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omAbstra
t We 
arry out an experimental analysis for two of the de-sign dimensions of 
ow-insensitive points-to analysis for C: polymorphi
versus monomorphi
 and equality-based versus in
lusion-based. Holdingother analysis parameters �xed, we measure the pre
ision of the four de-sign points on a suite of ben
hmarks of up to 90,000 abstra
t syntax treenodes. Our experiments show that the bene�t of polymorphism variessigni�
antly with the underlying monomorphi
 analysis. For our equality-based analysis, adding polymorphism greatly in
reases pre
ision, whilefor our in
lusion-based analysis, adding polymorphism hardly makes anydi�eren
e. We also gain some insight into the nature of polymorphismin points-to analysis of C. In parti
ular, we �nd 
onsiderable polymor-phism available in fun
tion parameters, but little or no polymorphism infun
tion results, and we show how this observation explains our results.1 Introdu
tionWhen 
onstru
ting a 
onstraint-based program analysis, the analysis designermust weigh the 
osts and bene�ts of many possible design points. Two importanttradeo�s are:{ Is the analysis polymorphi
 or monomorphi
? A polymorphi
 analysis sepa-rates analysis information by 
all site, while monomorphi
 analysis 
on
atesall 
all sites. A polymorphi
 analysis is more pre
ise but also more expensivethan a 
orresponding monomorphi
 analysis.{ What is the underlying 
onstraint relation? Possibilities in
lude equalities(solved with uni�
ation) or more pre
ise and expensive in
lusions (solvedwith dynami
 transitive 
losure), among many others.Intuitively, if we want the greatest possible pre
ision, we should use a poly-morphi
 in
lusion-based analysis, while if we are mostly 
on
erned with eÆ-
ien
y, we should use a monomorphi
 equality-based analysis. But how mu
hy This resear
h was supported in part by the National S
ien
e Foundation YoungInvestigator Award No. CCR-9457812, NASA Contra
t No. NAG2-1210, an NDSEGfellowship, and an equipment donation from Intel.
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���+ QQQsQQQs ���+Figure 1. Relation between the four analyses. There is an edge from analysis x toanalysis y if y is at least as pre
ise as x.more pre
ision does polymorphism add, and what do we lose by using equal-ity 
onstraints? In this paper, we try to answer these questions for a parti
ular
onstraint-based program analysis, 
ow-insensitive points-to analysis for C. Ourgoal is to 
ompare the tradeo�s between the four possible 
ombinations of poly-morphism/monomorphism and equality 
onstraints/in
lusion 
onstraints.Points-to analysis 
omputes, for ea
h expression in a C program, a set ofabstra
t memory lo
ations (variables and heap) to whi
h the expression 
ouldpoint. Our monomorphi
 in
lusion-based analysis (Se
t. 4.1) implements a ver-sion of Andersen's points-to analysis [4℄, and our monomorphi
 equality-basedanalysis (Se
t. 4.2) implements a version of Steensgaard's points-to analysis [29℄.To add polymorphism to Andersen's and Steensgaard's analyses (Se
t. 4.3), weuse Hindley-Milner style parametri
 polymorphism [21℄.Our analyses are designed su
h that monomorphi
 Andersen's analysis is atleast as pre
ise as monomorphi
 Steensgaard's analysis [16, 28℄, and similarlyfor the polymorphi
 versions. Given the 
onstru
tion of our analyses, it is atheorem that the hierar
hy of pre
ision shown in Fig. 1 always holds. The main
ontribution of this work is the quanti�
ation of the exa
t relationship amongthese analyses. A se
ondary 
ontribution of this paper is the development ofpolymorphi
 versions of Andersen's and Steensgaard's points-to analyses.Running the analyses on our suite of ben
hmarks, we �nd the following results(see Se
t. 5), where � is read \is signi�
antly less pre
ise than." In general,Monomorphi
 Steensgaard's�Polymorphi
 Steensgaard's�Polymorphi
 Andersen'sMonomorphi
 Steensgaard's�Monomorphi
 Andersen's �Polymorphi
 Andersen's



The exa
t relationships vary from ben
hmark to ben
hmark. These results arerather surprising|why should polymorphism not add mu
h pre
ision to Ander-sen's analysis but bene�t Steensgaard's analysis? While we do not have de�nitiveanswers to these questions, Se
t. 5.3 suggests some possible explanations.Noti
e from this table that monomorphi
 Andersen's analysis is approxi-mately as pre
ise as polymorphi
 Andersen's analysis, while polymorphi
 Steens-gaard's analysis is mu
h less pre
ise than polymorphi
 Andersen's analysis. Note,however, that polymorphi
 Steensgaard's analysis and monomorphi
 Andersen'sanalysis are in general in
omparable (see Se
t. 5.1). Still, given that polymorphi
analyses are mu
h more 
ompli
ated to understand, reason about, and imple-ment than their monomorphi
 
ounterparts, these results suggest that monomor-phi
 Andersen's analysis may represent the best design 
hoi
e among the fouranalyses. This may be a general prin
iple: in order to improve a program analysis,developing a more powerful monomorphi
 analysis may be preferable to adding
ontext-sensitivity, one example of whi
h is Hindley-Milner style polymorphism.Carrying out an experimental exploration of even a portion of the designspa
e for non-trivial program analyses is a painstaking task. In interpreting ourresults there are two important things to keep in mind. First, our exploration ofeven the limited design spa
e of 
ow-insensitive points-to analysis for C is stillpartial|there are dimensions other than the two that we explore that may notbe orthogonal and may lead to di�erent tradeo�s. For example, it may matterhow pre
isely heap memory is modeled, how strings are modeled, whether Cstru
ts are analyzed by �eld or all �elds are summarized together, and so on.Se
tion 5 details our 
hoi
es for these parameters. Also, Hindley-Milner stylepolymorphism is only one way to add 
ontext-sensitivity to a points-to analy-sis, and other approa
hes (e.g., polymorphi
 re
ursion [15℄) may yield di�erenttradeo�s.Se
ond, our experiments measure the relative pre
ision of ea
h analysis. Theydo not measure the relative impa
t of ea
h analysis in a 
ompiler. For example, itmay be that some points-to sets are more important than others to an optimizer,and thus in
reases in pre
ision may not always lead to better optimizations. How-ever, a more pre
ise analysis should not lead to worse optimizations than a lesspre
ise analysis. We should also point out that it is diÆ
ult to separate the bene-�t of a pointer analysis in a 
ompiler from the design of the rest of the optimizer.Measures of relative pre
ision have the advantage of being independent of thespe
i�
 
hoi
es made in using the analysis information by a parti
ular tool.2 Related WorkAndersen's [4℄ and Steensgaard's [29℄ points-to analyses are only two 
hoi
es ina vast array of possible alias analyses, among them [5, 6, 7, 8, 9, 10, 11, 15, 19,20, 27, 28, 31, 33, 34℄. As our results suggest, the bene�t of polymorphism (moregenerally, 
ontext-sensitivity) may vary greatly with the parti
ular analysis.Hindley-Milner style polymorphism [21℄ has been studied extensively. Theonly dire
t appli
ations of Hindley-Milner polymorphism to C of whi
h we are



