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Abstract. Certificateless encryption (CLE) alleviates the heavy certifi-
cate management in traditional public key encryption and the key es-
crow problem in the ID-based encryption simultaneously. Current CLE
schemes assumed that the user’s secret key is absolutely secure. Unfortu-
nately, this assumption is too strong in case the CLE is deployed in the
hostile setting and the leakage of secret key is inevitable. In this paper,
we present a new concept called an certificateless key insulated encryp-
tion scheme (CL-KIE). We argue that this is an important cryptographic
primitive that can be used to achieve key-escrow free and key-exposure
resilience. We also present an efficient CL-KIE scheme based on bilin-
ear pairing. After that, the security of our scheme is proved under the
Bilinear Diffie-Hellman assumption in the random oracle model.
Certificateless encryption (CLE) alleviates the heavy certificate manage-
ment in traditional public key encryption and the key escrow problem in
the ID-based encryption simultaneously. Current CLE schemes assumed
that the user’s secret key is absolutely secure. Unfortunately, this as-
sumption is too strong in case the CLE is deployed in the hostile setting
and the leakage of the secret key is inevitable. In this paper, we present
a new concept called a certificateless key insulated encryption scheme
(CL-KIE). We argue that this is an important cryptographic primitive
that can be used to achieve key-escrow free and key-exposure resilience.
We also present an efficient CL-KIE scheme based on bilinear pairing.
After that, the security of our scheme is proved under the Bilinear Diffie-
Hellman assumption in the random oracle model.

Keywords: Bilinear Pairing, Certificateless cryptography, Key insulat-
ed

1 Introduction

1.1 Motivation and Related Work

The public-key cryptography is called asymmetric key encryption, as every user
owns a pair of keys: a public key and a private key. In 1978, Ron Rivest, Adi
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Shamir, and Leonard Adleman [14] first published the first practical public key
encryption RSA algorithm whose security is relied on practical difficulty of fac-
toring the product of two large prime number. Another widely used public key
cryptography Elgama algorithm based on the Diffie-Hellman key exchange was
described by Taher Elgamal [15] in 1985. The public key cryptosystem needs
Public Key Infrastructure(PKI) to offer the authentication and validation for
the public key. But PKI will encounter a lot of challenges on efficiency and scal-
ability for its complicated structure. In 1984, the Identity-based Encryption was
firstly proposed by Shamir [1]. In 2001, Dan Boneh and Matthew K. Franklin
[16] proposed a practical identity-based encryption system based on Weil pairing
over elliptic curves and finite fields. In IBE, the public key could be any arbi-
trary characters related to user’s identity and the private key is derived from the
identity of an entity and the master key only known by Key Generation Cen-
ter(KGC). So the certificate which is used to authenticate public key will not be
necessary. However, the key escrow problem arises that the malicious authority
can impersonate any users to get the corresponding private key. To solve the
problem of key escrow in Identity-based Encryption and guarantee the authen-
ticity of public keys without the use of the certificate in Public Key Encryption,
the Certificateless Public Key Encryption(CL-PKE) has been introduced by Al-
Riyami and Paterson [2] in 2003. In CL-PKE, the private key is separated into
two parts: one partial private key is still generated in KGC, and the secret key
is selected by the user itself. The malicious KGC only can get the partial pri-
vate key, so it can not impersonate any user to attack the system. Hence, the
CL-PKE solves the problems of key escrow. Since then, CL-PKE becomes a re-
search hotspot and several other relevant certificateless encryption schemes [4-9]
have been developed. Until then, current CL-PKE schemes assumed that the
user’s secret key is absolutely secure. However, a higher security requirement in
CL-PKE is needed, for example, the case where a adversary steals the whole
private key. The exposure of private key is a devastating disaster for the cryp-
tosystem. Key-evolving cryptosystem can alleviate the damage of key leakage.
Normally, Key-evolving cryptosystem can be categorized into three groups as
follows: forward-secure [17], key-insulated [10-13] and intrusion resilience [18].
In the key-evolving cryptosystem, the lifetime of the system is divided into N
time periods. For forward-secure scheme, the private key is updated by the user
himself during every time period without any interaction with other devices.
Even when an adversary compromise the private key at the current time peri-
od, the forward-secure scheme can also guarantee the security of the prior time
periods. In the key-insulated scheme, a user’s private key is updated by com-
municating with a physically-secure device for every time period. The private
key is composed of two parts: one part is generated by the master key and the
other is created by the helper key from the physically-secure device. Meanwhile,
the public key remains fixed during the whole periods of key updating. By this
approach, even an adversary who steals the private key in the present time
period can not get the private key in the former or later period. The private
key in the intrusion-resilient scheme also will be updated by interaction with a
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physically-secure device. The difference between the key-insulated scheme and
the intrusion-resilient scheme is that the intrusion-resilient scheme refreshes the
secret keys of the user and physically-secure device many times in one period.
So intrusion-resilient scheme remains secure even after many arbitrary compro-
mises of both user and physically-secure device, as long as the compromise are
not simultaneous. Among the above three types of key-evolving schemes, the
key-insulated scheme and the intrusion-resilient scheme can offer higher security
than the forward-secure scheme. Also, the intrusion-resilient scheme gives more
security and is less efficient compared with the key-insulated scheme. Therefore,
the key-insulated scheme is the trade-off between security and efficiency.

