
Polymorphi
 versus Monomorphi
Flow-insensitive Points-to Analysis for CyJe�rey S. Foster1, Manuel F�ahndri
h2, and Alexander Aiken11 University of California, Berkeley, 387 Soda Hall #1776, Berkeley, CA 94720fjfoster,aikeng�
s.berkeley.edu2 Mi
rosoft Resear
h, One Mi
rosoft Way, Redmond, WA 98052maf�mi
rosoft.
omAbstra
t We
arry out an experimental analysis for two of the de-sign dimensions of
ow-insensitive points-to analysis for C: polymorphi
versus monomorphi
 and equality-based versus in
lusion-based. Holdingother analysis parameters �xed, we measure the pre
ision of the four de-sign points on a suite of ben
hmarks of up to 90,000 abstra
t syntax treenodes. Our experiments show that the bene�t of polymorphism variessigni�
antly with the underlying monomorphi
 analysis. For our equality-based analysis, adding polymorphism greatly in
reases pre
ision, whilefor our in
lusion-based analysis, adding polymorphism hardly makes anydi�eren
e. We also gain some insight into the nature of polymorphismin points-to analysis of C. In parti
ular, we �nd
onsiderable polymor-phism available in fun
tion parameters, but little or no polymorphism infun
tion results, and we show how this observation explains our results.1 Introdu
tionWhen
onstru
ting a
onstraint-based program analysis, the analysis designermust weigh the
osts and bene�ts of many possible design points. Two importanttradeo�s are:{ Is the analysis polymorphi
 or monomorphi
? A polymorphi
 analysis sepa-rates analysis information by
all site, while monomorphi
 analysis
on
atesall
all sites. A polymorphi
 analysis is more pre
ise but also more expensivethan a
orresponding monomorphi
 analysis.{ What is the underlying
onstraint relation? Possibilities in
lude equalities(solved with uni�
ation) or more pre
ise and expensive in
lusions (solvedwith dynami
 transitive
losure), among many others.Intuitively, if we want the greatest possible pre
ision, we should use a poly-morphi
 in
lusion-based analysis, while if we are mostly
on
erned with eÆ-
ien
y, we should use a monomorphi
 equality-based analysis. But how mu
hy This resear
h was supported in part by the National S
ien
e Foundation YoungInvestigator Award No. CCR-9457812, NASA Contra
t No. NAG2-1210, an NDSEGfellowship, and an equipment donation from Intel.

Monomorphi
Steensgaard'sPolymorphi
Steensgaard's Monomorphi
Andersen'sPolymorphi
Andersen's
���+ QQQsQQQs ���+Figure 1. Relation between the four analyses. There is an edge from analysis x toanalysis y if y is at least as pre
ise as x.more pre
ision does polymorphism add, and what do we lose by using equal-ity
onstraints? In this paper, we try to answer these questions for a parti
ular
onstraint-based program analysis,
ow-insensitive points-to analysis for C. Ourgoal is to
ompare the tradeo�s between the four possible
ombinations of poly-morphism/monomorphism and equality
onstraints/in
lusion
onstraints.Points-to analysis
omputes, for ea
h expression in a C program, a set ofabstra
t memory lo
ations (variables and heap) to whi
h the expression
ouldpoint. Our monomorphi
 in
lusion-based analysis (Se
t. 4.1) implements a ver-sion of Andersen's points-to analysis [4℄, and our monomorphi
 equality-basedanalysis (Se
t. 4.2) implements a version of Steensgaard's points-to analysis [29℄.To add polymorphism to Andersen's and Steensgaard's analyses (Se
t. 4.3), weuse Hindley-Milner style parametri
 polymorphism [21℄.Our analyses are designed su
h that monomorphi
 Andersen's analysis is atleast as pre
ise as monomorphi
 Steensgaard's analysis [16, 28℄, and similarlyfor the polymorphi
 versions. Given the
onstru
tion of our analyses, it is atheorem that the hierar
hy of pre
ision shown in Fig. 1 always holds. The main
ontribution of this work is the quanti�
ation of the exa
t relationship amongthese analyses. A se
ondary
ontribution of this paper is the development ofpolymorphi
 versions of Andersen's and Steensgaard's points-to analyses.Running the analyses on our suite of ben
hmarks, we �nd the following results(see Se
t. 5), where � is read \is signi�
antly less pre
ise than." In general,Monomorphi
 Steensgaard's�Polymorphi
 Steensgaard's�Polymorphi
 Andersen'sMonomorphi
 Steensgaard's�Monomorphi
 Andersen's �Polymorphi
 Andersen's

The exa
t relationships vary from ben
hmark to ben
hmark. These results arerather surprising|why should polymorphism not add mu
h pre
ision to Ander-sen's analysis but bene�t Steensgaard's analysis? While we do not have de�nitiveanswers to these questions, Se
t. 5.3 suggests some possible explanations.Noti
e from this table that monomorphi
 Andersen's analysis is approxi-mately as pre
ise as polymorphi
 Andersen's analysis, while polymorphi
 Steens-gaard's analysis is mu
h less pre
ise than polymorphi
 Andersen's analysis. Note,however, that polymorphi
 Steensgaard's analysis and monomorphi
 Andersen'sanalysis are in general in
omparable (see Se
t. 5.1). Still, given that polymorphi
analyses are mu
h more
ompli
ated to understand, reason about, and imple-ment than their monomorphi

ounterparts, these results suggest that monomor-phi
 Andersen's analysis may represent the best design
hoi
e among the fouranalyses. This may be a general prin
iple: in order to improve a program analysis,developing a more powerful monomorphi
 analysis may be preferable to adding
ontext-sensitivity, one example of whi
h is Hindley-Milner style polymorphism.Carrying out an experimental exploration of even a portion of the designspa
e for non-trivial program analyses is a painstaking task. In interpreting ourresults there are two important things to keep in mind. First, our exploration ofeven the limited design spa
e of
ow-insensitive points-to analysis for C is stillpartial|there are dimensions other than the two that we explore that may notbe orthogonal and may lead to di�erent tradeo�s. For example, it may matterhow pre
isely heap memory is modeled, how strings are modeled, whether Cstru
ts are analyzed by �eld or all �elds are summarized together, and so on.Se
tion 5 details our
hoi
es for these parameters. Also, Hindley-Milner stylepolymorphism is only one way to add
ontext-sensitivity to a points-to analy-sis, and other approa
hes (e.g., polymorphi
 re
ursion [15℄) may yield di�erenttradeo�s.Se
ond, our experiments measure the relative pre
ision of ea
h analysis. Theydo not measure the relative impa
t of ea
h analysis in a
ompiler. For example, itmay be that some points-to sets are more important than others to an optimizer,and thus in
reases in pre
ision may not always lead to better optimizations. How-ever, a more pre
ise analysis should not lead to worse optimizations than a lesspre
ise analysis. We should also point out that it is diÆ
ult to separate the bene-�t of a pointer analysis in a
ompiler from the design of the rest of the optimizer.Measures of relative pre
ision have the advantage of being independent of thespe
i�

hoi
es made in using the analysis information by a parti
ular tool.2 Related WorkAndersen's [4℄ and Steensgaard's [29℄ points-to analyses are only two
hoi
es ina vast array of possible alias analyses, among them [5, 6, 7, 8, 9, 10, 11, 15, 19,20, 27, 28, 31, 33, 34℄. As our results suggest, the bene�t of polymorphism (moregenerally,
ontext-sensitivity) may vary greatly with the parti
ular analysis.Hindley-Milner style polymorphism [21℄ has been studied extensively. Theonly dire
t appli
ations of Hindley-Milner polymorphism to C of whi
h we are

aware are the analyses in this paper, the polymorphi
 re
ursive analysis proposedin [15℄ (see below), and the La
kwit system [23℄. La
kwit, a software engineeringtool,
omputes ML-style types for C and appears to s
ale very well to largeprograms.Mossin [22℄ develops a polymorphi

ow analysis based on polymorphi
 re-
ursion and atomi
 subtyping
onstraints. Mossin's system starts with a type-annotated program and infers atomi