aware are the analyses in this paper, the polymorphi
 re
ursive analysis proposedin [15℄ (see below), and the La
kwit system [23℄. La
kwit, a software engineeringtool, 
omputes ML-style types for C and appears to s
ale very well to largeprograms.Mossin [22℄ develops a polymorphi
 
ow analysis based on polymorphi
 re-
ursion and atomi
 subtyping 
onstraints. Mossin's system starts with a type-annotated program and infers atomi
 
ow 
onstraints, whereas we infer the typeand 
ow annotations simultaneously and do not have an atomi
 subtyping sys-tem. [15℄ develops an eÆ
ient algorithm for both subtyping and equality-basedpolymorphi
 re
ursive 
ow analyses, and shows how to 
onstru
t a polymorphi
re
ursive version of Steensgaard's analysis. (In 
ontrast, in this paper we useHindley-Milner style polymorphism, whi
h 
an be less pre
ise.) We believe thatthe te
hniques of [15℄ 
an also be adapted to Andersen's analysis.Other resear
h has explored making monomorphi
 in
lusion-based analysess
alable. [14℄ des
ribes an online 
y
le-elimination algorithm for simplifying in-
lusion 
onstraints. [30℄ des
ribes a related optimization te
hnique, proje
tionmerging, whi
h merges multiple proje
tions of the same set variable. Our 
ur-rent implementation uses both of these te
hniques, whi
h makes it possible torun the polymorphi
 in
lusion-based analysis on our larger ben
hmarks.Finally, we dis
uss a sele
tion of related analyses. Wilson and Lam [31℄ pro-pose a 
ow-sensitive alias analysis that distinguishes 
alls to the same fun
tionin di�erent aliasing 
ontexts. Their system analyzes a fun
tion on
e for ea
haliasing pattern of its a
tual parameters. In 
ontrast, we analyze ea
h fun
tiononly on
e, independently of its 
ontext, by 
onstru
ting types that summarizefun
tions' points-to e�e
ts in any 
ontext.Ruf [26℄ studies the tradeo� between 
ontext-sensitivity and 
ontext-insen-sitivity for a parti
ular data
ow-style alias analysis, dis
overing that 
ontext-sensitivity makes little appre
iable di�eren
e in the a

ura
y of the results. Ourresults partially agree with his. For Andersen's in
lusion-based analysis we �ndthe same trend. However, for Steensgaard's equality-based analysis, whi
h issubstantially less pre
ise than Ruf's analysis, adding polymorphism makes asigni�
ant di�eren
eEmami, Ghiya, and Hendren [11℄ propose a 
ow-sensitive, 
ontext-sensitiveanalysis. The s
alability of this analysis is unknown.Landi and Ryder [20℄ study a very pre
ise 
ow-sensitive, 
ontext-sensitiveanalysis. Their 
ow-sensitive system has diÆ
ulty s
aling to large programs;re
ent work has fo
used on 
ombined analyses that apply di�erent alias analysesto di�erent parts of a program [35℄.Chatterjee, Ryder, and Landi [6℄ propose an analysis for Java and C++ thatuses a 
ow-sensitive analysis with 
onditional points-to relations whose validitydepends on the aliasing and type information provided by the 
ontext. Whilethe style of polymorphism used in [6℄ appears related to Hindley-Milner stylepolymorphism, the exa
t relationship is un
lear.Das [7℄ proposes a monomorphi
 alias analysis with pre
ision 
lose to An-dersen's analysis but 
ost 
lose to Steensgaard's analysis. The e�e
t of adding



polymorphism to Das's analysis is 
urrently unknown but 
annot yield morepre
ision than polymorphi
 Andersen's analysis.3 ConstraintsOur analyses are formulated as non-standard type systems for C. We followthe usual approa
h for 
onstraint-based program analysis: As the analyses infertypes for a program's expressions, a system of typing 
onstraints is generatedon the side. The solution to the 
onstraints de�nes the points-to graph of theprogram.Our analyses are implemented with the Berkeley Analysis Engine (BANE)[1℄, whi
h is a framework for 
onstru
ting 
onstraint-based analyses. BANE sup-ports analyses involving multiple sorts of 
onstraints, two of whi
h are used byour points-to analyses. Our implementation of Andersen's analysis uses in
lusion(or set) 
onstraints [2, 18℄. Our implementation of Steensgaard's analysis uses amixture of equality (or term) and in
lusion 
onstraints. The rest of this se
tionprovides ba
kground on the 
onstraint formalisms.Ea
h sort of 
onstraint 
omes equipped with a 
onstraint relation. The rela-tion between set expressions is �, and the relation between term expressions is=. For our purposes, set expressions se 
onsist of set variables X ;Y ; : : : from afamily of variables Vars (
aligraphi
 text denotes variables), terms 
onstru
tedfrom n-ary 
onstru
tors 
 2 Con , a spe
ial form proj (
; i; se), an empty set 0,and a universal set 1.se ::= X j 
(se1; : : : ; sen) j proj (
; i; se) j 0 j 1Similarly, term expressions are of the formte ::= X j 
(te1; : : : ; ten) j 0Here 0 represents a spe
ial, distinguished nullary 
onstru
tor.Ea
h 
onstru
tor 
 is given a signature S
 spe
ifying the arity, varian
e, andsort of 
. If S is the set of sorts (in this 
ase, S = fTerm;Setg), then 
onstru
torsignatures are of the form 
 : �1 � � � � � �arity(
) ! Swhere �i is s (
ovariant) or s (
ontravariant) for some s 2 S. Intuitively, a 
on-stru
tor 
 is 
ovariant in an argument X if the set denoted by a term 
(: : : ;X ; : : :)be
omes larger as X in
reases. Similarly, a 
onstru
tor 
 is 
ontravariant in anargument X if the set denoted by a term 
(: : : ;X ; : : :) be
omes smaller as Xin
reases. To improve readability, we mark 
ontravariant arguments with over-bars.One example 
onstru
tor from Andersen's analysis islam : Set�Set� Set! Set



