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Abstract
We present a new approach to the old problem of adding side effects
to purely functional languages. Our idea is to extend the language
with “witnesses,” which is based on an arguably more pragmatic
motivation than past approaches. We give a semantic condition for
correctness and prove it is sufficient. We also give a static checking
algorithm that makes use of a network flow property equivalent to
the semantic condition.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features

General Terms Design, Languages, Theory

Keywords Functional languages, side-effects

1. Introduction
Adding side-effects to a purely functional language is a well-known
problem with a number of solutions [7, 9, 11, 15, 6, 1] with mon-
ads [10, 11, 7, 9] being arguably the most popular. In this paper,
we propose a new approach to this old problem by attacking it
from a different angle. Instead of starting from a language theo-
retic point of view, we start by introducing a simple programming
feature calledwitnessesso that programs can explicitly order side-
effects. This feature is motivated by a pragmatic observation and is
straightforward. The catch is that, because it is so simple,it actu-
ally does not guarantee that a program iscorrect(i.e., that it can be
viewed as a purely functional program). Instead, we argue that the
feature makes it easy for programmers to write correct programs.
We then formally state a natural semantic condition that is suffi-
cient to guarantee correctness and give a static checking algorithm.
The result is a new framework for guaranteeing correctness of side-
effects in purely functional programs.

Besides arguably being more intuitive to programmers, our ap-
proach is more expressive than previous approaches. In particular,
our approach does not force side-effects to occur in a sequential
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order. For example, a program is allowed to read from a reference
cell in two unordered contexts as well as write to two different cells
in two unordered contexts.

Besides providing new insights into the old problem of fitting
side effects into functional languages for conventional von Neu-
mann architectures, our work is motivated by the emergence of
commercial parallel computer architectures (e.g., chip-multiprocessors
or “multi-core” chips) that encourage parallel programming. It is
well-known that the “explicit dependence” property of functional
languages makes parallelization easier for both programmers and
compilers.1 However, frequent use of side-effects, namely manual
destructive memory/resource updates, are believed to be important
for programming high-performance parallel applications in prac-
tice. Hence a functional way to add side-effects without imposing
parallelism-destroying sequentiality may be of practicalinterest for
exploiting parallelism within these new architectures.

1.1 Contributions and Overview

This paper makes the following contributions:

• A simple language feature calledwitnessesthat can be used to
order side-effects. (Section 2)

• A semantic condition calledwitness race freedomfor correct
usage of witnesses and a proof of its sufficiency. (Section 3)

• An automatic algorithm for checking the afore-mentioned se-
mantic condition that makes use of a network flow property.
(Section 4)

The semantic condition is intuitive in the sense that it is directly
motivated by the implications of writing race-free programs. The
automatic algorithm is derived as a type inference algorithm for
a substructural type system. The type system and its inference
problem are somewhat subtle and interesting in their own right.
Section 5 discusses related work. Section 6 concludes.

2. Preliminaries
We need a precise definition of what it means for side-effectsto be
“correct” within a functional language. A helpful idea is toshow
that a program’s semantics is independent of a class of “functional”
program transformation rules. However, there is no consensus on
the right set of transformations. For example, the transformation
(let x = e in e′) ≡ (e′[x/e]) for x /∈ free(e) is not always true
in systems based on linear-types. (Herefree(e) is the set of free
variables ofe.)

To define correctness, we fix a set of program transformations
expressive enough to model different functional reductionstrate-

1 But not easy, since there are other challenging issues such as selecting
the right granularity of parallelism, but these issues apply equally to other
languages and many solutions such as data-parallel operators and thread
annotations already exist.



e := x | i | λx.e | e e′ | let x = e in e′ | e⊗ e′ | πi(e)
| write e1 e2 e3 | read e e′ | ref e | join e e′ | •

Figure 1: The syntax of the languageλwit .

gies, including call-by-value, call-by-need (i.e., lazy-evaluation),
and parallel evaluation.2 So, for example, a program that is invari-
ant under this set of transformations evaluates to the same result
regardless of whether the evaluation order is call-by-value or call-
by-need. In parallel evaluation, invariance implies that aprogram
is deterministic under any evaluation schedule.

For ease of exposition, we include the afore-mentioned program
transformations directly in the semantics as non-deterministic re-
duction rules. The correctness criteria then reduces to showing that
a program is confluent with respect to this semantics. Also, for the
purpose of exposition, we restrict side-effects to imperative opera-
tions on first class references.

Figure 1 gives the syntax ofλwit , a simple functional language
with side-effects and witnesses. Noteλwit has the usual features of
a functional language: variablesx, integersi, function abstractions
λx.e, function applicationse e′, variable bindingslet x = e in e′,
pairse⊗ e′, and projectionsπi(e) wherei = 1 or i = 2. Bindings
let x = e in e′ can be recursive, i.e.,x ∈ free(e). Three expres-
sion kinds work with references: reference writeswrite e1 e2 e3,
reference readsread e e′, and reference creationsref e. A read
read e e′ has awitnessparametere′ along with a reference pa-
rametere such that it does not read the referencee until it sees the
witnesse′. (Section 3 defines the formal meaning of “seeing the
witness.”) Similarly, a writewrite e1 e2 e3 writes the expression
e2 to the referencee1 after it sees the witnesse3. After completion
of the read,read e e′ returns a pair of the read value and a wit-
ness. Similarly,write e1 e2 e3 returns a witness after the write. In
general, any side-effect primitive returns a witness of performing
the corresponding side-effect; in the case ofλwit , the side-effect
primitives are justwrite e1 e2 e3 andread e e′.

Before describing the formal semantics ofλwit , we describe
novel properties ofλwit informally by examples.

Programs inλwit can use witnesses to order side-effects. For ex-
ample, the following program returns2 regardless of the evaluation
order because the read requires a witness of the write:

let x = (ref 1) in let w = (write x 2 •) in read x w

(The symbol• is used for dummy witnesses.) On the other hand,
λwit does not guarantee correctness. For example, the following
λwit program has no ordering between the read and the write and
hence may return1 or 2 depending on the evaluation order:

let x = (ref 1) in let w = (write x 2 •) in read x •

The expression kindjoin e e′ joins two witnesses by waiting
until it sees the witnesse and the witnesse′ and returning a wit-
ness. For example, the following program returns the pair1 ⊗ 1
regardless of the evaluation order because the write waits until it
sees witnesses of both reads:

let x = (ref 1) in
let y = (read x •) in let z = (read x •) in
let w = (write x 2 (join π2(y) π2(z))) in

π1(y)⊗ π1(z)

Note that the two reads may be evaluated in any order. In general,
witnesses are first class values and hence they can be passed to and

2 The results in Section 3 are general enough for most other functional
transformations too, but the static checking algorithm requires a more
stringent definition.

E := D ∪ {a 7→ E} | [ ] | E e | e E | E ⊗ e | e⊗ E
| πi(E) | write E e e′ | write e E e′ | write e e′ E
| read e E | read E e | ref E | join E e | join e E

App (S,E[(λx.e) e′])⇒ (S, E[e[a/x]] ⊎ {a 7→ e′})
Let (S,E[let x = e in e′])

⇒ (S, E[e′[a/x]] ⊎ {a 7→ e[a/x]})
Pair (S,E[πi(e1 ⊗ e2)])⇒ (S, E[ei])
Write (S,E[write ℓ e •])⇒ (S[ℓ← a], E[•] ⊎ {a 7→ e})
Read (S,E[read ℓ •])⇒ (S, E[S(ℓ)⊗ •])
Ref (S,E[ref e])⇒ (S ⊎ {ℓ 7→ a}, E[ℓ] ⊎ {a 7→ e})
Join (S,E[join • •])⇒ (S, E[•])
Arrive (S,E[a] ⊎ {a 7→ e})⇒ (S, E[e] ⊎ {a 7→ e})

wheree ∈ V
GC (S,D ⊎D′)⇒ (S, D)

where⋄ /∈ dom(D′) ∧ dom(D′) ∩ free(D) = ∅

Figure 2: The semantics ofλwit .

returned from a function, captured in function closures, and even
written to and read from a reference. Witnesses are a simple feature
that can be used to order side-effects in a straightforward manner.

