the second instance of func-
tion bar above, considered without a caller foo) that cannot be
found by source-sink analyzers simply because no source ex-
ists.

Casting many inconsistency checking problems as type infer-
ence problems requires non-standard types. The core issue is
when the values at two usage sites x and y are considered to
be “the same”, so that = and y are checked for consistency. A
particularly problematic case is pointers; we propose that if two
pointers point to the same values under the same conditions then
those two pointers are really the same pointer (see Section 5.1).

For path-sensitive analyses there is a difficulty of how to con-
struct appropriate predicates when there is no one source-sink
path to use as a source of counterexamples for refinement. We
present a method based on computing correlations between
program predicates and values of interest.

We conduct an extensive experiment, analyzing over 8 mil-
lion lines of C source (including the entire Linux kernel) for
null dereference errors. We have implemented both source-sink
checking and inconsistency checking and found over 600 pre-
viously unknown null dereferences, the overwhelming majority
of which are found by inconsistency checking. While there are
limitations to our experiment (in particular, our implemented
analyzer is unsound, which may affect the ratio of source-sink
to inconsistency errors detected), based on the results, we be-
lieve that inconsistency checking is valuable both because it
works for open programs and because the discovered bugs are
often local whereas understanding a source-sink path for the
same bug appears daunting.

We begin our presentation with a small, paradigmatic language
in which we develop our formal results (Section 2). We present
both (intraprocedural) source-sink and inconsistency checking for
this language (Section 3) and also extend our technique to an inter-
procedural analysis (Section 4). We then describe a null dereference
analysis and necessary extensions for C programs (Section 5) and
present our experimental results (Section 6).

2. Language and Inference System

This section describes a simple first order, call-by-value language
we use for the formal development.

Program P == FT
Function F == deff(x1,...,xn) =35
Statement S = 1z " C; |z " y|check’b|
flxr, . an)? [5157 52 |
if? b then s; else s2
ConditionB 1= z=0C;

The language has standard function definitions, assignments, state-
ment sequences, and conditionals; the semantics is also standard
and we omit a formal semantics for brevity. The only values in
the language are nullary constructors (constants) C1,...,Cyr. A
condition z = Cj is true if x has the value C;. A statement
check” z = C; checks whether variable z is C;. We use check
statements to model requirements that a variable must have a cer-
tain value at a particular program point. In examples we sometimes
need a no-op statement (e.g., to fill in a branch of an if); in such
cases we write skip” to abbreviate the assignment y «—* y. We

also assume for simplicity that all variables that are not function
arguments are assigned to before they are read, so we do not need
to define how local variables are initialized.

The superscript p’s on statements are /abels. We assume all
labels in a program are distinct, uniquely identifying statements.
We often abuse our notation slightly by writing s” to refer to the
top-level label p of statement s.

The only sources (constructors) in this language are constants
C; and the only sinks (destructors) are the check statements. For
example, the following program has a source-sink error: the source
assigned at pg reaches the conflicting sink at p4.

EXAMPLE 1.
(x «PO cl;m
i£P2 (y = Cz)
then y <3 C3
else check® x = Cj);"s
i£7 (y = Cy)
then skip”?
else checkP® x =Cy

The language syntax allows us to define algorithms via struc-
tural induction, but it is also handy to be able to view a function
definition as a control-flow graph. For each statement label p there
are two program points p~ and p* representing the points immedi-
ately before and after the statement executes, respectively. Defini-
tion 1 defines the possible order of evaluation of statements within
a function.

DEFINITION 1 (Partial Order on Program Points). For a function
def f(z1,...,Zn) = s, let <y be the smallest relation on program
points in f satisfying for each sub-statement of s:

... = p =<5pt
check” ... = p <;pt
) P(i =fP1
s sh? = PL=s Py
P2 =f Po

. 0 =f P;
if?° b then s?' else s52 = V':12{ Po =f Pi
! 2 B s
Let <% be the transitive closure of <y. A path from po to p, is a
sequence of labels po, . .., p, in f such that

() p; =Fpigfor0<i<n-—1
(2) the sequence is maximal between the endpoints: inserting any
additional label after po and before p,, violates (1).

A path is complete if it cannot be extended either by adding new
labels before the first label or after the last label; a complete path is
a path through the entire function body. For instance, in Example 1,
there is a path po, p2, p4 because p; < p(')*' < p3 < py. This
path can be extended in both directions to form a complete path
P55 P15 PO, P25 P4, P6, PT7-

2.1 Guards

To allow for path-sensitivity in our static analysis, we construct
guards that express program constraints. We use boolean satisfi-
ability (SAT) as the underlying decision procedure for solving con-
straints; hence guards are represented as boolean formulas. In this
section, we describe how to compute two kinds of guards:

e statement guards that describe the conditions under which a
statement executes,

e constructor guards that describe the condition under which a
variable x at a given program point evaluates to a constructor
C;. In addition, a constructor guard also encodes the source of
the value C;.

(1) D,yka«—?C;: Tz — F)
where F' = A\(r, j).if (r,j) = (p, 1) then ~ else false

(2) LoykFx "y : Tz« A(r,7).L(y)(r,5) Al

(3) I',vF check’ x =C;: T

(4) L,y b f(za,...,x0)?: T
PofyFSl :F1
Fl,’y}_SQZFQ

(5)

Fo,’y [81;P 82 @ Iy
7=\, Lo(z)(r, i)

To,yAmmks1:1
F(),’YA‘WI‘"SQIFQ

Fo,vF if? x = C; then sy elsess : ' U,

Axi. Dy, truet=s: T’
b def f(z1,...

73:n):5

Figure 1. Computing guards.

Constructor guards are functions of type
CG = (Source X Int) — Guard

The Int in the function signature corresponds to a constructor
index, and the Source in function def f(xi,...,x,) is either a
label p of an assignment statement z «—” C; in f or one of the
function arguments xi, . . ., Xn. Sources used in constructor guards
track the origin of every value in a function in terms of function
arguments or constructor assignments within that function. We use
r,7’,T1, ... tO range over sources.

Consider an assignment x «<* C; with statement guard . The
constructor guard g, for z after the assignment is g»(p,7) = 7,
where ~ is the statement guard for p, and g.(r,j) = false for
all 7 # p and j # 4. Thus, the constructor guard encodes that
immediately after the assignment the value of x is C; from source
p if v is satisfied, and no other value/source combinations are
possible.

