
The Complexity of Set Constraints�Alexander Aiken1, Dexter Kozen2, Moshe Vardi1, Ed Wimmers11 IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USAfaiken,vardi,wimmersg@almaden.ibm.com2 Computer Science Department, Cornell University, Ithaca, NY 14853, USAkozen@cs.cornell.eduAbstract. Set constraints are relations between sets of terms. They havebeen used extensively in various applications in program analysis and typeinference. We present several results on the computational complexity ofsolving systems of set constraints. The systems we study form a naturalcomplexity hierarchy depending on the form of the constraint language.1 IntroductionSystems of set constraints have received considerable attention as a formalism forexpressing algorithms in program analysis and type inference. Many algorithmsbased on set constraints have been proposed and implemented, but very little isknown about the computational complexity of solving systems of set constraints.In this paper we present complexity results for a natural hierarchy of decisionproblems involving set constraints.Set constraints are formal inclusions between expressions representing subsetsof T� , the set of ground terms over a �nite ranked alphabet �. A positive setconstraint is an inclusion E � F , where E and F are expressions built from aset X = fx; y; : : :g of variables ranging over subsets of T�, a constant 0 denotingthe empty set, a constant 1 denoting the set T� , the usual set-theoretic operators[(set union), \ (set intersection), and � (complement in T�), and an n-ary setconstructor f for each n-ary symbol f 2 � with semanticsf(A1; : : : ; An) = fft1 : : : tn j ti 2 Ai; 1 � i � ng :Any valuation � : X ! 2T� assigning a subset of T� to each variable extendsuniquely to a map � : fset expressionsg ! 2T� :A valuation � satis�es the constraint E � F if �(E) � �(F). A set S ofconstraints is satis�able if there is a valuation that satis�es all constraints in Ssimultaneously.An algorithm for determining the satis�ability of general systems of positiveset constraints was �rst presented in [5]. In this paper, we extend the results of� Proc. 1993 Conf. Computer Science Logic (CSL'93), Eur. Assoc. Comput. Sci. Logic,September 1993. A previous version of this paper appeared as [1].

[5] in two ways. In Section 5, we give a new characterization of the satis�abilityproblem that may be of independent interest. We show that deciding whether Sis satis�able is equivalent to deciding whether or not a certain �nite hypergraphconstructed from S has an induced subhypergraph that is closed (see Section4). This characterization is simpler than the one in [5] and has the additionaladvantage for complexity analysis that the hypergraphs can be speci�ed usingshort Boolean formulas.In Section 6, we exploit the hypergraph characterization of the satis�abilityproblem to obtain a family of complexity results for the satis�ability problem.We obtain an exhaustive hierarchy of completeness results for various complexityclasses depending on the number of elements of � of each arity. To the best of ourknowledge, these are the �rst upper and lower bound results for set constraintproblems other than the NEXPTIME -completeness result for the general prob-lem, which has been obtained independently by [6]. Our complexity results aresummarized in the following table.number of elements in � of complexity of thearity 0 arity 1 arity 2+ satis�ability problem0 0+ 0+ trivial1+ 0 0 NP-complete1+ 1 0 PSPACE -complete1+ 2+ 0 EXPTIME -complete1+ 0+ 1+ NEXPTIME -complete2 Applications and Related WorkThe greatest interest in set constraints stems from the area of program analy-sis, where set constraints have been used for a number of years in many di�erentsettings [17, 13, 15, 16, 19, 12, 3, 4]. In these applications, set constraints are gen-erated from the program text and then solved to obtain useful information aboutthe program (e.g., whether it is well-typed). Representing basic data structuressuch as lists requires binary symbols; our results show that in this general case,solving set constraints is NEXPTIME -complete. In practice, implementations ofset constraint solvers introduce restrictions or heuristics speci�c to the problemdomain to achieve better worst-case time complexity. Our results show that suchtechniques are in fact necessary to achieve more e�cient implementations.Most of the systems for program analysis cited above deal with only positiveconstraints. In [3, 4], opportunities for program optimization are identi�ed by anad hoc technique for checking the satis�ability of systems of negative set con-straints E 6 � F . The satis�ability of systems of positive and negative constraintshas been shown to be decidable [2, 10], and Stefansson [18] has recently shownthat the problem is NEXPTIME -complete, thus is the same complexity as withpositive constraints alone.Special cases of set constraints have also arisen naturally in the study of �-nite automata. An example is an algorithm for solving equations between regular2