In the rest of this section, we describe the semantics ofλwit

so that we can formally define when aλwit program is correct,
i.e., when it is confluent. Figure 2 shows the semantics ofλwit ,
which is defined via reduction rules of the form(S, D)⇒ (S′, D′)
whereS, S′ arereference storesandD, D′ areexpression stores.
A reference store is a function from a set ofreference locationsℓ
to portsa, and an expression store is a function from a set of ports
to expressions. Here, expressions include any expression from the
source syntax extended with reference locations and ports.Given a
programe, evaluation ofe starts from the initial state(∅, {⋄ 7→ e})
where the symbol⋄ denotes the specialroot port. Ports are used
for evaluation sharing.3 The reduction rules are parametrized by
the evaluation contextsE. For an expressione, free(e) is the set of
free variables, ports, and reference locations ofe. For an expression
storeD, free(D) = dom(D) ∪

S

e∈ran(D) free(e).
We briefly describe the reduction rules from top-to-bottom.The

rule App corresponds to a function application. For functionsF
and F ′, F ⊎ F ′ denotesF ∪ F ′ if dom(F ) ∩ dom(F ′) = ∅
and is undefined otherwise. ThusApp creates a fresh porta and
storese′ at a. The ruleLet is similar. The rulePair projects the
ith element of the pair. The ruleWrite creates a fresh porta,
stores the expressione′ at the porta, and stores the porta at
the reference locationℓ. We useS[ℓ ← a] as a shorthand for
{ℓ′ 7→ S(ℓ′) | ℓ′ ∈ dom(S)∧ℓ′ 6= ℓ}∪{ℓ 7→ a}. Note that we use
the dummy witness symbol• as the run-time representation of any
witness because only its presence is important to the semantics,
i.e., operationally, a witness is like a dataflow token in dataflow
machines. The ruleRead reads from the reference locationℓ and,
as noted above, returns the value paired with a witness. The rule
Ref creates a fresh locationℓ and a fresh porta, initializesa to the
expressione andℓ to the porta. The ruleJoin takes two witnesses
and returns one witness.

The ruleArrive might look somewhat unfamiliar. HereV is
the set of “safe to duplicate” expressions. Partly for the sake of the
static-checking algorithm to be presented later, we fixV to values
generated by the following grammar:

v := x | i | a | • | ℓ | v ⊗ v′ | λx.e

3 In the literature, top-levellet-bound variables often double as variables
and ports.



Arrive says that ife is safe to duplicate, then we can replacea
by e; we say a safe to duplicate expression hasarrived at port
a. In essence, while standard operational semantics for functional
languages [12, 8] implicitly combineArrive with other rules, we
separateArrive for increased freedom in the evaluation order.
Lastly, the ruleGC garbage-collects unreachable (from the root
port⋄) portions of the expression store.

Here is an example of aλwit evaluation:

(∅, {⋄ 7→ (λx.read x •) ref 1})
⇒ ({ℓ 7→ a}, {⋄ 7→ (λx.read x •) ℓ, a 7→ 1}) Ref
⇒ ({ℓ 7→ a}, {⋄ 7→ read a′ •, a 7→ 1, a′ 7→ ℓ}) App
⇒ ({ℓ 7→ a}, {⋄ 7→ read ℓ •, a 7→ 1, a′ 7→ ℓ}) Arrive
⇒ ({ℓ 7→ a}, {⋄ 7→ a⊗ •, a 7→ 1, a′ 7→ ℓ}) Read
⇒ ({ℓ 7→ a}, {⋄ 7→ 1⊗ •, a 7→ 1, a′ 7→ ℓ}) Arrive
⇒ ({ℓ 7→ a}, {⋄ 7→ 1⊗ •}) GC

The semantics is non-deterministic and therefore also allows other
reduction sequences for the same program. For example, we may
take anApp step immediately instead of first creating a new refer-
ence by aRef step:

(∅, {⋄ 7→ (λx.read x •) ref 1})
⇒ (∅, {⋄ 7→ read a •, a 7→ ref 1}) App

Before defining confluence, we point out several important
properties of this semantics. Firstly, note that the evaluation con-
textsE do not extend to subexpressions of aλ abstractionλx.e,
i.e., we do not reduce underλ. The evaluation contexts also do not
extend to subexpressions of an expressionlet x = e in e′, but
e ande′ may become available for evaluation via applications of
theLet rule. As with call-by-value evaluation or call-by-need eval-
uation, evaluation of an expression is shared. For example,in the
program(λx.x⊗ x) e, the expressione is evaluated at most once.

The semantics ofλwit has strictly more freedom in evaluation
order than both call-by-value and call-by-need. In particular, call-
by-need evaluation can be obtained by using the same reduction
rules but restricting the evaluation contexts to the following

E := D ∪ {⋄ 7→ E} | [ ] | E e | πi(E) | write E e e′

| write ℓ e E | read E e | read ℓ E
| join E e | join • E

Call-by-value evaluation can be obtained by adding the following
contexts to the evaluation contexts of the call-by-need evaluation

E := . . . | (λx.e) E | E ⊗ e | v ⊗ E | write ℓ E •
| ref E |let x = E in e

in addition to restricting the ruleApp to the casee′ ∈ V , the rule
Let to the casee ∈ V , the rulePair to the casee1, e2 ∈ V , the
ruleWrite to the casee′ ∈ V , and the ruleRef to the casee ∈ V .4

Note that both lazy writes and strict writes are possible inλwit .
It is important to understand that we are only concerned with

side-effects via references, and hence we are not concernedabout
issues like the number of ports that are created during an evaluation.

Having defined the semantics, we can formally define when a
λwit program is confluent. To this end, we defineobservational
equivalenceas the smallest reflexive and transitive relationD ≈
D′ on expression stores satisfying:

• D ≈ D[a/a′] wherea /∈ free(D)
• D ≈ D[ℓ/ℓ′] whereℓ /∈ free(D)

That is, expression stores are observationally equivalentif they are
equivalent up to consistent renaming of free ports and reference
locations. Let⇒∗ be a sequence of zero or more⇒.

4 Strictly speaking, the contextlet x = E in e is not in the semantics of
λwit . But λwit can simulate the behavior via aLet step and then reducing
e[a/x] which is now in an evaluation context.

DEFINITION 1 (Confluence).A program state(S,D) is confluent
if for any two states(S1, D1) and (S2, D2) such that(S, D) ⇒∗

(S1, D1) and(S, D)⇒∗ (S2, D2), there exist two states(S′
1, D

′
1)

and (S′
2, D

′
2) such that(S1, D1) ⇒

∗ (S′
1, D

′
1), (S2, D2) ⇒

∗

(S′
2, D

′
2), and D′

1 ≈ D′
2. A programe is confluent if its initial

state(∅, {⋄ 7→ e}) is confluent.

Note that the definition does not require any relation between ref-
erence location storesS′

1 andS′
2. So, for example, a program that

writes but never reads would be confluent. As shown before,λwit

contains programs that are not confluent. Indeed, the difference
between call-by-need and call-by-value is enough to demonstrate
non-confluence:

(λx.read x •) (let x = (ref 1) in let y = (write x 2 •) in x)

The above program evaluates to the pair1 ⊗ • under call-by-need
and to the pair2⊗• under call-by-value. No further reductions can
make the two states observationally equivalent. (Here we implicitly
read back the top-level expression from the root port instead of
showing the actual expression stores for brevity.)

We have shown earlier that witnesses can aid in writing correct
programs by directly ordering side-effects. Witnesses arefirst class
values and hence can be treated like other expressions. For exam-
ple, the program below captures a witness in a function whichitself
returns a witness to ensure that reads and writes happen in a correct
order:

let x = ref 1 in

let w = write x 2 • in
let f = λy.read x w in

let z = (f 0)⊗ (f 0) in
let w = write x 3 join π2(π1(z)) π2(π2(z)) in z

Note that a witness of the first write is captured in the function f .
Hence both reads from the two calls tof see a witness of the write.
A witness of each read is returned byf , and the last write waits
until it sees witnesses from both reads. Therefore, the result of the
program is(2⊗•)⊗(2⊗•) regardless of the evaluation order. Note
that the two calls tof , and thus the reads in the calls, can occur in
either order.

3. Witness Race Freedom
As discussed in Section 2, witnesses aid in writing correct programs
in the presence of side-effects but do not enforce correctness. In this
section, we give a sufficient condition for guaranteeing confluence.

