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Abstract

We present a new approach to the old problem of adding sideteff
to purely functional languages. Our idea is to extend thguage
with “witnesses,” which is based on an arguably more pragmat
motivation than past approaches. We give a semantic conditi
correctness and prove it is sufficient. We also give a staicking
algorithm that makes use of a network flow property equivaien
the semantic condition.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guage§ Formal Definitions and Theory; D.3.3Pfogramming
Languagel Language Constructs and Features

General Terms Design, Languages, Theory

Keywords Functional languages, side-effects

1. Introduction

Adding side-effects to a purely functional language is dkebwn
problem with a number of solutions [7, 9, 11, 15, 6, 1] with mon
ads [10, 11, 7, 9] being arguably the most popular. In thisepap
we propose a new approach to this old problem by attacking it
from a different angle. Instead of starting from a langudgeot
retic point of view, we start by introducing a simple programg
feature calledvitnesseso that programs can explicitly order side-
effects. This feature is motivated by a pragmatic obsesuaind is
straightforward. The catch is that, because it is so siniphetu-
ally does not guarantee that a programasrect(i.e., that it can be
viewed as a purely functional program). Instead, we argagettie
feature makes it easy for programmers to write correct @rmogr
We then formally state a natural semantic condition thauffi-s
cient to guarantee correctness and give a static checlgogitim.
The result is a new framework for guaranteeing correctnesisle-
effects in purely functional programs.

Besides arguably being more intuitive to programmers, pur a
proach is more expressive than previous approaches. licydart
our approach does not force side-effects to occur in a séiguen
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order. For example, a program is allowed to read from a retere
cell in two unordered contexts as well as write to two differeells
in two unordered contexts.

Besides providing new insights into the old problem of fitin
side effects into functional languages for conventionai \eu-
mann architectures, our work is motivated by the emergerice o
commercial parallel computer architectures (e.g., chigtiprocessors
or “multi-core” chips) that encourage parallel programgiit is
well-known that the “explicit dependence” property of ftinoal
languages makes parallelization easier for both prograsard
compilerst However, frequent use of side-effects, namely manual
destructive memory/resource updates, are believed to pertemt
for programming high-performance parallel applicationgrac-
tice. Hence a functional way to add side-effects withoutosipg
parallelism-destroying sequentiality may be of practictdrest for
exploiting parallelism within these new architectures.

1.1 Contributionsand Overview
This paper makes the following contributions:

¢ A simple language feature call@dtnesseshat can be used to
order side-effects. (Section 2)

e A semantic condition calle@itness race freedorfor correct
usage of witnesses and a proof of its sufficiency. (Section 3)

e An automatic algorithm for checking the afore-mentioned se
mantic condition that makes use of a network flow property.
(Section 4)

The semantic condition is intuitive in the sense that it ieclly
motivated by the implications of writing race-free progsarihe
automatic algorithm is derived as a type inference algorifor

a substructural type system. The type system and its irderen
problem are somewhat subtle and interesting in their ownt.rig
Section 5 discusses related work. Section 6 concludes.

2. Preéiminaries

We need a precise definition of what it means for side-effiecke
“correct” within a functional language. A helpful idea is sbow
that a program’s semantics is independent of a class of tifomed”
program transformation rules. However, there is no consens

the right set of transformations. For example, the tramsébion
(let z = e in €') = (e[z/e]) for z ¢ free(e) is not always true

in systems based on linear-types. (Hé&ex(e) is the set of free
variables ofe.)

To define correctness, we fix a set of program transformations

expressive enough to model different functional reducstmate-

1But not easy, since there are other challenging issues susklecting
the right granularity of parallelism, but these issues wampgjually to other
languages and many solutions such as data-parallel opertd thread
annotations already exist.



e = xli|Are|ee |letz=cine |e®e |m(e)
| writeejeses|readee’ |refe| joinee |e

Figure 1: The syntax of the languagg;:.

gies, including call-by-value, call-by-need (i.e., lagyaluation),
and parallel evaluatiohSo, for example, a program that is invari-
ant under this set of transformations evaluates to the samétr
regardless of whether the evaluation order is call-byeaucall-
by-need. In parallel evaluation, invariance implies th@regram
is deterministic under any evaluation schedule.

For ease of exposition, we include the afore-mentionedrprog
transformations directly in the semantics as non-detdstiinre-
duction rules. The correctness criteria then reduces twisigdhat
a program is confluent with respect to this semantics. Atsotie
purpose of exposition, we restrict side-effects to impeeabpera-
tions on first class references.

Figure 1 gives the syntax of,;:, a simple functional language
with side-effects and witnesses. Notg;: has the usual features of
a functional language: variables integersi, function abstractions
Az.e, function applications ¢’, variable bindingdet x = ¢ in ¢/,
pairse ® €', and projectionsr;(e) wherei = 1 ori = 2. Bindings
let x = e in €’ can be recursive, i.er, € fregle). Three expres-
sion kinds work with references: reference writeite e e es,
reference readsead e ¢’, and reference creationef e. A read
read e ¢/ has awitnessparametere’ along with a reference pa-
rametere such that it does not read the refereramtil it sees the
witnesse’. (Section 3 defines the formal meaning of “seeing the
witness.”) Similarly, a writexrite e;1 ez es writes the expression
e to the reference; after it sees the witness. After completion
of the readread e €’ returns a pair of the read value and a wit-
ness. Similarlywrite e; ez es returns a witness after the write. In
general, any side-effect primitive returns a witness ofqreting
the corresponding side-effect; in the case\gf:, the side-effect
primitives are justirite e; ez ez andread e e’.

Before describing the formal semantics »fi:, we describe
novel properties oh.,;: informally by examples.

Programs in\,,;; can use witnesses to order side-effects. For ex-
ample, the following program returgsregardless of the evaluation

order because the read requires a witness of the write:
let z = (ref 1) in let w = (writex 2 o) inreadzx w

(The symbole is used for dummy witnesses.) On the other hand,

Awit does not guarantee correctness. For example, the following
Awit Program has no ordering between the read and the write and

hence may returth or 2 depending on the evaluation order:

let x = (ref 1) in let w = (writexz 2 e) inread z

The expression kindoin e e’ joins two witnesses by waiting
until it sees the witness and the witnesg’ and returning a wit-
ness. For example, the following program returns the pair 1
regardless of the evaluation order because the write watftbiu
sees witnesses of both reads:

let z = (ref 1) in
let y = (read x @) in let 2z = (read x @) in
let w = (write z 2 (join ma(y) m2(2))) in
mi(y) ® m(2)

Note that the two reads may be evaluated in any order. In gkner
witnesses are first class values and hence they can be passeatl t

2The results in Section 3 are general enough for most othetitunal
transformations too, but the static checking algorithmumes a more
stringent definition.