ow
onstraints, whereas we infer the typeand
ow annotations simultaneously and do not have an atomi
 subtyping sys-tem. [15℄ develops an eÆ
ient algorithm for both subtyping and equality-basedpolymorphi
 re
ursive
ow analyses, and shows how to
onstru
t a polymorphi
re
ursive version of Steensgaard's analysis. (In
ontrast, in this paper we useHindley-Milner style polymorphism, whi
h
an be less pre
ise.) We believe thatthe te
hniques of [15℄
an also be adapted to Andersen's analysis.Other resear
h has explored making monomorphi
 in
lusion-based analysess
alable. [14℄ des
ribes an online
y
le-elimination algorithm for simplifying in-
lusion
onstraints. [30℄ des
ribes a related optimization te
hnique, proje
tionmerging, whi
h merges multiple proje
tions of the same set variable. Our
ur-rent implementation uses both of these te
hniques, whi
h makes it possible torun the polymorphi
 in
lusion-based analysis on our larger ben
hmarks.Finally, we dis
uss a sele
tion of related analyses. Wilson and Lam [31℄ pro-pose a
ow-sensitive alias analysis that distinguishes
alls to the same fun
tionin di�erent aliasing
ontexts. Their system analyzes a fun
tion on
e for ea
haliasing pattern of its a
tual parameters. In
ontrast, we analyze ea
h fun
tiononly on
e, independently of its
ontext, by
onstru
ting types that summarizefun
tions' points-to e�e
ts in any
ontext.Ruf [26℄ studies the tradeo� between
ontext-sensitivity and
ontext-insen-sitivity for a parti
ular data
ow-style alias analysis, dis
overing that
ontext-sensitivity makes little appre
iable di�eren
e in the a

ura
y of the results. Ourresults partially agree with his. For Andersen's in
lusion-based analysis we �ndthe same trend. However, for Steensgaard's equality-based analysis, whi
h issubstantially less pre
ise than Ruf's analysis, adding polymorphism makes asigni�
ant di�eren
eEmami, Ghiya, and Hendren [11℄ propose a
ow-sensitive,
ontext-sensitiveanalysis. The s
alability of this analysis is unknown.Landi and Ryder [20℄ study a very pre
ise
ow-sensitive,
ontext-sensitiveanalysis. Their
ow-sensitive system has diÆ
ulty s
aling to large programs;re
ent work has fo
used on
ombined analyses that apply di�erent alias analysesto di�erent parts of a program [35℄.Chatterjee, Ryder, and Landi [6℄ propose an analysis for Java and C++ thatuses a
ow-sensitive analysis with
onditional points-to relations whose validitydepends on the aliasing and type information provided by the
ontext. Whilethe style of polymorphism used in [6℄ appears related to Hindley-Milner stylepolymorphism, the exa
t relationship is un
lear.Das [7℄ proposes a monomorphi
 alias analysis with pre
ision
lose to An-dersen's analysis but
ost
lose to Steensgaard's analysis. The e�e
t of adding

polymorphism to Das's analysis is
urrently unknown but
annot yield morepre
ision than polymorphi
 Andersen's analysis.3 ConstraintsOur analyses are formulated as non-standard type systems for C. We followthe usual approa
h for
onstraint-based program analysis: As the analyses infertypes for a program's expressions, a system of typing
onstraints is generatedon the side. The solution to the
onstraints de�nes the points-to graph of theprogram.Our analyses are implemented with the Berkeley Analysis Engine (BANE)[1℄, whi
h is a framework for
onstru
ting
onstraint-based analyses. BANE sup-ports analyses involving multiple sorts of
onstraints, two of whi
h are used byour points-to analyses. Our implementation of Andersen's analysis uses in
lusion(or set)
onstraints [2, 18℄. Our implementation of Steensgaard's analysis uses amixture of equality (or term) and in
lusion
onstraints. The rest of this se
tionprovides ba
kground on the
onstraint formalisms.Ea
h sort of
onstraint
omes equipped with a
onstraint relation. The rela-tion between set expressions is �, and the relation between term expressions is=. For our purposes, set expressions se
onsist of set variables X ;Y ; : : : from afamily of variables Vars (
aligraphi
 text denotes variables), terms
onstru
tedfrom n-ary
onstru
tors
 2 Con , a spe
ial form proj (
; i; se), an empty set 0,and a universal set 1.se ::= X j
(se1; : : : ; sen) j proj (
; i; se) j 0 j 1Similarly, term expressions are of the formte ::= X j
(te1; : : : ; ten) j 0Here 0 represents a spe
ial, distinguished nullary
onstru
tor.Ea
h
onstru
tor
 is given a signature S
 spe
ifying the arity, varian
e, andsort of
. If S is the set of sorts (in this
ase, S = fTerm;Setg), then
onstru
torsignatures are of the form
 : �1 � � � � � �arity(
) ! Swhere �i is s (
ovariant) or s (
ontravariant) for some s 2 S. Intuitively, a
on-stru
tor
 is
ovariant in an argument X if the set denoted by a term
(: : : ;X ; : : :)be
omes larger as X in
reases. Similarly, a
onstru
tor
 is
ontravariant in anargument X if the set denoted by a term
(: : : ;X ; : : :) be
omes smaller as Xin
reases. To improve readability, we mark
ontravariant arguments with over-bars.One example
onstru
tor from Andersen's analysis islam : Set�Set� Set! Set

The lam
onstru
tor models fun
tion types. The �rst (
ovariant) argument namesthe fun
tion, the se
ond (
ontravariant) argument represents the domain, andthe third (
ovariant) argument represents the range.Steensgaard's analysis uses a
onstru
torref : Set�Term�Term! Termto model lo
ations. The �rst �eld models the set of aliases of this lo
ation, andthe se
ond and third �elds model the
ontents of this lo
ation. See Se
t. 4.2 fora dis
ussion of why a set is needed for the �rst �eld. More dis
ussion of mixed
onstraints
an be found in [12, 13℄.Our system also in
ludes
onditional equality
onstraints L � R (de�ned onterms) to support Steensgaard's analysis (see Se
t. 4.2). The
onstraint L � Rholds if either L = R or L = 0 holds. Intuitively, if L is ever uni�ed with a
onstru
ted term, then the
onstraint L � R be
omes L = R. Otherwise L � Rmakes no
onstraint on R.Our language of set
onstraints has no expli
it operation to sele
t
omponentsof a
onstru
tor. Instead we use
onstraints of the formL �
(: : : ;Yi; : : :) (�)to make Yi
ontain
�i(L) if
 is
ovariant in i, and to make
�i(L)
ontain Yiif
 is
ontravariant in i. However, su
h a
onstraint is in
onsistent if L
ontainsterms whose head
onstru
tor is not
. To over
ome this limitation, we de�ne
onstraints of the form L � proj (
; i;Yi)This
onstraint has the same e�e
t as (�) on the elements of L
onstru
ted with
, and no e�e
t on the other elements of L.Solving a system of
onstraints involves
omputing an expli
it solved form ofall solutions or of a parti
ular solution. See [3, 12, 13℄ for a thorough dis
ussionof the
onstraint solver used in BANE.4 The AnalysesThis se
tion develops monomorphi
 and polymorphi
 versions of Andersen's andSteensgaard's analyses. The presentation of the monomorphi
 version of Ander-sen's analysis mostly follows [14, 30℄ and is given primarily to make the paperself
ontained.For a C program, points-to analysis
omputes a set of abstra
t memory lo
a-tions (variables and heap) to whi
h ea
h expression
ould point. Andersen's andSteensgaard's analyses
ompute a points-to graph [11℄. Graph nodes representabstra
t memory lo
ations, and there is an edge from a node x to a node y ifx may
ontain a pointer to y. Informally, the analyses begin with some initialpoints-to relationships and
lose the graph under the ruleFor an assignment e1 = e2, anything in the points-to set for e2 must alsobe in the points-to set for e1.

a = &b;a = &
;*a = &d;a b d
����1PPPPq PPPPq����1 a b,
 d- -(a) Andersen's Analysis (b) Steensgaard's AnalysisFigure 2. Example points-to graphFor Andersen's analysis, ea
h node in the points-to graph may have dire
tededges to any number of other nodes. For Steensgaard's analysis, ea
h node mayhave at most one out-edge, and graph nodes are
oales
ed if ne
essary to enfor
ethis requirement. Figure 2 shows the points-to graph for a simple C program
omputed by Andersen's analysis (a) and Steensgaard's analysis (b).4.1 Andersen's AnalysisIn Andersen's analysis, types � represent sets of abstra
t memory lo
ations andare des
ribed by the following grammar:� ::= Px j lx� ::= X j ref (�; �; �) j lam(�; � ; �)Here the
onstru
tor signatures areref : Set�Set�Set! Setlam : Set�Set� Set! SetX and Px are set variables, and lx is a
onstant (a
onstru
tor of arity 0).Contravariant arguments are marked with overbars. Note that fun
tion typeslam(� � �) are
ontravariant in the domain (se
ond argument) and
ovariant inthe range (third argument).Memory lo
ations
an be thought of as abstra
t data types with two oper-ations, one to get the value stored in the lo
ation and one to set it. Intuitively,the get and set operations have types{ get : void! X{ set : X ! voidwhere X is the type of data held in the memory lo
ation. Dereferen
ing a lo
ation
orresponds to applying the get operation, and updating a lo
ation
orrespondsto applying the set operation. Note that the type variable X appears
ovari-antly in the type of the get operation and
ontravariantly in the type of the setoperation.