The lam 
onstru
tor models fun
tion types. The �rst (
ovariant) argument namesthe fun
tion, the se
ond (
ontravariant) argument represents the domain, andthe third (
ovariant) argument represents the range.Steensgaard's analysis uses a 
onstru
torref : Set�Term�Term! Termto model lo
ations. The �rst �eld models the set of aliases of this lo
ation, andthe se
ond and third �elds model the 
ontents of this lo
ation. See Se
t. 4.2 fora dis
ussion of why a set is needed for the �rst �eld. More dis
ussion of mixed
onstraints 
an be found in [12, 13℄.Our system also in
ludes 
onditional equality 
onstraints L � R (de�ned onterms) to support Steensgaard's analysis (see Se
t. 4.2). The 
onstraint L � Rholds if either L = R or L = 0 holds. Intuitively, if L is ever uni�ed with a
onstru
ted term, then the 
onstraint L � R be
omes L = R. Otherwise L � Rmakes no 
onstraint on R.Our language of set 
onstraints has no expli
it operation to sele
t 
omponentsof a 
onstru
tor. Instead we use 
onstraints of the formL � 
(: : : ;Yi; : : :) (�)to make Yi 
ontain 
�i(L) if 
 is 
ovariant in i, and to make 
�i(L) 
ontain Yiif 
 is 
ontravariant in i. However, su
h a 
onstraint is in
onsistent if L 
ontainsterms whose head 
onstru
tor is not 
. To over
ome this limitation, we de�ne
onstraints of the form L � proj (
; i;Yi)This 
onstraint has the same e�e
t as (�) on the elements of L 
onstru
ted with
, and no e�e
t on the other elements of L.Solving a system of 
onstraints involves 
omputing an expli
it solved form ofall solutions or of a parti
ular solution. See [3, 12, 13℄ for a thorough dis
ussionof the 
onstraint solver used in BANE.4 The AnalysesThis se
tion develops monomorphi
 and polymorphi
 versions of Andersen's andSteensgaard's analyses. The presentation of the monomorphi
 version of Ander-sen's analysis mostly follows [14, 30℄ and is given primarily to make the paperself 
ontained.For a C program, points-to analysis 
omputes a set of abstra
t memory lo
a-tions (variables and heap) to whi
h ea
h expression 
ould point. Andersen's andSteensgaard's analyses 
ompute a points-to graph [11℄. Graph nodes representabstra
t memory lo
ations, and there is an edge from a node x to a node y ifx may 
ontain a pointer to y. Informally, the analyses begin with some initialpoints-to relationships and 
lose the graph under the ruleFor an assignment e1 = e2, anything in the points-to set for e2 must alsobe in the points-to set for e1.
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����1PPPPq PPPPq����1 a b,
 d- -(a) Andersen's Analysis (b) Steensgaard's AnalysisFigure 2. Example points-to graphFor Andersen's analysis, ea
h node in the points-to graph may have dire
tededges to any number of other nodes. For Steensgaard's analysis, ea
h node mayhave at most one out-edge, and graph nodes are 
oales
ed if ne
essary to enfor
ethis requirement. Figure 2 shows the points-to graph for a simple C program
omputed by Andersen's analysis (a) and Steensgaard's analysis (b).4.1 Andersen's AnalysisIn Andersen's analysis, types � represent sets of abstra
t memory lo
ations andare des
ribed by the following grammar:� ::= Px j lx� ::= X j ref (�; �; � ) j lam(�; � ; �)Here the 
onstru
tor signatures areref : Set�Set�Set! Setlam : Set�Set� Set! SetX and Px are set variables, and lx is a 
onstant (a 
onstru
tor of arity 0).Contravariant arguments are marked with overbars. Note that fun
tion typeslam(� � �) are 
ontravariant in the domain (se
ond argument) and 
ovariant inthe range (third argument).Memory lo
ations 
an be thought of as abstra
t data types with two oper-ations, one to get the value stored in the lo
ation and one to set it. Intuitively,the get and set operations have types{ get : void! X{ set : X ! voidwhere X is the type of data held in the memory lo
ation. Dereferen
ing a lo
ation
orresponds to applying the get operation, and updating a lo
ation 
orrespondsto applying the set operation. Note that the type variable X appears 
ovari-antly in the type of the get operation and 
ontravariantly in the type of the setoperation.



Translating this intuition into a set 
onstraint formulation, the lo
ation of avariable x is modeled with the type ref (lx;X ;X ), where lx is a 
onstant repre-senting the name of the lo
ation, the 
ovariant o

urren
e of X represents theget method, and the 
ontravariant o

urren
e of X (marked with an overbar)represents the set method. For 
onvenien
e, we 
hoose not to represent the void
omponents of the get and set methods' types.We also asso
iate with ea
h lo
ation x a set variable Px and add the 
on-straints X � proj (ref ; 1;Px) and X � proj (lam ; 1;Px). This 
onstrains Px to
ontain the set of abstra
t lo
ations, in
luding fun
tions, in the points-to set X .The points-to graph is then de�ned by the least solution of Px for every lo
ationx. In the set formulation, the least solution for the points-to graph shown inFig. 2a is Pa = flb; l
g Pb = fldg P
 = fldgIn addition to referen
e types we also must model fun
tion types, sin
e Callows pointers to fun
tions to be stored in memory. The type lam(lf; �1; �2)represents the fun
tion named f (every C fun
tion has a name) with argument�1 and return value �2. For simpli
ity the grammar allows only one argument. Inour implementation, arguments are modeled with an ordered re
ord f�1; : : : ; �ng[25℄.1Figure 3 shows a fragment of the type rules for the monomorphi
 versionof Andersen's analysis. Judgments are of the form A ` e : � ;C, meaning thatin typing environment A, expression e has type � under the 
onstraints C. Forsimpli
ity we present only the interesting type rules. The full rules for all of C
an be found in [16℄.We brie
y dis
uss the rules. To avoid having separate rules for l- and r-values, we model all variables as l-types. Thus the type of a variable x is ourrepresentation of its lo
ation, i.e., a ref type.{ Rule (VarA) states that typings in the environment trivially hold.{ The address-of operator (AddrA) adds a level of indire
tion to its operandby adding a ref 
onstru
tor. The lo
ation (�rst) and set (third) �elds of theresulting type are 0 and 1, respe
tively, be
ause &e is not itself an l-valueand 
annot be updated.{ The dereferen
ing operator (DerefA) removes a ref and makes the freshvariable T a superset of the points-to set of � . Note the use of proj in 
ase� also 
ontains a fun
tion type.{ The assignment rule (AsstA) uses the same te
hnique as (DerefA) to get the
ontents of the right-hand side, and then uses the 
ontravariant set �eld ofthe ref 
onstru
tor to store the 
ontents in the left-hand side lo
ation. See[16℄ for detailed explanations and examples.1 Note that we do not handle variable-length argument lists (varargs) 
orre
tly evenwith re
ords. Handling varargs requires 
ompiler- and ar
hite
ture-spe
i�
 knowl-edge of the layout of parameters in memory. See Se
t. 5.