We require that the formulas in the range of a constructor guard
be pairwise disjoint: if ¢ is a constructor guard and g(r,7) = 11
and g(r',j) = 7o, then v1 A v = false if r # 7’ ori # j.
This condition captures the idea that a value cannot simultaneously
be two distinct constructors or come from two different sources.
We can always enforce this condition by adding new unconstrained
boolean variables to guards. For example, if there are only two con-
structors C and C', then the constructor guard g with g(r,1) = «
and g(r,2) = -« enforces disjointness; for more constructors we
can use additional fresh variables. We write D, for a fresh con-
structor guard associated with function argument x. By fresh, we
mean that the formulas in the range of D, share no variables with
D, for distinct variables = and y. Furthermore, D, (r, 7) = false
for all » # z; i.e., the only source of values in D, is x.

Figure 1 gives inference rules for computing both statement
guards and constructor guards resulting from executing a statement.
An environment I' : Var — CG is a map from program variables
to constructor guards. For a statement s and initial environment I"
and statement guard -, the system proves sentences of the form
I,y I s : I, where I' is the final environment after execution of
s. Note that the inference system is purely structural; in any proof
there is exactly one conclusion associated with statement s, which

we can rewrite as:

I° 4P ks TP
In this way we can refer to the environments for the program points
before and after p as well as the statement guard under which s” is
executed.

We briefly explain the rules in Figure 1. When a variable x is as-
signed a constructor C; (rule (1)), ’s constructor guard shows that
it cannot have any value other than C; from source p (guards for
all other constructors and all other sources are false). Furthermore,
x only has value C; if the assignment executes (the guard ~ on the
assignment statement holds). The second form of assignment (rule
(2)) says that the possible sources/values of x after the assignment
are the possible sources/values of y before the assignment, but only
if the assignment executes—the statement guard ~y is added to the
guard of every possible source/value pair.

A check” x = C; statement (rule (3)) tests the predicate
(x = C;) at run-time. These are the sinks in our language. The
purpose of our analyses is to characterize when the run-time test
can evaluate to false; this can model, for example, the implicit
assertion that a pointer is non-null before it is dereferenced, or
more generally that a value of a discriminated union type has the
correct constructor (our choice of the term “constructor” is meant
to suggest discriminated unions), or that a value is in the correct
type-state before some operation is performed. As our interest is in
when the test is false and not what happens as a result of the test,
we define check statements to have no effect on the environment.

Function calls (rule (4)) also have no effect on the environment;
because there are no visible side-effects of a function and no return
value, function calls have no effect on the callee’s state. Of course,
this rule also gives us no information about check statements
that may fail in the called function; thus, Figure 1 defines an
intraprocedural analysis. We discuss extensions to interprocedural
analysis in Section 4.

Rules (5) and (6) deal with compound statements. The rule for
statement sequences (rule (5)) is standard. For an if statement (rule
(6)) with statement guard +, the guard 7 combines all the conditions
under which x = C; from any source. The true branch is analyzed
with statement guard v A 7 and the false branch is analyzed with
statement guard v A —. The final result is a join I'; U I'2 of the
final environments of the two branches, defined as

(T UT2)(z)(r,i) =T1(x)(r,4) VTa(z)(r,9)

Finally, a function body (rule (7)) is analyzed in an environment
where nothing is known about a function argument except that it
evaluates to a single constructor at a given call site (recall that for
each argument z, the guards in the range of the constructor guard
for z are all disjoint).

Notice that statement guards and constructor guards are mutu-
ally dependent (e.g., rules (1) and (6)) and thus are computed simul-
taneously. The reason for this design decision is that the computa-
tion of statement guards is affected by side-effects of statements,
which are in turn implicitly captured by constructor guards. Con-
versely, the condition under which a statement causes a particular
side-effect to happen depends on the condition under which that
statement executes; hence the computation of constructor guards
makes use of statement guards. As an illustration of guard compu-
tation, consider the example:

EXAMPLE 2.
1P (x = Cy)
then (
X «—P1 Cg;P6
ifP2 (x = Cy)

then check’3 x = Cy
else skip”?)
else skip”s

Suppose that we are interested in knowing the statement guard
associated with the check statement at program point p3. Suppose
po is the entry point of a function, and let a; and a2 be formu-
las that represent the conditions under which function argument x
evaluates to C; and C, at function entry respectively. After execut-
ing the assignment statement at program point p1, the guard under
which x evaluates to C; is false by Rule (1) of Figure 1, and the
guard under which x evaluates to C, is a1, which is the statement
guard at this program point. The statement guard at program point
p3 is computed using Rule (6), where v = a1 and m = false; hence
the statement guard at p3 is a1 A false = false. Since the statement
guard at ps is false, the path from the function entry po to program
point p3 is not feasible.

As this example illustrates, the computation of statement guards
directly allows the discovery of infeasible paths in a program.

DEFINITION 2 (Feasibility). Let po, ...
path is feasible if SAT(N\;<; <, 7"")-

, pn. be a path. Then the

Returning to Example 1, the path of the source-sink error po, p2, p4
is feasible for an appropriate initial environment, but the path
P0, P2, P3, Pe, P7 18 not feasible in any environment. The following
lemma captures some simple but very useful facts about feasible
paths.

LEMMA 1. Assume I,y - s : I and let o be any assignment that
satisfies «y. Then there is a unique complete, feasible path including
s such that o satisfies all the statement guards on the path.

PROOF. The proof is by induction on the structure of s. The inter-
esting case is when s = (if” z = C; then s; else s3). From
rule (6) of Figure 1, the final step of the derivation must be:

=\, T(z)(r 1)
CoyAnmbksi: Iy
CoyA-mhs2: T2

I'yFifP x = C; then sy elsesy : 1 UTy

Now either o(y A) is true or o(y A —) is true. Assume that
o(y A) is true. Then

iyAmtks: T

satisfies the induction hypothesis with assignment o, and so there is
a unique complete feasible path p1, . . ., p, for s1 such that o ()
is true for all 1 < ¢ < n. Then p, p1, ..., pn is the desired path for
s. The case where o(y A —) is true is symmetric. O

3. Error Detection

In this section we present techniques for identifying source-sink
and inconsistency errors using the machinery developed in Sec-
tion 2. Only intraprocedural techniques are discussed here; Sec-
tion 4 extends the approach across function boundaries.