E = DU{a—E}|[]|EeleE|E®Qe|e®FE
| mi(E)|write Eee |writee B¢’ |uriteee’ E
| readeFE |read Ee|ref E|joinFEe| joineFE
App (S, E[(Az.e) €]) = (S, Ele[a/z]| W{a— €'})
Let (S7E[ et x=cine])
_ = (S, Ele'[a/z]] W {a — e[a/z]})
Pair (S, Elmi(er @ e2)]) = (S, Eled])
Write (S, E[writefee]) = (S[¢ < a], E[e] W {a+— e})
Read (S, E[read L e]) = (S, E[S({) ® e])
Ref (S,E[refe]) = (SW{l— a}, B[] W{a— e})
Join (S, E[join e o]) = (S, E[e])
Arrive (S,E[a]W{a— e}) = (S, Ele]W{a — e})
wheree € V
GC (S, DwWD') = (S,D)

whereo ¢ dom(D’') A dom(D’) N freg(D) = ()

Figure 2: The semantics of,;:.

returned from a function, captured in function closures] aven
written to and read from a reference. Witnesses are a siregtare
that can be used to order side-effects in a straightforwananer.

In the rest of this section, we describe the semantica of
so that we can formally define when)a,;;: program is correct,
i.e., when it is confluent. Figure 2 shows the semantics.gf,
which is defined via reduction rules of the foifi, D) = (S, D’)
where S, S’ arereference storeand D, D’ are expression stores
A reference store is a function from a setreference locationg
to portsa, and an expression store is a function from a set of ports
to expressions. Here, expressions include any expressionthe
source syntax extended with reference locations and [Brten a
programe, evaluation o starts from the initial staté), {c — e})
where the symbob denotes the speciabot port Ports are used
for evaluation sharind.The reduction rules are parametrized by
the evaluation contextg. For an expressioa, free(e) is the set of
free variables, ports, and reference locations. &for an expression
storeD, free(D) = dom(D) U U, ¢ an(p) freele).

We briefly describe the reductlon rules from top-to-bottdime
rule App corresponds to a function application. For functidnis
and F’, F & F’ denotesF U F’ if dom(F) N domF’) =
and is undefined otherwise. ThiAgpp creates a fresh port and
storese’ at a. The ruleLet is similar. The rulePair projects the
ith element of the pair. The rulé/rite creates a fresh pou,
stores the expressio#l at the porta, and stores the por at
the reference locatiold. We useS[¢ «— a] as a shorthand for
{¢ — S | ¢ € domS)AL" # £} U{f — a}. Note that we use
the dummy witness symbelas the run-time representation of any
witness because only its presence is important to the s@asant
i.e., operationally, a witness is like a dataflow token inaflatv
machines. The rul®ead reads from the reference locatiérand,
as noted above, returns the value paired with a witness. (lee r
Ref creates a fresh locatiahand a fresh pori, initializesa to the
expressiore and/ to the porta. The ruleJoin takes two witnesses
and returns one witness.

The rule Arrive might look somewhat unfamiliar. Her¥ is
the set of “safe to duplicate” expressions. Partly for tHeegat the
static-checking algorithm to be presented later, wéfito values
generated by the following grammar:

vi=x|i|la|e|L|vav |Are

31n the literature, top-levelet-bound variables often double as variables
and ports.



Arrive says that ife is safe to duplicate, then we can replace
by e; we say a safe to duplicate expression hasved at port
a. In essence, while standard operational semantics fotiturad
languages [12, 8] implicitly combinArrive with other rules, we
separateArrive for increased freedom in the evaluation order.
Lastly, the ruleGC garbage-collects unreachable (from the root
port<) portions of the expression store.

Here is an example of &,,;; evaluation:

(0,{c+— (A\z.read z e) ref 1})

= ({{—a},{o— (A\z.readz @) {,a+— 1}) Ref

= ({{— a},{o+—readad’ e,a+— 1,a’ — £}) App
= ({{—a},{o—readle ,a— 1,0’ — £}) Arrive
= ({{—al,{o—a®ea— 1, — (}) Read
= {l—alh{o—1Qear— 1,a +— £}) Arrive
= {l—a},{o— 1R e}) GC

The semantics is non-deterministic and therefore alsavaltather
reduction sequences for the same program. For example, we ma
take anApp step immediately instead of first creating a new refer-
ence by aRef step:

(@, {o — (A\z.read z @) ref 1})

= (0,{o— readae,a — ref 1}) App

Before defining confluence, we point out several important
properties of this semantics. Firstly, note that the evanacon-
texts £ do not extend to subexpressions of abstraction\z.e,
i.e., we do not reduce under The evaluation contexts also do not
extend to subexpressions of an expresdien = = e in €', but
e ande’ may become available for evaluation via applications of
theL et rule. As with call-by-value evaluation or call-by-need leva
uation, evaluation of an expression is shared. For examplbe
program(A\z.xz ® x) e, the expression is evaluated at most once.

The semantics ok, has strictly more freedom in evaluation
order than both call-by-value and call-by-need. In paléicicall-
by-need evaluation can be obtained by using the same reducti
rules but restricting the evaluation contexts to the foltayv

E = DU{o—E}|[]|Ee|m(E)|writeEee
| writeleFE |readEe|readlE
| joinFel| joine E

Call-by-value evaluation can be obtained by adding theofdtg
contexts to the evaluation contexts of the call-by-needlietian

E ..](Mze) FE|EQe|vQ E | writel{ E e
| ref E|letx=FEine

in addition to restricting the rulépp to the case’ € V, the rule
Let to the case € V', the rulePair to the case1,e2 € V, the
ruleWriteto the case’ € V, and the ruleRef to the case € V.4
Note that both lazy writes and strict writes are possibl&.in.

It is important to understand that we are only concerned with
side-effects via references, and hence we are not concabd
issues like the number of ports that are created during daatien.

Having defined the semantics, we can formally define when a
Awit Program is confluent. To this end, we defiobservational
equivalenceas the smallest reflexive and transitive relationa
D’ on expression stores satisfying:

e D =~ D[a/a’'] wherea ¢ free(D)
e D ~ D[¢/¢'] wherel ¢ free(D)
That is, expression stores are observationally equivéiémy are

equivalent up to consistent renaming of free ports and eafs
locations. Let=-" be a sequence of zero or mere

4 Strictly speaking, the contesifet = = E in e is not in the semantics of
Awit- But Ay can simulate the behavior vialzt step and then reducing
e[a/z] which is now in an evaluation context.

DEFINITION 1 (Confluence)A program statg.S, D) is confluent
if for any two state§S1, D1) and (S2, D2) such that(S, D) ="
(S1,D1) and(S, D) =™ (S2, D2), there exist two statgsS], D7)
and (S35, D3) such that(S1,D1) =* (S1, D1), (S2,D2) =*
(S5, D3), and D7 =~ D5. A programe is confluent if its initial
state(d, {o — e}) is confluent.

Note that the definition does not require any relation behreé
erence location stores$; andS5. So, for example, a program that
writes but never reads would be confluent. As shown befbgg,
contains programs that are not confluent. Indeed, the diffe
between call-by-need and call-by-value is enough to detretes
non-confluence:

(Az.read x @) (let = = (ref 1) in let y = (writexz 2 @) in x)

The above program evaluates to the gaid e under call-by-need
and to the pai2 ® e under call-by-value. No further reductions can
make the two states observationally equivalent. (Here vpdiitly
read back the top-level expression from the root port imsiea
showing the actual expression stores for brevity.)