The guideline for writing a correct program should be intuitively
clear at this point: we ensure that reads and writes happen insome
race-free order by partially ordering them via witnesses. We now
make this intuition more precise. First, we formally define what we
mean by the phrase “ side-effectA sees a witness of side effectB”
that we have used informally up to this point.

Intuitively, a trace graphis a program trace with all information
other than reads, writes, and witnesses elided. There are three kinds
of nodes: read nodesread(ℓ), write nodeswrite(ℓ), and the join
node join. Read and write nodes are parametrized by a reference
locationℓ. There is a directed edge(A,B) from nodeA to node
B if B directly sees a witness ofA. A trace graph(V, E) is



constructed as the program evaluates a modified semantics:

Write (S, E[write ℓ e A])⇒ (S[ℓ← a], E[B] ⊎ {a 7→ e})
V:=V ∪ {B} whereB is a newwrite(ℓ) node
E:=E ∪ {(A, B)}

Read (S, E[read ℓ A])⇒ (S, E[S(ℓ)⊗B])
V:=V ∪ {B} whereB is a newread(ℓ) node
E:=E ∪ {(A, B)}

Join (S, E[join A B])⇒ (S, E[C])
V:=V ∪ {C} whereC is a newjoin node
E:=E ∪ {(A, C), (B, C)}

Note that we now use nodes as witnesses instead of•. The line be-
low each reduction rule shows the graph update action correspond-
ing to that rule. The other rules remain unmodified and hence have
no graph update actions. An evaluation starts withV = E = ∅
and performs the corresponding graph update when taking aWrite
step, aRead step, or aJoin step. Notice that a trace graph and the
annotated semantics are only needed to state the semantic condition
for correctness and are not needed in the actual execution ofaλwit

program.
We can now define what it means for a nodeA to see a witness

of a nodeB, a notion we have used informally until now.

DEFINITION 2. Given a trace graph, we say that a nodeA sees
a witness of a nodeB if there is a path fromB to A in the trace
graph. We writeB ; A.

The following is a trivial observation:

THEOREM 1. If B ; A in a trace graph, then the side effect
corresponding toB must have happened before the side effect
corresponding toA in the evaluation that generated the trace
graph.

Clearly, any trace graph is acyclic.
Having defined trace graphs and the; relation, we are now

ready to state the semantic condition for correctness. Before show-
ing the condition formally, we informally motivate it by making
analogies to the conventional programming guideline for writing
correct concurrent programs: prevent race conditions.

We first note that a program could produce different trace graphs
depending on the choice of reductions, even when those trace
graphs are from terminating evaluations. Furthermore, it is not nec-
essarily the case that such a program is non-confluent. Therefore,
instead of trying to argue about confluence by comparing different
trace graphs, we shall define a condition that can be checked by
observing each individual trace graph in isolation.

Let us writeA : nodetype as a shorthand for a nodeA of type
nodetype. If we haveA : read(ℓ) andB : write(ℓ), then we want
eitherA ; B or B ; A to ensure thatA always happens before
B or B always happens beforeA because otherwise we may get
a read-write race condition due to non-determinism. Also, for any
A : read(ℓ), if there are two nodesB1, B2 : write(ℓ) such that
neitherB1 ; B2 nor B2 ; B1 (so we do not know which write
occurs first) andA could happen after bothB1 andB2, then we
want C : write(ℓ) such thatC ; A, B1 ; C andB2 ; C,
because otherwise the read atA might depend on whether the
evaluation chose to doB1 first or B2 first, i.e., we have another
kind of race-condition. Perhaps somewhat surprisingly, satisfying
these two conditions turns out to be sufficient to ensure confluence.

We now formalizes this discussion. ForB : write(ℓ), we use the

shorthandB
!

; A if for any C : write(ℓ) such thatC ; A and
C 6= B, we haveC ; B. Now, for anyA : read(ℓ), there exists

at most oneB : write(ℓ) such thatB
!

; A. Note that the second
condition above is equivalent to requiring that for anyA : read(ℓ),
either there is noB : write(ℓ) such thatB ; A or there is a

B : write(ℓ) such thatB
!

; A
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!
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Figure 3: Possible orderings between pairs of reads and writes in a
witness race free trace graph.

DEFINITION 3 (Witness Race Freedom).We say that a trace graph
(V, E) is witness race free if for every locationℓ,

• for everyA : read(ℓ) ∈ V and B : write(ℓ) ∈ V, either
A ; B or B ; A, and

• for everyA : read(ℓ) ∈ V, either there is noB : write(ℓ) ∈ V

such thatB ; A or there is aB : write(ℓ) ∈ V such that

B
!

; A.

We say that a programe is witness race free if every trace graph of
e is witness race free.

THEOREM2. If e is witness race free thene is confluent.

The proof appears in our companion technical report [13].
While witness race freedom is a sufficient condition, it is not

necessary. For example, if for each reference location writes happen
to never change the location’s value, then the program is trivially
confluent regardless of the order of reads and writes. Another
example is a program using implicit order of evaluation: e.g., in
λwit , expressions are not reduced underλ so a function body is
evaluated only after a call. Hence a program that stores a function
in a reference location, reads the reference location to call the
function, and then writes in the same reference location from the
body of the called function is confluent because the write always
happens after the read despite the write not seeing the witness of
the read.

Nevertheless, witness race freedom is “almost complete” ina
sense that if the only way to order two side-effects is to makeone
see a witness of the other, and if we cannot assume anything about
what expressions are written and how the contents are used, then it
is the weakest condition guaranteeing correctness. In particular, if
the trace graphs are the only information available about a program,
then witness race freedom becomes a necessary condition.

The result in this section can be extended to most other func-
tional program transformations, because witness race freedom is
an entirely semantic condition. However, the static checking algo-
rithm described in Section 4 is not as forgiving, which is whywe
have restricted the set of program transformations to that of the se-
mantics ofλwit . For example, the algorithm is unsound for general
call-by-name reduction.

4. Types for Statically Checking Witness Race
Freedom

While the concept of witnesses is straightforward, it may neverthe-
less be desirable to have an automated way of checking whether an
arbitraryλwit program is witness race free. Witness race freedom
may be checked directly by checking every program trace, which
is computationally infeasible. Instead, we exploit a special prop-
erty of witness-race-free trace graphs to design a sound algorithm
that can efficiently verify a large subset of witness-race-freeλwit

programs.
The key observation is that any witness-race-free trace graph

contains for each reference locationℓ a subgraph that we shall call



R1 W1 R2A1 W2 R3A2

Figure 4: A read-write pipeline with bottlenecks for a reference
locationℓ.

aread-write pipeline with bottlenecks. We shall design an algorithm
that detects these subgraphs instead of directly checking the witness
race freedom condition. Consider a witness-race-free trace graph.
Suppose there areA1, A2 : write(ℓ) andB1, B2 : read(ℓ) such

that A1 6= A2, A1
!

; B1 andA2
!

; B2. Due to witness race
freedom, it must be the case thatB2 ; A1 or A1 ; B2. If the
former is the case, we have the relation as depicted in Figure3 (a).

Suppose that the latter is the case. Then, sinceA2
!

; B2, it must
be the case thatA1 ; A2. ConsiderA2 andB1. Due to witness
race freedom again, it must be the case that eitherA2 ; B1 or

B1 ; A2. But if A2 ; B1, then sinceA1
!

; B1, it must be the
case thatA2 ; A1. But this is impossible sinceA2 ; A1 ; A2

forms a cycle. So it must be the case thatB1 ; A2, and we have
the relation as depicted in Figure 3 (b).

Further reasoning along this line of thought reveals that for
a witness-race-free trace graph, for any reference location ℓ, the

nodes in the setX = {A : write(ℓ) | ∃B : read(ℓ).A
!