3.1 Source-Sink Errors

Source-sink errors arise when a value constructed at one program
point reaches an unexpected destructor at a different program point.
Most errors uncovered by model checking tools, and particularly
model checkers based on counter-example driven refinement, are
source-sink errors. This class of errors includes, for example, type-
state properties, such as errors that arise from dereferencing a
pointer that has been assigned to null, or using a tainted input in
a security critical operation.

DEFINITION 3 (Source-Sink Error). Consider the sub-derivation
for a check statement:

I‘pi,vpI—check”av:Ci:l“p+

The check can fail because of a value from source p’ if the state-
ment is reachable when constructor C; originating from p’ is in the
constructor guard of x for some j # i. More formally, a source-
sink error arises if there is a label p’ of an assignment statement

y —* C such that

SAT(v* A/ T7 (2)(p', 4))
JjF#i

The following lemma shows that there is always at least one feasi-
ble path corresponding to any source-sink error.

LEMMA 2. Every source-sink error is included on at least one
complete feasible path.

PROOF. Let ¥, = v AV, * (z)(p',4), and let o be any
assignment satisfying wg’,. Since the formula 1/15, is satisfiable
there is at least one such . By Lemma 1, o defines a unique,
complete feasible path. By expanding the definition of ng, and
using the fact that rule (1) in Figure 1 includes the statement guard
in the constructor guard after the assignment, we can show that

w‘p’, satisfies both statement guards 'yp/ and . Thus, both the
assignment statement and the check are on the path. O

Consider once more the program in Example 1. Assignment state-
ment po gives x a constructor guard where C1 from source pg has
guard frue (just because x is assigned C at po). The constructor
guard of x is not affected by the check statement at p4. Since the
check is whether z = (', one of the tests for a source-sink error
is:

SAT(y"* A \/ T (2)(po. 7))
J#2
Because +”* is satisfiable and I'’4 (x)(po, 1) is true, we have
shown a source-sink error in the program.

Note that Definition 3 requires that the source be the label of an
assignment statement—we do not consider function arguments as
sources in computing source-sink errors, because we do not know
what actual values a function argument may have while analyzing
only the function body. Source-sink errors may arise if a function
is called with certain arguments that cause the check statement
to fail. Interprocedural analysis is required in this case to find the
matching source, if any, that actually causes the sink to fail; we
address interprocedural source-sink errors in Section 4.

3.2 Inconsistency Errors

In this section, we define inconsistencies and describe a technique
for semantically detecting inconsistency errors.
Consider the following motivating example:

EXAMPLE 3.
def f(a) =
(X PO g;P1
iff2 (x = C1)
then check” x =C;
else y «P4 x);Ps
checkf® a = Cy

In this example, a and x are aliases for the same value because
of the assignment at pg. At ps3, x is asserted to have the value Cy
and this statement is protected by the conditional at p. The variable
a is also asserted to be C at pg, but without the protecting test.
Thus, if there actually is an environment in which this function
can be called where a # Cj, an error is sure to occur at ps. The
presence of the test at po protecting the check at ps is evidence
that some programmer believes there are such environments. Thus,
without knowing anything about the rest of the program, it is

likely that there is something wrong in this function because of the
inconsistent assumptions about a and x.

This example illustrates that inconsistency errors can involve
aliasing if multiple names for the same value are used inconsis-
tently. Finding inconsistency errors means identifying a set of uses
of the same value that should be compared. If we are to take alias-
ing into account, we cannot rely on uses of the same variable name
or (more generally) syntactically identical program expressions to
identify the set of uses—a semantic test for “sameness” is needed.

More formally, we define a congruence relation v; = vy that
captures when two quantities v; and v2 should be checked for
consistency. The exact definition of 2 varies with the programming
language. For our toy language, an appropriate definition is that
two variables at given program points are congruent if they have
the same values under the same guards at those points.

DEFINITION 4 (Congruence). Let v1 and v2 be two variables in
the same function f, and let p; and p; be program points in f.

~

Then vf* 2 v52, meaning variable v; at program point p; is
congruent to variable vy at program point p2, if

Vi. \/T7% (v1)(r, i) = \/ T72 (v2)(r,4)

Notice that we do not require that the sources of congruent vari-
ables be the same. Thus x and y can be congruent even if they
are constructed completely independently; we return to this point
shortly.

DEFINITION 5 (Inconsistency Error). Consider two check state-
ments check”® ¢ = C; and check”! y = C;. There is an inconsis-
tency error between the two statements if the variables are congru-
ent and one check can fail while the other cannot. Formally, there
is an inconsistency if the following three conditions are satisfied:

(1) afo =y

(2) —SAT(Y° AV, V4, T70 (2)(r, 5))

(3) SAT(Y"* AV, V(X7 (2)(r, 5))
Condition (2) says that it is not the case that the statement guard at
po can hold and z has some value other than C;. Condition (3) says

that there is at least one solution where the statement guard at p;
holds and y has some value other than C;.

Returning to Example 3 above, at point pg the variable a has
constructor guard D, (the original guards for a, as there are no
assignments to a in the function) and at point p; the variable
x has the same guards because of the assignment at po. Thus

a’s 2 xPs | satisfying condition (1). Now the statement guard at
ps includes a conjunct I'”3 (x)(a, 1), which is disjoint with any

guard '3 (x)(r, j) for j # 1 (recall Section 2.1). Hence, the
check statement at p3 cannot fail, and condition (2) is satisfied.
Finally, the statement guard at pg is just true, and so condition (3)
is also satisfied.

As noted above, our definition of congruence does not require
any dataflow relationship between the two variables—variables
with different sources may still be congruent. Thus, unlike in Ex-
ample 3, two congruent variables may not even have a common
source. At first look, this definition of congruence seems too per-
missive in that it allows variables that apparently coincidentally
share the same values to be compared. We argue that even when
two variables don’t share a common source, an inconsistency still
exists. Consider the following example:

EXAMPLE 4.
def f(a) =
if (a=Cy)
then x «— Cy
else x « Cy;
if (a=C1)
then y < Cy
else y « Co;
check(x=Cs) ;
if (y=C2)
then check(y=Cz)
else skip;

In this example, x and y have the same values under the same
conditions, but not from the same sources. The conditional if (y
= C,) indicates that some programmer believes there is some call
site where a can be Ci; otherwise, y would always be Cy. But if
this is the case, then x can also be C;, and there is at least one
execution trace where check(x=C;) will fail. Hence, the above
example should be classified as an inconsistency, justifying our
definition of congruence.