Translating this intuition into a set
onstraint formulation, the lo
ation of avariable x is modeled with the type ref (lx;X ;X), where lx is a
onstant repre-senting the name of the lo
ation, the
ovariant o

urren
e of X represents theget method, and the
ontravariant o

urren
e of X (marked with an overbar)represents the set method. For
onvenien
e, we
hoose not to represent the void
omponents of the get and set methods' types.We also asso
iate with ea
h lo
ation x a set variable Px and add the
on-straints X � proj (ref ; 1;Px) and X � proj (lam ; 1;Px). This
onstrains Px to
ontain the set of abstra
t lo
ations, in
luding fun
tions, in the points-to set X .The points-to graph is then de�ned by the least solution of Px for every lo
ationx. In the set formulation, the least solution for the points-to graph shown inFig. 2a is Pa = flb; l
g Pb = fldg P
 = fldgIn addition to referen
e types we also must model fun
tion types, sin
e Callows pointers to fun
tions to be stored in memory. The type lam(lf; �1; �2)represents the fun
tion named f (every C fun
tion has a name) with argument�1 and return value �2. For simpli
ity the grammar allows only one argument. Inour implementation, arguments are modeled with an ordered re
ord f�1; : : : ; �ng[25℄.1Figure 3 shows a fragment of the type rules for the monomorphi
 versionof Andersen's analysis. Judgments are of the form A ` e : � ;C, meaning thatin typing environment A, expression e has type � under the
onstraints C. Forsimpli
ity we present only the interesting type rules. The full rules for all of C
an be found in [16℄.We brie
y dis
uss the rules. To avoid having separate rules for l- and r-values, we model all variables as l-types. Thus the type of a variable x is ourrepresentation of its lo
ation, i.e., a ref type.{ Rule (VarA) states that typings in the environment trivially hold.{ The address-of operator (AddrA) adds a level of indire
tion to its operandby adding a ref
onstru
tor. The lo
ation (�rst) and set (third) �elds of theresulting type are 0 and 1, respe
tively, be
ause &e is not itself an l-valueand
annot be updated.{ The dereferen
ing operator (DerefA) removes a ref and makes the freshvariable T a superset of the points-to set of � . Note the use of proj in
ase� also
ontains a fun
tion type.{ The assignment rule (AsstA) uses the same te
hnique as (DerefA) to get the
ontents of the right-hand side, and then uses the
ontravariant set �eld ofthe ref
onstru
tor to store the
ontents in the left-hand side lo
ation. See[16℄ for detailed explanations and examples.1 Note that we do not handle variable-length argument lists (varargs)
orre
tly evenwith re
ords. Handling varargs requires
ompiler- and ar
hite
ture-spe
i�
 knowl-edge of the layout of parameters in memory. See Se
t. 5.

A ` x : A(x); ; (VarA)A ` e : � ;CA ` &e : ref (0; �; 1);C (AddrA)A ` e : � ;CC0 = C ^ � � proj (ref ; 2; T)A ` *e : T ;C0 (DerefA)A ` e1 : �1;C1 A ` e2 : �2;C2C = C1 ^ C2 ^�1 � proj (ref ; 3; T) ^�2 � proj (ref ; 2; T)A ` e1=e2 : �2;C (AsstA)A[x 7! ref (lx;X ;X)℄ ` e : � ;CA ` let x in e ni : � ;C (LetRefA)�f = ref (0; lam(lf;X ;Rf); 1)�x = ref (lx;X ;X)A[f 7! �f ; x 7! �x℄ ` e : � ;CC0 = C ^ � � proj (ref ; 2;Rf)A ` fun f x = e : �f ;C0 (LamA)A ` *e1 : �1;C1 A ` e2 : �2;C2C = C1 ^ C2 ^�2 � proj (ref ; 2; T) ^�1 � proj (lam; 2; T) ^�1 � proj (lam; 3;R)A ` e1 e2 : ref (0;R; 1);C (AppA)Figure 3. Constraint generation rules for Andersen's analysis. T and R stand for freshvariables{ The rule (LetRefA) introdu
es new variables. Sin
e this is C, all variablesare in fa
t updateable referen
es, and we allow them to be uninitialized.{ The rule (LamA) de�nes a possibly-re
ursive fun
tion f whose result is e.We lift ea
h fun
tion type to an l-type by adding a ref as in (AsstA). Forsimpli
ity the C issues of promotions from fun
tion types to pointer types,and the
orresponding issues with * and & applied to fun
tions, are ignored.These issues are handled
orre
tly by our implementation. Noti
e a fun
tiontype
ontains the value of its parameter, X , not a referen
e ref (lx;X ;X).Analogously the range of the fun
tion type is also a value.{ Fun
tion appli
ation (AppA)
onstrains the formal parameter of a fun
tiontype to
ontain the a
tual parameter, and makes the return type of thefun
tion a lower bound on fresh variable R. Noti
e the use of *e1 in thehypothesis of this rule, whi
h we need be
ause the fun
tion, an r-type, has

been lifted to an l-type in (LamS). The result R, whi
h is an r-type, is liftedto an l-type by adding a ref
onstru
tor, as in (AddrA).4.2 Steensgaard's AnalysisIntuitively, Steensgaard's analysis repla
es the in
lusion
onstraints of Ander-sen's analysis with equality
onstraints. The type language is a small modi�
a-tion of the previous system: � ::= Px j Lx j lx� ::= X j ref (�; �; �)� ::= X j lam(�; �)with
onstru
tor signaturesref : Set�Term�Term! Termlam : Term�Term! TermAs before, � denotes lo
ations and � denotes updateable referen
es. Following[29℄, in this system fun
tion types � are always stru
turally within ref (� � �) typesbe
ause in a system of equality
onstraints we
annot express a union ref (: : :)[lam(: : :). For a similar reason lo
ation sets �
onsist solely of variables Px or Lxand are modeled as sets (see below).Ea
h program variable x is modeled with the type ref (Lx;X ;Fx), where Lxis a Set variable. For ea
h lo
ation x we add a
onstraint lx � Lx, where lx is anullary
onstru
tor (as in Andersen's analysis). We also asso
iate with lo
ationx another set variable Px and add the
onstraint X � ref (Px; �; �), where �stands for a fresh unnamed variable.We
ompute the points-to graph by �nding the least solution of the Pxvariables. For the points-to graph in Fig. 2b, the result isPa = flb; l
g Pb = fldg P
 = fldgNoti
e that b and
 are inferred to be aliased, i.e., Lb = L
. If we had insteadused nullary
onstru
tors dire
tly in the � �eld of ref , or had the � �eld been aTerm sort, then the
onstraints would have been in
onsistent, sin
e lb 6= l
.In Steensgaard's formulation [29℄, the relation between lo
ations x and their
orresponding term variables Px is impli
it. While this suÆ
es for a monomor-phi
 analysis, in a polymorphi
 analysis maintaining this map is problemati
, asgeneralization, simpli�
ation, and instantiation (see Se
t. 4.3) all
ause variablesto be renamed.Mixed
onstraints provide an elegant solution to this problem. By expli
itlyrepresenting the mapping from lo
ations to lo
ation names in a
onstraint for-mulation, we guarantee that any sound
onstraint manipulations preserve thismapping.Figure 4 shows the
onstraint generation rules for Steensgaard's analysis. Therules are similar to the rules for Andersen's analysis. Again, we brie
y dis
ussthe rules. As before, all variables are modeled as l-types.