; B}
are totally ordered (with; as the ordering relation), and that
these nodes partition allread(ℓ) nodes andwrite(ℓ) nodes in a way
depicted in Figure 4 whereX = {A1, . . . , An}. In the figure, each
Ri andWi is a collection of nodes. NoRi contains awrite(ℓ) node
and noWi contains aread(ℓ) nodes. EachAi is onewrite(ℓ) node.
An arrow fromX toY means that there is a path from eachwrite(ℓ)
node orread(ℓ) node inX to eachwrite(ℓ) node orread(ℓ) node
in Y , except if aWi contains no such node, then there is a path
from eachread(ℓ) ∈ Ri to Ai. EachRi for i 6= 1 must contain
at least oneread(ℓ). Arrows just imply the presence of paths, and
hence there can be more paths than the ones implied by the arrows,
e.g., paths to/from nodes that are not in the diagram, paths to and
from nodes in the same collection, and even paths relating the
collections in the diagram such as one that goes directly from Ri to
Ai, bypassingWi.

The graph in Figure 4 can be described formally as a subgraph
of the trace graph satisfying certain properties.

DEFINITION 4. Given a trace graph(V, E) and a reference loca-
tion ℓ, we call its subgraphGℓ a read-write pipeline with bottle-
necks ifGℓ consists of collections of nodesR1, R2, . . . , Rn and
W1, W2, . . . , Wn with the following properties:

• {A | A : read(ℓ) ∈ V} ⊆
Sn

i=1 Ri,
• {A | A : write(ℓ) ∈ V} ⊆

Sn

i=1 Wi,
• R1, . . . , Rn, W1, . . . , Wn, restricted to write(ℓ) nodes and

read(ℓ) nodes are pairwise disjoint,
• for eachA : read(ℓ) ∈ Ri andB : write(ℓ) ∈Wi, A ; B,
• for each Ri such thati 6= 1, there exists at least oneA :

read(ℓ) ∈ Ri, and
• there existsA : write(ℓ) ∈ Wi for all i 6= n such that for all

B : read(ℓ) ∈ Ri+1 and all C : write(ℓ) ∈ Wi, A
!

; B and
C ; A.

Note that each collectionRi andWi corresponds to the collection
of nodes marked by the same name in Figure 4 but with each

e := x | i | λx.e | e e′ | let x = e in e′ | e⊗ e′ | πi(e)
| write e1 e2 e3 | read e e′ | ref e e′ | join e e′ | •
| letreg x e

Figure 5: The syntax ofλreg

wit .

E := D ∪ {a 7→ E} | [ ] | E e | e E | E ⊗ e | e⊗E
| πi(E) | write E e e′ | write e E e′ | write e e′ E
| read e E | read E e | ref E e | ref e E
| join E e | join e E

App (R, S, E[(λx.e) e′])
⇒ (R,S, E[e[a/x]] ⊎ {a 7→ e′})

Let (R, S, E[let x = e in e′])
⇒ (R,S, E[e′[a/x]] ⊎ {a 7→ e[a/x]})

Pair (R, S, E[πi(e1 ⊗ e2)])⇒ (R,S, E[ei])
Write (R, S, E[write ℓ e •]

⇒ (R,S[ℓ← a], E[•] ⊎ {a 7→ e})
Read (R, S, E[read ℓ •])⇒ (R, S, E[S(ℓ)⊗ •])
Ref (R, S, E[ref e r])

⇒ (R,S ⊎ {ℓ 7→ a}, E[ℓ] ⊎ {a 7→ e})
Join (R, S, E[join • •])⇒ (R, S, E[•])
LetReg (R, S, E[letreg x e])

⇒ (R ⊎ {r}, S, E[e[a/x]] ⊎ {a 7→ r})
Arrive (R, S, E[a] ⊎ {a 7→ e})⇒ (R, S, E[e] ⊎ {a 7→ e})

wheree ∈ V
GC (R, S, D ⊎D′)⇒ (R, S, D)

where⋄ /∈ dom(D′) ∧ dom(D′) ∩ free(D) = ∅

Figure 6: The semantics ofλreg

wit .

node Ai included in the collectionWi. The “bottlenecks” are
the Ai’s. Note that a trace graph(V, E) actually contains a read-
write pipeline with bottlenecks per each reference location ℓ as a
subgraphGℓ (but the subgraphs may not be disjoint because the
paths may involve other locations and share join nodes).

The following theorem formalizes our earlier informal discus-
sion.

THEOREM3. A trace graph(V,E) is witness race free if and only
if it has a read-write pipeline with bottlenecks for everyℓ.

The proof appears in our companion technical report [13]. The
following is an immediate consequence:

COROLLARY 1. A λwit programe is witness race free if and only
if every trace graph ofe has a read-write pipeline with bottlenecks
for every reference locationℓ.

4.1 Regions

Corollary 1 reduces the problem of deciding whether a program e
is witness race free to the problem of deciding if every tracegraph
of e has a read-write pipeline with bottlenecks for every reference
locationℓ. Therefore it suffices to design an algorithm for solving
the latter problem. But before we do so, we make a slight change
to λwit to make the problem more tractable. Inλwit , there is a read-
write pipeline with bottlenecks for each reference location ℓ, but
distinguishing dynamically allocated reference locations individu-
ally is difficult for a compile-time algorithm. Therefore, we add
regionsto the language so that programs can explicitly group refer-
ence locations that are to be tracked together.

Figure 5 showsλreg

wit , λwit extended with regions. The syntax
contains two new expression kinds:letreg x e which creates a



new region andref e e′ which places the newly created reference
in regione′; refee′ replacesrefe. Figure 6 gives the semantics of
λreg

wit which differs fromλwit in two small ways. First, a state now
contains a set of regionsR. We use symbolsr, r′, ri, etc. to denote
regions. Regions are safe to duplicated, i.e.,r ∈ V . TheR’s are
used only for ensuring that the newly created regionr at aLetReg
step is fresh. (We overload the symbol⊎ such thatR⊎R′ = R∪R′

if R ∩ R′ = ∅ and, is undefined otherwise.) Note that evaluation
contextsE do not extend to the subexpressions ofletreg x e. The
second difference is that aRef step now takes a regionr along with
the initializere to indicate that the newly created reference location
ℓ belongs to the regionr. Note that the semantics does not actually
associate the reference locationℓ and the regionr, and therefore
grouping of reference locations via regions is entirely conceptual.5

Regions force programs to abide by witness race freedom at
the granularity of regions instead of at the granularity of individual
reference locations. That is, instead ofread(ℓ) nodes andwrite(ℓ)
nodes, we useread(r) nodes andwrite(r) nodes. Formally, a trace
graph forλreg

wit is constructed by the following graph construction
semantics:

Write (R, K, S, E[write ℓ e A])
⇒ (R, K, S[ℓ← a], E[B] ⊎ {a 7→ e})
V:=V ∪ {B} whereB is a newwrite(K(ℓ)) node
E:=E ∪ {(A, B)}

Read (R, K, S, E[read ℓ A])⇒ (R, K, S, E[S(ℓ)⊗B])
V:=V ∪ {B} whereB is a newread(K(ℓ)) node
E:=E ∪ {(A, B)}

Join (R, K, S, E[join A B])⇒ (R, K, S, E[C])
V:=V ∪ {C} whereC is a newjoin node
E:=E ∪ {(A, C), (B, C)}

Ref (R, K, S, E[ref e r])
⇒ (R, K ⊎ {ℓ 7→ r}, S ⊎ {ℓ 7→ a}, E[ℓ] ⊎ {a 7→ e})

Note that these reduction rules use an additional functionK which
is a mapping from reference locations to regions. The mapping K
starts empty at the beginning of evaluation. Other reductions rules
are unmodified except that the functionK is passed from left to
right in the obvious way.

Since there is less information available in aλreg

wit trace graph
than in aλwit trace graph, the witness race freedom condition is
more conservative forλreg

wit . That is, we still need the condition
that for anyA : write(r) and B : read(r), eitherA ; B or
B ; A. But we need to tighten the second condition so that for
anyA : read(r) if there areB1, B2 : write(r) such thatB1 ; A
andB2 ; A, then eitherB1 ; B2 or B2 ; B1. This condition is
strictly more conservative than forλwit , which only requires some

C : write(r) such thatC
!

; A in such a situation. The reason for
this conservativeness is that we do not know from a trace graph of
λreg

wit whetherB1 andB2 both write to the same reference location.
Formally, witness race freedom forλreg

wit can be defined as fol-
lows.