1.2 Contribution

In this paper ,we resolve the above problem and make the following novel contri-
butions as follows: Firstly, we present a concrete paradigm called the certificate-
less key-insulated encryption scheme(CL-KIE). To the best of our knowledge,
this is the first CL-KIE scheme up to now. We give the formal definition and se-
curity model for CL-KIE scheme. Then we construct the CL-KIE scheme based
on bilinear pairing. We also give the security proof for the CL-KIE scheme un-
der the Bilinear Diffie-Hellman assumption in the random oracle model. Finally,
our scheme with key updates can give higher security to solve the problem of
key exposure compared with the CL-PKE scheme, while sacrificing a little on
the cost of computing time. This is an attractive advantage which the standard
CL-PKE scheme does not possess.

2 Formal Definition and Security Model

In this section we first formalize the definition of the CL-KIE scheme by cooper-
ating the key-insualted scheme and the CL-PKE scheme. After that, we propose
the security model of the CL-KIE scheme.

2.1 Definition of CL-KIE

We denote the CL-KIE (Certificateless Key-Insulated Encryption) scheme, which
consists of the following algorithms:

– Setup: The algorithm is given a security parameter k, and generates the sys-
tem parameters params, master-key and master-helper-key. The system
parameters include a description of a finite message space M, a description
of a finite ciphertext space C and a randomness space R.

– SecretValExtract: The algorithm takes as input params and a identity string
IDA ∈ {0, 1}∗, and generates a random xA ∈ Zq as the secret value associ-
ated with the entity A.

– PartialKeyExtract: The algorithm takes as input params, master-key, and
a identity string IDA, and return the partial private key DA corresponding
to the entity A.
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– HelperKeyUpdate: The algorithm takes as input params, a time period i,
master-helper-key, a identity string IDA, and return the helper key HKA,i

for a time period i.
– PrivateKeyUpdate: The algorithm takes as input param, a time period i, a

helper key HKA,i, an identity string IDA, a partial private key DA and a
secret value xA, and output the private key SA,i for a time period i.

– PublicKeyExtract: The algorithm takes as input params, a secret value xA
and a identity string IDA, and output the public key PA of the entity A.

– Encrypt: The algorithm takes as input a time period i, params, an iden-
tity string IDA, a public key PA and a plaintext M ∈ M. It returns the
ciphertext C ∈ C.

– Decrypt: The algorithm takes as input a time period i, params, a private
key SA,i and a ciphertext C. It returns the corresponding plaintext M ∈M.