A ` x : A(x); ; (VarS)A ` e : � ;CA ` &e : ref (�; �; �);C (AddrS)A ` e : � ;CC0 = C ^ � � ref (�; T ; �)A ` *e : T ;C0 (DerefS)A ` e1 : �1;C1 A ` e2 : �2;C2C = C1 ^ C2 ^�1 � ref (�; T1; �) ^ �2 � ref (�; T2; �) ^T2 � T1A ` e1=e2 : �2;C (AsstS)A[x 7! ref (Lx;X ;Fx)℄ ` e : � ;CA ` let x in e ni : � ;C (LetRefS)�f = ref (�; ref (Lf; Tf; lam(X ;Rf)); �)�x = ref (Lx;X ;Fx)A[f 7! �f ; x 7! �x℄ ` e : � ;CC0 = C ^ � � ref (�; T ; �) ^ T � RfA ` fun f x = e : �f ;C0 (LamS)A ` *e1 : �1;C1 A ` e2 : �2;C2C = C1 ^ C2 ^�1 � ref (�; �;F) ^ F � lam(Y;R) ^�2 � ref (�; T ; �) ^ T � YA ` e1 e2 : ref (�;R; �);C (AppS)Figure 4. Constraint generation rules for Steensgaard's analysis. T ; T1; T2;Y, and Rare fresh variables. Ea
h o

urren
e of � is a fresh, unnamed variable{ Rules (VarS) and (LetRefS) are un
hanged from Andersen's analysis.{ Rule (AddrS) adds a level of indire
tion to its operand.{ Rule (DerefS) removes a ref and makes fresh variable T
ontain the points-toset of � .{ The assignment rule (AsstS) makes fresh variables Ti
ontain the points-tosets of ea
h ei. (AsstS)
onditionally equates T1 with T2, i.e., if e2 is a pointer,its points-to set is uni�ed with the points-to set of e1. Using
onditionaluni�
ation in
reases the a

ura
y of the analysis [29℄.{ Fun
tion de�nition (LamS) behaves as in Andersen's analysis. Here, ref (Lf;Tf; lam(X ;Rf)) represents the fun
tion type and the outermost ref lifts thefun
tion type to an l-type. Again a fun
tion type
ontains the r-types of itsparameter and return value rather than their l-types. Noti
e that the typeof the fun
tion f points to is stored in the se
ond (�) �eld of f's type �f, notin the third (�) �eld. Thus in the assignment rule (AsstS), the Ti variables
ontain both the fun
tions and memory lo
ations that the ei point to.

A ` e : � ;C ~X 62 fv(A)A ` e : 8 ~X :�nC;C (Quant)A ` e : 8 ~X :�nC0;C ~Y freshA ` e : � [~X 7! ~Y℄;C ^ C0[~X 7! ~Y℄ (Inst)Figure 5. Rules for quanti�
ation{ Fun
tion appli
ation (AppS)
onditionally equates the formal and a
tualparameters of a fun
tion type and evaluates to the return type. Note the useof *e1 in the hypothesis of this rule, whi
h is needed sin
e the fun
tion typehas been lifted to an l-type. Intuitively, this rule expands the appli
ation(fun f x = e) e2 into the sequen
e x = e2; e.4.3 Adding PolymorphismThis se
tion des
ribes how the monomorphi
 analyses are extended to poly-morphi
 analyses. While ultimately we �nd polymorphism unpro�table for ourpoints-to analyses, this se
tion do
uments a number of pra
ti
al insights for theimplementation of polymorphism in analysis systems
onsiderably more elabo-rate than the Hindley/Milner system.The rules in Figs. 3 and 4 tra
k the
onstraints generated in the analysis ofea
h expression. The monomorphi
 analyses have one global
onstraint system.In the polymorphi
 analyses, ea
h fun
tion body has a distin
t
onstraint system.We introdu
e polymorphi

onstrained types of the form 8 ~X :�nC. The type8 ~X :�nC represents any type of the form � [~X 7! ~se ℄ under
onstraints C[~X 7! ~se ℄,for any
hoi
e of ~se. Figure 5 shows the additional rules for quanti�
ation. Thenotation fv(A) stands for the free variables of environment A. Rule (Quant)states that we may quantify a type over any variables not free in the type en-vironment. (Inst) allows us to instantiate a quanti�ed type with fresh variables,adding the
onstraints from the quanti�ed type to the system. These rules arestandard [24℄.We restri
t quanti�
ation to non-ref types to avoid well-known problemswith mixing updateable referen
es and polymorphism [32℄. In pra
ti
al terms,this means that after analyzing a fun
tion de�nition, we
an quantify over itsparameters and its return value. The rule (Inst) says that we may instantiate aquanti�ed type with fresh variables, adding the
onstraints from the quanti�edtype to the environment.If used na��vely, rule (Quant) amounts to analyzing a program in whi
h allfun
tion
alls have been inlined. In order to make the polymorphi
 analysestra
table, we perform a number of simpli�
ations to redu
e the sizes of quanti�edtypes. See [17℄ for a dis
ussion of the simpli�
ations we use.As an example of the potential bene�t of polymorphi
 points-to analysis,
onsider the following atypi
al C program:int *id(int *x) { return x; }

int main() {int a, b, *
, *d;
 = id(&a); d = id(&b);}In the notation in this paper id is de�ned as fun id x = x. In monomorphi
Andersen's analysis all inputs to id
ow to all outputs. Thus we dis
over that
and d both point to a and b. Polymorphi
 Andersen's analysis assigns id type8X ;Rid: lam(lid;X ;Rid)nref (lx;X ;X) � proj (ref ; 2;Rid)Solving these
onstraints and simplifying (see [17℄) yields8X : lam(lid;X ;X)n;In other words, id is the identity fun
tion. Be
ause this type is instantiated forea
h
all of id, the points-to sets are
omputed exa
tly:
 points to a and dpoints to b.There are several important observations about the type system. First, fun
-tion pointers do not have polymorphi
 types. Consider the following example:int *f(...) { ... }int foo(int *(*g)()) { x = g(...); y = g(...); z = f(...); }int main() { foo(f); }Within the body of foo, the type of g appears in the environment (with amonomorphi
 type), so variables in the type of g
annot be quanti�ed. Hen
eboth
alls to g use the same instan
e of f's type. The
all dire
tly through f
anuse a polymorphi
 type for f, and hen
e is to a fresh instan
e.Se
ond, we do not allow the types of mutually re
ursive fun
tions to bepolymorphi
 within the re
ursive de�nition. Thus we analyze sets of mutuallyre
ursive fun
tions monomorphi
ally and then generalize the types afterwards.Finally, we require that fun
tion de�nitions be analyzed before fun
tion uses.We formally state this requirement using the following de�nition:De�nition 1. The fun
tion dependen
e graph (FDG) of a program is a graphG = (V;E) with verti
es V and edges E. V is the set of all fun
tions in the pro-gram, and there is an edge in E from f to g i� fun
tion f
ontains an o

urren
eof the name of g.A fun
tion's su

essors in the FDG for a program must be analyzed before thefun
tion itself. Note that the FDG is trivial to
ompute from the program text.Figure 6 shows the algorithm for analyzing a program polymorphi
ally. Ea
hstrongly-
onne
ted
omponent of the FDG is visited in �nal depth-�rst order.We analyze ea
h mutually-re
ursive
omponent monomorphi
ally and then applyquanti�
ation. We merge the simpli�ed system C 0 into the top-level
onstraintsystem Glob , repla
ing Glob by Glob ^ C 0. Noti
e that we do not require a
allgraph for the analysis, but only the FDG, whi
h is stati
ally
omputable.

1. Make a fresh global
onstraint system Glob2. Constru
t the fun
tion dependen
e graph G3. For ea
h non-root strongly-
onne
ted
omponent S of G in �nal depth-�rst order3a. Make a fresh
onstraint system C3b. Analyze ea
h f 2 S monomorphi
ally in C3
. Quantify ea
h f 2 S in C, applying simpli�
ations3d. Compute C0 = C simpli�ed and merge C0 into Glob4. Analyze the root SCC in GlobFigure 6. Algorithm 1: Bottom-up pass4.4 Re
onstru
ting Lo
al InformationAfter applying the bottom-up pass of Fig. 6, the analysis has
orre
tly
omputedthe points-to graph for the global variables and the lo
al variables of the out-ermost fun
tion, usually
alled main. (There is no need to quantify the type ofmain, sin
e its type
an only be used monomorphi
ally.) At this point we havelost alias information for lo
al variables, for two reasons. First, applying simpli-�
ations during the analysis may eliminate the points-to variables
orrespondingto lo
al variables
ompletely. Se
ond, whenever we apply (Inst) to instantiate thetype of a fun
tion f, we deliberately lose information about the types of f's lo
alvariables by repla
ing their points-to type variables with fresh type variables.The points-to set of a lo
al variable depends on the
ontext(s) in whi
h fis used. To re
onstru
t points-to information for lo
als, we keep tra
k of theinstantiated types of fun
tions and use these to
ow
ontext information ba
kinto the original, unsimpli�ed
onstraint system.Figure 7 gives the algorithm for re
onstru
ting the points-to information forthe lo
al variables of fun
tion f on a parti
ular path or set of paths P in theFDG. Note that Algorithm 2 requires f 2 P . The
onstraints given are forAndersen's analysis. For Steensgaard's analysis we repla
e �
onstraints by theappropriate �
onstraints. (Note that for Steensgaard's analysis there may bemore pre
ise ways of
omputing summary information. See [15℄.) In Algorithm2, the
onstraint systems along the FDG path are merged into a fresh
onstraintsystem, and then the types of the a
tual parameters from ea
h instan
e arelinked to the types of the formal parameters of the original type. We also linkthe return values of the original type to the return values of the instan
es.This algorithm
omputes the points-to sets for the lo
al variables of f alongFDG path P . Be
ause this algorithm is parameterized by the FDG path, it letsthe analysis
lient
hoose the pre
ision of the desired information. An intera
tivesoftware engineering tool may be interested in a parti
ular use of a fun
tion(
orresponding to a single path from f to the root), while a
ompiler, whi
hmust produ
e
ode that works for all instan
es, would most likely be interestedin all paths from f to the root of the FDG.In our experiments (Se
t. 5), to
ompute information for fun
tion f we
hooseP to be all of f's an
estors in the FDG. This
orresponds exa
tly to a points-to