DEFINITION 5 (Witness Race Freedom forλreg

wit ). We say that a
λreg

wit trace graph(V, E) is witness race free if for every regionr,

• for everyA : read(r) ∈ V andB : read(r) ∈ V, eitherA ; B
or B ; A, and

• for everyA : read(r) ∈ V and B1, B2 : write(r) ∈ V such
thatB1 ; A andB2 ; A, we haveB1 ; B2 or B2 ; B1.

THEOREM 4. If a λreg

wit program e is witness race free, thene is
confluent.

5 Regions are traditionally coupled with some semantic meaning such as
memory management [14, 5]. It is possible to extendλreg

wit
to do similar

things with its regions.

Proof (Sketch): For any evaluation ofe, carry out the same reduc-
tion sequence with the trace graph building action ofλwit , i.e., the
trace graphG generated is at the granularity of reference locations.
Then it is easy to see that ifG satisfies the above two conditions,G
also satisfies the two conditions of Theorem 2.2

It is easy to see that Definition 5 is the weakest possible re-
striction to the original witness race freedom under the region ab-
straction because for anyλreg

wit trace graph that is not witness race
free, one can easily find a non-confluent program that produces the
graph.

In a witness-race-free trace graph forλreg

wit , the read-write
pipeline with bottlenecks for a regionr consisting of the collec-
tions(R1, . . . , Rn, W1, . . . , Wn) has the following property: each
set{A | A : write(r) ∈Wi} for i 6= n can be totally ordered (with
; as the ordering relation). The theorem below is immediate from
Corollary 1 under this additional property.

THEOREM5. A λreg

wit programe is witness race free if and only if
every trace graph ofe has a read-write pipeline with bottlenecks
for every regionr.

This additional property helps in designing a static checking algo-
rithm.

4.2 From Network Flow to Types

Now our goal is to design an algorithm for statically checking if
every trace graph of aλreg

wit programe has a read-write pipeline with
bottlenecks for every regionr. Our approach exploits anetwork
flow property of read-write pipelines with bottlenecks. Consider
a trace graph as a network of nodes with each edge(A, B) able
to carry any non-negative flow fromA to B. (Recall edges are
directed.) As usual with network flow, we require that the total
incoming flow equal the total outgoing flow for every node in the
graph. Now, let us add avirtual sourcenodeAS and connect it
to every nodeB by adding an edge(AS, B). We assign incoming
flow 1 to AS . Then it is not hard to see that if there exists a read-
write pipeline with bottlenecks for the regionr then there exists
flow assignments such that everyread(r) node andwrite(r) node
gets a positive flow and everyA : write(r) ∈ Wi for i 6= n gets a
flow equal to1.

It turns out that the converse also holds. That is, given a trace
graph, if there is a flow assignment such that eachread(r) node and
write(r) node gets a positive flow and eachA : write(r) such that
there existsB : read(r) with A ; B gets a flow equal to1, then
there is a read-write pipeline with bottlenecks for the region r. By
Theorem 5, this implies that there exists such a flow assignment for
every regionr if and only if the trace graph is witness race free.
Because edges in a trace graph are traces of witnesses, our idea
is to assign a type to a witness such that the type contains flow
assignments for each (static) region. We use this idea to design a
type system such that a well-typed program is guaranteed to be
witness race free.

Formally, a witness typeW is a function from the set ofstatic
region identifiersRegIDs to rational numbers in the range[0, 1],
i.e., W : RegIDs → [0, 1]. The rational numberW (ρ) indicates
the flow amount for the static region identifierρ in the witness type
W . We use the notation{ρ1 7→ q1, . . . , ρn 7→ qn} to mean a
witness typeW such thatW (ρ) = qi if ρ = ρi for some1 ≤ i ≤ n
andW (ρ) = 0 otherwise. (We use the symbolsq, qi, q′, etc for
non-negative rational numbers, including those larger than 1.)

The rest of the types are defined in Figure 7, including types
include integer typesint, function typesτ

q
→ τ ′, pair typesτ ⊗ τ ′,

reference typesref (τ, τ ′, ρ), and region typesreg(ρ). The non-
negative rational numberq in τ

q
→ τ ′ represents the number of

times the function can be called. We allow the symbolsq, q′, etc



τ := int | τ
q
→ τ ′ | τ ⊗ τ ′ | ref (τ, τ ′, ρ) | reg(ρ) |W

Figure 7: The type language.

Γ; W ⊢ e : τ τ ≥ τ ′

Γ; W ⊢ e : τ ′
Sub

Γ(x) = τ

Γ; W ⊢ x : τ
Var

Γ; W ⊢ i : int
Int

Γ; W ⊢ • : ∅
Dummy

Γ; W1 ⊢ e : W2

Γ; W1 + W3 ⊢ e : W2 + W3
Source

Γ, x:τ ;W ⊢ e : τ ′

Γ× q; W × q ⊢ λx.e : τ
q
→ τ ′

Abs

Γ; W ⊢ e : τ
q
→ τ ′ Γ′; W ′ ⊢ e′ : τ q ≥ 1

Γ + Γ′; W + W ′ ⊢ e e′ : τ ′
App

Γ; W ⊢ e : τ Γ′; W ′ ⊢ e′ : τ ′

Γ + Γ′; W + W ′ ⊢ e⊗ e′ : τ ⊗ τ ′
Pair

Γ; W ⊢ e : τ1 ⊗ τ2

Γ; W ⊢ πi(e) : τi

Proj

Γ; W ⊢ e : τ Γ′; W ′ ⊢ e′ : reg(ρ)

Γ + Γ′; W + W ′ ⊢ ref e e′ : ref (τ, τ, ρ)
Ref

Γ1; W1 ⊢ e1 : ref (τ, τ ′, ρ)
Γ2; W2 ⊢ e2 : τ ′

Γ3; W3 ⊢ e3 : W W (ρ) ≥ 1

Γ1 + Γ2 + Γ3; W1 + W2 + W3 ⊢ write e1 e2 e3 : W
Write

Γ; W1 ⊢ e : ref (τ, τ ′, ρ)
Γ′; W2 ⊢ e′ : W W (ρ) > 0

Γ + Γ′; W1 + W2 ⊢ read e e′ : W ⊗ τ
Read

Γ, x:reg(ρ);W + {ρ 7→ q} ⊢ e : τ q ≤ 1
ρ /∈ free(Γ) ∪ free(W ) ∪ free(τ )

Γ; W ⊢ letreg x e : τ
LetRegion

Γ; W1 ⊢ e : W Γ; W2 ⊢ e′ : W ′

Γ + Γ′; W1 + W2 ⊢ join e e′ : W + W ′
Join

Γ; W ⊢ e′[(let x = e in x)/x] : τ e ∈ V +

Γ; W ⊢ let x = e in e′ : τ
LetA

Γ, x:τ ;W ⊢ e : τ Γ′, x:τ ;W ′ ⊢ e′ : τ ′

τ ≥ τ ×∞ if x ∈ free(e)
Γ + Γ′; W + W ′ ⊢ let x = e in e′ : τ ′

LetB

Figure 8: Type judgment rules.

to take the valuation∞ to imply that the function can be called
arbitrarily many times. We use the following arithmetic relation:
q +∞ =∞, q ×∞ =∞ for q 6= 0, and0×∞ = 0.

Figure 8 shows the main type judgment rules. Our type system
belongs to the family of substructural type systems, which includes
linear types. We discuss the rules from top-to-bottom and left-to-

reg(ρ) + reg(ρ) = reg(ρ)
int + int = int

τ
q
→ τ ′ + τ

q′

→ τ ′ = τ
q+q′

→ τ ′

τ1 ⊗ τ2 + τ3 ⊗ τ4 = (τ1 + τ3)⊗ (τ2 + τ4)
ref (τ1, τ, ρ) + ref (τ2, τ, ρ) = ref (τ1 + τ2, τ, ρ)
W + W ′ = {ρ 7→W (ρ) + W ′(ρ) | ρ ∈ RegIDs}
reg(ρ)× q = reg(ρ)
int× q = int

τ
q′

→ τ ′ × q = τ
q′×q
→ τ ′

τ ⊗ τ ′ × q = (τ × q)⊗ (τ ′ × q)
ref (τ, τ ′, ρ)× q = ref (τ × q, τ ′, ρ)
W × q = {ρ 7→W (ρ)× q | ρ ∈ RegIDs}

Figure 9: Arithmetic over types.

right, except for the ruleSub which we defer to the end. The rules
Var andInt are standard. The ruleDummy gives a dummy witness
• an empty witness type; note that∅(ρ) = 0 for any static region
identifierρ.