languages with free variables [7]. In [7], no complexity analysis is given. Thereis a simple linear-time reduction of regular expressions to systems of set con-straints over unary and nullary symbols. Thus, our results show that decidingthe satis�ability of equations between regular languages with free variables is inEXPTIME .Set constraints with only nullary symbols correspond to Boolean algebrasover a �nite set of atoms. See [14] for more general results on solving negativeconstraints in arbitrary Boolean algebras.Finally, set constraints have been studied for their own sake and several al-gorithms for solving set constraints have been proposed [11, 5, 9]. Our resultsdi�er from these in that we are interested primarily in the complexity of thesatis�ability problem for set constraints.3 Set Expressions and Set ConstraintsLet � be a �nite ranked alphabet consisting of symbols f , each with an associatedarity arity(f) 2 . Symbols in � of arity 0, 1, 2, 3, 4, and n are called nullary,unary, binary, ternary, quaternary, and n-ary, respectively. Nullary elements of� are often called constants. The set of elements of � of arity n is denoted �n.The set of ground terms over � is denoted T�. This is the smallest set suchthat if t1; : : : ; tn 2 T� and f 2 �n, then ft1 : : : tn 2 T� . If X = fx; y; : : :g is aset of variables, then T�(X) denotes the set of terms over � and X, consideringthe elements of X as symbols of arity 0.Let B = ([; \; �; 0; 1) be the usual signature of naive set theory. Let � +Bdenote the signature consisting of the disjoint union of � and B. A set expressionover X is any element of T�+B(X). The following is a typical set expression:f(g(x [y);�g(x \ y)) [awhere f 2 �2, g 2 �1, a 2 �0, and x; y 2 X. Set expressions are denotedE;F; : : :.A constraint is a formal inclusion E � F , where E and F are set expressions.We might also allow equational constraints E = F , although inclusions andequations are interde�nable.We interpret set expressions over the powerset 2T� of T� . This forms analgebra of signature � + B where the Boolean operators have their usual set-theoretic interpretations and elements f 2 �n are interpreted as set functionsf(A1; : : : ; An) = fft1 : : : tn j ti 2 Ai; 1 � i � ng :A set assignment is a map � : X ! 2T� assigning a subset of T� to each vari-able in X. Any set assignment � extends uniquely to a (� + B)-homomorphism� : T�+B(X) ! 2T�by induction on the structure of the set expression in the usual way. The setassignment � satis�es the constraint E � F if �(E) � �(F). A family S of set3

constraints is satis�able if there is a set assignment that satis�es all the constraintsin S simultaneously. The satis�ability problem is to determine whether a given�nite system S of set constraints over � is satis�able.A Boolean expression over X is any element of TB(X) (i.e., a set expres-sion with no symbols from �). A truth assignment is a map u : X ! 2 where2 = f0; 1g is the two-element Boolean algebra. Any truth assignment u extendsuniquely to a B-homomorphism u : TB(X) ! 2 inductively according to therules of Boolean algebra. If X = fx1; : : : ; xmg, we use the notation B[xi := ai]to denote the truth value of the Boolean formula B under the truth assignmentxi 7! ai, 1 � i � m.3.1 Normal FormWe show in this section how to transform a given system S of set constraintsinto an equivalent system in a special normal form. This step simpli�es the proofof correspondence between set constraints and hypergraphs, because the normalform is actually quite close to the hypergraphs de�ned in Section 4. The trans-formation is linear for �xed �.1. For every subexpression fE1 : : :En of some set expression in S, where f 2 �n,let y0; y1; : : : ; yn be new variables, replace all occurrences of the subexpres-sion fE1 : : :En by y0, and add new constraints y0 = fy1 : : : yn and yi = Ei,1 � i � n. Continue until all constraints are either purely Boolean con-straints (i.e., do not contain any occurrence of f 2 �) or are of the formy0 = fy1 : : : yn where f 2 �n and y0; y1; : : : ; yn are variables. Let X =fx1; : : : ; xmg be the set of all variables occurring in S at this point.2. For each f 2 �n, introduce a new set of variablesZf = fzfij j 0 � i � n; 1 � j � mgand add the constraints zf0j = f 1 : : :1| {z }n \ xjzfij = f 1 : : :1| {z }i�1 xj 1 : : :1| {z }n�ifor all 1 � i � n and 1 � j � m.3. Each constraint xj0 = fxj1 : : :xjn (1)obtained in step 1 is equivalent to the constraintxj0 = fxj1 1 : : :1| {z }n�1 \ f1xj2 1 : : :1| {z }n�2 \ � � � \ f 1 : : :1| {z }n�1 xjn4