1. Let C = Glob ^Vg2P Cg be a fresh system2. For ea
h fun
tion g 2 P2a. Let lam(lg;G1;R1); : : : ; lam(lg; Gn;Rn) be the instan
es of g's fun
tion type.2b. Let lam(lg;G;R) be g's original fun
tion type2
. Add
onstraints Gi � G and R � Ri for i 2 [1::n℄.3. Compute the points-to sets for f's lo
als in C.Figure 7. Algorithm 2: Top-down pass for fun
tion f on FDG path or set of FDGpaths Panalysis in whi
h f and its an
estors are monomorphi
 and all other fun
tionsare polymorphi
. Clearly there are
ases in whi
h this
hoi
e will lead to a loss ofpre
ision. However, the other natural alternative, to
ompute alias informationfor ea
h of f's instan
es separately, would yield an exponential algorithm. Bytreating f monomorphi
ally, in an FDG of size n Algorithm 2 requires
opyingO(n2) (unsimpli�ed)
onstraint systems.5 ExperimentsWe have implemented our analyses using BANE [1℄. BANE manages the detailsof
onstraint representation and solving, quanti�
ation, instantiation, and sim-pli�
ation. Our analysis tool generates
onstraints and de
ides when and whatto quantify, instantiate, and simplify.Our analysis handles almost all features of C, following [29℄. The only ex
ep-tions are that we do not
orre
tly model expressions that rely on
ompiler-spe
i�

hoi
es about the layout of data in memory, e.g., variable-length argument listsor absolute addressing.Our experiments
over the four possible
ombinations of polymorphism (poly-morphi
 or monomorphi
) and analysis pre
ision (in
lusion-based or equality-based). Table 1 lists the suite of C programs on whi
h we performed the anal-yses.2 The size of ea
h program is listed in terms of prepro
essed sour
e linesand number of AST nodes. The AST node
ount is restri
ted to those nodes theanalysis traverses, e.g., this
ount ignores de
larations.As with most C programs, our ben
hmark suite makes extensive use of stan-dard libraries. After analyzing ea
h program we also analyze a spe
ial �le ofhand-
oded stubs modeling the points-to e�e
ts of all library fun
tions usedby our ben
hmark suite. These stubs are not in
luded in the measurements ofpoints-to set sizes, and we only pro
ess the stubs
orresponding to library fun
-tions that are a
tually used by the program. The stubs are modeled in the sameway that regular fun
tions are modeled. Thus they are treated monomorphi
allyin the monomorphi
 analyses, and polymorphi
ally in the polymorphi
 analyses.2 We modi�ed the tar-1.11.2 ben
hmark to use the built-in mallo
 rather than auser-de�ned mallo
 in order to model heap usage more a

urately.

Table 1. Ben
hmark programsName AST Nodes Prepro
 Lines Name AST Nodes Prepro
 Linesallroots 700 426 less-177 15179 11988di�.di�h 935 293 li 16828 5761anagram 1078 344
ex-2.4.7 29960 9345geneti
 1412 323 pmake 31148 18138ks 2284 574 make-3.72.1 36892 15213ul 2395 441 tar-1.11.2 38795 17592ft 3027 1180 inform-5.5 38874 12957
ompress 3333 651 sgmls-1.1 44533 30941ratfor 5269 1532 s
reen-3.5.2 49292 23919
ompiler 5326 1888
vs-1.3 51223 31130assembler 6516 2980 espresso 56938 21537ML-type
he
k 6752 2410 gawk-3.0.3 71140 28326eqntott 8117 2266 povray-2.2 87391 59689simulator 10946 4216To model heap lo
ations, we generate a fresh global variable for ea
h synta
ti
o

urren
e of a mallo
-like fun
tion in a program. In
ertain
ases it may bebene�
ial to distinguish heap lo
ations by
all path, though we did not performthis experiment. We model stru
tures as atomi
, i.e., every �eld of a stru
tureshares the same lo
ation. Re
ent results [33℄ suggest some eÆ
ient alternativeapproa
hes.For the polymorphi
 analyses, when we apply Algorithm 2 (Fig. 7) to
om-pute the analysis results for fun
tion f, we
hoose P to be the set of all pathsfrom f to the root of the FDG.5.1 Pre
isionFigures 8 and 9 graph for ea
h ben
hmark the average size of the points-to setsat the dereferen
e sites in the program. A higher average size indi
ates lowerpre
ision. Missing data points indi
ate that the analysis ex
eeded the memory
apa
ity of the ma
hine (2GB).We also measure the pre
ision of the analyses both when ea
h string is mod-eled as a distin
t lo
ation and when strings are
ompletely ignored (modeled as0). Note the di�erent s
ales on di�erent graphs. For the purposes of this exper-iment, fun
tions are not
ounted in points-to sets, and multi-level dereferen
esare
ounted separately (e.g., in **x there are two dereferen
es). Array indexingon known arrays (expressions of type array) is not
ounted as dereferen
ing.Table 2 gives the numeri
 values graphed in Figs. 8 and 9 and more detailedinformation about the distribution of points-to sets. Due to la
k of spa
e, weonly give the data for the experiments that model strings as distin
t lo
ations.See [17℄ for the data when strings are modeled as 0. For ea
h analysis style, welist the running time, the average points-to set sizes at dereferen
e sites, and

allroots

0
0.5

1
1.5

2
2.5

Mono
Ste

Poly
Ste

Mono
And

Poly
And

diff.diffh

0
2
4
6
8

10
12

Mono
Ste

Poly
Ste

Mono
And

Poly
And

anagram

0
2
4
6
8

Mono
Ste

Poly
Ste

Mono
And

Poly
And

genetic

0

2

4

6

Mono
Ste

Poly
Ste

Mono
And

Poly
And

ks

0
10
20
30
40

Mono
Ste

Poly
Ste

Mono
And

Poly
And

ul

0
0.5

1
1.5

2
2.5

Mono
Ste

Poly
Ste

Mono
And

Poly
And

ft

0

1

2

3

4

Mono
Ste

Poly
Ste

Mono
And

Poly
And

compress

0
0.5

1
1.5

2
2.5

Mono
Ste

Poly
Ste

Mono
And

Poly
And

ratfor

0
10
20
30
40
50
60

Mono
Ste

Poly
Ste

Mono
And

Poly
And

compiler

0.9
0.95

1
1.05
1.1

1.15
1.2

Mono
Ste

Poly
Ste

Mono
And

Poly
And

assembler

0
20
40
60
80

100
120

Mono
Ste

Poly
Ste

Mono
And

Poly
And

ML-typecheck

0
20
40
60
80

100

Mono
Ste

Poly
Ste

Mono
And

Poly
And

eqntott

0
5

10
15
20
25
30

Mono
Ste

Poly
Ste

Mono
And

Poly
And

simulator

0

50

100

150

200

Mono
Ste

Poly
Ste

Mono
And

Poly
And

less-177

0

50

100

150

200

Mono
Ste

Poly
Ste

Mono
And

Poly
And

li

0

200

400

600

800

Mono
Ste

Poly
Ste

Mono
And

Poly
And

flex-2.4.7

0

500

1000

1500

2000

Mono
Ste

Poly
Ste

Mono
And

Poly
And

pmake

0
100
200
300
400
500
600

Mono
Ste

Poly
Ste

Mono
And

Poly
AndFigure 8. Average points-to sizes at dereferen
e sites. The bla
k bars give the resultswhen strings are modeled; the white bars give the results when strings are not modeled