A ` x : A(x); ; (VarA)A ` e : � ;CA ` &e : ref (0; �; 1);C (AddrA)A ` e : � ;CC0 = C ^ � � proj (ref ; 2; T )A ` *e : T ;C0 (DerefA)A ` e1 : �1;C1 A ` e2 : �2;C2C = C1 ^ C2 ^�1 � proj (ref ; 3; T ) ^�2 � proj (ref ; 2; T )A ` e1=e2 : �2;C (AsstA)A[x 7! ref (lx;X ;X )℄ ` e : � ;CA ` let x in e ni : � ;C (LetRefA)�f = ref (0; lam(lf;X ;Rf); 1)�x = ref (lx;X ;X )A[f 7! �f ; x 7! �x℄ ` e : � ;CC0 = C ^ � � proj (ref ; 2;Rf)A ` fun f x = e : �f ;C0 (LamA)A ` *e1 : �1;C1 A ` e2 : �2;C2C = C1 ^ C2 ^�2 � proj (ref ; 2; T ) ^�1 � proj (lam; 2; T ) ^�1 � proj (lam; 3;R)A ` e1 e2 : ref (0;R; 1);C (AppA)Figure 3. Constraint generation rules for Andersen's analysis. T and R stand for freshvariables{ The rule (LetRefA) introdu
es new variables. Sin
e this is C, all variablesare in fa
t updateable referen
es, and we allow them to be uninitialized.{ The rule (LamA) de�nes a possibly-re
ursive fun
tion f whose result is e.We lift ea
h fun
tion type to an l-type by adding a ref as in (AsstA). Forsimpli
ity the C issues of promotions from fun
tion types to pointer types,and the 
orresponding issues with * and & applied to fun
tions, are ignored.These issues are handled 
orre
tly by our implementation. Noti
e a fun
tiontype 
ontains the value of its parameter, X , not a referen
e ref (lx;X ;X ).Analogously the range of the fun
tion type is also a value.{ Fun
tion appli
ation (AppA) 
onstrains the formal parameter of a fun
tiontype to 
ontain the a
tual parameter, and makes the return type of thefun
tion a lower bound on fresh variable R. Noti
e the use of *e1 in thehypothesis of this rule, whi
h we need be
ause the fun
tion, an r-type, has



been lifted to an l-type in (LamS). The result R, whi
h is an r-type, is liftedto an l-type by adding a ref 
onstru
tor, as in (AddrA).4.2 Steensgaard's AnalysisIntuitively, Steensgaard's analysis repla
es the in
lusion 
onstraints of Ander-sen's analysis with equality 
onstraints. The type language is a small modi�
a-tion of the previous system: � ::= Px j Lx j lx� ::= X j ref (�; �; �)� ::= X j lam(�; �)with 
onstru
tor signaturesref : Set�Term�Term! Termlam : Term�Term! TermAs before, � denotes lo
ations and � denotes updateable referen
es. Following[29℄, in this system fun
tion types � are always stru
turally within ref (� � �) typesbe
ause in a system of equality 
onstraints we 
annot express a union ref (: : :)[lam(: : :). For a similar reason lo
ation sets � 
onsist solely of variables Px or Lxand are modeled as sets (see below).Ea
h program variable x is modeled with the type ref (Lx;X ;Fx), where Lxis a Set variable. For ea
h lo
ation x we add a 
onstraint lx � Lx, where lx is anullary 
onstru
tor (as in Andersen's analysis). We also asso
iate with lo
ationx another set variable Px and add the 
onstraint X � ref (Px; �; �), where �stands for a fresh unnamed variable.We 
ompute the points-to graph by �nding the least solution of the Pxvariables. For the points-to graph in Fig. 2b, the result isPa = flb; l
g Pb = fldg P
 = fldgNoti
e that b and 
 are inferred to be aliased, i.e., Lb = L
. If we had insteadused nullary 
onstru
tors dire
tly in the � �eld of ref , or had the � �eld been aTerm sort, then the 
onstraints would have been in
onsistent, sin
e lb 6= l
.In Steensgaard's formulation [29℄, the relation between lo
ations x and their
orresponding term variables Px is impli
it. While this suÆ
es for a monomor-phi
 analysis, in a polymorphi
 analysis maintaining this map is problemati
, asgeneralization, simpli�
ation, and instantiation (see Se
t. 4.3) all 
ause variablesto be renamed.Mixed 
onstraints provide an elegant solution to this problem. By expli
itlyrepresenting the mapping from lo
ations to lo
ation names in a 
onstraint for-mulation, we guarantee that any sound 
onstraint manipulations preserve thismapping.Figure 4 shows the 
onstraint generation rules for Steensgaard's analysis. Therules are similar to the rules for Andersen's analysis. Again, we brie
y dis
ussthe rules. As before, all variables are modeled as l-types.



A ` x : A(x); ; (VarS)A ` e : � ;CA ` &e : ref (�; �; �);C (AddrS)A ` e : � ;CC0 = C ^ � � ref (�; T ; �)A ` *e : T ;C0 (DerefS)A ` e1 : �1;C1 A ` e2 : �2;C2C = C1 ^ C2 ^�1 � ref (�; T1; �) ^ �2 � ref (�; T2; �) ^T2 � T1A ` e1=e2 : �2;C (AsstS)A[x 7! ref (Lx;X ;Fx)℄ ` e : � ;CA ` let x in e ni : � ;C (LetRefS)�f = ref (�; ref (Lf; Tf; lam(X ;Rf)); �)�x = ref (Lx;X ;Fx)A[f 7! �f ; x 7! �x℄ ` e : � ;CC0 = C ^ � � ref (�; T ; �) ^ T � RfA ` fun f x = e : �f ;C0 (LamS)A ` *e1 : �1;C1 A ` e2 : �2;C2C = C1 ^ C2 ^�1 � ref (�; �;F) ^ F � lam(Y;R) ^�2 � ref (�; T ; �) ^ T � YA ` e1 e2 : ref (�;R; �);C (AppS)Figure 4. Constraint generation rules for Steensgaard's analysis. T ; T1; T2;Y, and Rare fresh variables. Ea
h o

urren
e of � is a fresh, unnamed variable{ Rules (VarS) and (LetRefS) are un
hanged from Andersen's analysis.{ Rule (AddrS) adds a level of indire
tion to its operand.{ Rule (DerefS) removes a ref and makes fresh variable T 
ontain the points-toset of � .{ The assignment rule (AsstS) makes fresh variables Ti 
ontain the points-tosets of ea
h ei. (AsstS) 
onditionally equates T1 with T2, i.e., if e2 is a pointer,its points-to set is uni�ed with the points-to set of e1. Using 
onditionaluni�
ation in
reases the a

ura
y of the analysis [29℄.{ Fun
tion de�nition (LamS) behaves as in Andersen's analysis. Here, ref (Lf;Tf; lam(X ;Rf)) represents the fun
tion type and the outermost ref lifts thefun
tion type to an l-type. Again a fun
tion type 
ontains the r-types of itsparameter and return value rather than their l-types. Noti
e that the typeof the fun
tion f points to is stored in the se
ond (�) �eld of f's type �f, notin the third (�) �eld. Thus in the assignment rule (AsstS), the Ti variables
ontain both the fun
tions and memory lo
ations that the ei point to.