2.2 Security Model

In this subsection we define the security model for the CL-KIE scheme by IND-
CPA (Indistinguishability of Encyption Against Adaptive Chosen Plaintext At-
tacker) game which is conducted between a challenger S and an adversary A.
In our scheme, we define two kinds of adversaries TypeI adversary (A1) and
TypeII adversary (A2): A1 represents the external attacker who can not access
the master-key but can replace the public key for an entity with its choice; A2

represents the malicious KGC who can access the master-key. We prohibit A2

from replacing the public key since A2 can not seclect the secret value by itself.
First we give a list of oracles that a general adversary in our scheme may carry
out, then we define chosen ciphertext security of CL-KIE for two kinds of ad-
versaries respectively.

The list of oracles that a general adversary in CL-KIE may carry out is the
following:

– Partial-Private-Key-Queries: If necessary, A makes Partial-Private-
Key-Queries on the identity IDA, and S returns the partial private key
DA associated with IDA to A.

– Helper-Key-Queries:Amakes Helper-Key-Queries on the identity IDA

at a time period i, and S returns the helper key HKA,i to A.
– Secret-Value-Queries: If necessary, A makes Secret-Value-Queries on

the identity IDA, and S returns the secret value xA associated with IDA to
A.

– Public-Key-Queries:Amakes Public-Key-Queries on the identity IDA,
and S returns the helper key PA to A.

– Public-Key-Replace: If necessary, A can repeatedly make Public-Key-
Replace to set the public key PA for any value of its choice.

– Decryption-Queries: A makes Decryption-Queries for a ciphertext C
on the identity IDA at a time period i. If the recovered redundancy in M is
valid, S returns the associated plaintext M to A.
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Semantic security against an adaptive chosen ciphertext for a KI-CLPKE scheme
can be defined via the following games between two different Advesaries (A1 and
A2 ) and Challenger S:

– Chosen Plaintext Security for CL-KIE on A1

• Setup: S takes as input a security parameter k and execute the Setup
algorithm. It returns params except master-key to A1.

• Phase 1: A1 can access a sequence of oracles: Partial-Private-Key-
Queries, Helper-Key-Queries, Secret-Value-Queries, Public-Key-
Replace, Decryption-Queries. These queries may be requested adap-
tively, but restricted by the rule of adversary behavior.

• Challenge: A1 outputs two equal length plaintext M∗0 ,M
∗
1 ∈ M on

the challenge identity ID∗A at a time period i∗. The challenge S pick a
random number b ∈ {0, 1} and generate C∗ in relation to (i∗,M∗b , ID

∗).
C∗ is delivered to A1 as a target challenge.

• Phase 2: A1 continues to access a sequence of oracles as in Phase 1,
and S responds to these queries as in Phase 1.

• Guess: At the end, A1 outputs a guess b′ ∈ {0, 1}. The adversary
wins the game if b = b′. We define A′1s advantage in this game to be
Adv(A1) = 2(Pr[b = b′]− 1

2 ).
There are a few restrictions on the A1 as follows:
• A1 are not allowed to extract the partial private key for ID∗A.
• In phase 2, we insist that A1 cannot make a decryption query on the

challenge ciphertext C∗ in the relation to the identity ID∗A and the public
key P ∗A.

– Chosen Plaintext Security for CL-KIE on A2

• Setup: S takes as input a security parameter k and execute the Setup
algorithm. It returns params to A2.

• Phase 1: A2 can access a sequence of oracles: Helper-Key-Queries,
Public-Key-Queries, Decryption-Queries. These queries may be re-
quested adaptively, but restricted by the rule of adversary behavior.

• Challenge: A2 outputs two equal length plaintext M∗0 ,M
∗
1 ∈M on the

challenge identity ID∗A and a time period i∗. The challenger S pick a
random number b ∈ {0, 1}, and generate C∗ in ralation to (i∗,M∗b , ID

∗).
C∗ is delivered to A2 as a target challenge.