make-3.72.1

0
200
400
600
800

1000

Mono
Ste

Poly
Ste

Mono
And

Poly
And

tar-1.11.2

0

200

400

600

800

Mono
Ste

Poly
Ste

Mono
And

Poly
And

inform-5.5

0

500

1000

1500

2000

Mono
Ste

Poly
Ste

Mono
And

sgmls-1.1

0
200
400
600
800

1000
1200

Mono
Ste

Poly
Ste

Mono
And

Poly
And

screen-3.5.2

0
200
400
600
800

1000
1200

Mono
Ste

Poly
Ste

Mono
And

Poly
And

cvs-1.3

0
200
400
600
800

1000

Mono
Ste

Poly
Ste

Mono
And

espresso

0
100
200
300
400
500

Mono
Ste

Poly
Ste

Mono
And

Poly
And

gawk-3.0.3

0
200
400
600
800

1000

Mono
Ste

Mono
And

Poly
And

povray-2.2

0
100
200
300
400
500
600

Mono
Ste

Poly
Ste

Mono
And

Poly
AndFigure 9. Continuation of Fig. 8. Average points-to sizes at dereferen
e sites. Thebla
k bars give the results when strings are modeled; the white bars give the resultswhen strings are not modeledthe number of dereferen
e sites with points-to sets of size 1, 2, and 3 or more,plus the total number of non-empty dereferen
e sites. (Most programs have someempty dereferen
e sites be
ause of dead
ode.) We also list the size of the largestpoints-to set.Re
all from the introdu
tion that for a given dereferen
e site, it is a theoremthat the points-to sets
omputed by the four analyses are in the in
lusion rela-tions shown in Fig. 1. More pre
isely, there is an edge from analysis x in Fig. 1to analysis y if for ea
h expression e, the points-to set
omputed for e by anal-ysis x
ontains the points-to set
omputed for e by analysis y. Two issues arisewhen interpreting the average points-to set size metri
. First, when two analy-ses are related by in
lusion the average size of points-to sets is a valid measureof pre
ision. Thus we
an use our metri
 to
ompare any two analyses ex
eptpolymorphi
 Steensgaard's analysis and monomorphi
 Andersen's analysis.For these two analyses there is no dire
t in
lusion relationship. For a givenexpression e, if eS is the points-to set
omputed by polymorphi
 Steensgaard'sanalysis and eA is the points-to set
omputed by monomorphi
 Andersen's anal-ysis, it may be that eS 6� eA and eS 6� eA. Detailed examination of the points-tosets
omputed by polymorphi
 Steensgaard's analysis and monomorphi
 Ander-sen's analysis reveals that this does o

ur in pra
ti
e, and thus the two analyses

Table 2. Data for string modeling experiments graphed in Fig. 8. The running timesare the average of three for the monomorphi
 experiments, while the polymorphi
experiments were only performed on
e.Name Monomorphi
 Steensgaard's Polymorphi
 Steensgaard'sTime Av. Num. deref sites Up Tm Dn Tm Av. Num. deref sites(s) 1 2 3+ tot max (s) (s) 1 2 3+ tot maxallroots 0.17 2.00 0 42 0 42 2 0.27 0.29 2.00 0 42 0 42 2diff.diffh 0.23 11.25 12 1 23 36 17 0.29 0.55 2.36 14 13 9 36 5anagram 0.25 6.74 11 1 30 42 9 0.37 1.00 5.45 12 0 30 42 8geneti
 0.36 4.95 22 8 46 76 15 0.45 1.18 1.43 62 10 4 76 10ks 0.43 33.83 3 13 99 115 39 0.53 1.38 8.86 3 13 99 115 10ul 0.49 2.22 55 129 54 238 4 0.59 2.97 2.16 55 137 46 238 4ft 0.65 3.39 29 8 133 170 4 1.05 4.58 3.35 37 0 133 170 4
ompress 0.73 2.13 181 44 36 261 8 0.94 5.32 1.44 181 44 36 261 3ratfor 1.65 53.41 36 4 125 165 80 2.71 30.90 18.65 36 7 122 165 62
ompiler 1.15 1.17 65 13 0 78 2 2.47 5.76 1.17 65 13 0 78 2assembler 2.54 108.03 79 31 273 383 213 5.22 58.96 2.98 223 36 124 383 120ML-type
he
k 2.92 88.41 28 0 285 313 97 3.92 60.87 70.33 28 27 258 313 85eqntott 2.70 27.82 68 110 436 614 42 3.45 54.17 6.17 76 133 405 614 11simulator 3.78 150.11 24 13 259 296 223 5.70 118.20 33.71 105 5 186 296 89less-177 5.66 185.55 69 13 490 572 219 18.28 321.89 114.13 80 14 478 572 173li 18.67 643.88 8 0 933 941 657 33.33 695.71 629.01 8 0 933 941 644flex-2.4.7 64.33 1431.68 13 0 1613 1626 1445 22.09 818.25 43.83 15 2 1609 1626 1226pmake 20.98 556.19 40 2 2501 2543 570 373.97 4416.16 151.69 100 9 2434 2543 218make-3.72.1 40.05 863.25 90 222 3170 3482 975 265.43 1045.70 556.94 311 158 3013 3482 666tar-1.11.2 26.10 597.13 87 70 2031 2188 656 23.16 776.65 356.20 183 114 1888 2185 434inform-5.5 47.81 1618.62 21 0 1268 1289 1648 2601.61 67608.52 408.47 28 0 1261 1289 601sgmls-1.1 69.70 987.71 96 11 2382 2489 1046 126.08 3961.22 749.20 123 15 2351 2489 867s
reen-3.5.2 64.79 1093.00 27 9 4915 4951 1110 65.37 1991.28 656.86 112 36 4803 4951 768
vs-1.3 47.42 894.44 97 680 2276 3053 1242 124.80 2949.33 100.18 1159 141 1753 3053 367espresso 34.40 391.59 101 530 5479 6110 456 104.65 3368.75 86.78 1238 595 4277 6110 171gawk-3.0.3 78.30 927.57 139 50 4930 5119 966 | | | | | | | |povray-2.2 64.72 515.85 761 407 8044 9212 618 111.38 6606.45 299.41 1027 659 7526 9212 434Name Monomorphi
 Andersen's Polymorphi
 Andersen'sTime Av. Num. deref sites Up Tm Dn Tm Av. Num. deref sites(s) 1 2 3+ tot max (s) (s) 1 2 3+ tot maxallroots 0.18 1.57 18 24 0 42 2 0.14 0.22 1.57 18 24 0 42 2diff.diffh 0.18 1.56 25 2 9 36 3 0.21 0.49 1.56 25 2 9 36 3anagram 0.24 1.10 38 4 0 42 2 0.16 0.72 1.10 38 4 0 42 2geneti
 0.22 1.43 62 10 4 76 10 0.21 0.76 1.43 62 10 4 76 10ks 0.37 3.58 9 22 84 115 5 0.33 0.98 3.58 9 22 84 115 5ul 0.24 1.61 184 8 46 238 4 0.23 0.91 1.61 184 8 46 238 4ft 0.42 2.12 75 0 95 170 3 0.56 2.25 2.12 75 0 95 170 3
ompress 0.34 1.18 215 46 0 261 2 0.41 1.42 1.18 215 46 0 261 2ratfor 0.63 6.27 56 9 100 165 47 1.22 5.99 6.27 56 9 100 165 47
ompiler 0.57 1.17 65 13 0 78 2 0.96 5.07 1.17 65 13 0 78 2assembler 1.07 2.87 225 36 122 383 120 3.02 80.46 2.87 225 36 122 383 120ML-type
he
k 0.99 45.87 101 30 182 313 78 1.79 14.81 45.87 101 30 182 313 78eqntott 1.03 1.92 239 199 176 614 5 1.50 11.20 1.92 239 199 176 614 5simulator 1.35 28.53 107 10 179 296 72 2.32 51.70 27.78 107 10 179 296 71less-177 2.55 12.98 221 92 259 572 110 4.35 184.03 12.72 238 101 233 572 110li 4.44 421.23 28 0 913 941 465 189.49 9929.88 421.23 28 0 913 941 465flex-2.4.7 4.81 6.22 734 204 688 1626 1226 8.61 173.97 6.21 735 204 687 1626 1226pmake 5.11 129.16 401 98 2044 2543 175 21.38 682.71 88.64 452 98 1993 2543 144make-3.72.1 9.02 250.85 619 268 2595 3482 494 13.18 390.35 230.12 652 264 2566 3482 487tar-1.11.2 6.89 69.07 330 741 1117 2188 200 7.74 327.48 66.11 336 742 1107 2185 194inform-5.5 6.95 80.51 657 20 612 1289 227 | | | | | | | |sgmls-1.1 8.14 224.11 687 321 1481 2489 506 40.52 1121.89 205.63 703 323 1463 2489 492s
reen-3.5.2 7.45 206.48 339 39 4573 4951 241 1277.15 2028.85 195.83 342 44 4565 4951 232
vs-1.3 10.82 71.27 1281 192 1580 3053 203 | | | | | | | |espresso 12.89 101.21 1824 300 3986 6110 175 28.81 967.64 56.34 1973 304 3833 6110 152gawk-3.0.3 12.40 157.28 1177 226 3716 5119 237 22.14 763.62 148.77 1184 228 3707 5119 225povray-2.2 22.40 223.61 2474 588 6150 9212 402 169.51 5574.82 223.61 2474 588 6150 9212 402are in
omparable in our metri
. The best we
an do is observe that monomorphi
Andersen's analysis is almost as pre
ise as polymorphi
 Andersen's analysis, andpolymorphi
 Steensgaard's analysis is less pre
ise than polymorphi
 Andersen'sanalysis.Se
ond, it is possible for a polymorphi
 analysis to determine that a monomor-phi
ally non-empty points-to set is in fa
t empty, and thus have a larger aver-age points-to set size than its monomorphi