A ` e : � ;C ~X 62 fv(A)A ` e : 8 ~X :�nC;C (Quant)A ` e : 8 ~X :�nC0;C ~Y freshA ` e : � [ ~X 7! ~Y℄;C ^ C0[ ~X 7! ~Y℄ (Inst)Figure 5. Rules for quanti�
ation{ Fun
tion appli
ation (AppS) 
onditionally equates the formal and a
tualparameters of a fun
tion type and evaluates to the return type. Note the useof *e1 in the hypothesis of this rule, whi
h is needed sin
e the fun
tion typehas been lifted to an l-type. Intuitively, this rule expands the appli
ation(fun f x = e) e2 into the sequen
e x = e2; e.4.3 Adding PolymorphismThis se
tion des
ribes how the monomorphi
 analyses are extended to poly-morphi
 analyses. While ultimately we �nd polymorphism unpro�table for ourpoints-to analyses, this se
tion do
uments a number of pra
ti
al insights for theimplementation of polymorphism in analysis systems 
onsiderably more elabo-rate than the Hindley/Milner system.The rules in Figs. 3 and 4 tra
k the 
onstraints generated in the analysis ofea
h expression. The monomorphi
 analyses have one global 
onstraint system.In the polymorphi
 analyses, ea
h fun
tion body has a distin
t 
onstraint system.We introdu
e polymorphi
 
onstrained types of the form 8 ~X :�nC. The type8 ~X :�nC represents any type of the form � [ ~X 7! ~se ℄ under 
onstraints C[ ~X 7! ~se ℄,for any 
hoi
e of ~se. Figure 5 shows the additional rules for quanti�
ation. Thenotation fv(A) stands for the free variables of environment A. Rule (Quant)states that we may quantify a type over any variables not free in the type en-vironment. (Inst) allows us to instantiate a quanti�ed type with fresh variables,adding the 
onstraints from the quanti�ed type to the system. These rules arestandard [24℄.We restri
t quanti�
ation to non-ref types to avoid well-known problemswith mixing updateable referen
es and polymorphism [32℄. In pra
ti
al terms,this means that after analyzing a fun
tion de�nition, we 
an quantify over itsparameters and its return value. The rule (Inst) says that we may instantiate aquanti�ed type with fresh variables, adding the 
onstraints from the quanti�edtype to the environment.If used na��vely, rule (Quant) amounts to analyzing a program in whi
h allfun
tion 
alls have been inlined. In order to make the polymorphi
 analysestra
table, we perform a number of simpli�
ations to redu
e the sizes of quanti�edtypes. See [17℄ for a dis
ussion of the simpli�
ations we use.As an example of the potential bene�t of polymorphi
 points-to analysis,
onsider the following atypi
al C program:int *id(int *x) { return x; }



int main() {int a, b, *
, *d;
 = id(&a); d = id(&b);}In the notation in this paper id is de�ned as fun id x = x. In monomorphi
Andersen's analysis all inputs to id 
ow to all outputs. Thus we dis
over that 
and d both point to a and b. Polymorphi
 Andersen's analysis assigns id type8X ;Rid: lam(lid;X ;Rid)nref (lx;X ;X ) � proj (ref ; 2;Rid)Solving these 
onstraints and simplifying (see [17℄) yields8X : lam(lid;X ;X )n;In other words, id is the identity fun
tion. Be
ause this type is instantiated forea
h 
all of id, the points-to sets are 
omputed exa
tly: 
 points to a and dpoints to b.There are several important observations about the type system. First, fun
-tion pointers do not have polymorphi
 types. Consider the following example:int *f(...) { ... }int foo(int *(*g)()) { x = g(...); y = g(...); z = f(...); }int main() { foo(f); }Within the body of foo, the type of g appears in the environment (with amonomorphi
 type), so variables in the type of g 
annot be quanti�ed. Hen
eboth 
alls to g use the same instan
e of f's type. The 
all dire
tly through f 
anuse a polymorphi
 type for f, and hen
e is to a fresh instan
e.Se
ond, we do not allow the types of mutually re
ursive fun
tions to bepolymorphi
 within the re
ursive de�nition. Thus we analyze sets of mutuallyre
ursive fun
tions monomorphi
ally and then generalize the types afterwards.Finally, we require that fun
tion de�nitions be analyzed before fun
tion uses.We formally state this requirement using the following de�nition:De�nition 1. The fun
tion dependen
e graph (FDG) of a program is a graphG = (V;E) with verti
es V and edges E. V is the set of all fun
tions in the pro-gram, and there is an edge in E from f to g i� fun
tion f 
ontains an o

urren
eof the name of g.A fun
tion's su

essors in the FDG for a program must be analyzed before thefun
tion itself. Note that the FDG is trivial to 
ompute from the program text.Figure 6 shows the algorithm for analyzing a program polymorphi
ally. Ea
hstrongly-
onne
ted 
omponent of the FDG is visited in �nal depth-�rst order.We analyze ea
h mutually-re
ursive 
omponent monomorphi
ally and then applyquanti�
ation. We merge the simpli�ed system C 0 into the top-level 
onstraintsystem Glob , repla
ing Glob by Glob ^ C 0. Noti
e that we do not require a 
allgraph for the analysis, but only the FDG, whi
h is stati
ally 
omputable.



1. Make a fresh global 
onstraint system Glob2. Constru
t the fun
tion dependen
e graph G3. For ea
h non-root strongly-
onne
ted 
omponent S of G in �nal depth-�rst order3a. Make a fresh 
onstraint system C3b. Analyze ea
h f 2 S monomorphi
ally in C3
. Quantify ea
h f 2 S in C, applying simpli�
ations3d. Compute C0 = C simpli�ed and merge C0 into Glob4. Analyze the root SCC in GlobFigure 6. Algorithm 1: Bottom-up pass4.4 Re
onstru
ting Lo
al InformationAfter applying the bottom-up pass of Fig. 6, the analysis has 
orre
tly 
omputedthe points-to graph for the global variables and the lo
al variables of the out-ermost fun
tion, usually 
alled main. (There is no need to quantify the type ofmain, sin
e its type 
an only be used monomorphi
ally.) At this point we havelost alias information for lo
al variables, for two reasons. First, applying simpli-�
ations during the analysis may eliminate the points-to variables 
orrespondingto lo
al variables 
ompletely. Se
ond, whenever we apply (Inst) to instantiate thetype of a fun
tion f, we deliberately lose information about the types of f's lo
alvariables by repla
ing their points-to type variables with fresh type variables.The points-to set of a lo
al variable depends on the 
ontext(s) in whi
h fis used. To re
onstru
t points-to information for lo
als, we keep tra
k of theinstantiated types of fun
tions and use these to 
ow 
ontext information ba
kinto the original, unsimpli�ed 
onstraint system.Figure 7 gives the algorithm for re
onstru
ting the points-to information forthe lo
al variables of fun
tion f on a parti
ular path or set of paths P in theFDG. Note that Algorithm 2 requires f 2 P . The 
onstraints given are forAndersen's analysis. For Steensgaard's analysis we repla
e � 
onstraints by theappropriate � 
onstraints. (Note that for Steensgaard's analysis there may bemore pre
ise ways of 
omputing summary information. See [15℄.) In Algorithm2, the 
onstraint systems along the FDG path are merged into a fresh 
onstraintsystem, and then the types of the a
tual parameters from ea
h instan
e arelinked to the types of the formal parameters of the original type. We also linkthe return values of the original type to the return values of the instan
es.This algorithm 
omputes the points-to sets for the lo
al variables of f alongFDG path P . Be
ause this algorithm is parameterized by the FDG path, it letsthe analysis 
lient 
hoose the pre
ision of the desired information. An intera
tivesoftware engineering tool may be interested in a parti
ular use of a fun
tion(
orresponding to a single path from f to the root), while a 
ompiler, whi
hmust produ
e 
ode that works for all instan
es, would most likely be interestedin all paths from f to the root of the FDG.In our experiments (Se
t. 5), to 
ompute information for fun
tion f we 
hooseP to be all of f's an
estors in the FDG. This 
orresponds exa
tly to a points-to