which in turn is equivalent to the conjunction of constraintsf 1 : : :1| {z }n \ xj0 = fxj1 1 : : :1| {z }n�1 \ f1xj2 1 : : :1| {z }n�2 \ � � � \ f 1 : : :1| {z }n�1 xjng 1 : : :1| {z }m \ xj0 = 0 ; g 6= f ; m = arity(g) :Replace the constraint (1) with the constraintszf0j0 = n\i=1 zfijizg0j0 = 0 ; g 6= f :Because of the constraints introduced in step 2, the resulting system is equiv-alent.4. At this point we have{ purely Boolean constraints formed in step 1 involving only the variablesX{ for each f 2 �, purely Boolean constraints formed in step 3 involvingonly the variables Zf{ the mixed constraints formed in step 2.Replace each purely Boolean constraint E � F involving the variables X bythe equivalent constraint �E [F = 1. Let B be the conjunction of all theleft hand sides of such constraints, and replace all these constraints in S withthe single constraint B = 1. Do the same for the purely Boolean constraintsinvolving the variables Zf to get a single constraint Cf = 1 for each f 2 �.After this translation, S contains{ a constraint B = 1, where B 2 TB(X){ for each f 2 �, a constraint Cf = 1, where Cf 2 TB(Zf){ constraints zf0j = f 1 : : :1| {z }n \ xjzfij = f 1 : : :1| {z }i�1 xj 1 : : :1| {z }n�ifor each f 2 �n and each 1 � i � n, 1 � j � m.This is the desired normal form. 5

4 HypergraphsFor our purposes, a hypergraph is a structure H = (U; Ei j i 2 I) consisting of a�nite set U of vertices and an indexed family of relations Ei of various arities onU called hyperedge relations. An element of an n-ary hyperedge relation is calledan n-ary hyperedge. In our application, the index set I is the ranked alphabet �,and for f 2 �, arity(Ef) is arity(f) + 1.If U 0 � U , the induced subhypergraph of H on U 0 is the hypergraph H0 onvertices U 0 whose hyperedge relations are the hyperedge relations of H restrictedto U 0. That is, H0 = (U 0; E0i j i 2 I) where if Ei is n-ary then E0i = Ei \ (U 0)n.An (n+1)-ary hyperedge relation E of the hypergraph H is closed if for eachn-tuple u1; : : : ; un 2 Un, there exists u0 2 U such that (u0; u1; : : : ; un) 2 E. Inthe case n = 0, this de�nition just says E \ U 6= ;. Abusing notation, we canthink of E as a function E : Un ! 2U whereE(u1; : : : ; un) = fu0 j (u0; u1; : : : ; un) 2 Eg :In this view the hyperedge relation E is closed i� E(u1; : : : ; un) 6= ; for each n-tuple u1; : : : ; un 2 Un. The hypergraph H is closed if all its hyperedge relationsare closed.The hypergraph closure problem is the problem of determining whether a givenhypergraph has a closed induced subhypergraph.Example 1. Consider the hypergraph consisting of vertices p, the �eld of integersmodulo a prime p, and a single ternary hyperedge relationE = f(a; b; ab) j a; b 2 pg :This hypergraph is not closed because there is no a 2 p such that (a; 0; 1) 2 E.However, the induced subhypergraph on the nonzero elements of p is closed,since for all b; c 2 p � f0g there exists an a 2 p � f0g such that (a; b; c) 2 E.4.1 Succinct Speci�cation of HypergraphsWe work with a particular class of hypergraphs whose vertices and hyperedgerelations are speci�ed succinctly by Boolean formulas in the following way. LetX = fx1; : : : ; xmgZf = fzfij j 0 � i � arity(f); 1 � j � mg ; f 2 �be pairwise disjoint sets of variables. Suppose we are given Boolean formulasB 2 TB(X)Cf 2 TB(Zf) ; f 2 � :These formulas determine a hypergraph H = (U; Ef j f 2 �) as follows. Thevertex set U is the set of all truth assignments u : X ! 2 satisfying B. Eachsuch truth assignment corresponds to a conjunction of literals (also denoted u)6