• Phase 2: A2 continues to access a sequence of oracles as in Phase 1,
and S responds to these queries as in Phase 1.

• Guess: At the end, A2 outputs a guess b′ ∈ {0, 1}. The adversary
wins the game if b = b′. We define A′2s advantage in this game to be
Adv(A2) = 2(Pr[b = b′]− 1

2 ).
There are a few restrictions on the A2 as follows:
• The Secret-Value-Queries is not allowed to access if the public key

for entity has been replaced.
• A2 are not allowed to replace the public key for ID∗A.
• A2 are not allowed to extract the secret value for ID∗A.
• In phase 2, we insist that A2 cannot make a decryption query on the

challenge ciphertext C∗ in the relation to the identity ID∗A and the public
key P ∗A.
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3 KI-CLPKE Scheme

3.1 Bilinear Pairing and Bilinear Diffie-Hellman(BDH) Problem

Bilinear Pairing
Let G1 denotes a cyclic additive group of order q for some large prime q, let
G2 be a cyclic multiplicative group of the same order q, We can make use of a
bilinear map:ê : G1 × G1 → G2 above these two groups which must satisfy the
following properties:

– Bilinearity: ê(aP, bQ) = ê(P,Q)ab, where P,Q ∈ G1, and a, b ∈ Z∗q .
– Non-Degeneracy: If P is the generator for G1, ê(P, P ) is the generator for
G2.

– Computability: For ∀P,Q ∈ G1, ê(P,Q) can be computed through an
efficient algorithm in a polynomial-time.

Bilinear Diffie-Hellman(BDH) Problem
BDHP is for a, b, c ∈ Zq, given P, aP, bP, cP ∈ G1, to compute abc which satisfies
ê(P,Q)abc ∈ G2.

3.2 Construction

– Setup: We can randomly select a security parameters k ∈ Z+, the Setup
algorithm works as follows:

Step1: Pick two groups (G1,+) and (G2,×) of the same prime order q
where |q| = k. Choose a generator P over G1 randomly, we can get a
bilinear map ê : G1 ×G1 → G2.
Setp2: Choose a random s ∈ Zq to compute Ppub = sP , the correspond-
ing s can be regarded as the maste-key : Mmk = s;
Choose a random w ∈ Zq to compute Phk = wP , the corresponding w
can be regarded as the master-helper-key : Mhk = w.
Setp3: For some integer n > 0,we can select three cryptographic hash
functions:
• H1 : {0, 1}n → G1.
• H2 : {0, 1}n × Z+ → G1.
• H3 : G1 ×G2 → {0, 1}n.

The system parameters params = (G1, G2, p, ê, n, P, Ppub, Php, H1, H2, H3).
The master key Mmk = s and the master helper key Mhk = w.
The message space is M = {0, 1}n, the ciphertext space is C = {0, 1}n ×
{0, 1}n, the randomness space is R = {0, 1}n.

– SecretValExtract(params, IDA): For a given identity IDA and params, the
algorithm outputs a random xA ∈ Zq as the secret value for entity A.

– PartialKeyExtrat(params,Mmk, IDA): For a given identity IDA ∈ {0, 1}∗ of
entity A, params and Mmk, the algorithm computes DA = sH1(IDA).

– HelperKeyUpdate(i, IDA,Mhk, params): Given a identity string IDA and a
time period i ∈ {0, . . . , n−1}, the helper generates a helper key HKA,i which
can help the private key to be updated at the time period i ∈ {0, . . . , n−1}:

HKA,i = wH2(IDA, i)
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– PrivateKeyExtract(i, IDA, HKA,i, params,DA, xA): Given a identity IDA,
At a time period i ∈ {0, . . . , n− 1}, the private key is generated as:

SA,i = xAH1(IDA) +DA +HKA,i

= xAH1(IDA) + sH1(IDA) + wH2(IDA, i)

the value SA,i−1 will be deleted subsequently.
– PublicKeyExtract(params, xA, IDA): Given params and xA, the algorithm

outputs PA = 〈XA, YA〉 = 〈xAP, xAsP 〉.
– Encrypt(i, params, IDA, PA,M): At a time period i ∈ {0, . . . , n − 1}, to

encrypt a plaintext M ∈ {0, 1}n, the algorithm does:
1. Check the equality ê(XA, sP ) = ê(YA, P ) holds. If not, output ⊥ and

abort encryption.
2. Select a random r ∈ Zq, U = rP .
3. Compute ξ = ê(XA, rH1(IDA))ê(Ppub, rH1(IDA))ê(Phk, rH2(IDA, i)).
4. Output the ciphertext: C = 〈i, U,M ⊕H3(U, ξ)〉.

– Decrypt(i, params, SA,i, C): Received the ciphertext C = 〈i, U,
V 〉. at the time period i ∈ {0, . . . , n−1}, the algorithm perfoms the following
steps with the Private key SA,i:
1. Compute ξ′ = ê(U, SA,i).
2. Compute M ′ = V ⊕H3(U, ξ′).
3. If the recovered redundancy in M is valid, then accept M ′ the plaintext.

4 Analysis

4.1 Security Proof

Theorem 1. Let hash functions H1, H2, H3 be random oracles. For TypeI ad-
versary in polynomial time, suppose further that there is no IND-CPA adversary
A1 that has non-negligible advangtage against the KI-CLPKE scheme. Then the
KI-CLPKE is IND-CPA secure.

Proof. We first deal with the TypeI adversary A1. For the first type adversary
A1 is external attacker who can not get the master-key, Given a BDH problem
(P, aP, bP, cP ), we can construct a challenger S to compute ê(P, P )abc by making
use of A1 as an adversary. Now, we begin to propose the concrete proof.

– Setup: Firstly, challenger S sets Ppub = aP and selects params = (G1, G2, p, ê,
n, P, Ppub, Php) then sends params to adversary A1.

– Phase 1:
• H1 queries: S keeps a list H list

1 of tuples 〈IDj , uj〉 which is initially
empty. When A1 issues a query on IDi, S responds as follows:
∗ If IDi is on H list

1 in a tuple 〈IDi, ui〉, then S responds with ui.
∗ Otherwise, S selects a random integer ui ∈ Zp and stores 〈IDi, ui〉

into the tuple list. S responds with ui.
• H2 queries: S keeps a list H list

2 of tuples 〈IDj , uj , wj〉 which is initially
empty. When A1 issues a query on IDi and ui, S responds as follows:
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∗ If IDi and ui is on H list
2 in a tuple 〈IDi, ui, wj〉, then βI responds

with wi.
∗ Otherwise, S selects a random integer wi ∈ Zp and stores 〈IDi, ui, wi〉

into the tuple list. S responds with wi.
• H3 queries: S keeps a list H list

3 of tuples 〈uj , wj , Strj〉 which is initially
empty. When A1 issues a query on ui and wi, S responds as follows:
∗ If ui and wi is on H list

3 in a tuple 〈ui, wi, Stri〉, then S responds with
Stri.

∗ Otherwise, S selects a random integer Stri ∈ {0, 1}n and stores
〈ui, wi, Stri〉 into the tuple list. S responds with Stri.

• Partial-Private-Key-Queries: S keeps a list PP list of tuples 〈IDj , DA,j〉.
On receiving a query Partial-Private-Key-Queries(IDi), S responds
to the query as follows:
∗ If IDi = ID∗, S aborts.
∗ Else, if IDi is on the list in the tuple 〈IDi, DA,i〉, then S responds

with DA,i

∗ Else, S first searches H list
1 for the tuple with IDi. If no such tuple is

found then H1(IDi) is queried. Then S compute DA,i = sH1(IDi)
and output DA,i as the answer.

• Helper-Key-Queries: S keeps a list HKlist of tuples 〈IDj , j,HKA,j〉.
On receiving a query Helper-Key-Queries(IDi, i), S responds to the
query as follows:
∗ If IDi = ID∗, S aborts.
∗ Else, if IDi and the time period i are on the list in the tuple 〈IDi, i,
HKA,i〉, then S responds with HKA,i.