Finally, note that while source-sink errors are characterized by
a single feasible path, inconsistency errors are characterized by a
feasible path (condition (3)) and the absence of any feasible path to
a different program point (condition (2)). Thus, inconsistency in-
herently requires reasoning about the relationships among multiple
paths, unlike source-sink error detection.

3.3 Intersection of Source-Sink and Inconsistency Errors

Our discussion so far highlights that source-sink and inconsistency
error detection techniques are fundamentally different: First, detec-
tion of source-sink errors involves reasoning about a single pro-
gram path, while the detection of inconsistencies can require rea-
soning about multiple paths. Second, source-sink error detection
requires the source to be explicit in the source code, while incon-
sistency detection infers errors only from usage sites, i.e., sinks,
and can therefore find errors even when the source comes from the
environment.

Despite these differences, some errors can be seen both as
source-sink and inconsistency errors; the following example is pro-
totypical:

EXAMPLE 5.

ifPO(x = Cy)
then checkP! x = Cy
else skipF?

This example has an obvious error since the conditional if(x =
C1) ensures that the check statement at program point p; fails.
Despite the fact that there is no explicit source (i.e., a constructor
assignment), the above example can be considered a source-sink
error. Since x is known to be C; inside the true branch of the if
statement, adding an extra assignment of the form x <« C; in the
true branch preserves program semantics and introduces a feasible
path between the source x «” C; and the sink check” x = C,.
On the other hand, we can also see this error as an inconsis-
tency. Using the intuition that inconsistency detection is a gener-
alization of type inference, we can introduce types POSSIBLY_C1
and NOT_C1. Informally, the example does not type-check because
the test if”*(x = Cp) adds a type constraint that x has type
POSSIBLY_C1, while the unprotected check statement assigns the
NOT_C1 type to x. More precisely, we can identify this error using
Definition 5. Assuming that the language has only the construc-
tors C; and C,, adding the check statements check”/ x = C; and
check” x = C in the true and false branches of the if statement
respectively preserves the semantics of the above program, yield-

ing the semantically equivalent code:

ifPo(x = Cy)
then (
checkpl x = Cq;P
checkPt x =Cp)
else checkp” x = Co

"

This directly exposes the inconsistency in the program according
to Definition 5, because the check statement at p; can fail while the
one at p”’ cannot.

4. Interprocedural Error Detection

In this section we discuss interprocedural extensions to our ap-
proach for detecting both source-sink and inconsistency errors. Be-
fore presenting our interprocedural analysis we first revisit what we
mean by inconsistency errors; unlike source-sink errors, the defini-
tion of inconsistency must be reconsidered in the interprocedural
case. Consider the following example:

EXAMPLE 6.
def f(x) =
ifPo(x = Cy)
then checkP! x =C;
else skipf? ;3
g(x)"

def g(y) =
checkPs y = Cy

This program clearly has an inconsistency error: The check at
p1 is protected by a test at po, but the check in g on the same
value is unprotected. Now consider the following, slightly different,
example:

EXAMPLE 7.

def f(x) =
g(x)ﬂo ;p1
checkf? x = Cy

def g(y) =
ifro (y = C1)
then checkf! y = Cy
else skipP?

This example simply interchanges the protected and unprotected
check statements: The check in the caller is now unprotected
while the callee guards the check. Extending our intraprocedural
definition of inconsistency errors in the obvious way leads us to
conclude that this example also has an inconsistency error, but
this definition of inconsistency results in large numbers of false
positives on real programs. The issue is that g may have other
callers besides £f. That is, while £ may be safe in relying on x = Cy,
other callers of g may pass arguments other than C'. Defensive
programming of this sort is very common in practice. A typical
example is a library that does extensive checking of arguments,
while client code may be written with the knowledge that certain
values cannot arise.'

In summary, Example 6 should be considered an inconsistency
error, while Example 7 should not. Thus, when comparing two uses

! A similar problem arises with our definition of inconsistency in the pres-
ence of function macros. Since macros are used in many different contexts,
they are often written with defensive checks. In our implementation, code
resulting from a macro expansion is tagged in the parse tree as coming from
a macro and treated as an inlined function.

of a value between a caller and a callee, we only consider pairs of
uses where the callee check can fail. This decision implies that we
do not need to track check statements that are guaranteed to suc-
ceed outside of their containing function; the only interprocedural
information we need is knowledge of when a check statement in a
function can fail.

We use function summaries for interprocedural analysis: a sum-
mary is computed of the conditions under which a function f can
fail, and this summary is then used at each call site of f to model f’s
behavior for the purpose of detecting source-sink and inconsistency
errors. This approach is context-sensitive, since the summaries are
applied separately at every call site. We describe how function sum-
maries are defined and used in a basic form (Sections 4.1 and 4.3)
and introduce a significant improvement (Section 4.2).

4.1 Function Summaries

A function summary describes the preconditions on the execution
of a function that, if satisfied, may lead to errors. Computing sound
and very precise preconditions is easy in our framework; the dis-
junction of all the failure conditions for every check statement in
a function characterizes exactly the condition under which some
check will fail. Unfortunately, propagating such precise informa-
tion interprocedurally is prohibitively expensive; the formulas grow
very rapidly as conditions are propagated through a series of func-
tion calls.

We take a different approach to function summaries that is
designed to scale while still expressing all the possible conditions
under which a check in a function may fail. The price we pay is
a loss of precision in the general case; one can construct examples
for which our summaries greatly overestimate the precondition for
failure. However, our summaries do precisely summarize the failure
precondition of the vast majority of functions we have observed in
practice.

A function summary S has the same signature as a constructor
guard: a map from sources (in this case just function arguments)
and constructor indices to guards:

S = (Source X Int) — Guard

The interpretation of summaries is different, however. The idea
is that if S(a, k) = , then a call of f where formal parameter a is
Cy; can fail if the initial state of the call also satisfies predicate 7.
For example, in Example 6, S, (y, 1) = false and Sy(y, 1) = true
for i # 1 captures that when the argument is C; for any ¢ # 1
function ¢ may fail. In Example 7, Sg(y,i) = false for all i
expresses that the function can never fail.

DEFINITION 6 (Function Summary). Consider a function f where
A2i. Dy, true = sP° : T
F def f(x1,...