in which each variable in X occurs exactly once, either positively or negatively,such that u � B tautologically. The variable x occurs positively i� u(x) = 1. Weoccasionally call the elements of U atoms, because they represent atoms of thefree Boolean algebra on generators X modulo B = 1. Each Boolean expressionover X is equivalent modulo B = 1 to a disjunction of atoms.For each f 2 �n, the hyperedge relation Ef of H is de�ned to be the set ofall (n + 1)-tuples (u0; : : : ; un) 2 Un+1 such thatCf [zfij := ui(xj)] = 1 : (2)Intuitively, we think of the formula Cf as a Boolean valued mapping on (n+ 1)-tuples of truth assignments to X. To emphasize this intuition, we abbreviate theleft hand side of (2) by Cf [u0; : : : ; un]. Thus(u0; : : : ; un) 2 Ef i� Cf [u0; : : : ; un] = 1 :In general, the size of the hypergraph can be exponential in the size of itsspeci�cation.5 Set Constraints and Hypergraph ClosureIn this section we give an e�ciently computable correspondence between systemsof set constraints in normal form as described in Section 3.1 and hypergraphsspeci�ed by systems of Boolean formulas as described in Section 4.1. A system ofset constraints is satis�able i� the corresponding hypergraph has a closed inducedsubhypergraph. LetX = fx1; : : : ; xmgZf = fzfij j 0 � i � arity(f); 1 � j � mg ; f 2 �be pairwise disjoint sets of variables. The system S in normal form consisting ofconstraints B = 1 ; B 2 TB(X)Cf = 1 ; Cf 2 TB(Zf) ; f 2 �and for each f 2 �n, 1 � i � n, and 1 � j � m,zf0j = f 1 : : :1| {z }n \ xj (3)zfij = f 1 : : :1| {z }i�1 xj 1 : : :1| {z }n�i (4)corresponds to the hypergraph H speci�ed by the formulas B and Cf , f 2 �.Theorem1. The hypergraph H has a closed induced subhypergraph if and onlyif the system S of set constraints is satis�able.7

Proof. ()) Let H0 = (U 0; E0f j f 2 �) be a closed induced subhypergraph of H.De�ne � : T� ! U 0 inductively such that for all f 2 �n and t1; : : : ; tn 2 T� ,�(ft1 : : : tn) 2 E0f (�(t1); : : : ; �(tn)) :This is possible since H0 is closed. Each �(t) is a truth assignment to X satisfyingB. For each term t0 of the form ft1 : : : tn, extend �(t0) to a truth assignment toX [Zf as follows: �(t0)(zfij) = �(ti)(xj) ; zfij 2 Zf : (5)De�ne a set assignment � as follows.�(xj) = ft j �(t)(xj) = 1g�(zfij) = �(f 1 : : :1| {z }i�1 xj 1 : : :1| {z }n�i)�(zf0j) = �(f 1 : : :1| {z }n \ xj)for f 2 �n, 1 � i � n, and 1 � j � m. We show that � satis�es S.It is immediate from the de�nition of � that the constraints (3) and (4) aresatis�ed. We now show that � satis�es B = 1. For t 2 T�, let �t : 2T� ! 2 bethe characteristic function �t(A) = �1 ; if t 2 A;0 ; if t 62 A:By de�nition of �, �t(�(xj)) = 1, t 2 �(xj), �(t)(xj) = 1 (6)so �t � � and �(t) agree on X. Since both are B-homomorphisms (i.e., preserveBoolean operations), they agree on all elements of TB(X); in particular, they agreeon B. Since �(t)(B) = 1 for all t by de�nition of U , we have that �t(�(B)) = 1for all t. Thus �(B) = T� = �(1).Finally, we show that � satis�es Cf = 1. Recall that Cf is a conjunction ofconstraints of the form �E [F , where E and F are either 0 or a conjunction ofelements of Zf . Since � satis�es (3) and (4), it also satis�es E � f 1 : : :1| {z }n . ByBoolean reasoning it follows that � also satis�es�f 1 : : :1| {z }n � �E � �E [F ;therefore �f 1 : : :1| {z }n � Cf :8