∗ Else, S first searches H list
2 for the tuple with IDi and the time pe-

riod i. If no such tuple is found then H2(IDi, i) is queried. Then
S compute HKA,i = wH2(IDi, i) and then output HKA,i as the
answer.

• Secret-Value-Queries: S keeps a list SV list of tuples 〈IDj , xA,j〉. On
receiving a query Secret-Value-Queries(IDi), S responds to the query
as follows:
∗ If IDi = ID∗, S aborts.
∗ Else, if IDi and xA,i is on SV list in a tuple 〈IDi, xA,i〉, then S

responds with xA,i.
∗ Eles, S selects a random integer xA,i ∈ Zq and stores 〈IDi, xA,i〉 into

the tuple list. S responds with xA,i.
• Public-Key-Queries: S keeps a list PKlist of tuples 〈IDj , PA,j〉. On

receiving a query Public-Key-Queries(IDi), S responds to the query
as follows:
∗ If IDi is on the list in the tuple 〈IDi, PA,i〉. Then S responds with
PA,i.

∗ Otherwise S first searches Slist for the tuple with IDi. If no such
tuple is found then Secret-Value-Queries(IDi) is queried. Then S
compute XA = xA,iP, YA = xA,isP and output PA = 〈XA, YA〉 as
the answer.
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• Public-Key-Replace: Assume a query that is to replace the public key
for IDi with value 〈X ′i, Y ′i 〉. If ê(X ′i, P0) = ê(Y ′i , P ), then P ′A(〈X ′A, Y ′A〉)
is a valid public key. S replace the public key with new values 〈X ′i, Y ′i 〉.

• Decryption-Queries: On receiving a query Decryption-Queries(IDi,
Ci) where Ci = (i, Ui, Vi), S responds to the query as follows:

∗ If IDi = ID∗, S aborts.
∗ Else, S derives the private key SA,i = xAH1(IDA) + sH1(IDA) +
wH2(IDA, i), then compute ξ′i = ê(U, SA,i).

∗ Else,S first searches H list
3 for the tuple with (Ui, ξ

′
i). If no such

tuple is found then H3(Ui, ξ
′
i) is queried. Then S compute M ′ =

V
⊕
H3(Ui, ξ

′
i), and output M ′ as the answer.

– Challenge phase: A1 outputs two equal length plaintext M∗0 ,M
∗
1 ∈ M

on the challenge identity ID∗A at a time period i∗. The challenge S pick a
random number b ∈ {0, 1} and generate C∗ in relation to (i∗,M∗b , ID

∗). C∗

is delivered to A1 as a target challenge.

– Phase 2: A1 continues to access a sequence of oracles as in Phase 1, and S
responds to these queries as in Phase 1.

– Guess: At the end, A1 outputs a guess b′ ∈ {0, 1}. The adversary wins the
game if b = b′. We define A′1s advantage in this game to be Adv(A1) =
2(Pr[b = b′]− 1

2 ).

– Analysis: When the games begin, S set Ppub = aP as an instance of BDH
problem and simulate hash functions as random oracles. During the simu-
lation, S need to guess every bit in target plaintext M∗1 with a time period
i∗. S will set H1(ID∗A) = bP , H2(ID∗A, i

∗) = (h∗,i∗ P ), V ∗ = H3(U∗, ξ∗) =
H3(cP, ξ∗). In the challenge phase, S returned a simulated ciphertext C∗ =
(i∗, U∗, V ∗), which implies the parameter ξ∗ is defined as:

ξ∗ = ê(XA, rH1(ID∗A))ê(Ppub, rH1(ID∗A))ê(Phk, rH2(ID∗A, i
∗))

= ê(xArP, bP )ê(bP, acP )ê(wP, r(h∗,i∗ P ))

= ê(P, P )abcê(aP, cP )xA ê(wP, (h∗,i∗ )cP )

Above all, S can get the solution for BDP problem, i.e. ê(P, P )abc = ξ∗(ê(aP,

cP )−xA ê(wP, (h∗,i∗ )cP ))−1. Thus we have proved the security of the scheme
for the TypeI adversary through this reduction.