We have shown earlier that witnesses can aid in writing cbrre
programs by directly ordering side-effects. Witnessediestclass
values and hence can be treated like other expressionsx&or-e
ple, the program below captures a witness in a function witsetf
returns a witness to ensure that reads and writes happeromeztc
order:

let x=reflin
let w=writex2ein
let f = A\y.readz w in
let z=(f0)®(f0)in
let w = write x 3 join ma(m1(2)) m2(m2(2)) in 2

Note that a witness of the first write is captured in the fucif.
Hence both reads from the two callsf®ee a witness of the write.
A witness of each read is returned Ify and the last write waits
until it sees witnesses from both reads. Therefore, thdtrefthe
program if2®e)® (2®e) regardless of the evaluation order. Note
that the two calls tgf, and thus the reads in the calls, can occur in
either order.

3. Witness Race Freedom

As discussed in Section 2, witnesses aid in writing corremgmms
in the presence of side-effects but do not enforce corrsstite this
section, we give a sufficient condition for guaranteeingficemce.

The guideline for writing a correct program should be inteity
clear at this point: we ensure that reads and writes happsonie
race-free order by partially ordering them via witnesses. Mdw
make this intuition more precise. First, we formally defireatwe
mean by the phrase “ side-effedtsees a witness of side effeBt
that we have used informally up to this point.

Intuitively, atrace graphis a program trace with all information
other than reads, writes, and witnesses elided. Therem®ekinds
of nodes: read node®ad(¢), write nodeswrite(¢), and the join
nodejoin. Read and write nodes are parametrized by a reference
location¢. There is a directed edged, B) from node A to node
B if B directly sees a witness ofl. A trace graph(V,E) is



constructed as the program evaluates a modified semantics:

Write (S, E[write fe A]) = (S[¢ — a|, E[B] W {a — e})
V:=V U {B} whereB is a newwrite({) node
E:=EU {(A, B)}

(S, E[read £ A]) = (S, E[S(¢) ® B])

V:=V U {B} whereB is a newread(¢) node
E:=EU{(4, B)}

(S, E[join A B]) = (S, E[C])

V:=V U {C} whereC is a newjoin node
E:=EU {(4,C), (B,C)}

Note that we now use nodes as witnesses insteadTe line be-
low each reduction rule shows the graph update action qunes
ing to that rule. The other rules remain unmodified and heawe h
no graph update actions. An evaluation starts With= E = 0
and performs the corresponding graph update when takiligite
step, aRead step, or aJoin step. Notice that a trace graph and the
annotated semantics are only needed to state the semamditico
for correctness and are not needed in the actual executian gf
program.

We can now define what it means for a nodléo see a witness
of a nodeB, a notion we have used informally until now.

Read

Join

DEFINITION 2. Given a trace graph, we say that a nodesees
a witness of a nodé if there is a path fromB to A in the trace
graph. We writeB ~ A.

The following is a trivial observation:

THEOREM1. If B ~» A in a trace graph, then the side effect
corresponding toB must have happened before the side effect
corresponding toA in the evaluation that generated the trace
graph.

Clearly, any trace graph is acyclic.

Having defined trace graphs and tke relation, we are now
ready to state the semantic condition for correctness.rBefioow-
ing the condition formally, we informally motivate it by mialg
analogies to the conventional programming guideline foitimg
correct concurrent programs: prevent race conditions.

We first note that a program could produce different tracphiga

Al A2 Al A2
0N { { /ﬂ8
J! ¢! 4 o
v \ v v
Bl BQ Bl BQ

Figure 3: Possible orderings between pairs of reads andsirita
witness race free trace graph.

DEFINITION 3 (Witness Race FreedoniVe say that a trace graph
(V,E) is witness race free if for every locatidn

o for every A : read?) € V and B : write(¢) € V, either
A~ Bor B~ A, and

o for everyA : read(¢) € V, either there is ndB : write(¢) € V
such thatB ~ A or there is aB : write(¢) € V such that

B~ A,

We say that a prograra is witness race free if every trace graph of
e is witness race free.

THEOREM2. If e is witness race free thenis confluent.

The proof appears in our companion technical report [13].

While witness race freedom is a sufficient condition, it is no
necessary. For example, if for each reference locatiorg/tiappen
to never change the location’s value, then the programviglist
confluent regardless of the order of reads and writes. Anothe
example is a program using implicit order of evaluation:. eingy
Awit, €Xpressions are not reduced undeso a function body is
evaluated only after a call. Hence a program that storesaifum
in a reference location, reads the reference location tbtkal
function, and then writes in the same reference locatiom ftioe
body of the called function is confluent because the writeagfwv
happens after the read despite the write not seeing the ssitoie
the read.

Nevertheless, witness race freedom is “almost completel in

depending on the choice of reductions, even when those tracesense that if the only way to order two side-effects is to maie

graphs are from terminating evaluations. Furthermors,nbit nec-
essarily the case that such a program is non-confluent. foinere
instead of trying to argue about confluence by comparingfit
trace graphs, we shall define a condition that can be checked b
observing each individual trace graph in isolation.

Let us write A : nodetype as a shorthand for a nodé of type
nodetypelf we haveA : read(¢) and B : write(¢), then we want
eitherA ~» B or B ~» A to ensure thatl always happens before
B or B always happens beforé because otherwise we may get
a read-write race condition due to non-determinism. Also ahy
A : read(?), if there are two nodes,, B> : write(¢) such that
neitherB; ~» By nor B; ~ B; (so we do not know which write
occurs first) andA could happen after botl; and B2, then we
wantC : write(¢) such thatC ~ A, By ~ C and Bz ~ C,
because otherwise the read 4tmight depend on whether the
evaluation chose to d#®; first or B- first, i.e., we have another
kind of race-condition. Perhaps somewhat surprisingliisfséng
these two conditions turns out to be sufficient to ensure gendle.

We now formalizes this discussion. FBr: write(¢), we use the

shorthandB ~» A if for any C : write(¢) such thatC' ~ A and
C # B, we haveC' ~» B. Now, for anyA : read(?), there exists
at most oneB : write(¢) such thatB ~ A. Note that the second
condition above is equivalent to requiring that for aty read(?),
either there is naB : write(¢) such thatB ~» A or there is a

B : write(¢) such thatB & A

see a witness of the other, and if we cannot assume anything ab
what expressions are written and how the contents are Usaitt
is the weakest condition guaranteeing correctness. licpkat, if
the trace graphs are the only information available abougrpm,
then witness race freedom becomes a necessary condition.

The result in this section can be extended to most other func-
tional program transformations, because witness racedrads
an entirely semantic condition. However, the static chegkilgo-
rithm described in Section 4 is not as forgiving, which is wingy
have restricted the set of program transformations to thidteose-
mantics of\,;:. For example, the algorithm is unsound for general
call-by-name reduction.

4. Typesfor Statically Checking Witness Race
Freedom

While the concept of witnesses is straightforward, it mayentne-
less be desirable to have an automated way of checking whathe
arbitrary \,,;; program is witness race free. Witness race freedom
may be checked directly by checking every program tracechwhi
is computationally infeasible. Instead, we exploit a spepiop-
erty of witness-race-free trace graphs to design a souratitiim
that can efficiently verify a large subset of witness-raeaf ;.
programs.