The ruleSource uses additive arithmetic over types defined in
Figure 9. The rule addsW3 amount of flow from the virtual source
nodes (i.e., nodesAS from the first paragraph of this section) to
W2. In the type judgment relationΓ; W ⊢ e : τ , the witness type
W represents the flow the expressione receives from the virtual
source nodes. Therefore, the ruleSource says that assuming that
we tookW1 flow from the virtual source nodes in the precondition,
we are now takingW3 more.

In the ruleAbs, we multiply the left hand side of the judgments
by the number of times that the function can be used. Multiplication
over type environmentsΓ is defined as follows:

(Γ, x:τ )× q = (Γ× q), x:(τ × q)

So for example, if theλ abstractionλx.e captures a witness as a
free variabley and thatΓ(y) = W , then(Γ × q)(y) = W × q.
Thus if the function body requiresW amount of flow in the witness,
then we actually requireW×q amount of flow because the function
may be calledq times.

In the ruleApp, the preconditionq ≥ 1 says that the number of
times the function can be used must be at least1. The left hand side
of the two judgments in the precondition are added so that we can
compute the combined flow required for the expressionse ande′.
Addition over type environments is defined as follows:

(Γ, x:τ ) + (Γ′, x:τ ′) = (Γ + Γ′), x:(τ + τ ′)

The rulesPair andProj are self-explanatory.
In a reference typeref (τ, τ ′, ρ), the static region identifierρ

identifies the region where the reference belongs while the typeτ is
the read type of the reference and the typeτ ′ is the write type of the
reference. Initially the read and write types are the same asseen in
the ruleRef. The ruleWrite matches the type of the to-be-assigned
expressione2 with the write type of the reference while the rule
Read uses the read type of the reference type. Note that we require
W (ρ) ≥ 1 atWrite andW (ρ) > 0 atRead; both correspond to the
flow requirement for writes and reads. The reason read-type/write-
type separation is subtle. Consider the following expression where
the expressionse1 ande3 are witnesses and the expressione2 is a
region:

let x = (ref e1 e2) in let w = (write x e3 •) in read x w

Suppose we just have read types so that the type system uses read
types at instancesWrite as well as at instancesRead. Then the type
system is unsound (even withoutSub) for the following reason.
The type system may assign some flowW to the occurrence of



τ ≥ τ

τ1 ≤ τ ′
1 τ2 ≥ τ ′

2 q ≥ q′

τ1
q
→ τ2 ≥ τ ′

1
q′

→ τ ′
2

τ1 ≥ τ ′
1 τ2 ≥ τ ′

2

τ1 ⊗ τ2 ≥ τ ′
1 ⊗ τ ′

2

τ1 ≥ τ ′
1 τ2 ≤ τ ′

2

ref (τ1, τ2, ρ) ≥ ref (τ ′
1, τ

′
2, ρ)

W (ρ) ≥ W (ρ) for all ρ ∈ RegIDs
W ≥W ′

Figure 10: Subtyping.

the variablex at the write and some flowW ′ to the occurrence
of the variablex at the read. But there is no constraint to force
W = W ′, so the type system can letW ′ > W while keeping
the sumW + W ′ fixed, i.e., we get more flow from a reference
than what was assigned to the reference. Separating read andwrite
types prevents this problem because addition and multiplication do
not act on write types.

The ruleLetRegion introduces a fresh static region identifierρ.
The witness type{ρ 7→ q} represents the virtual source node for
the new region. We constrainq ≤ 1 to ensure that we do not use
more than1 unit total from the source.

The ruleJoin combines two witnesses by adding their types.
There are two rules,LetA and LetB, for the expression kind

let x = e in e′. LetA is less conservative and should be used
wheneverx occurs more than once ine′ ande ∈ V + whereV + is
the smallest set such thatV + = V ∪ {let x = e in x | e ∈ V +}.
This rule corresponds to the usual substitution interpretation of let-
based predicative polymorphism with the value restriction. LetB is
used ife /∈ V + or x occurs at most once ine′. Here,free(τ ) is the
set of static region identifiers in the typeτ wherefree(W ) = {ρ |
W (ρ) 6= 0}, andfree(Γ) =

S

τ∈ran(Γ) free(τ ).
Finally, we come return toSub. The subtyping relation is de-

fined in Figure 10. As usual, argument types of function typesare
contravariant. Write types of reference types are also contravariant;
this treatment of reference subtyping is identical to that of a type-
based formulation of Andersen’s points-to analysis [4]. Intuitively,
the ruleSub expresses the observation that the flow graph property
may be relaxed so that the sum of the outgoing flow can be less
than the sum of the incoming flow, i.e., if we could find a flow as-
signment satisfying the required flow constraints at reads and writes
under this relaxed condition, then we still have a read-write pipeline
with bottlenecks.

We say that aλreg

wit programe is well-typed if∅; ∅ ⊢ e : τ for
some typeτ . The following theorem states that the type system is
sound.

THEOREM 6. If a λreg

wit programe is well-typed, then it is witness
race free.

The proof, which uses the network flow property, appears in the
companion technical report [13].

We point out a few of the positive properties of this type system.
If a program contains no reads or writes and can be typed by a
standard Hindley-Milner polymorphic type system, then it can also
be typed by our type system; for example, we may use the qualifier
∞ for all function types and use0 for all flows. In general, we can
give the∞ qualifier to the function type of any function that does
not capture a witness (directly or indirectly). We can also assign
flow 0 to any flow for a regionr that does not flow into a side-
effect primitive operating on the regionr.

Fresh(int) = int

Fresh(σ→σ) = Fresh(σ)
β
→ Fresh(σ)

whereβ is fresh
Fresh(σ ⊗ σ′) = Fresh(σ)⊗ Fresh(σ)
Fresh(ref (σ, σ′, ρ)) = ref (Fresh(σ), Fresh(σ′), ρ)
Fresh(reg(ρ)) = reg(ρ)
Fresh(I) = {ρ 7→ α | ρ ∈ I}

whereα is fresh

Figure 11:Fresh.

Γ, W ⊢b eI : τ, C

Γ, W + Fresh(I) ⊢a eI : τ + Fresh(I),C

Γ, W ⊢b eσ : τ, C σ /∈ typeI

Γ, W ⊢a eσ : τ, C

Figure 12: Type inference⊢a.

The type system is quite expressive. In particular, it is able
to type all of the examples that were used as correct programs
up to this point in the paper (with straightforward modification
to translateλwit programs intoλreg

wit ). In fact, assuming that for
each regionr, write(r) nodes in each collectionWi are totally
ordered, the type system is “complete” for the first-order fragment
(i.e., no higher order functions) with no recursion and no storing
of witnesses in references. That is, such a programe is witness
race free and well-typed by a standard Hindley-Milner type system
if and only if it is well-typed by our type system. We also show
later in Section 5 that the type system is more expressive than past
approaches.

The limitations of the type system are the standard ones: let-
based predicative polymorphism, flow-insensitivity of reference
types, and unsoundness under call-by-name semantics; the latter
is a typical limitation of a non-linear substructural type system.
Another limitation is that the type system enforces for eachregion
r that write(r) nodes in every collectionWi are totally ordered
whereas witness race freedom permits an absence of orderingfor
the casei = n; we believe that this is a minor limitation.

4.3 Inference

We next present a type inference algorithm. By Theorem 6, this
results in an automatic algorithm for statically checking witness
race freedom.

At a high-level, our type system is a standard Hindley-Milner
type system with some additional rational arithmetic constraints.
Therefore we could perform inference by employing a standard
type inference technique to solve all type-structural constraints
while generating rational arithmetic constraints on the side, and
then solving the generated arithmetic constraints separately. Un-
fortunately, the arithmetic constraints may be non-linearsince they
involve the multiplication of variables. Because there is no efficient
algorithm for solving general non-linear rational arithmetic con-
straints, we need to dive into lower-level details of the type system.