Theorem 2. Let hash functions H1, H2, H3 be random oracles. For TypeII ad-
versary in polynomial time, suppose further that there is no IND-CPA adversary
A2 that has non-negligible advangtage against the KI-CLPKE scheme. Then the
KI-CLPKE is IND-CPA secure.

Proof. We secondly deal with the TypeII adversary A2. For the TypeII ader-
sary is a malicious KGC attacker who can get the master-key, Given a BDH
problem (P, aP, bP, cP ), we can construct a challenger S to compute ê(P, P )a,b,c

by making use of A2 as an adversary. Now, we begin to propose the concrete
proof.



10 Libo He

– Setup: Firstly, challenger S selects params = (G1, G2, p, ê, n, P, Ppub, Php),
then sends params to adversary A2.

– Phase 1:
• H1 queries: S keeps a list H list

1 of tuples 〈IDj , uj〉 which is initially
empty. When A2 issues a query on IDi, S responds as follows:
∗ If IDi is on H list

1 in a tuple 〈IDi, ui〉, then S responds with ui.
∗ Otherwise, S selects a random integer ui ∈ Zp and stores 〈IDi, ui〉

into the tuple list. S responds with ui.
• H2 queries: S keeps a list H list

2 of tuples 〈IDj , uj , wj〉 which is initially
empty. When A2 issues a query on IDi and ui, S responds as follows:
∗ If IDi and ui is on H list

2 in a tuple 〈IDi, ui, wj〉, then S responds
with wi.

∗ Otherwise, S selects a random integer wi ∈ Zp and stores 〈IDi, ui, wi〉
into the tuple list. S responds with wi.

• H3 queries: S keeps a list H list
3 of tuples 〈uj , wj , Strj〉 which is initially

empty. When A2 issues a query on ui and wi, S responds as follows:
∗ If ui and wi is on H list

3 in a tuple 〈ui, wi, Stri〉, then S responds with
Stri.

∗ Otherwise, S selects a random integer Stri ∈ {0, 1}n and stores
〈ui, wi, Stri〉 into the tuple list. S responds with Stri.

• Helper-Key-Queries: S keeps a list HKlist of tuples 〈IDj , j,HKA,j〉.
On receiving a query Helper-Key-Queries(IDi, i), S responds to the
query as follows:
∗ If IDi = ID∗, S aborts.
∗ Else, if IDi and the time period i are on the list in the tuple 〈IDi, i,
HKA,i〉, then S responds with HKA,i.

∗ Else, S first searches H list
2 for the tuple with IDi and the time pe-

riod i. If no such tuple is found then H2(IDi, i) is queried. Then
S compute HKA,i = wH2(IDi, i) and then output HKA,i as the
answer.

• Public-Key-Queries: S keeps a list PKlist of tuples 〈IDj , PA,j〉 where
PA,j = 〈XA, YA〉. S sets XA = aP . On receiving a query Public-Key-
Queries(IDi), S responds to the query as follows:
∗ If IDi is on the list in the tuple 〈IDi, PA,i〉. Then S responds with
PA,i.

∗ Otherwise S first searches Slist for the tuple with IDi. If no such
tuple is found then Secret-Value-Queries(IDi) is queried. Then S
compute XA = xA,iP, YA = xA,isP and output PA = 〈XA, YA〉 as
the answer.

• Decryption-Queries: On receiving a query Decryption-Queries(IDi,
Ci) where Ci = (i, Ui, Vi), S responds to the query as follows:
∗ If IDi = ID∗, S aborts.
∗ Else, S derives the private key SA,i = xAH1(IDA) + sH1(IDA) +
wH2(IDA, i), then compute ξ′i = ê(U, SA,i).