’Jjn) = §PO
Then
(Sy(x4,4) =) = (x4, j, ™) where

(z;,,7) =

(1) VY(check” x = C%) in f where k # j.
(2) if SAT(y** AT?1 (2)(24,§)) then
3) (Y7 AT (2) (24, 5)) =

In words, for each function argument x; and constructor C;, on
line (1) we consider the set S of all statements check”! z = Cj
such that the check fails if = C} (i.e., the condition k& # 7). On
line (2) we further restrict our focus to the subset S’ of statements in
S where the check can fail because the source of constructor Cj is
argument ;. On line (3), for every check in this smaller set S, we
are looking for a necessary condition 7 that holds whenever one of

the checks in S’ fails. As a result, 7 gives an over-approximation
of the condition under which a check statement in £ will fail if
argument x; is constructor C; at some call site. In other words, if
SAT(m A (z; = Cj)) for some call site, a check may fail in f.

It is easy to see that setting 7 to true always satisfies the condi-
tions, so that Sy (x;, j) = true for all z; and C} is always a correct,
if very imprecise, function summary. If S¢(z;,j) = false then no
check in f can fail when z; = C;.

One simple strategy for computing function summaries is:

o _ | false ifTI(xy, j,false)
Sy(i,j) = { true otherwise

The reader may easily confirm that this algorithm yields Sy (y, 2)
true and Sy (y, 1) = false for Example 6. In Section 4.2 we con-
sider how to compute guards 7 other than true and false. Now
consider a more involved example:

EXAMPLE 8.
def foo(ai,az) =
ifro (ag = Cg)
then x «F! ay
else x «+P2 ay ;M3
checkP* x = Cy

Assume that the only constructors are C'; and Cs. Applying the
test given in Definition 6 to Stoo(a1, 1), we have:

e The single check statement satisfies line (1) of Definition 6
with k = 2.

e For line (2), 74 is true and T”+ (z)(a1, 1) is satisfiable because
of the assignment at pa.

e For line (3), setting ™ = true satisfies the implication.

4.2 Correlation Analysis

The summary generation strategy described in Section 4.1 has two
principal strengths. First, it captures the common case where an
error in the body of a function is triggered by the value of a single
function argument. Second, if the only possibilities for 7 are true
and false, then the size of summaries is guaranteed to be bounded
by the product of the number of function arguments and the number
of distinct constructors.

However, there are many realistic examples where this approach
is not expressive enough, because there are times when program-
mers use two or more correlated arguments to a function; consider,
for example, when one argument serves as a flag describing the
state of another argument. The following example encodes such an
idiom in our toy language:

EXAMPLE 9.
def f(a1,az) =
ifro (ag = C1)
then check’! a; = C4
else skipP?

If the predicates of S; are limited to true and false, then the
best we can do in this example is S¢(a1, 2) = true, which is rather
coarse as f’s check does not unconditionally fail when a; # Cj.
A better summary would record that S¢(a;,2) = (a2 = Ci),
precisely capturing the necessary condition for failure when a; =
Co. We perform a correlation analysis to discover such additional
predicates:

DEFINITION 7 (Correlation Analysis). Consider a function defini-
tion def f(x1,...,%a) = s. Let ¢y, be a formula for the expres-
sion (xx = Cn).

Sp(@i,3) = N\ bwn (i, 4, drn)}

In Example 9, we have v”* = (a; = Ci), and so S¢(a;,2) =
(a2 = Ci) using the algorithm in Definition 7. Similarly, using
the correlation analysis for computing a more precise summary for
Example 8, we obtain Sze0(a1, 1) = (a2 = Ci).

It is instructive to compare our approach to interprocedural path
sensitivity with source-sink error detectors. While full interproce-
dural path sensitivity may be intractable for large programs, model
checking techniques have shown that computing path sensitivity in
a demand-driven fashion can avoid tracking unnecessary predicates
and allow analyses to scale [3, 2, 5]. However, such model checkers
rely on having a full path from source to sink to drive the process
of discovering the needed predicates, information we do not have
available both in an inconsistency analysis and a compositional in-
terprocedural source-sink analysis. Correlation analysis allows us
to find relevant predicates that play a role in interprocedural com-
munication by computing necessary conditions for errors to occur.
The price we pay is that we restrict the space of predicates consid-
ered to ensure scalability; for example, in our toy language we only
consider the predicates ¢, p.

4.3 Summary Application
Consider a function definition
def f(ai,...,an) = s

and call site f(xl, ey xn) and a summary S¢. We use the summary
of £ to model £’s behavior at the call site as follows. We define a
new function fsumary(ai,...,an) = s’ where s’ = ...;sj;...1s
a sequence of statements, one for every argument a; and construc-
tor C;. From Definition 7, S¢ (a;, j) must have the form

Sf(ai7 J) =1 A A gy
Abusing our syntax slightly, we define s;; to be:
ifpij (ai = CJ)
then check((ax, # c1,) V..
else skip;

-V (ax, # c1,))

At the call site we simply replace the statement £(x,...,%s) by
s'[x1/ai, . .., %a/aq). This approach, which inlines a “stub” func-
tion that approximates the error behavior of the original func-
tion, allows us to reuse the intraprocedural algorithms for detecting
source-sink and inconsistency errors from Section 3 unchanged.

5. A Null Dereference Analysis

In this section, we apply our approach to the problem of detecting
null dereference errors in C programs. We first present an encoding
of the null dereference problem in our framework and then discuss
extensions needed to analyze C.

To apply the techniques in Sections 2-4 to the problem of detect-
ing unsafe null dereferences, we need only define the constructors
and an appropriate congruence relation. Null dereference analysis
is about understanding what pointers can be null, which in turn re-
quires a reasonably precise model of all the possible values of all
pointers in a program. Our C implementation incorporates a sound
context-, flow- and partially path-sensitive points-to analysis for C
[11]. Most points-to analyses compute a graph where the nodes V'
are the set of abstract locations and there is an edge (v,v’) € E
if location v may point to v’. The points-to analysis we use labels
each points-to edge with a guard (v,v’)?, where g is a formula
specifying under what conditions v points to v’. The value NULL is
treated as a node in the graph, so (v, NULL)Y means that v may be
a NULL pointer whenever guard g is satisfied.

For the congruence relation, given a guarded points-to graph
(V, E), we say that v1,v2 € V are congruent, v1 22 vo, if

Yvs € V.(((vl,vg)gl (SRS (1)2,1)3)g2 S E) N gL = g2)

That is, two pointers are equivalent if they are aliases of one an-
other: they point to the same locations under the same conditions.