Let us separate type inference into two phases. The first phase
carries out type inference after erasing all rational numbers from
the type system. That is, the types inferred in this phase are:

σ := int | σ→σ′ | σ ⊗ σ′ | ref (σ, σ′, ρ) | reg(ρ) | I

where a typeI is a subset ofRegIDs. Intuitively, each typeI rep-
resents the non-0 domain of some witness typeW . The first phase
can be carried out by a standard Hindley-Milner type inference, al-



τ = Fresh(σ)

{x:τ}, ∅ ⊢b xσ : τ, ∅

∅, ∅ ⊢b i : int, ∅ ∅, ∅ ⊢b • : ∅, ∅

Γ, W ⊢a e : τ, C β is fresh

Γ× β, W × β ⊢b λx.e : Γ(x)
β
→ τ, C

Γ1, W1 ⊢a e1 : τ1, C1 Γ2, W2 ⊢a e2 : τ2, C2
τ = Fresh(σ) τ ′ = Fresh(σ′) β is fresh

C = C1 ∪ C2 ∪ {τ1 ≥ τ
β
→ τ ′, β ≥ 1, τ2 ≥ τ}

Γ1 + Γ2, W1 + W2 ⊢b eσ→σ′

1 e2 : τ ′, C

Γ1, W1 ⊢a e1 : τ1, C1 Γ2, W2 ⊢a e2 : τ2, C2
Γ1 + Γ2, W1 + W2 ⊢b e1 ⊗ e2 : τ1 ⊗ τ2, C1 ∪ C2

Γ, W ⊢a πi(e) : τ, C τ1 = Fresh(σ) τ2 = Fresh(σ′)

Γ, W ⊢b πi(e
σ1⊗σ2) : τi, C ∪ {τ ≥ τ1 ⊗ τ2}

Γ1, W1 ⊢a e1 : τ1, C1 Γ2, W2 ⊢a e2 : τ2, C2

Γ1 + Γ2, W1 + W2 ⊢b ref e1 e
reg(ρ)
2 : ref (τ1, τ2, ρ), C1 ∪ C2

Γ1, W1 ⊢a e1 : τ1, C1 Γ2, W2 ⊢a e2 : τ2, C2
Γ3, W3 ⊢a e2 : τ3, C3 τ = Fresh(σ) τ ′ = Fresh(σ′)
C = C1 ∪ C2 ∪ {τ1 ≥ ref (τ, τ ′, ρ), τ2 ≥ τ ′, τ3(ρ) ≥ 1}

Γ = Γ1 + Γ2 + Γ3 W = W1 + W2 + W3

Γ, W ⊢b write e
ref (σ,σ′,ρ)
1 e2 e3 : τ3, C

Γ1, W1 ⊢a e1 : τ1, C1 Γ2, W2 ⊢a e2 : τ2, C2
τ = Fresh(σ) τ ′ = Fresh(σ′)
C = C1 ∪ C2 ∪ {τ1 ≥ ref (τ, τ ′, ρ), τ2(ρ) > 0}

Γ1 + Γ2, W1 + W2 ⊢b read e
ref (σ,σ′,ρ)
1 e2 : τ ⊗ τ2, C

Γ, W ⊢a e : τ, C

Γ, W ⊢b letreg xreg(ρ) e : τ, C ∪ {W (ρ) ≤ 1}

Γ1, W1 ⊢a e1 : τ1, C1 Γ2, W2 ⊢a e2 : τ2, C2
Γ1 + Γ2, W1 + W2 ⊢b join e1 e2 : τ1 + τ2, C1 ∪ C2

Γ1, W1 ⊢a e1 : τ1, C1 Γ2, W2 ⊢a e2 : τ2, C2
x /∈ free(e1) C = C1 ∪ C2 ∪ {τ1 ≥ Γ2(x)}

Γ1 + Γ2, W1 + W2 ⊢b let x = e1 in e2 : τ2, C

Γ1, W1 ⊢a e1 : τ1, C1 Γ2, W2 ⊢a e2 : τ2, C2
x ∈ free(e1)

C = C1 ∪ C2 ∪ {τ1 ≥ Γ1(x)×∞, τ1 ≥ Γ2(x)}

Γ1 + Γ2, W1 + W2 ⊢b let x = e1 in e2 : τ2, C

Figure 13: Type inference⊢b.

beit with regions, which is no harder than type variables. Weomit
the details of this phase. We may safely reject the program ifthe
first phase fails. Otherwise we annotate each subexpressione by its
inferred typeσ: eσ. In the second phase, we use the annotated pro-
gram to generate the appropriate rational arithmetic constraints via
bottom-up type-inference. Lete be an annotated program. Then the
generated constraints fore is C whereΓ, W ⊢a e : τ, C for some
Γ, W , andτ .

The second-phase type inference rules are separated into two
kinds, ⊢a (Figure 12) and⊢b (Figure 13), which must occur in
strictly interleaving manner. The purpose of⊢a is to account for
the type judgment ruleSource, whereas⊢b accounts for all other
rules.

We should note that, strictly speaking, typesτ appearing in the
algorithm are different from the ones in the type judgment rules.
That is, instead of rational numbers, the typesτ in the algorithm
are qualified byrational number variablesα, β, γ, etc. Also the
domain of a witness typeW is not the entireRegIDs set but only
some subset of it. In other words, a witness typeW is a partial
function fromRegIDs to rational number variables. We re-define
the addition of witness types as follows to reflect the change:

W + W ′ =
{ρ 7→W (ρ) + W ′(ρ) | ρ ∈ dom(W ) ∧ ρ ∈ dom(W ′)}
∪{ρ 7→W (ρ) | ρ ∈ dom(W ) ∧ ρ /∈ dom(W ′)}
∪{ρ 7→W ′(ρ) | ρ ∈ dom(W ′) ∧ ρ /∈ dom(W )}

We also re-define the addition of type environments:

Γ + Γ′ =
{x:Γ(x) + Γ′(x) | x ∈ dom(Γ) ∧ x ∈ dom(Γ′)}
∪{x:Γ(x) | x ∈ dom(Γ) ∧ x /∈ dom(Γ′)}
∪{x:Γ′(x) | x ∈ dom(Γ′) ∧ x /∈ dom(Γ)}

Note that we omit annotations when they are not used (i.e., we
saye instead ofeσ, etc.). There are only two cases for⊢a. The first
case is for expressions that were given a witness typeI in the first
phase. In this case, we addFresh(I) to τ andW to account for a
possible application ofSource. Freshis defined in Figure 11. The
second case is for expressions that were not given a witness type.
In this case, we simply pass the result of the subderivation⊢b up.

We discuss a few representative⊢b rules. Note that⊢b rules are
syntax directed. In the case of a variablexσ, we create a freshτ
from σ and pass{x :τ}, ∅ ⊢b xσ : τ, ∅ up to the parent derivation.
(Recall our type inference is bottom-up.) The case for integers and
dummy witnesses are trivial. In the case of an abstractionλx.e,
we multiply Γ andW passed from the subderivation byβ. In the
case of a function applicationeσ→σ′

1 e2, we add the constraints

{τ1 ≥ τ
β
→ τ ′, β ≥ 1, τ2 ≥ τ} to connect arguments and

returns as well as requiringβ to be at least1. Note that the type
rule Sub is implicitly incorporated in the constraints. In the case
of write e

ref (σ,σ′,ρ)
1 e2 e3, we add the constraintτ2(ρ) ≥ 1 to

match the type ruleWrite. Note that the first phase guarantees
that ρ ∈ dom(τ3). In the caseletreg xreg(ρ) e, the constraint
W (ρ) ≤ 1 is effective only whenρ ∈ dom(W ) asρ /∈ dom(W )
implies that the region was not used at all. Note that there isno case
corresponding to the type ruleLetA. Prior to running the algorithm,
we replace each occurrence of the expressionlet x = e in e′ in
the program by the expressione′[(let x = e in x)/x] whenever
e ∈ V andx occurs more than once ine′.