∗ Else,S first searches H list
3 for the tuple with (Ui, ξ

′
i). If no such

tuple is found then H3(Ui, ξ
′
i) is queried. Then S compute M ′ =

V
⊕
H3(Ui, ξ

′
i), and output M ′ as the answer.
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– Challenge phase: AII outputs two equal length plaintext M∗0 ,M
∗
1 ∈ M

on the challenge identity ID∗A at a time period i∗. The challenge S pick a
random number b ∈ {0, 1} and generate C∗ in relation to (i∗,M∗b , ID

∗). C∗

is delivered to A2 as a target challenge.
– Phase 2: A2 continues to access a sequence of oracles as in Phase 1, and S

responds to these queries as in Phase 1.
– Guess: At the end, A2 outputs a guess b′ ∈ {0, 1}. The adversary wins the

game if b = b′. We define A′2s advantage in this game to be Adv(A2) =
2(Pr[b = b′]− 1

2 ).
– Analysis: When the games begin, S set XA = aP as an instance of BDH

problem and simulate hash functions as random oracles. During the simu-
lation, S need to guess every bit in target plaintext M∗2 with a time period
i∗. S will set H1(ID∗A) = bP , H2(ID∗A, i

∗) = (h∗,i∗ P ), V ∗ = H3(U∗, ξ∗) =
H3(cP, ξ∗). In the challenge phase, S returned a simulated ciphertext C∗ =
(i∗, U∗, V ∗), which implies the parameter ξ∗ is defined as:

ξ∗ = ê(XA, rH1(ID∗A))ê(Ppub, rH1(ID∗A))ê(Phk, rH2(ID∗A, i
∗))

= ê(aP, bcP )ê(bP, cP )sê(wP, r(h∗,i∗ P ))

= ê(P, P )abcê(bP, cP )sê(wP, (h∗,i∗ )cP )

Above all, S can get the solution for BDP problem, i.e. ê(P, P )abc = ξ∗(ê(bP,
cP )−sê(wP, (h∗,i∗ )cP ))−1. Thus we have proved the security of the scheme
for the TypeII adversary through this reduction.

4.2 Performance Comparison

We compare the major computational cost of our scheme with certificateless
public key cryptography proposed by Al-Riyami and Paterson[2] in Talbe 1.
We assume both schemes are implemented on | G1 |= 160 bits, | G2 |= 1024
bits, | p |= 160 bits and hash value = 160 bits. We denote by M the point
multiplication in G1, E the exponentiation in G2 and P the pairing computation.
The other computations are trival so we omitted them.

Table 1. Performance Comparison

CL-PKE Our schme

PartialKeyExtract M 3M

PublicKeyExtract 2M 2M

Encrypt M + P + E 4M + 3P

Decrypt P P

From Table 1, we can see that in the PublicKeyExtract and Decrypt phase
our scheme has the same computational cost as CL-PKE. However, in the Pri-
vateKeyExtract and Encypt phase our scheme is less efficient on execution time
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compared with CL-PKE. Because the private key consisting of three parts in
our scheme is more complicated than it in CL-PKE. The additional composition
of the private key in our scheme can be updated periodically, so our scheme
provides extra security capability that can alleviate the problem of private key
leakage. Therefore, this is a trade-off between efficiency and security capability.

5 Conclusion

In this paper, we proposed the CL-KIE scheme by integrating the key-insulated
security notion into the CL-PKE scheme in order to solve the private key ex-
posure problem. We formalized the definition of CL-KIE scheme and proposed
a concrete construction of the CL-KIE scheme. We also gave the IND-CCA2
security proof of our scheme under BDH problem in the random oracle model.
After that, we compared our scheme with CL-PKE scheme on efficiency and
security. Our scheme with key updated periodically can achieve key-escrow and
key-exposure resilience which CL-PKE does not possess, while sacrifcing a little
on the cost of computing time.
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