The key observation is that any witness-race-free tracphgra
contains for each reference locatiba subgraph that we shall call



R,
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Figure 4: A read-write pipeline with bottlenecks for a refece
location?.

aread-write pipeline with bottlenecké/e shall design an algorithm
that detects these subgraphs instead of directly chedkéngitness
race freedom condition. Consider a witness-race-free tgaaph.
Suppose there ard, As : write(¢) and B, B2 : read(¢) such

that A; # Az, Ay & B; and A2 ~~ Bs. Due to witness race
freedom, it must be the case that ~ A; or A; ~ Bs. If the
former is the case, we have the relation as depicted in F§j(@g.

Suppose that the latter is the case. Then, sjm,‘e!» By, it must
be the case thatl; ~ A,. ConsiderAd: and B;. Due to withess
race freedom again, it must be the case that either~ B; or

By ~ As. Butif Ay ~ By, then sinced; ~» By, it must be the
case thatd, ~» A;. But this is impossible sincds ~ A; ~ As
forms a cycle. So it must be the case tiat~» A», and we have
the relation as depicted in Figure 3 (b).

Further reasoning along this line of thought reveals that fo
a witness-race-free trace graph, for any reference latdtidhe

nodes in the seK = {A : write(¢) | 3B : read¥).A & B}
are totally ordered (with~ as the ordering relation), and that
these nodes partition attad(¢) nodes andvrite(¢) nodes in a way
depicted in Figure 4 wher& = {A;, ..., A,}. Inthe figure, each
R; andW; is a collection of nodes. NR; contains avrite(¢) node
and noW; contains aead(¢) nodes. Eacld; is onewrite(¢) node.
An arrow fromX toY means that there is a path from eaafite(¢)
node orread(¢) node inX to eachwrite(¢) node orread(¢) node

z|i|Aze|ee |letz=cine |e®e | m(e)
writeejeses |readee’ |refee’ | joinee | e
letregxe

Figure 5: The syntax ok’

wit”

E = DU{a—E}|[]|Ec|eE|E®e|e®F
| mi(E)|write Eee |uritee Ee’ |writeee E
| readeF |read Ee|ref Ee|refeE
| joinFeljoineF
App (R, S, E[(Az.€) €'])
= (R, S, Elela/z]] W {a — €'})
Let (R,S,E[let z=ein€'])
% (R,S, Ble'[a/a]) @ {a > la/a]})
Pair (R7 S, E m(el ® 62)]) = (R, S,E[eb])
Write (R, S, E[write £ e o]
= (R, S|t — a], E[e] ¥ {a — e})
Read (R, S, Elread(s]) = (R, S, E[S(0) ® o))
Ref (R, S, E[refer])
= (R,SW{{— a},E[{]¥ {a — e})
Join (R,S,E[joinee]) = (R, S, Ele])
LetReg (R, S, E[letreg z €])
= (R {r},S, Elela/a]] W{a —r})
Arrive (R, S,E[a)W{a— e}) = (R, S, Ele]W{a — e})
wheree € V
GC (R,S,Dy D)= (R,S,D)

whereo ¢ dom(D’) A dom(D’) N free(D) = ()

Figure 6: The semantics of 7.

node A; included in the collectionW;. The “bottlenecks” are
the A;’s. Note that a trace grapfV,E) actually contains a read-

in Y, except if aW,; contains no such node, then there is a path write pipeline with bottlenecks per each reference locafias a

from eachread(?) € R; to A;. EachR; for ¢ # 1 must contain

at least onegead(¢). Arrows just imply the presence of paths, and
hence there can be more paths than the ones implied by thesarro
e.g., paths to/from nodes that are not in the diagram, patasd
from nodes in the same collection, and even paths relatiag th
collections in the diagram such as one that goes directiy g to

A;, bypassingW,.

subgraphG, (but the subgraphs may not be disjoint because the
paths may involve other locations and share join nodes).

The following theorem formalizes our earlier informal dise
sion.

THEOREM3. A trace graph(V,E) is witness race free if and only
if it has a read-write pipeline with bottlenecks for evéry

The graph in Figure 4 can be described formally as a subgraph The proof appears in our companion technical report [13k Th

of the trace graph satisfying certain properties.

DEFINITION 4. Given a trace grapiV, E) and a reference loca-
tion £, we call its subgraphG, a read-write pipeline with bottle-
necks ifG, consists of collections of nod&, R, ..., R, and
Wi, Wa, ..., W, with the following properties:
o {A]A:readt) e V} C U, Ry,
o {A| A:write(/) e V} C U, W;,
* Ry, ..., Ry, Wy, ..., W,, restricted to writé/) nodes and
read(¢) nodes are pairwise disjoint,
o for eachA : read(?) € R; and B : write(¢) € W;, A ~ B,
e for eachR; such thati # 1, there exists at least ond :
read/) € R;, and
e there existsA : write(¢) € W; for all ¢ # n such that for all
B :read?) € Riy1 and allC : write(¢) € W;, A < Band
C~ A.

Note that each collectioR; andW; corresponds to the collection

following is an immediate consequence:

COROLLARY 1. A \,i: programe is witness race free if and only
if every trace graph of has a read-write pipeline with bottlenecks
for every reference locatiof

4.1 Regions

Corollary 1 reduces the problem of deciding whether a progra
is witness race free to the problem of deciding if every trgizgh
of e has a read-write pipeline with bottlenecks for every refeee
location/. Therefore it suffices to design an algorithm for solving
the latter problem. But before we do so, we make a slight ohang
to Awi: to make the problem more tractable Xp;:, there is a read-
write pipeline with bottlenecks for each reference loaatfp but
distinguishing dynamically allocated reference locagiamdividu-
ally is difficult for a compile-time algorithm. Therefore,enadd
regionsto the language so that programs can explicitly group refer-
ence locations that are to be tracked together.

Figure 5 shows\"?, X\, extended with regions. The syntax

wit?

of nodes marked by the same name in Figure 4 but with each contains two new expression kindsstreg x e which creates a



new region andref e ¢’ which places the newly created reference
inregione’; ref ee’ replacesref e. Figure 6 gives the semantics of
A9 which differs fromA.;; in two small ways. First, a state now
contains a set of regions. We use symbols, ', ;, etc. to denote
regions. Regions are safe to duplicated, ireg V. The R's are
used only for ensuring that the newly created regi@t aL etReg
step is fresh. (We overload the symbkosuch thatRw R’ = RUR’

if RN R = () and, is undefined otherwise.) Note that evaluation
contextsE' do not extend to the subexpressiondefreg x e. The
second difference is thatRef step now takes a regionalong with
the initializere to indicate that the newly created reference location
£ belongs to the region. Note that the semantics does not actually
associate the reference locatiérand the region, and therefore
grouping of reference locations via regions is entirelyasgriual

Proof (Sketch): For any evaluation ef carry out the same reduc-
tion sequence with the trace graph building action\gf, i.e., the
trace graplG generated is at the granularity of reference locations.
Then it is easy to see thatdf satisfies the above two conditions,
also satisfies the two conditions of Theorem12.