Thus it remains to show that � satis�esf 1 : : :1| {z }n � Cf ;or in other words, t0 2 �(Cf) for all terms t0 of the form ft1 : : : tn. As above, weargue that �t0 � � and �(t0) agree on Zf :�(t0)(zfij) = �(ti)(xj) by (5)= ti 2 �(xj) by (6)= t0 2 �(f 1 : : :1| {z }i�1 xj 1 : : :1| {z }n�i) by de�nition of �= �t0(�(zfij)) since � satis�es (4)for 1 � i � n and 1 � j � m. Similar reasoning applies to zf0j. Since both�t0 �� and �(t0) are B-homomorphisms, they agree on all elements of TB(Zf); inparticular, they agree on Cf . Since (�(t0); �(t1); : : : ; �(tn)) 2 E0f , we haveCf [�(t0); : : : ; �(tn)] = 1) Cf [zfij := �(ti)(xj)] = 1) Cf [zfij := �(t0)(zfij)] = 1) �(t0)(Cf) = 1) �t0(�(Cf)) = 1) t0 2 �(Cf) :(() Suppose � satis�es S. Regarding u 2 U as a conjunction of literals overX, let U 0 = fu 2 U j �(u) 6= ;g. We claim that the induced subhypergraphH0 = (U 0; E0f j f 2 �) of H is closed. For f 2 �n and for all u1; : : : ; un 2 U 0, letti 2 �(ui), 1 � i � n. The ti exist by de�nition of U 0. There is a unique atom u0such that t0 = ft1 : : : tn 2 �(u0), and u0 2 U 0.Extend u0 to domainX [Zf by de�ning u0(zfij) = ui(xj), 0 � i � n, 1 � j �m. Then u0(zfij) = ui(xj)= �1 ; if ti 2 �(xj)0 ; otherwise= 8>><>>:1; if i = 0 and t0 2 �(xj)1; if i � 1 and t0 2 �(f 1 : : :1| {z }i�1 xj 1 : : :1| {z }n�i)0; otherwise= 8<:1; if i = 0 and t0 2 �(zf0j)1; if i � 1 and t0 2 �(zfij)0; otherwise= �t0(�(zfij)) : 9

Since u0 and �t0 �� agree on Zf and both are B-homomorphisms, they agree onCf . Thus u0(Cf) = �t0(�(Cf)) = 1, since � satis�es Cf = 1. Thenu0(Cf) = 1) Cf [zfij := u0(zfij)] = 1) Cf [zfij := ui(xj)] = 1) Cf [u0; u1; : : : ; un] = 1) (u0; u1; : : : ; un) 2 Ef :Since the ui are in U 0, we also have (u0; u1; : : : ; un) 2 E0f . Thus H 0 is closed.Corollary 2. The following two decision problems are linearly interreducible:(i) Given a system S of set constraints, is it satis�able?(ii) Given a hypergraph H speci�ed by Boolean formulas, does it have a closedinduced subhypergraph?6 Complexity BoundsIn this section we give complexity bounds for a hierarchy of satis�ability problemsfor systems of set constraints based on the arities of the elements of �. ByTheorem 1, we are free to work with either the constraints S directly or thehypergraph H. It is usually easier to deal with H because it is a �nite object,whereas in general S involves in�nitely many terms and can have in�nitely manysolutions.The results of this section are summarized in the table in Section 1. The �rstline of the table is really a triviality, because with no constants in �, the set ofground terms T� is empty. We handle each of the other cases separately.6.1 Nullary SymbolsWith at least one constant in � but no symbol of higher arity, we have T� = � =�0. In this case the satis�ability problem is NP-complete. The hypergraph H hasonly unary hyperedge relations, and the closure problem amounts to determiningwhether for each c 2 � there exists a truth assignment u satisfying both Band Cf (in the sense that u(B) = 1 and Cc[u] = 1). This is essentially Booleansatis�ability.6.2 One Unary SymbolPSPACE Upper Bound Suppose � consists of one unary symbol f , one or moreconstants, and no other symbols. Then the hypergraphH is simply a conventionaldirected graph with binary edge relationEf and a distinguished subset Ec for eachconstant c. The vertices U are the truth assignments satisfying a Boolean formulaB, the edge relation Ef is the set of pairs (u; v) 2 U2 such that Cf [u; v] = 1, andthe distinguished subset Ec of U is the set of u such that Cc[u] = 1. In this case,the closure problem is to determine whether there is a subset U 0 of U such that10