To model constructors, we classify all pointers as NULL or
NOT-NULL (i.e., everything except NULL). Before each pointer
dereference *x we insert a check:

check” x = NOT-NULL

The check succeeds only if the NULL guard in x’s points-to graph
is unsatisfiable at point p~ .

To illustrate how we detect null inconsistency errors in C, con-
sider the following example:

EXAMPLE 10.
void foo(int* p, int* q, bool flag)
{
P1. flag = (p!= NULL);
P2. q =p;
P3. if (flag)
P4. *p = 8;
P5. *q = 4;
}

The assignment at P2 ensures p and q have the same guarded
points-to relationships; thus p = q. The dereference of p at P4
cannot fail because the statement guard (the test on flag at P3)
guarantees that p is non-null. However, the dereference of q at P5
can fail because the statement guard is just frue. Thus, we detect a
null inconsistency in foo.

5.1 Extensions for C

There are features in C that are not in the toy language we have used
to present our techniques. We briefly discuss the most significant
extensions that are required to support analysis of C programs.

The biggest technical difference between the toy language and
C is that C functions can have externally visible side-effects. In
particular, for a null dereference analysis, it is necessary to estimate
the set of function side-effects making locations either null or
not null. We address this problem by using a separate side-effect
analysis to compute sources of null (both in the return value and as
a result of function side-effects) as well as to track modifications to
function arguments. However, this side-effect analysis is best effort
and unsound; it tracks side-effects that must result in a location
being assigned null, but it does not capture all assignments that just
might result in a location being assigned null. In our opinion, this
is the major source of unsoundness in our implementation.

The difficulty in estimating function side-effect information lies
in resolving the tension between two competing goals. First, the
quantity of side-effect information is potentially enormous; com-
puting even simple use/mod information for every function (i.e.,
just the set of abstract locations the function reads or writes) in
a large program is intractable if the result is represented naively,
because the set of side-effects of a function includes all the side-
effects of functions it can call either directly or indirectly. Thus, it
is necessary to aggressively summarize interprocedural side-effect
information to avoid consuming space quadratic (or worse) in the
size of the program. Second, the resulting information must be pre-
cise enough to yield useful results, because even small imprecisions
can lead to overwhelming numbers of false positives. We are not
aware of any general results on efficiently computing interproce-
dural side-effect information; the problem appears to be unsolved.
Previous null dereference analyzers have focused on intraprocedu-
ral checking (see Section 7).

Another separate issue is what predicates are used by the corre-
lation analysis to compute function summaries. In Definition 7, we
considered only predicates ¢y, corresponding to conditions of the
form (xx = Cun). Unfortunately, in a real programming language,
there are arbitrarily many predicates of this form. For example, if

a function argument x is an integer, it is obvious that we cannot
test x = c for every possible integer constant. Our approach is to
consider only the predicates that occur inside if statements in the
computation of 7.

An orthogonal issue is the modeling of loops and recursive func-
tions. The system defined in Sections 2-4 can be used to analyze
recursive functions in a sound manner by a standard iterative fixed
point computation. In our implementation for C we analyze each
function only once and do not attempt to compute fixed points, in
part to limit the growth in interprocedural side-effect information.’
We have observed that the function summary guards inferred by
correlation analysis are almost always very simple; in fact, con-
junctions of more than two simple atomic predicates are exceed-
ingly rare, if in fact they ever occur (we have yet to notice one with
more than two clauses). Thus, we believe that very simple restric-
tions on the size and form of function summary guards (along with
conservative approximation if those limits are exceeded) would be
sufficient to ensure that a fixed point computation terminates with
useful (i.e., sufficiently precise) results.

Finally, as discussed above, our system builds upon a may-
alias analysis for C. This underlying analysis is sound assuming
the C program is memory safe (a standard assumption in may-alias
analysis), a condition that is not checked by the alias analysis or
our system.

6. Results

We have run our null dereference analysis on seven widely used
open source projects and identified 616 null dereference issues with
149 false positive reports (an overall 19.5% false positive rate).
These projects receive regular source code checking from multiple
commercial bug-finding tools, and so we sought to learn whether
these bugs had been previously reported. Developers for the Samba
project confirmed that none of the Samba bugs had been previously
found. For the other projects we did not receive such an explicit
acknowledgment that the bugs were new; however, we judge from
the fact that fixes were released quickly for many of the bugs shortly
after our reports were filed that at least the majority of the bugs we
found were previously unknown. The large majority of these bugs,
518, were found by our inconsistency analysis.

We ran our null dereference analysis on a compute cluster.
Analyzing the Linux kernel with over 6 MLOC required about 4
hours using 30 CPU’s, which was by far the longest time required
for any of the projects. The smallest project we analyzed was
OpenSSH, which took 2 minutes and 33 seconds to analyze on
the same cluster. Our system makes many calls to a boolean SAT
solver to test the satisfiability of the various predicates used in
our analyses, and for Linux the number of SAT queries numbers
in the millions. We impose a 60 second time limit for analyzing
any individual function; if the analysis of a function times out, its
function summary is incomplete.

Figure 2 summarizes our experimental results. The first column
gives the number of lines of code for each project, the second
column presents the total number of reports, which is classified in
the following three columns into correct reports, false positives,
and undecided reports (reports that we could not classify as either
correct reports or as false positives, because the interpretation of
these reports required a more global understanding of the code
base than we had). The sixth column gives the false positive rate,
which is calculated without including the undecided reports. The
second group of three columns breaks down the correct reports by
kind: the count of inconsistency errors excluding those also found
by source-sink detection, the number of source-sink errors found

2 Cycles of mutually recursive functions are analyzed once in an arbitrary
order.

LOC | Total | Correct | Undecided | False Pos % False Pos Inc Source-Sink | Both % Interproc % Alias
OpenSSL
0.9.8b 339319 55 47 2 6 11.3% 40 6 1 38.3% 34.0%
Samba
3.0.23b 515689 68 46 3 19 29.2% 40 4 2 34.8% 17.4%
OpenSSH
4.3p2 154660 9 8 0 1 11.1% 6 2 0 37.4% 0.0%
Pine
4.64 372458 150 119 3 28 19.0% 105 10 4 42.0% 6.7%
MPlayer
1.0pre8 761708 119 89 2 28 23.9% 71 16 2 41.6% 30.3%
Sendmail
8.13.8 364569 9 8 0 1 11.1% 7 1 0 62.5% 12.5%
Linux
2.6.17.1 6275017 373 299 8 66 18.1% 249 38 12 27.8% 12.0%

[Total [8783420 | 783]| 616 | 18] 149] 195% | 518] 77] 21 [34.1% | 154% |

Figure 2. Experimental Results

also as inconsistencies, and the number of errors identified by both.
The last group of two columns show the percentages of correct
reports that were interprocedural and that involved pointer aliasing,
respectively. Many current bug finders ignore pointer aliasing and
interprocedural analysis; at least for null dereference analysis, our
results show that both features are important.