It is easy to see that Definition 5 is the weakest possible re-
striction to the original witness race freedom under theoregb-
straction because for any ¥, trace graph that is not witness race
free, one can easily find a non-confluent program that preitiee
graph.

In a witness-race-free trace graph faf%, the read-write
pipeline with bottlenecks for a region consisting of the collec-

tions(Ry,...,R,, Wy,..., W,) has the following property: each

Regions force programs to abide by witness race freedom at Se{A | A : write(r) € W, } for i 7 n can be totally ordered (with

the granularity of regions instead of at the granularitynafividual
reference locations. That is, insteadre&d(¢) nodes andvrite(¢)
nodes, we useead(r) nodes andvrite(r) nodes. Formally, a trace
graph forA’* is constructed by the following graph construction
semantics:

Write (R, K, S, Efurite (e A])
= (R,K,S[{ — a], E[B] W {a +— e})

V:=V U {B} whereB is a newwrite(K (£)) node
E:=E U {(A, B)}

(R,K,S,E[read ¢ A]) = (R, K, S,E[S({) ® B)])
V:=V U {B} whereB is a newread( K (¢)) node
E:=EU{(A4, B)}

(R,K, S, E[join A B]) = (R, K, S, E[C])

V:=V U {C} whereC is a newjoin node
E:=E U {(4,C),(B,C)}

(R,K,S, E[ref er])

= (R, K@ {rr},58 {fr a}, B[] & {ar c})

Note that these reduction rules use an additional fundiiomhich
is a mapping from reference locations to regions. The mapgin
starts empty at the beginning of evaluation. Other redostioles
are unmodified except that the functidn is passed from left to
right in the obvious way.

Since there is less information available in\g? trace graph
than in a\,;: trace graph, the witness race freedom condition is
more conservative foh!?. That is, we still need the condition
that for any A : write(r) and B : read(r), eitherA ~ B or

Read

Join

Ref

~» as the ordering relation). The theorem below is immediaim fr
Corollary 1 under this additional property.

THEOREMS5. A X" programe is witness race free if and only if
every trace graph oé has a read-write pipeline with bottlenecks

for every regionr.

This additional property helps in designing a static cheglilgo-
rithm.

4.2 From Network Flow to Types

Now our goal is to design an algorithm for statically chegkif
every trace graph of & programe has a read-write pipeline with
bottlenecks for every region. Our approach exploits aetwork
flow property of read-write pipelines with bottlenecks. Comsid
a trace graph as a network of nodes with each gdgeB) able
to carry any non-negative flow from to B. (Recall edges are
directed.) As usual with network flow, we require that theakot
incoming flow equal the total outgoing flow for every node ie th
graph. Now, let us add dirtual sourcenode As and connect it
to every nodeB by adding an edgéAs, B). We assign incoming
flow 1 to As. Then it is not hard to see that if there exists a read-
write pipeline with bottlenecks for the regianthen there exists
flow assignments such that evesad(r) node andwrite(r) node
gets a positive flow and every : write(r) € W; for i # n gets a
flow equal tol.

It turns out that the converse also holds. That is, given@etra
graph, if there is a flow assignment such that eaeld(r) node and

B ~ A. But we need to tighten the second condition so that for \yyite(r) node gets a positive flow and eagh: write(r) such that

any A : read(r) if there areB1, B2 : write(r) such thatB; ~ A
andB; ~ A, then eithetB; ~ B> or B> ~» Bj. This condition is
strictly more conservative than for,;:, which only requires some

C' : write(r) such thatC' ~ A'in such a situation. The reason for
this conservativeness is that we do not know from a tracehgofip
A% whetherB; and B, both write to the same reference location.

Formally, witness race freedom fa(; can be defined as fol-
lows.

DEFINITION 5 (Witness Race Freedom faf,). We say that a
A trace graph(V, E) is witness race free if for every region

wit
o foreveryA : read(r) € VandB : read(r) € V, eitherA ~» B
or B~ A, and

o for every A : read(r) € V and By, Bz : write(r) € V such
that B, ~» A and B2 ~ A, we haveB; ~» B3 or Bs ~ Bj.

THEOREMA4. If a A7'% programe is witness race free, thea is
confluent.

5Regions are traditionally coupled with some semantic measich as
memory management [14, 5]. It is possible to exté{jﬁi to do similar
things with its regions.

there existsB : read(r) with A ~» B gets a flow equal ta, then
there is a read-write pipeline with bottlenecks for the oegi. By
Theorem 5, this implies that there exists such a flow assighfoe
every regionr if and only if the trace graph is witness race free.
Because edges in a trace graph are traces of witnesses,eaur id
is to assign a type to a witness such that the type contains flow
assignments for each (static) region. We use this idea tgmies
type system such that a well-typed program is guaranteecto b
witness race free.

Formally, a witness typ& is a function from the set dftatic
region identifiersRegl Ds to rational numbers in the range, 1],
i.e.,W : ReglDs — [0, 1]. The rational numbe¥ (p) indicates
the flow amount for the static region identifiein the witness type
W. We use the notatiodp: — q¢i,...,pn — gn} to mean a
witness typéV such that¥ (p) = ¢; if p = p; forsomel <i <n
andW (p) = 0 otherwise. (We use the symbajsg;, ¢, etc for
non-negative rational numbers, including those largem thp

The rest of the types are defined in Figure 7, including types
include integer typemt, function typesr - 7/, pair typesr ® 7/,
reference typesef (v, 7', p), and region typeseg(p). The non-
negative rational number in % 7' represents the number of
times the function can be called. We allow the symhplg’, etc
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Figure 7: The type language.
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I'Whletx=eine : 71

LetA

LersWhere:r Moz, Wke 7
T > 71 x xoif z € freele)

LetB
P+, W+W' Fletx=cine : 7

Figure 8: Type judgment rules.

to take the valuatiomo to imply that the function can be called
arbitrarily many times. We use the following arithmeticatibn:
q+ 00 =00,qx o0o=ocforqg#0,and0 x co = 0.

reg(p) + reg(p) = reg(p)
Int + Int = Int

7 7
q q atq
e e R N L Y

TIRT+mR7 = (T1+73)® (12 + 74)

ref (11,7, p) + ref (12, 7, p) = ref (11 + 72, 7, p)
W+ W' ={p— W(p)+W'(p) | p € ReglDs}
reg(p) x q = reg(p)

int x g = int

Tq—/>7"><q:7'q/—x>q7"

TRT xq=(Txq) (1" Xq)

ref (1,7, p) x g =ref(r x q, 7', p)

W xq={p— Wi(p)xq|p€ ReglDs}

Figure 9: Arithmetic over types.

right, except for the rul&ub which we defer to the end. The rules
Var andInt are standard. The ruBummy gives a dummy witness
e an empty witness type; note thiatp) = 0 for any static region
identifier p.

The ruleSource uses additive arithmetic over types defined in
Figure 9. The rule addd’s amount of flow from the virtual source
nodes (i.e., nodegls from the first paragraph of this section) to
W>. In the type judgment relatioR; W + e : 7, the witness type
W represents the flow the expressiemeceives from the virtual
source nodes. Therefore, the r@eurce says that assuming that
we tookW/; flow from the virtual source nodes in the precondition,
we are now taking?s more.