ounterpart (sin
e only non-empty

points-to sets are in
luded in this average). However, we
an eliminate this pos-sibility by
ounting the total number of nonempty dereferen
e sites. (A polymor-phi
 analysis
annot have more nonempty dereferen
e sites than its monomor-phi

ounterpart.) The data in Table 2 shows that for all ben
hmarks ex
epttar-1.11.2, the total number of non-empty dereferen
e sites is the same a
rossall analyses, and the di�eren
e between the polymorphi
 and monomorphi
 anal-yses for tar-1.11.2 is minis
ule. Therefore we know that averaging the sizes ofnon-empty dereferen
e sites is a valid measure of pre
ision.5.2 SpeedTable 2 also lists the running times for the analyses. The running times in
ludethe time to
ompute the least model of the Px variables, i.e., to �nd the points-tosets. For the polymorphi
 analyses, we separate the running times into the timefor the bottom-up pass and the time for the top-down pass.For purposes of this experiment, whose goal is to
ompare the pre
ision ofmonomorphi
 and polymorphi
 points-to analysis, the running times are largelyirrelevant. Thus we have made little e�ort to make the analyses eÆ
ient, andthe running times should all be taken with a grain of salt.5.3 Dis
ussionThe data presented in Figs. 8 and 9 and Table 2 shows two striking and
onsistentresults:1. Polymorphi
 Andersen's analysis is hardly more pre
ise than monomorphi
Andersen's analysis.2. Polymorphi
 Steensgaard's analysis is mu
h more pre
ise than monomorphi
Steensgaard's analysis.The only ex
eptions to these trends are some of the smaller programs (all-roots, ul, ft,
ompiler, li), for whi
h polymorphi
 Steensgaard's analysis isnot mu
h more pre
ise than monomorphi
 Steensgaard's analysis, and one largerprogram, espresso, for whi
h Polymorphi
 Andersen's analysis is noti
eablymore pre
ise than Monomorphi
 Andersen's analysis. Additionally, noti
e thatfor all programs ex
ept espresso, polymorphi
 Steensgaard's analysis has ahigher average points-to set size than monomorphi
 Andersen's analysis. (Re
allthat this does not ne
essarily imply stri
tly in
reased pre
ision.)To understand these results,
onsider the following
ode skeleton:void f() { ... h(a); ... }void g() { ... h(b); ... }void h(int *
) { ... }In Steensgaard's equality-based monomorphi
 analysis, the types of all argu-ments for all
alls sites of a fun
tion are equated. In the example, this resultsin a = b =
, where a is a's points-to type, b is b's points-to type, and
 is
's

Table 3. Potential polymorphism. The measurements in
lude library fun
tions.Name Call Sites % Void Name Call Sites % Voidallroots 55 69 less-177 1091 56di�.di�h 67 58 li 1243 37anagram 59 75
ex-2.4.7 1205 79geneti
 79 75 pmake 1943 56ks 101 84 make-3.72.1 1955 50ul 103 74 tar-1.11.2 1586 54ft 152 70 inform-5.5 2593 72
ompress 138 73 sgmls-1.1 1614 62ratfor 306 75 s
reen-3.5.2 2632 75
ompiler 448 89
vs-1.3 3036 55assembler 519 66 espresso 2729 51ML-type
he
k 430 31 gawk-3.0.3 2358 51eqntott 364 61 povray-2.2 3123 59simulator 677 75points-to type. In the polymorphi
 version of Steensgaard's analysis, a and b
an be distin
t. Our measurements show that separating fun
tion parameters isimportant for points-to analysis.In
ontrast, in Andersen's monomorphi
 in
lusion-based system, the points-to types of arguments at
all sites are potentially separated. In the example, wehave a �
 and b �
. However, fun
tion results are all
on
ated (i.e., every
allsite has the same result, the union of points-to results over all
all sites). The fa
tthat polymorphi
 Andersen's analysis is hardly more pre
ise than monomorphi
Andersen's analysis suggests that separating fun
tion parameters is by far themost important form of polymorphism present in points-to analysis for C.Thus, we
on
lude that polymorphism for points-to analysis is useful pri-marily for separating inputs, whi
h
an be a
hieved very nearly as well by amonomorphi
 in
lusion-based analysis. This
on
lusion begs the question: Whyis there so little polymorphism in points-to results available in C? Dire
tly mea-suring the polymorphism available in output side e�e
ts of C fun
tions is diÆ
ult,although we hypothesize that C fun
tions tend to side-e�e
t global variables andheap data (whi
h our analyses model as global) rather than sta
k-allo
ated data.We
an measure the polymorphism of result types fairly dire
tly. Table 3 listsfor ea
h ben
hmark the number of
all sites and per
entage of
alls that o

urin void
ontexts. These results emphasize that most C fun
tions are
alled fortheir side e�e
ts: for 25 out of 27 ben
hmarks, at least half of all
alls are invoid
ontexts. Thus, there is a greatly redu
ed
han
e that polymorphism
anbe bene�
ial for Andersen's analysis.It is worth pointing out that the
lient for a points-to analysis
an also havea signi�
ant, and often negative, impa
t on the polymorphism that a
tually
anbe exploited. In the example above, when
omputing points-to sets for h's lo
al

variables we
on
ate information for all of
's
ontexts. This summarizatione�e
tively removes mu
h of the �ne detail about the behavior of h in di�erent
alling
ontexts. However, many appli
ations require points-to information thatis valid in every
alling
ontext. In addition, if we attempt to distinguish all
allpaths, the analysis
an qui
kly be
ome intra
table.6 Con
lusionWe have explored two dimensions of the design spa
e for
ow-insensitive points-to analysis for C: polymorphi
 versus monomorphi
 and in
lusion-based versusequality-based. Our experiments show that while polymorphism is potentiallybene�
ial for equality-based points-to analysis, it does not have mu
h bene�t forin
lusion-based points-to analysis. Even though we feel that added engineeringe�ort
an make the running times of the polymorphi
 analyses mu
h faster, thepre
ision would still be the same.Monomorphi
 Andersen's analysis
an be made fast [30℄ and often providesfar more pre
ise results than monomorphi
 Steensgaard's analysis. Polymorphi
Steensgaard's analysis is in general mu
h less pre
ise than polymorphi
 Ander-sen's analysis, whi
h is in turn little more pre
ise than monomorphi
 Andersen'sanalysis. Additionally, as dis
ussed in Se
t. 4.3, implementing polymorphism isa
ompli
ated and diÆ
ult task. Thus, we feel that monomorphi
 Andersen'sanalysis may be the best
hoi
e among the four analyses.A
knowledgements We thank the anonymous referees for their helpful
om-ments. We would also like to thank Manuvir Das for suggestions for the imple-mentation.Referen
es[1℄ A. Aiken, M. F�ahndri
h, J. S. Foster, and Z. Su. A Toolkit for Constru
tingType- and Constraint-Based Program Analyses. In X. Leroy and A. Ohori, edi-tors, Pro
eedings of the se
ond International Workshop on Types in Compilation,volume 1473 of Le
ture Notes in Computer S
ien
e, pages 78{96, Kyoto, Japan,Mar. 1998. Springer-Verlag.[2℄ A. Aiken and E. L. Wimmers. Solving Systems of Set Constraints. In Pro
eedings,Seventh Annual IEEE Symposium on Logi
 in Computer S
ien
e, pages 329{340,Santa Cruz, California, June 1992.[3℄ A. Aiken and E. L. Wimmers. Type In
lusion Constraints and Type Inferen
e.In FPCA '93 Conferen
e on Fun
tional Programming Languages and ComputerAr
hite
ture, pages 31{41, Copenhagen, Denmark, June 1993.[4℄ L. O. Andersen. Program Analysis and Spe
ialization for the C ProgrammingLanguage. PhD thesis, DIKU, Department of Computer S
ien
e, University ofCopenhagen, May 1994.[5℄ M. Burke, P. Carini, J.-D. Choi, and M. Hind. Flow-Insensitive Interpro
eduralAlias Analysis in the Presen
e of Pointers. In K. Pingali, U. Banerjee, D. Gelern-ter, A. Ni
olau, and D. Padua, editors, Pro
eedings of the Seventh Workshop on