We used the following methodology in classifying the error re-
ports. First, source-sink errors resulting from dereferences of return
values of functions which can potentially return null were counted
once per function, not once per call site. Return values of malloc
wrappers that can return null are often used unsafely at many call
sites, resulting in a misleadingly large number of correct reports if
each such call site is counted as a bug. Second, we classified incon-
sistency reports as correct reports if there was actually an inconsis-
tency, not if we could prove that the inconsistency would lead to
a run-time crash. Lacking a detailed global understanding of these
large projects, we could often not differentiate between redundant
null checks and potential crashing bugs. In our correspondence with
project developers, we were told that some of the inconsistency er-
rors are due to redundant null checks. However, a large majority of
developers deemed every inconsistency, including those believed to
be redundant null checks, worth fixing. The majority view was that
inconsistency errors represented misunderstandings of the incon-
sistent function’s interface and should be fixed. A large number of
error reports we classified as correct were confirmed by the devel-
opers; however not all project developers gave us feedback about
the validity of error reports. In such cases, the numbers in Figure 2
represent our best effort to classify these errors.

Figure 2 shows that the large majority (87.5%) of the errors are
inconsistency errors (including conditional misuse errors). Since
most of these inconsistency errors were immediately fixed by de-
velopers, it is our belief that semantic inconsistency detection is
able to identify real errors and important interface violations in real
code. Figure 2 also reveals that roughly a third of the overall correct
reports involve interprocedural dependencies, sometimes involving
many function calls, especially in the case of source-sink errors.
Our initial experiments with the tool also highlight the importance
of selective path-sensitivity: A first version of the analysis with-
out path-sensitivity resulted in a high false positive rate, while ex-
periments with full path-sensitivity had unacceptably high time-out
rates. However, using the correlation analysis, the time-out rate in
our experiments stayed between 0.71% and 6.4% of all functions
with an acceptable false positive rate.

Another interesting observation from Figure 2 is that a non-
negligible number of errors (roughly one-third in OpenSSL and
MPlayer) involve pointer aliasing. Pointer aliasing contributes to
a significant source of null pointer errors, especially inconsistency
errors, in two common programming patterns. The first pattern we

observed is that generic void* pointers are often aliased by typed
pointers and aliases with different types are used with inconsistent
null pointer assumptions. The other pattern is that array elements
are often assigned to “convenience” pointers, which denote current,
head, or tail elements of a data structure. Programmers sometimes
make different null pointer assumptions when they alternate, for
example, between using array [0] and head.

The main source of false positives is imprecision in the pointer
analysis we used, which collapses aggregate structures (e.g., arrays,
lists) to a single abstract location. If a null pointer is assigned to any
element of an aggregate data structure, it contaminates other ele-
ments of the same data structure, causing the analysis to raise false
alarms whenever an element of such a contaminated data struc-
ture is dereferenced. Other contributing factors to false positives
are some unmodeled constructs, such as inline assembly.

We conclude this section by presenting two sample errors re-
ported by the analysis, which we believe to be representative of
many of the error reports generated by the tool:

/* Linux, net/sctp/output.c, line 270 */

236 pmtu = ((packet->transport->asoc) 7
237 (packet->transport->asoc->pathmtu)
238 (packet->transport->pathmtu)) ;

269 if (sctp_chunk_is_data(chunk)) {
270 retval = sctp-packet_append _data(packet, chunk);

286 }

538 sctpxmit_t sctp_packet_append _data
(struct sctp_packet *packet,...)

540 {

543 struct sctp_transport *transport = packet->transport;
545 struct sctp.association *asoc = transport->asoc;

562 rwnd = asoc->peer.rwnd;

This example illustrates an interprocedural inconsistency error
involving pointer aliasing, which might potentially cause a null
dereference at line 562. On line 236, the pointer packet->
transport->asoc is compared against null and packet is later
passed to a function which first aliases packet->transport as
transport and then aliases transport->asoc as asoc, which
is finally dereferenced at line 562. Despite these aliasing relation-
ships, the caller function assumes that packet->transport->asoc
may be null, while the called function dereferences the same

pointer without ensuring it is non-null, causing the analysis to gen-
erate an inconsistency warning.

The next error illustrates an inconsistency error involving two
mutually exclusive paths:

/* OpenSSL, e_chil.c line 1040 */

static int hwcrhk_rsa_mod_exp(BIGNUM *r, const BIGNUM *I,
RSA *rsa, BN_CTX *ctx)

967 {

985 if ((hptr = RSA_get_ex_data(rsa, hndidx_rsa))!= NULL)

987 {

990 if (lrsa->n){

994 goto err;

995 }

997 /* Prepare the params */

998 bn_expand2(r, rsa->n->top); /* Check for error !! x*/
1027 3}

1028 else

1029 {

1039 /* Prepare the params */

1040 bn_expand2(r, rsa->n->top); /* Check for error !! */

1080 }

In the true branch of the if statement, the pointer rsa->n is
checked for being null and subsequently dereferenced at line 998.
On the other hand, the same pointer is dereferenced without a null
check in the false branch of the same if statement at line 1040. The
important point about this example is that detecting inconsistencies
requires reasoning about multiple paths simultaneously.

7. Related Work

The various program analysis traditions appear to have equivalent
power; for example, there is an equivalence between type systems
and model checking [15]. However, these results are for closed pro-
grams. We observe that for open programs techniques that search
only for a single source-sink path cannot express inconsistency er-
rors requiring simultaneous reasoning about multiple distinct paths.
We view semantic inconsistency checking as complementary to
source-sink error detection; inconsistency checking can find bugs
where there are multiple sinks but no sources, while source-sink
checking can detect bugs between a single source and a single sink.

Our choice of the terms constructor and destructor is inspired
by work on detecting uncaught exceptions in functional programs
[18, 17] and soft typing [4, 1]. A core issue in both bodies of
work is tracking which datatype constructors a program value may
actually have at run-time. Null dereference analysis is a special case
where there are only two constructors NULL and NON-NULL; our
techniques could be adapted to give very precise analysis for these
other applications as well.