In the ruleAbs, we multiply the left hand side of the judgments
by the number of times that the function can be used. Muttipion
over type environmentE is defined as follows:

(T,z:7) x ¢g= (L x q),z:(T X q)

So for example, if the\ abstraction\z.e captures a witness as a
free variabley and thatl’(y) = W, then(I" x ¢)(y) = W x q.
Thus if the function body requirdd” amount of flow in the witness,
then we actually requird” x ¢ amount of flow because the function
may be called; times.

In the ruleApp, the preconditiory > 1 says that the number of
times the function can be used must be at Iéa$te left hand side
of the two judgments in the precondition are added so thatame c
compute the combined flow required for the expressioaade’.
Addition over type environments is defined as follows:

(Cyz:m)+ (T, z:7) = (C+ ), z:(r+ ')

The rulesPair andProj are self-explanatory.

In a reference typeef (7,7, p), the static region identifiep
identifies the region where the reference belongs whileyhet is
the read type of the reference and the typis the write type of the
reference. Initially the read and write types are the sansees in
the ruleRef. The ruleWrite matches the type of the to-be-assigned
expressiore; with the write type of the reference while the rule
Read uses the read type of the reference type. Note that we require
W(p) > 1atWriteandW (p) > 0 atRead; both correspond to the
flow requirement for writes and reads. The reason readwyjiet
type separation is subtle. Consider the following expoessihere
the expressions; andes are witnesses and the expressioris a
region:

let z = (ref €1 e2) in let w = (write z ez ®) inread z w

Suppose we just have read types so that the type system asks re

Figure 8 shows the main type judgment rules. Our type system types at instance&/riteas well as at instancé&ad. Then the type

belongs to the family of substructural type systems, whichuides
linear types. We discuss the rules from top-to-bottom aftetde

system is unsound (even witho8tb) for the following reason.
The type system may assign some flolv to the occurrence of
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ref (11,72, p) > ref (71,73, p)

W (p) > W (p) for all p € ReglDs
w>w’

Figure 10: Subtyping.

the variabler at the write and some flowV’ to the occurrence
of the variablex at the read. But there is no constraint to force
W = W’, so the type system can I8¢’ > W while keeping
the sumWW + W’ fixed, i.e., we get more flow from a reference
than what was assigned to the reference. Separating readraed
types prevents this problem because addition and mukiic do
not act on write types.

The ruleL etRegion introduces a fresh static region identifier
The witness typgp — ¢} represents the virtual source node for
the new region. We constrain < 1 to ensure that we do not use
more thanl unit total from the source.

The ruleJoin combines two witnesses by adding their types.
There are two ruled, etA and LetB, for the expression kind
let x = e in €. LetA is less conservative and should be used
whenever: occurs more than once il ande € V' whereV+ is
the smallest set such thet™" = VU {let z=einz|ec VT}.
This rule corresponds to the usual substitution intergiretaf let-
based predicative polymorphism with the value restricticeiB is
used ife ¢ V't or x occurs at most once itf. Here,free(7) is the
set of static region identifiers in the typewherefree(W) = {p |

W (p) # 0}, andfre(T') = U, ar free(r).

Finally, we come return t&ub. The subtyping relation is de-
fined in Figure 10. As usual, argument types of function tyaes
contravariant. Write types of reference types are alsaracatiant;
this treatment of reference subtyping is identical to tHat type-
based formulation of Andersen’s points-to analysis [4uitively,

the ruleSub expresses the observation that the flow graph property

FresH(int) = int
Fresho—o) = Fresh(o) LA Fresh(o)

whereg is fresh
Fresho ® o’) = Fresh(o) ® Fresh(o)
Fresh(ref (o, o', p)) = ref (Fresh(c), Fresh(c’), p)
FresH(reg(p)) = reg(p)
Freshl)={p—a|pel}

whereq is fresh

Figure 11:Fresh

DLWy el
I, W + Fresh(I) I, ¢’

:7,C
: 7+ Fresh(I),C

TWhye®:7,C
T,Wk, e :

o ¢ typel
T,C

Figure 12: Type inference,,.

The type system is quite expressive. In particular, it issabl
to type all of the examples that were used as correct programs
up to this point in the paper (with straightforward modifioat
to translate),;; programs intoA’). In fact, assuming that for
each regionr, write(r) nodes in each collectiofi/; are totally
ordered, the type system is “complete” for the first-ordagfment
(i.e., no higher order functions) with no recursion and rarisg
of witnesses in references. That is, such a progeais witness
race free and well-typed by a standard Hindley-Milner tyystesm
if and only if it is well-typed by our type system. We also show
later in Section 5 that the type system is more expressivehat
approaches.

The limitations of the type system are the standard ones: let
based predicative polymorphism, flow-insensitivity of enreince
types, and unsoundness under call-by-name semanticsattee |
is a typical limitation of a non-linear substructural typgstem.
Another limitation is that the type system enforces for egion
r that write(r) nodes in every collectio®V; are totally ordered
whereas witness race freedom permits an absence of ordering
the case = n; we believe that this is a minor limitation.

may be relaxed so that the sum of the outgoing flow can be less43 Inference

than the sum of the incoming flow, i.e., if we could find a flow as-
signment satisfying the required flow constraints at readsraites
under this relaxed condition, then we still have a readenpipeline
with bottlenecks.

We say that a\|.5, programe is well-typed if; @ + e : 7 for
some typer. The following theorem states that the type system is
sound.

reg
wit

THEOREMG. If a A
race free.

programe is well-typed, then it is withess

The proof, which uses the network flow property, appears én th
companion technical report [13].
We point out a few of the positive properties of this type egst

If a program contains no reads or writes and can be typed by a

standard Hindley-Milner polymorphic type system, therait @lso
be typed by our type system; for example, we may use the eralifi
oo for all function types and usefor all flows. In general, we can
give theoco qualifier to the function type of any function that does
not capture a witness (directly or indirectly). We can alseign
flow 0 to any flow for a regionr that does not flow into a side-
effect primitive operating on the region

We next present a type inference algorithm. By Theorem 8, thi
results in an automatic algorithm for statically checkingness
race freedom.

At a high-level, our type system is a standard Hindley-Milne
type system with some additional rational arithmetic caists.
Therefore we could perform inference by employing a stashdar
type inference technique to solve all type-structural taists
while generating rational arithmetic constraints on ttaesiand
then solving the generated arithmetic constraints seggrdin-
fortunately, the arithmetic constraints may be non-lir@ace they
involve the multiplication of variables. Because theredsfficient
algorithm for solving general non-linear rational arithtfoecon-
straints, we need to dive into lower-level details of thestgystem.