Languages and Compilers for Parallel Computing, volume 892 of Le
ture Notes inComputer S
ien
e, pages 234{250. Springer-Verlag, 1994.[6℄ R. Chatterjee, B. G. Ryder, and W. A. Landi. Relevant Context Inferen
e. In Pro-
eedings of the 26th Annual ACM SIGPLAN-SIGACT Symposium on Prin
iplesof Programming Languages, pages 133{146, San Antonio, Texas, Jan. 1999.[7℄ M. Das. Uni�
ation-based Pointer Analysis with Dire
tional Assignments. InPro
eedings of the 2000 ACM SIGPLAN Conferen
e on Programming LanguageDesign and Implementation, Van
ouver B.C., Canada, June 2000. To appear.[8℄ S. Debray, R. Muth, and M. Weippert. Alias Analysis of Exe
utable Code. In Pro-
eedings of the 25th Annual ACM SIGPLAN-SIGACT Symposium on Prin
iplesof Programming Languages, pages 12{24, San Diego, California, Jan. 1998.[9℄ A. Deuts
h. Interpro
edural May-Alias Analysis for Pointers: Beyond k-limiting.In Pro
eedings of the 1994 ACM SIGPLAN Conferen
e on Programming LanguageDesign and Implementation, pages 230{241, Orlando, Florida, June 1994.[10℄ N. Dor, M. Rodeh, and M. Sagiv. Dete
ting Memory Errors via Stati
 PointerAnalysis. In Pro
eedings of the ACM SIGPLAN/SIGSOFT Workshop on ProgramAnalysis for Software Tools and Engineering, pages 27{34, Montreal, Canada,June 1998.[11℄ M. Emami, R. Ghiya, and L. J. Hendren. Context-Sensitive Interpro
eduralPoints-to Analysis in the Presen
e of Fun
tion Pointers. In Pro
eedings of the1994 ACM SIGPLAN Conferen
e on Programming Language Design and Imple-mentation, pages 242{256, Orlando, Florida, June 1994.[12℄ M. F�ahndri
h. BANE: A Library for S
alable Constraint-Based Program Analysis.PhD thesis, University of California, Berkeley, 1999.[13℄ M. F�ahndri
h and A. Aiken. Program Analysis using Mixed Term and Set Con-straints. In P. V. Hentenry
k, editor, Stati
 Analysis, Fourth International Sym-posium, volume 1302 of Le
ture Notes in Computer S
ien
e, pages 114{126, Paris,Fran
e, Sept. 1997. Springer-Verlag.[14℄ M. F�ahndri
h, J. S. Foster, Z. Su, and A. Aiken. Partial Online Cy
le Elimina-tion in In
lusion Constraint Graphs. In Pro
eedings of the 1998 ACM SIGPLANConferen
e on Programming Language Design and Implementation, pages 85{96,Montreal, Canada, June 1998.[15℄ M. F�ahndri
h, J. Rehof, and M. Das. S
alable Context-Sensitive Flow Analysisusing Instantiation Constraints. In Pro
eedings of the 2000 ACM SIGPLAN Con-feren
e on Programming Language Design and Implementation, Van
ouver B.C.,Canada, June 2000. To appear.[16℄ J. S. Foster, M. F�ahndri
h, and A. Aiken. Flow-Insensitive Points-to Analysiswith Term and Set Constraints. Te
hni
al Report UCB//CSD-97-964, Universityof California, Berkeley, Aug. 1997.[17℄ J. S. Foster, M. F�ahndri
h, and A. Aiken. Polymorphi
 versus Monomorphi
 Flow-insensitive Points-to Analysis for C. Te
hni
al report, University of California,Berkeley, Apr. 2000.[18℄ N. Heintze and J. Ja�ar. A De
ision Pro
edure for a Class of Set Constraints. InPro
eedings, Fifth Annual IEEE Symposium on Logi
 in Computer S
ien
e, pages42{51, Philadelphia, Pennsylvania, June 1990.[19℄ M. Hind and A. Pioli. Assessing the E�e
ts of Flow-Sensitivity on Pointer AliasAnalyses. In G. Levi, editor, Stati
 Analysis, Fifth International Symposium,volume 1503 of Le
ture Notes in Computer S
ien
e, pages 57{81, Pisa, Italy, Sept.1998. Springer-Verlag.

[20℄ W. Landi and B. G. Ryder. A Safe Approximate Algorithm for Interpro
eduralPointer Aliasing. In Pro
eedings of the 1992 ACM SIGPLAN Conferen
e on Pro-gramming Language Design and Implementation, pages 235{248, San Fran
is
o,California, June 1992.[21℄ R. Milner. A Theory of Type Polymorphism in Programming. Journal of Com-puter and System S
ien
es, 17:348{375, 1978.[22℄ C. Mossin. Flow Analysis of Typed Higher-Order Programs. PhD thesis, DIKU,Department of Computer S
ien
e, University of Copenhagen, 1996.[23℄ R. O'Callahan and D. Ja
kson. La
kwit: A Program Understanding Tool Based onType Inferen
e. In Pro
eedings of the 19th International Conferen
e on SoftwareEngineering, pages 338{348, Boston, Massa
husetts, May 1997.[24℄ M. Odersky, M. Sulzmann, and M. Wehr. Type Inferen
e with Constrained Types.In B. Pier
e, editor, Pro
eedings of the 4th International Workshop on Foundationsof Obje
t-Oriented Languages, Jan. 1997.[25℄ D. R�emy. Type
he
king re
ords and variants in a natural extension of ML. In Pro-
eedings of the 16th Annual ACM SIGPLAN-SIGACT Symposium on Prin
iplesof Programming Languages, pages 77{88, Austin, Texas, Jan. 1989.[26℄ E. Ruf. Context-Insensitive Alias Analysis Re
onsidered. In Pro
eedings of the1995 ACM SIGPLAN Conferen
e on Programming Language Design and Imple-mentation, pages 13{22, La Jolla, California, June 1995.[27℄ M. Sagiv, T. Reps, and R. Wilhelm. Parametri
 Shape Analysis via 3-ValuedLogi
. In Pro
eedings of the 26th Annual ACM SIGPLAN-SIGACT Symposiumon Prin
iples of Programming Languages, pages 105{118, San Antonio, Texas,Jan. 1999.[28℄ M. Shapiro and S. Horwitz. Fast and A

urate Flow-Insensitive Points-To Anal-ysis. In Pro
eedings of the 24th Annual ACM SIGPLAN-SIGACT Symposium onPrin
iples of Programming Languages, pages 1{14, Paris, Fran
e, Jan. 1997.[29℄ B. Steensgaard. Points-to Analysis in Almost Linear Time. In Pro
eedings of the23rd Annual ACM SIGPLAN-SIGACT Symposium on Prin
iples of ProgrammingLanguages, pages 32{41, St. Petersburg Bea
h, Florida, Jan. 1996.[30℄ Z. Su, M. F�ahndri
h, and A. Aiken. Proje
tion Merging: Redu
ing Redun-dan
ies in In
lusion Constraint Graphs. In Pro
eedings of the 27th AnnualACM SIGPLAN-SIGACT Symposium on Prin
iples of Programming Languages,Boston, Massa
husetts, Jan. 2000. To appear.[31℄ R. P. Wilson and M. S. Lam. EÆ
ient Context-Sensitive Pointer Analysis for CPrograms. In Pro
eedings of the 1995 ACM SIGPLAN Conferen
e on Program-ming Language Design and Implementation, pages 1{12, La Jolla, California, June1995.[32℄ A. K. Wright. Simple Imperative Polymorphism. In Lisp and Symboli
 Compu-tation 8, volume 4, pages 343{356, 1995.[33℄ S. H. Yong, S. Horwitz, and T. Reps. Pointer Analysis for Programs with Stru
-tures and Casting. In Pro
eedings of the 1999 ACM SIGPLAN Conferen
e on Pro-gramming Language Design and Implementation, pages 91{103, Atlanta, Georgia,May 1999.[34℄ S. Zhang, B. G. Ryder, and W. A. Landi. Program De
omposition for PointerAliasing: A Step toward Pra
ti
al Analyses. In Fourth Symposium on the Foun-dations of Software Engineering, O
t. 1996.[35℄ S. Zhang, B. G. Ryder, and W. A. Landi. Experiments with Combined Analysisfor Pointer Aliasing. In Pro
eedings of the ACM SIGPLAN/SIGSOFT Workshopon Program Analysis for Software Tools and Engineering, pages 11{18, Montreal,Canada, June 1998.