1. Let C = Glob ^Vg2P Cg be a fresh system2. For ea
h fun
tion g 2 P2a. Let lam(lg;G1;R1); : : : ; lam(lg; Gn;Rn) be the instan
es of g's fun
tion type.2b. Let lam(lg;G;R) be g's original fun
tion type2
. Add 
onstraints Gi � G and R � Ri for i 2 [1::n℄.3. Compute the points-to sets for f's lo
als in C.Figure 7. Algorithm 2: Top-down pass for fun
tion f on FDG path or set of FDGpaths Panalysis in whi
h f and its an
estors are monomorphi
 and all other fun
tionsare polymorphi
. Clearly there are 
ases in whi
h this 
hoi
e will lead to a loss ofpre
ision. However, the other natural alternative, to 
ompute alias informationfor ea
h of f's instan
es separately, would yield an exponential algorithm. Bytreating f monomorphi
ally, in an FDG of size n Algorithm 2 requires 
opyingO(n2) (unsimpli�ed) 
onstraint systems.5 ExperimentsWe have implemented our analyses using BANE [1℄. BANE manages the detailsof 
onstraint representation and solving, quanti�
ation, instantiation, and sim-pli�
ation. Our analysis tool generates 
onstraints and de
ides when and whatto quantify, instantiate, and simplify.Our analysis handles almost all features of C, following [29℄. The only ex
ep-tions are that we do not 
orre
tly model expressions that rely on 
ompiler-spe
i�

hoi
es about the layout of data in memory, e.g., variable-length argument listsor absolute addressing.Our experiments 
over the four possible 
ombinations of polymorphism (poly-morphi
 or monomorphi
) and analysis pre
ision (in
lusion-based or equality-based). Table 1 lists the suite of C programs on whi
h we performed the anal-yses.2 The size of ea
h program is listed in terms of prepro
essed sour
e linesand number of AST nodes. The AST node 
ount is restri
ted to those nodes theanalysis traverses, e.g., this 
ount ignores de
larations.As with most C programs, our ben
hmark suite makes extensive use of stan-dard libraries. After analyzing ea
h program we also analyze a spe
ial �le ofhand-
oded stubs modeling the points-to e�e
ts of all library fun
tions usedby our ben
hmark suite. These stubs are not in
luded in the measurements ofpoints-to set sizes, and we only pro
ess the stubs 
orresponding to library fun
-tions that are a
tually used by the program. The stubs are modeled in the sameway that regular fun
tions are modeled. Thus they are treated monomorphi
allyin the monomorphi
 analyses, and polymorphi
ally in the polymorphi
 analyses.2 We modi�ed the tar-1.11.2 ben
hmark to use the built-in mallo
 rather than auser-de�ned mallo
 in order to model heap usage more a

urately.



Table 1. Ben
hmark programsName AST Nodes Prepro
 Lines Name AST Nodes Prepro
 Linesallroots 700 426 less-177 15179 11988di�.di�h 935 293 li 16828 5761anagram 1078 344 
ex-2.4.7 29960 9345geneti
 1412 323 pmake 31148 18138ks 2284 574 make-3.72.1 36892 15213ul 2395 441 tar-1.11.2 38795 17592ft 3027 1180 inform-5.5 38874 12957
ompress 3333 651 sgmls-1.1 44533 30941ratfor 5269 1532 s
reen-3.5.2 49292 23919
ompiler 5326 1888 
vs-1.3 51223 31130assembler 6516 2980 espresso 56938 21537ML-type
he
k 6752 2410 gawk-3.0.3 71140 28326eqntott 8117 2266 povray-2.2 87391 59689simulator 10946 4216To model heap lo
ations, we generate a fresh global variable for ea
h synta
ti
o

urren
e of a mallo
-like fun
tion in a program. In 
ertain 
ases it may bebene�
ial to distinguish heap lo
ations by 
all path, though we did not performthis experiment. We model stru
tures as atomi
, i.e., every �eld of a stru
tureshares the same lo
ation. Re
ent results [33℄ suggest some eÆ
ient alternativeapproa
hes.For the polymorphi
 analyses, when we apply Algorithm 2 (Fig. 7) to 
om-pute the analysis results for fun
tion f, we 
hoose P to be the set of all pathsfrom f to the root of the FDG.5.1 Pre
isionFigures 8 and 9 graph for ea
h ben
hmark the average size of the points-to setsat the dereferen
e sites in the program. A higher average size indi
ates lowerpre
ision. Missing data points indi
ate that the analysis ex
eeded the memory
apa
ity of the ma
hine (2GB).We also measure the pre
ision of the analyses both when ea
h string is mod-eled as a distin
t lo
ation and when strings are 
ompletely ignored (modeled as0). Note the di�erent s
ales on di�erent graphs. For the purposes of this exper-iment, fun
tions are not 
ounted in points-to sets, and multi-level dereferen
esare 
ounted separately (e.g., in **x there are two dereferen
es). Array indexingon known arrays (expressions of type array) is not 
ounted as dereferen
ing.Table 2 gives the numeri
 values graphed in Figs. 8 and 9 and more detailedinformation about the distribution of points-to sets. Due to la
k of spa
e, weonly give the data for the experiments that model strings as distin
t lo
ations.See [17℄ for the data when strings are modeled as 0. For ea
h analysis style, welist the running time, the average points-to set sizes at dereferen
e sites, and
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e sites. Thebla
k bars give the results when strings are modeled; the white bars give the resultswhen strings are not modeledthe number of dereferen
e sites with points-to sets of size 1, 2, and 3 or more,plus the total number of non-empty dereferen
e sites. (Most programs have someempty dereferen
e sites be
ause of dead 
ode.) We also list the size of the largestpoints-to set.Re
all from the introdu
tion that for a given dereferen
e site, it is a theoremthat the points-to sets 
omputed by the four analyses are in the in
lusion rela-tions shown in Fig. 1. More pre
isely, there is an edge from analysis x in Fig. 1to analysis y if for ea
h expression e, the points-to set 
omputed for e by anal-ysis x 
ontains the points-to set 
omputed for e by analysis y. Two issues arisewhen interpreting the average points-to set size metri
. First, when two analy-ses are related by in
lusion the average size of points-to sets is a valid measureof pre
ision. Thus we 
an use our metri
 to 
ompare any two analyses ex
eptpolymorphi
 Steensgaard's analysis and monomorphi
 Andersen's analysis.For these two analyses there is no dire
t in
lusion relationship. For a givenexpression e, if eS is the points-to set 
omputed by polymorphi
 Steensgaard'sanalysis and eA is the points-to set 
omputed by monomorphi
 Andersen's anal-ysis, it may be that eS 6� eA and eS 6� eA. Detailed examination of the points-tosets 
omputed by polymorphi
 Steensgaard's analysis and monomorphi
 Ander-sen's analysis reveals that this does o