Let us separate type inference into two phases. The firsephas
carries out type inference after erasing all rational nusithie®m

the type system. That is, the types inferred in this phase are
o = int|o—ao' |o®dc |ref(o,0’,p)]|reg(p) | I

where a typd is a subset oRegl Ds. Intuitively, each typd rep-
resents the nofi-domain of some witness tyg&. The first phase
can be carried out by a standard Hindley-Milner type infeegral-



7 = Fresho)
{z:7},0bp 27 : 7,0

0,0 Fpi:int, 0,0, 0:0,0
I'Whee:T,C [ is fresh
FXﬂ,WXﬂH,)\m.e:F(:c)iT,C

I,Witger:m1,C1 T2, Walygez:12,Co
T =Fresho) 7' =Fresh(o’) Pisfresh

C=CUCU{n 27'&7",521,7227}
Ty + Do, Wi+ Wa by el es:7',C

F17W1 Fa el :7’1,01 F27W2 Fa €eo TQ,CQ
D14+ Te, W1 +Wakper®ez: 71 @72,01UC

W hke mi(e) : 7,C 11 = Freshio) 12 = Fresh(o’)

T,W 7Ti(601®02) :1,CU {T > ®7'2}

Fi,Wikaqer:m,C Do, Wa g e2:12,C

1+ T, W1 4+ Wa by ref eg 6r2eg(p) : I'ef(7'177'27p)7cl UCs

Fi,Wikger:m,C Do, Wa kg e2: 72,C2
I3, Wstqez:73,C3 7 =Fresho) 7' =Freshc’)
C=CiUCoU{m >ref(r,7,p), 72 > 7', 73(p) > 1}
I'=T1+T2+1T173 W =Wy 4+ Wsy+ Ws

) f (0,0,
I, W Fp urite e} (@:950) ¢) 5 - 73,C

Ty, Witgser:m,C1 To,Wa g e2:7,Ca
T = Fresh(o) 7' = Fresh(o”)
C=CUCU{n >ref(r,7',p), m2(p) > 0}

'y + T2, W1 4+ Ws by read eff<0’0/’p) e2:TR®712,C

I''Whee:T,C
I, W by letreg 9P ¢ : 7,C U {W(p) < 1}

Iy, Witkser:m,Ch T2, Wa kg e2:72,C2
Ty 4+ T2, Wi+ Wa b joineir ez : T +7-2,Cl UCs
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Figure 13: Type inference,.

beit with regions, which is no harder than type variables.dvt

the details of this phase. We may safely reject the prograttmeif
first phase fails. Otherwise we annotate each subexpressipits
inferred types: ¢7. In the second phase, we use the annotated pro-
gram to generate the appropriate rational arithmetic caimss via
bottom-up type-inference. Letbe an annotated program. Then the
generated constraints feris C wherel', W +, e : 7, C for some

T, W, andr.

The second-phase type inference rules are separated iato tw
kinds, -, (Figure 12) and-, (Figure 13), which must occur in
strictly interleaving manner. The purposetoef is to account for
the type judgment rul&ource, whereas-;, accounts for all other
rules.

We should note that, strictly speaking, typeappearing in the
algorithm are different from the ones in the type judgmerésu
That is, instead of rational numbers, the typem the algorithm
are qualified byrational number variablesy, 3, ~, etc. Also the
domain of a witness typ# is not the entirdRegl Ds set but only
some subset of it. In other words, a witness tyjpeis a partial
function fromRegl Ds to rational humber variables. We re-define
the addition of witness types as follows to reflect the change

W4+ W =
{p— W(p) +W'(p) | p € domW) A p € dom(W’)}
U{p = W(p) | p € domW) A p ¢ dom(W")}
U{p = W'(p) | p € domW’) A p ¢ domW)}

We also re-define the addition of type environments:

F+1' =
{z:T'(z) +T"(z) | = € domT) A z € domI")}
U{z:T'(z) | x € domT') A = ¢ dom(I")}
U{z:T"(z) | z € domI') Az ¢ domT)}

Note that we omit annotations when they are not used (i.e., we
saye instead ofk?, etc.). There are only two cases fef. The first
case is for expressions that were given a witness fyipethe first
phase. In this case, we affitesh(I) to 7 and W to account for a
possible application aBource. Freshis defined in Figure 11. The
second case is for expressions that were not given a witgpss t
In this case, we simply pass the result of the subderivétioap.

We discuss a few representativgrules. Note that-;, rules are
syntax directed. In the case of a variablg, we create a fresh
from o and pasgz:7},0 Fy 27 : 7,0 up to the parent derivation.
(Recall our type inference is bottom-up.) The case for ietegnd
dummy witnesses are trivial. In the case of an abstraciier,
we multiply ' and W passed from the subderivation By In the

case of a function applicatioeﬁ”"’ ez, we add the constraints

{n > LA 7', > 1,72 > 7} to connect arguments and
returns as well as requiring to be at leasfi. Note that the type
rule Sub is implicitly incorporated in the constraints. In the case

of urite & (77" ¢, e5, we add the constraint(p) > 1 to
match the type rul@Vrite. Note that the first phase guarantees
that p € dom(7s). In the caseletreg ™% ¢, the constraint
W(p) < 1is effective only wherp € dom(W') asp ¢ domW)
implies that the region was not used at all. Note that theme isase
corresponding to the type rulestA. Prior to running the algorithm,
we replace each occurrence of the expressinz = ¢ in €’ in
the program by the expressiefi(let = = e¢ in z)/x] whenever

e € V andz occurs more than once in.



As an example, consider the following program\(g’, version
of the last example from Section 2):

letregr
letx=ref lrin
let w =writexz 2e in
let f = A\y.readz w in
let z=(f0)®(f0)in
let w = write x 3 join ma(m1(2)) w2 (m2(2)) in 2
Suppose the first phase assignghe typereg(p). Assume each
let-bound variable is treated monomorphically. The second@ha

generates the following constraints for thet-bound expressions
(slightly simplified for readability):

{r:reg(p)}; 0 ko ref 17 : ref (int,int, p), 0

Di{p—m+ 72} bavritez 20 {p—>m + 72}, {n > 1}
wherel’ = {z:ref (int,int, p) }

Wk Ay.readz w : int 2 int® {p— a1 +93},C
wherel’ = {z:ref (int,int, p), w:{p — a1 x B1}}
andW = {p+— 3 x S1}
andC = {a1 +v3 > 0}

Lk (fO)@(£0):7,C
wherel = {f:int " int® {p — az}}

andr = (int® {p — a2}) ® (It {p — az})
andC = {8 > 1,35 > 1}

D;{p—va} Fawritez3...: {p— azs+as+74},C
wherel’ = {z:ref (int,int, p), z:7}
andr = (int® {p— az}) @ (iNt® {p — as})
andC = {az + au +v4 > 1}
The final constraints, after some simplification, is as fefio

Mm2L12>2y+7+793 X 61+ 71,6 = B2+ B,
B2>1,83>1,v1+7v2 > a1 X B1,00+73 >0,
a1 +73 > az, 3+ +71 > 1, a0 > az,ae > oy

Note that the constraints are satisfiable, e.g., by the isutist
b1r=2 Bo=pfs=m=1

a1:a2:a3:a4:0.5
Ye=73=7v1=0
In general, a program is well-typed if and only if the con-

wherePos is defined as follows:

Pos(t & 7/") = Neg(T) U Pos(7/") U {p}
(r®71") = Pos(1) U Pos(7")
(ref (1,7, p)) = Pos(T) U Neg(1')
(1) = ran(iv)
Neg(int) = Pos(int) = Neg(reg(p)) = Pos(reg(p)) = 0
(
(
(
(

e
3

2 1"y = Pos(T) U Neg(7')
® 7') = Neg(T) U Neg(7')

Third, for any + that appears in a positive position of i.e. in
somep € Pos(7), the polynomialp does not contain ang € B.
Then the result follows from inspection of the subtypingesud

The theorem implies that we can compute all assignmentseto th
variables inB by computing the minimum satisfying assignment
forC' = {3 >p | B € B} CC.ltis easy to see that such an
assignment always exists. (Recall that the range is noativeg
This problem can be solved in quadratic time by an iteratieghod
in which all variables are initially set t0, and at each iteration the
new values for the variables are computed by taking the maxim
of the right hand polynomials evaluated at the current \alitdas
possible to show that if the minimum satisfying assignmentaf
variable 3 is someq < oo, then the iterative method findsfor
B in 2|C'| iterations. Hence any variable changing after2{ th
iteration can be safely set te. All variables are then guaranteed
to converge withir3|C’| iterations. Because each iteration examines
every constraint, the overall time is at most quadratic endize of
C'.

Substituting the computed assignments Bin C results in
linear rational constraints, which can be solved efficietty a
linear programming algorithm.

5. Related Work
Adding side-effects to a functional language is an old problvith

straintsC generated by type inference are satisfiable. So it suffices many proposed solutions. Here we compare our techniquestgai

to show that the satisfaction problem for afiygenerated by the
type inference algorithm can be solved.

To this end, we first note that because of the first phase, any

constraintr > 7’ € C can be reduced to a set of rational arithmetic
constraints of the formp > p’ wherep, p’ are rational polynomials.
The troublesome non-linearity comes frdhx 8 andW x g inthe
Az.e case. Let us focus our attention on the Betdf variables used
in such multiplications. (Note that we have uggthstead of just

for this case in the pseudo-code to make it clear that thessies
are special.) We can show that the following holds:

THEOREM7. Letp > p' € C wherep> € {>,>}. If 3 € B
occurs in the polynomiab, then it must be the case that =>,

p = 3, and that the polynomigh’ consists only of symbols in the
set{+, x,1,00} UB.

Proof (Sketch): LeT’, W +, e : 7,C. For anyr’ € T, x and+
only appear at the top-level, i.e., not within argument agtdim
types of a function type. Secondly, we can show by inductia t
within the typer, x only appears in negative positions. More
precisely, for anyp € Pos(7), the polynomialp contains nox

two of the more prominent approaches: linear types [15, @nd]
monads [10, 11, 7, 9].

In linear types, there is an explicitorld program value (or
one world per region for languages with regions) that condly
represents the current program state. By requiring eaclu\nexe
a linear type, the type system ensures that the world candisteqh
in place.

The linear type system can be expressed in our type system
by restricting every flow tal, every withess to contain only one
flow, and designating one dummy witness to serve the roleef th
“starting” witness (or for regions, one dummy witness pgjion).
Thus our approach is more expressive than such an approatd. N
that this also implies that every function type can be retstd
to have eitherl or co as the qualifier. It is easy to see that the
program is well-typed under this restriction if and onlytiid well-
typed by the linear type system. The restriction limits pamas
to manipulate witnesses only in a linear fashion. In practtbis
implies that there can be no parallel reads, no dead witegsse
no redundant witnesses, and no duplication of values auntpi
witnesses.



Our approach can implement monadic primitives as follows (f
concrete comparison, we ustate monadf9]):

newVar = Az.\y.let z = (ref z m2(y)) iny ® 2
readVar = A\z.\y.let z = (read x w1 (y)) in

(m2(2) ® ma(y)) © 1 (2)
writeVar = Az.\w.\y.let z = (write z w1 (y)) in

(z®@m2(y) @w

>>== Af.Ag. \z.let y = (f z) in g m2(y) m1(y)
returnST = Az \y.y ® ©
runST e = letreg z m2(e (e ® x))

The idea behind these definitions is to implement each statech

of the type ST (a, ) as a function that takes a witness and the
regiona as arguments and returns a witness, the regipand a
value of the typer. It is easy to see that if a state monad program
is well-typed by the monadic type system, then itis alsowgied
with our type system using the above definitions for the manad
primitives. Thus, our approach is more expressive than agna

In practice, a monadic approach shares essentially the same

limitations as linear types; for example, side-effects rasricted
to a linear, sequential order. (In fact, it is not too hard é® s
that we can actually implement monadic primitives with timear
types restriction with only slightly longer code.) On théet hand,

[2] J. Boyland. Checking interference with fractional p&sions. In
R. Cousot, editorStatic Analysis, Tenth International Symposium
volume 2694 ofLecture Notes in Computer Sciengages 55-72,
San Diego, CA, June 2003. Springer-Verlag.

K. Crary, D. Walker, and G. Morrisett. Typed memory maeagnt

in a calculus of capabilities. IRroceedings of the 26th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languagespages 262—-275, San Antonio, Texas, Jan. 1999.

M. Fahndrich, J. S. Foster, Z. Su, and A. Aiken. Partialiree cycle

elimination in inclusion constraint graphs. Proceedings of the 1998

ACM SIGPLAN Conference on Programming Language Design and

Implementationpages 85-96, Montreal, Canada, June 1998.

[5] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, an€heney.
Region-based memory management in CyclonePrsceedings of
the 2002 ACM SIGPLAN Conference on Programming Language
Design and ImplementatipBerlin, Germany, June 2002.

[6] J. C. Guzman and P. Hudak. Single-threaded polymorgritbba
calculus. InProceedings, Fifth Annual IEEE Symposium on Logic
in Computer Sciencgages 42-51, Philadelphia, Pennsylvania, June
1990.

[7] S. L. P. Jones and P. Wadler. Imperative functional pxogning. In

Proceedings of the 20th Annual ACM SIGPLAN-SIGACT Symiposiu

on Principles of Programming Languaggsages 71-84, Charleston,

South Carolina, Jan. 1993.
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[4

[l

a monadic type system has an engineering advantage as it only [8] J. Launchbury. A natural semantics for lazy evaluatidn. Pro-

requires Hindley-Milner type inference.

In addition to the above technical differences, our apgroac
differs from previous approaches in its design motivatibimat is,
while our language feature, witnesses, is motivated by grpatic
observation, understanding the motivation behind lingpes$ and
monads (i.e., not just knowing how to use them) arguablyiregu
an appreciation of their underlying theory.

The technique used in our type system has some resemblance

to fractional permission§2] which can guarantee non-interference

in imperative programs. Indeed, it may be possible to give an

“interpretation” of withesses as some relaxation of pesiniss or
capabilities[3] (after promoting permissions or capabilities to first
class values) in situations where the program is witnessfrae.

6. Conclusions

We have presented a new approach to adding side-effectsetypu
functional languages based on witnesses. We have statedralna
semantic correctness condition called witness race fraedod
proposed a type-based approach for statically checkingesst
race freedom.
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