FindBugs [12] is a widely used tool for Java that has paid par-
ticular attention to finding null dereference errors [13]. FindBugs
pattern-matches on constructs that are common sources of certain
error classes and performs some data-flow computation. As our im-
plementation is for C, it is not possible to do a direct comparison.
Nevertheless, it is clear that FindBugs would not find the many
path-sensitive, interprocedural, and alias-dependent bugs our more
semantic analyses uncover. One can also interpret our results as in-
dicating that, at least for tools requiring no user annotations, one
must move to computationally intensive models (incorporating at
least path sensitivity) to do significantly better than tools like Find-
Bugs without unusably high false positive rates.

Some approaches attack null dereferences using user annota-
tions on function parameters and local checking of each function
body. LCLint [7] uses an unsound procedure to check the safety of

dereferences of parameters annotated as may-be-null. More recent
annotation-based systems are much closer to being sound [9, 8].
Current annotation languages, which mark a single parameter as
possibly null or definitely not null, are not expressive enough to
capture the more complex path-sensitive and interprocedural rela-
tionships we observed in our experiments.

Another approach, exemplified by CCured [16], is to use a rel-
atively inexpensive static analysis to verify the safety of many
pointer dereferences statically and then to introduce dynamic
checks to enforce the remaining dereferences at run-time. The
unification-based type inference used in CCured would not find
most of the bugs our tool detected, and while the program would at
least fail in a well-defined way if the null dereference was triggered
at run-time, it would still fail.

Engler et al. were the first to explicitly propose a method for
finding null dereference errors based on inconsistency checking [6].
They argue that inconsistencies suggest programmer confusion and
the presence of bugs, and they give some techniques for discovering
inconsistencies. We observe that their notion of inconsistency is
essentially the same as the idea underlying type inference systems,
where inconsistent type constraints from multiple uses of a value
result in a type error. Our inconsistency analysis adopts this more
semantic point of view and we give purely semantic conditions for
inconsistency checking, which allows our system to uncover subtler
bugs involving, e.g., pointer aliasing.

Our approach to selective inter-procedural path-sensitivity is
reminiscent of some selectively path-sensitive model-checking
techniques. ESP, for example, only accurately tracks branches that
affect relevant properties within that branch [5]. Unlike ESP, our
approach is fully path-sensitive intraprocedurally, and more im-
portantly, our analysis infers correlated predicates by computing
implication relations between predicates and guards of relevant
events. Model checking tools based on predicate abstraction and
refinement [2, 3, 14] also achieve selective path-sensitivity by dis-
covering relevant predicates. Such tools start with a coarse ab-
straction which is refined by tracking additional relevant predicates
until a path is shown to be feasible or infeasible or until no new
useful predicates can be discovered. As discussed in Section 4, our
approach differs because inconsistency analysis does not have a
source-sink path to use as a source of counterexamples.

8. Conclusion

We have proposed semantic inconsistency inference for finding
errors and interface violations in large software systems. We have
presented the results of experiments on a number of open source
applications, showing that semantic inconsistency checking can
uncover a large number of previously undiscovered errors.

References

[11 A. Aiken, E. Wimmers, and T. K. Lakshman. Soft typing with
conditional types. In Proceedings of the Symposium on Principles of
Programming Languages, pages 163—173, 1994.

[2] T. Ball and S. Rajamani. The SLAM project: Debugging system
software via static analysis. In Proc. of the Symp. on Principles of
Prog. Languages, pages 1-3, January 2002.

[3] D. Beyer, T. Henzinger, R. Jhala, and R. Majumdar. Checking memory
safety with Blast. In Proc. of the Conf. on Fundamental Approaches
to Software Engineering, pages 2—18, 2005.

[4] R. Cartwright and M. Fagan. Soft typing. In Proc. of the Conf. on
Prog. Language Design and Implementation, pages 278-292, 1991.

[5] M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive program
verification in polynomial time. In Proc. of the Conf. on Prog.
Language Design and Implementation, pages 57-68, 2002.

[6] D. Engler, D. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as
deviant behavior: A general approach to inferring errors in systems
code. Operating Systems Review, 35(5):57-72, 2001.

[7] D. Evans. Static detection of dynamic memory errors. In Proc. of the
Conf. on Prog. Language Design and Implementation, pages 44-53,
1996.

[8] M. Faehndrich and K. Rustan M. Leino. Declaring and checking
non-null types in an object-oriented language. In Proc. of the Conf. on
Object-Oriented Programing, Systems, Languages and Applications,
pages 302-312, 2003.

[9] C. Flanagan, R. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and
R. Stata. Extended static checking for Java. In Proc. of the Conf. on
Prog. Language Design and Implementation, pages 234-245, 2002.

[10] J. Foster, M. Faehndrich, and A. Aiken. A theory of type qualifiers.
In Proc. of the Conf. on Prog. Language Design and Implementation,
pages 192-203, 1999.

[11] B. Hackett and A. Aiken. How is aliasing used in systems software?
In Proceedings of the ACM International Symposium on Foundations
of Software Engineering, pages 69-80, 2006.

[12] D. Hovemeyer and W. Pugh. Finding bugs is easy. SIGPLAN Not.,
39(12):92-106, December 2004.

[13] D. Hovemeyer, J. Spacco, and W. Pugh. Evaluating and tuning a
static analysis to find null pointer bugs. In Proc. of the Workshop on
Program Analysis for Software Tools and Engineering, pages 13-19,
2005.

[14] R. Jhala and K. McMillan. Interpolant-based transition relation
approximation. In Proc. of the International Conf. on Computer
Aided Verification, pages 39-51, 2005.

[15] M. Naik and J. Palsberg. A type system equivalent to a model checker.
In Proc. of the European Symp. on Prog., pages 374-388, 2005.

[16] G. Necula, S. McPeak, and W. Weimer. CCured: Type-safe retrofitting
of legacy code. In Proc. of the Symp. on Principles of Prog.
Languages, pages 128-139, 2002.

[17] F. Pessaux and X. Leroy. Type-based analysis of uncaught exceptions.
In Proc. of the Symp. on Principles of Prog. Languages, pages 276—
290, 1999.

[18] K. Yi and S. Ryu. Towards a cost-effective estimation of uncaught
exceptions in SML programs. In Proc. of the International Symp. on
Static Analysis, pages 98—113, 1997.