ur in pra
ti
e, and thus the two analyses



Table 2. Data for string modeling experiments graphed in Fig. 8. The running timesare the average of three for the monomorphi
 experiments, while the polymorphi
experiments were only performed on
e.Name Monomorphi
 Steensgaard's Polymorphi
 Steensgaard'sTime Av. Num. deref sites Up Tm Dn Tm Av. Num. deref sites(s) 1 2 3+ tot max (s) (s) 1 2 3+ tot maxallroots 0.17 2.00 0 42 0 42 2 0.27 0.29 2.00 0 42 0 42 2diff.diffh 0.23 11.25 12 1 23 36 17 0.29 0.55 2.36 14 13 9 36 5anagram 0.25 6.74 11 1 30 42 9 0.37 1.00 5.45 12 0 30 42 8geneti
 0.36 4.95 22 8 46 76 15 0.45 1.18 1.43 62 10 4 76 10ks 0.43 33.83 3 13 99 115 39 0.53 1.38 8.86 3 13 99 115 10ul 0.49 2.22 55 129 54 238 4 0.59 2.97 2.16 55 137 46 238 4ft 0.65 3.39 29 8 133 170 4 1.05 4.58 3.35 37 0 133 170 4
ompress 0.73 2.13 181 44 36 261 8 0.94 5.32 1.44 181 44 36 261 3ratfor 1.65 53.41 36 4 125 165 80 2.71 30.90 18.65 36 7 122 165 62
ompiler 1.15 1.17 65 13 0 78 2 2.47 5.76 1.17 65 13 0 78 2assembler 2.54 108.03 79 31 273 383 213 5.22 58.96 2.98 223 36 124 383 120ML-type
he
k 2.92 88.41 28 0 285 313 97 3.92 60.87 70.33 28 27 258 313 85eqntott 2.70 27.82 68 110 436 614 42 3.45 54.17 6.17 76 133 405 614 11simulator 3.78 150.11 24 13 259 296 223 5.70 118.20 33.71 105 5 186 296 89less-177 5.66 185.55 69 13 490 572 219 18.28 321.89 114.13 80 14 478 572 173li 18.67 643.88 8 0 933 941 657 33.33 695.71 629.01 8 0 933 941 644flex-2.4.7 64.33 1431.68 13 0 1613 1626 1445 22.09 818.25 43.83 15 2 1609 1626 1226pmake 20.98 556.19 40 2 2501 2543 570 373.97 4416.16 151.69 100 9 2434 2543 218make-3.72.1 40.05 863.25 90 222 3170 3482 975 265.43 1045.70 556.94 311 158 3013 3482 666tar-1.11.2 26.10 597.13 87 70 2031 2188 656 23.16 776.65 356.20 183 114 1888 2185 434inform-5.5 47.81 1618.62 21 0 1268 1289 1648 2601.61 67608.52 408.47 28 0 1261 1289 601sgmls-1.1 69.70 987.71 96 11 2382 2489 1046 126.08 3961.22 749.20 123 15 2351 2489 867s
reen-3.5.2 64.79 1093.00 27 9 4915 4951 1110 65.37 1991.28 656.86 112 36 4803 4951 768
vs-1.3 47.42 894.44 97 680 2276 3053 1242 124.80 2949.33 100.18 1159 141 1753 3053 367espresso 34.40 391.59 101 530 5479 6110 456 104.65 3368.75 86.78 1238 595 4277 6110 171gawk-3.0.3 78.30 927.57 139 50 4930 5119 966 | | | | | | | |povray-2.2 64.72 515.85 761 407 8044 9212 618 111.38 6606.45 299.41 1027 659 7526 9212 434Name Monomorphi
 Andersen's Polymorphi
 Andersen'sTime Av. Num. deref sites Up Tm Dn Tm Av. Num. deref sites(s) 1 2 3+ tot max (s) (s) 1 2 3+ tot maxallroots 0.18 1.57 18 24 0 42 2 0.14 0.22 1.57 18 24 0 42 2diff.diffh 0.18 1.56 25 2 9 36 3 0.21 0.49 1.56 25 2 9 36 3anagram 0.24 1.10 38 4 0 42 2 0.16 0.72 1.10 38 4 0 42 2geneti
 0.22 1.43 62 10 4 76 10 0.21 0.76 1.43 62 10 4 76 10ks 0.37 3.58 9 22 84 115 5 0.33 0.98 3.58 9 22 84 115 5ul 0.24 1.61 184 8 46 238 4 0.23 0.91 1.61 184 8 46 238 4ft 0.42 2.12 75 0 95 170 3 0.56 2.25 2.12 75 0 95 170 3
ompress 0.34 1.18 215 46 0 261 2 0.41 1.42 1.18 215 46 0 261 2ratfor 0.63 6.27 56 9 100 165 47 1.22 5.99 6.27 56 9 100 165 47
ompiler 0.57 1.17 65 13 0 78 2 0.96 5.07 1.17 65 13 0 78 2assembler 1.07 2.87 225 36 122 383 120 3.02 80.46 2.87 225 36 122 383 120ML-type
he
k 0.99 45.87 101 30 182 313 78 1.79 14.81 45.87 101 30 182 313 78eqntott 1.03 1.92 239 199 176 614 5 1.50 11.20 1.92 239 199 176 614 5simulator 1.35 28.53 107 10 179 296 72 2.32 51.70 27.78 107 10 179 296 71less-177 2.55 12.98 221 92 259 572 110 4.35 184.03 12.72 238 101 233 572 110li 4.44 421.23 28 0 913 941 465 189.49 9929.88 421.23 28 0 913 941 465flex-2.4.7 4.81 6.22 734 204 688 1626 1226 8.61 173.97 6.21 735 204 687 1626 1226pmake 5.11 129.16 401 98 2044 2543 175 21.38 682.71 88.64 452 98 1993 2543 144make-3.72.1 9.02 250.85 619 268 2595 3482 494 13.18 390.35 230.12 652 264 2566 3482 487tar-1.11.2 6.89 69.07 330 741 1117 2188 200 7.74 327.48 66.11 336 742 1107 2185 194inform-5.5 6.95 80.51 657 20 612 1289 227 | | | | | | | |sgmls-1.1 8.14 224.11 687 321 1481 2489 506 40.52 1121.89 205.63 703 323 1463 2489 492s
reen-3.5.2 7.45 206.48 339 39 4573 4951 241 1277.15 2028.85 195.83 342 44 4565 4951 232
vs-1.3 10.82 71.27 1281 192 1580 3053 203 | | | | | | | |espresso 12.89 101.21 1824 300 3986 6110 175 28.81 967.64 56.34 1973 304 3833 6110 152gawk-3.0.3 12.40 157.28 1177 226 3716 5119 237 22.14 763.62 148.77 1184 228 3707 5119 225povray-2.2 22.40 223.61 2474 588 6150 9212 402 169.51 5574.82 223.61 2474 588 6150 9212 402are in
omparable in our metri
. The best we 
an do is observe that monomorphi
Andersen's analysis is almost as pre
ise as polymorphi
 Andersen's analysis, andpolymorphi
 Steensgaard's analysis is less pre
ise than polymorphi
 Andersen'sanalysis.Se
ond, it is possible for a polymorphi
 analysis to determine that a monomor-phi
ally non-empty points-to set is in fa
t empty, and thus have a larger aver-age points-to set size than its monomorphi
 