As an example, consider the following program (aλreg

wit version
of the last example from Section 2):

letreg r
let x = ref 1 r in

let w = write x 2 • in
let f = λy.read x w in

let z = (f 0)⊗ (f 0) in
let w = write x 3 join π2(π1(z)) π2(π2(z)) in z

Suppose the first phase assignsr the typereg(ρ). Assume each
let-bound variable is treated monomorphically. The second phase
generates the following constraints for thelet-bound expressions
(slightly simplified for readability):

{r :reg(ρ)}; ∅ ⊢a ref 1 r : ref (int, int, ρ), ∅

Γ; {ρ 7→ γ1 + γ2} ⊢a write x 2 • : {ρ 7→ γ1 + γ2}, {γ1 ≥ 1}
whereΓ = {x:ref (int, int, ρ)}

Γ; W ⊢a λy.read x w : int
β1→ int⊗ {ρ 7→ α1 + γ3}, C

whereΓ = {x:ref (int, int, ρ), w :{ρ 7→ α1 × β1}}
andW = {ρ 7→ γ3 × β1}
andC = {α1 + γ3 > 0}

Γ; ∅ ⊢a (f 0)⊗ (f 0) : τ, C

whereΓ = {f :int
β2+β3→ int⊗ {ρ 7→ α2}}

andτ = (int⊗ {ρ 7→ α2})⊗ (int⊗ {ρ 7→ α2})
andC = {β2 ≥ 1, β3 ≥ 1}

Γ; {ρ 7→ γ4} ⊢a write x 3 . . . : {ρ 7→ α3 + α4 + γ4}, C
whereΓ = {x:ref (int, int, ρ), z :τ}
andτ = (int⊗ {ρ 7→ α3})⊗ (int⊗ {ρ 7→ α4})
andC = {α3 + α4 + γ4 ≥ 1}

The final constraints, after some simplification, is as follows:

γ1 ≥ 1, 1 ≥ γ1 + γ2 + γ3 × β1 + γ4, β1 ≥ β2 + β3,
β2 ≥ 1, β3 ≥ 1, γ1 + γ2 ≥ α1 × β1, α1 + γ3 > 0,
α1 + γ3 ≥ α2, α3 + α4 + γ4 ≥ 1, α2 ≥ α3, α2 ≥ α4

Note that the constraints are satisfiable, e.g., by the substitution

β1 = 2 β2 = β3 = γ1 = 1
α1 = α2 = α3 = α4 = 0.5
γ2 = γ3 = γ4 = 0

In general, a programe is well-typed if and only if the con-
straintsC generated by type inference are satisfiable. So it suffices
to show that the satisfaction problem for anyC generated by the
type inference algorithm can be solved.

To this end, we first note that because of the first phase, any
constraintτ ≥ τ ′ ∈ C can be reduced to a set of rational arithmetic
constraints of the formp ≥ p′ wherep, p′ are rational polynomials.
The troublesome non-linearity comes fromΓ×β andW ×β in the
λx.e case. Let us focus our attention on the setB of variables used
in such multiplications. (Note that we have usedβ instead ofα just
for this case in the pseudo-code to make it clear that these variables
are special.) We can show that the following holds:

THEOREM 7. Let p � p′ ∈ C where� ∈ {≥, >}. If β ∈ B
occurs in the polynomialp, then it must be the case that� =≥,
p = β, and that the polynomialp′ consists only of symbols in the
set{+,×, 1,∞} ∪ B.

Proof (Sketch): LetΓ, W ⊢a e : τ, C. For anyτ ′ ∈ Γ, × and+
only appear at the top-level, i.e., not within argument and return
types of a function type. Secondly, we can show by induction that
within the typeτ , × only appears in negative positions. More
precisely, for anyp ∈ Pos(τ ), the polynomialp contains no×

wherePos is defined as follows:

Pos(τ
p
→ τ ′) = Neg(τ ) ∪ Pos(τ ′) ∪ {p}

Pos(τ ⊗ τ ′) = Pos(τ ) ∪ Pos(τ ′)
Pos(ref (τ, τ ′, ρ)) = Pos(τ ) ∪Neg(τ ′)
Pos(W ) = ran(W )
Neg(int) = Pos(int) = Neg(reg(ρ)) = Pos(reg(ρ)) = ∅

Neg(τ
p
→ τ ′) = Pos(τ ) ∪ Neg(τ ′)

Neg(τ ⊗ τ ′) = Neg(τ ) ∪ Neg(τ ′)
Neg(ref (τ, τ ′, ρ)) = Neg(τ ) ∪ Pos(τ ′)
Neg(W ) = ∅

Third, for any+ that appears in a positive position ofτ , i.e. in
somep ∈ Pos(τ ), the polynomialp does not contain anyβ ∈ B.
Then the result follows from inspection of the subtyping rules.2

The theorem implies that we can compute all assignments to the
variables inB by computing the minimum satisfying assignment
for C′ = {β ≥ p | β ∈ B} ⊆ C. It is easy to see that such an
assignment always exists. (Recall that the range is non-negative.)
This problem can be solved in quadratic time by an iterative method
in which all variables are initially set to0, and at each iteration the
new values for the variables are computed by taking the maximum
of the right hand polynomials evaluated at the current values. It is
possible to show that if the minimum satisfying assignment for a
variableβ is someq < ∞, then the iterative method findsq for
β in 2|C′| iterations. Hence any variable changing after the2|C′|th
iteration can be safely set to∞. All variables are then guaranteed
to converge within3|C′| iterations. Because each iteration examines
every constraint, the overall time is at most quadratic in the size of
C′.

Substituting the computed assignments forB in C results in
linear rational constraints, which can be solved efficiently by a
linear programming algorithm.

5. Related Work
Adding side-effects to a functional language is an old problem with
many proposed solutions. Here we compare our technique against
two of the more prominent approaches: linear types [15, 6, 1]and
monads [10, 11, 7, 9].

In linear types, there is an explicitworld program value (or
one world per region for languages with regions) that conceptually
represents the current program state. By requiring each world have
a linear type, the type system ensures that the world can be updated
in place.

The linear type system can be expressed in our type system
by restricting every flow to1, every witness to contain only one
flow, and designating one dummy witness to serve the role of the
“starting” witness (or for regions, one dummy witness per region).
Thus our approach is more expressive than such an approach. Note
that this also implies that every function type can be restricted
to have either1 or ∞ as the qualifier. It is easy to see that the
program is well-typed under this restriction if and only if it is well-
typed by the linear type system. The restriction limits programs
to manipulate witnesses only in a linear fashion. In practice, this
implies that there can be no parallel reads, no dead witnesses,
no redundant witnesses, and no duplication of values containing
witnesses.



Our approach can implement monadic primitives as follows (for
concrete comparison, we usestate monads[9]):

newVar = λx.λy.let z = (ref x π2(y)) in y ⊗ z
readVar = λx.λy.let z = (read x π1(y)) in

(π2(z)⊗ π2(y))⊗ π1(z)
writeVar = λx.λw.λy.let z = (write x w π1(y)) in

(z ⊗ π2(y))⊗ w
>>= = λf.λg.λx.let y = (f x) in g π2(y) π1(y)
returnST = λx.λy.y ⊗ x
runST e = letreg x π2(e (• ⊗ x))

The idea behind these definitions is to implement each state monad
of the typeST (α, τ ) as a function that takes a witness and the
regionα as arguments and returns a witness, the regionα, and a
value of the typeτ . It is easy to see that if a state monad program
is well-typed by the monadic type system, then it is also well-typed
with our type system using the above definitions for the monadic
primitives. Thus, our approach is more expressive than monads.

In practice, a monadic approach shares essentially the same
limitations as linear types; for example, side-effects arerestricted
to a linear, sequential order. (In fact, it is not too hard to see
that we can actually implement monadic primitives with the linear
types restriction with only slightly longer code.) On the other hand,
a monadic type system has an engineering advantage as it only
requires Hindley-Milner type inference.

In addition to the above technical differences, our approach
differs from previous approaches in its design motivation.That is,
while our language feature, witnesses, is motivated by a pragmatic
observation, understanding the motivation behind linear types and
monads (i.e., not just knowing how to use them) arguably requires
an appreciation of their underlying theory.

The technique used in our type system has some resemblance
to fractional permissions[2] which can guarantee non-interference
in imperative programs. Indeed, it may be possible to give an
“interpretation” of witnesses as some relaxation of permissions or
capabilities[3] (after promoting permissions or capabilities to first
class values) in situations where the program is witness race free.

6. Conclusions
We have presented a new approach to adding side-effects in purely
functional languages based on witnesses. We have stated a natural
semantic correctness condition called witness race freedom and
proposed a type-based approach for statically checking witness
race freedom.
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