ounterpart (sin
e only non-empty



points-to sets are in
luded in this average). However, we 
an eliminate this pos-sibility by 
ounting the total number of nonempty dereferen
e sites. (A polymor-phi
 analysis 
annot have more nonempty dereferen
e sites than its monomor-phi
 
ounterpart.) The data in Table 2 shows that for all ben
hmarks ex
epttar-1.11.2, the total number of non-empty dereferen
e sites is the same a
rossall analyses, and the di�eren
e between the polymorphi
 and monomorphi
 anal-yses for tar-1.11.2 is minis
ule. Therefore we know that averaging the sizes ofnon-empty dereferen
e sites is a valid measure of pre
ision.5.2 SpeedTable 2 also lists the running times for the analyses. The running times in
ludethe time to 
ompute the least model of the Px variables, i.e., to �nd the points-tosets. For the polymorphi
 analyses, we separate the running times into the timefor the bottom-up pass and the time for the top-down pass.For purposes of this experiment, whose goal is to 
ompare the pre
ision ofmonomorphi
 and polymorphi
 points-to analysis, the running times are largelyirrelevant. Thus we have made little e�ort to make the analyses eÆ
ient, andthe running times should all be taken with a grain of salt.5.3 Dis
ussionThe data presented in Figs. 8 and 9 and Table 2 shows two striking and 
onsistentresults:1. Polymorphi
 Andersen's analysis is hardly more pre
ise than monomorphi
Andersen's analysis.2. Polymorphi
 Steensgaard's analysis is mu
h more pre
ise than monomorphi
Steensgaard's analysis.The only ex
eptions to these trends are some of the smaller programs (all-roots, ul, ft, 
ompiler, li), for whi
h polymorphi
 Steensgaard's analysis isnot mu
h more pre
ise than monomorphi
 Steensgaard's analysis, and one largerprogram, espresso, for whi
h Polymorphi
 Andersen's analysis is noti
eablymore pre
ise than Monomorphi
 Andersen's analysis. Additionally, noti
e thatfor all programs ex
ept espresso, polymorphi
 Steensgaard's analysis has ahigher average points-to set size than monomorphi
 Andersen's analysis. (Re
allthat this does not ne
essarily imply stri
tly in
reased pre
ision.)To understand these results, 
onsider the following 
ode skeleton:void f() { ... h(a); ... }void g() { ... h(b); ... }void h(int *
) { ... }In Steensgaard's equality-based monomorphi
 analysis, the types of all argu-ments for all 
alls sites of a fun
tion are equated. In the example, this resultsin a = b = 
, where a is a's points-to type, b is b's points-to type, and 
 is 
's



Table 3. Potential polymorphism. The measurements in
lude library fun
tions.Name Call Sites % Void Name Call Sites % Voidallroots 55 69 less-177 1091 56di�.di�h 67 58 li 1243 37anagram 59 75 
ex-2.4.7 1205 79geneti
 79 75 pmake 1943 56ks 101 84 make-3.72.1 1955 50ul 103 74 tar-1.11.2 1586 54ft 152 70 inform-5.5 2593 72
ompress 138 73 sgmls-1.1 1614 62ratfor 306 75 s
reen-3.5.2 2632 75
ompiler 448 89 
vs-1.3 3036 55assembler 519 66 espresso 2729 51ML-type
he
k 430 31 gawk-3.0.3 2358 51eqntott 364 61 povray-2.2 3123 59simulator 677 75points-to type. In the polymorphi
 version of Steensgaard's analysis, a and b
an be distin
t. Our measurements show that separating fun
tion parameters isimportant for points-to analysis.In 
ontrast, in Andersen's monomorphi
 in
lusion-based system, the points-to types of arguments at 
all sites are potentially separated. In the example, wehave a � 
 and b � 
. However, fun
tion results are all 
on
ated (i.e., every 
allsite has the same result, the union of points-to results over all 
all sites). The fa
tthat polymorphi
 Andersen's analysis is hardly more pre
ise than monomorphi
Andersen's analysis suggests that separating fun
tion parameters is by far themost important form of polymorphism present in points-to analysis for C.Thus, we 
on
lude that polymorphism for points-to analysis is useful pri-marily for separating inputs, whi
h 
an be a
hieved very nearly as well by amonomorphi
 in
lusion-based analysis. This 
on
lusion begs the question: Whyis there so little polymorphism in points-to results available in C? Dire
tly mea-suring the polymorphism available in output side e�e
ts of C fun
tions is diÆ
ult,although we hypothesize that C fun
tions tend to side-e�e
t global variables andheap data (whi
h our analyses model as global) rather than sta
k-allo
ated data.We 
an measure the polymorphism of result types fairly dire
tly. Table 3 listsfor ea
h ben
hmark the number of 
all sites and per
entage of 
alls that o

urin void 
ontexts. These results emphasize that most C fun
tions are 
alled fortheir side e�e
ts: for 25 out of 27 ben
hmarks, at least half of all 
alls are invoid 
ontexts. Thus, there is a greatly redu
ed 
han
e that polymorphism 
anbe bene�
ial for Andersen's analysis.It is worth pointing out that the 
lient for a points-to analysis 
an also havea signi�
ant, and often negative, impa
t on the polymorphism that a
tually 
anbe exploited. In the example above, when 
omputing points-to sets for h's lo
al



variables we 
on
ate information for all of 
's 
ontexts. This summarizatione�e
tively removes mu
h of the �ne detail about the behavior of h in di�erent
alling 
ontexts. However, many appli
ations require points-to information thatis valid in every 
alling 
ontext. In addition, if we attempt to distinguish all 
allpaths, the analysis 
an qui
kly be
ome intra
table.6 Con
lusionWe have explored two dimensions of the design spa
e for 
ow-insensitive points-to analysis for C: polymorphi
 versus monomorphi
 and in
lusion-based versusequality-based. Our experiments show that while polymorphism is potentiallybene�
ial for equality-based points-to analysis, it does not have mu
h bene�t forin
lusion-based points-to analysis. Even though we feel that added engineeringe�ort 
an make the running times of the polymorphi
 analyses mu
h faster, thepre
ision would still be the same.Monomorphi
 Andersen's analysis 
an be made fast [30℄ and often providesfar more pre
ise results than monomorphi
 Steensgaard's analysis. Polymorphi
Steensgaard's analysis is in general mu
h less pre
ise than polymorphi
 Ander-sen's analysis, whi
h is in turn little more pre
ise than monomorphi
 Andersen'sanalysis. Additionally, as dis
ussed in Se
t. 4.3, implementing polymorphism isa 
ompli
ated and diÆ
ult task. Thus, we feel that monomorphi
 Andersen'sanalysis may be the best 
hoi
e among the four analyses.A
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