{ each Ec intersects U 0{ for any v 2 U 0 there is a u 2 U 0 such that (u; v) 2 Ef .This can be determined nondeterministically in linear space as follows. For eachconstant c in turn, guess u 2 Ec and verify that Ec[u] = u(B) = 1. Starting fromu, guess an Ef -path of length 2m + 1, where m = jXj. At each step, verify thenew vertex v by evaluating v(B) and the new edge (v; w) by evaluating Cf [v; w].If such a path is found for all c, accept.Since jU j � 2m, any Ef -path of length 2m+1 must repeat a vertex. Thus theprocedure accepts i� for every nullary c 2 � there is an Ef -path u0; u1; : : : ; uksuch that u0 2 Ec and uk = uj for some j < k. The induced hypergraph on theset of all such ui for all c is closed. Conversely, any closed induced subhypergraphmust contain an induced subhypergraph of this form.This procedure requires only linear space to record the current vertex, m bitsfor a counter, and enough space to evaluate the formulas. Thus the algorithmruns in nondeterministic PSPACE , which is the same as deterministic PSPACEby Savitch's Theorem.PSPACE Lower Bound We show that the problem of deciding whether a sys-tem with one unary symbol f and one constant c is satis�able is PSPACE -hardby a reduction from the halting problem for linear-bounded automata (LBA), awell known PSPACE -complete problem. Consider an LBA M and input stringw of length n. A con�guration of M on input w is an instantaneous descriptionof M 's current tape contents, state, and head position. Each legal con�gurationis represented as a string of symbols of length n over a �nite alphabet. Assumewithout loss of generality that there is a unique accept con�guration and a uniquereject con�guration on inputs of length n, that all computation paths of M haltand either accept or reject (equip M with a binary exponential-time counter ifnecessary), that the accept con�guration enters a trivial loop, and that the rejectcon�guration has no successor.The con�gurations ofM on w can be encoded as truth assignments to BooleanvariablesAaj = \symbol a is written on tape cell j"; 1 � j � n; a 2 �Qqj = \M is in state q scanning tape cell j"; 1 � j � n; q 2 Q :These variables comprise the set X. One can write down short formulas describingthe action of M on input w:{ a formulaB describing all legal con�gurations (exactly one symbol occupyingeach tape cell, exactly one current state, exactly one tape cell currently beingscanned);{ a formula Cc describing the start con�guration of M on input w (the symboloccupying tape cell j is the jth symbol of w and M is in state s scanning theleftmost tape cell);{ a formula Cf [u; v] describing legal pairs of con�gurations such that u followsfrom v in one step according to the transition rules of M .11

The encoding technique is similar to that used in the proof of Cook's Theorem.Then M accepts input w if and only if the hypergraph speci�ed by B, Cc, andCf has a closed induced subhypergraph consisting of the con�gurations in theaccepting computation path.6.3 Two or More Unary SymbolsEXPTIME Upper Bound With two or more unary symbols, one or more con-stant symbols, and no other symbols, consider the followingdeterministic exponen-tial-time algorithm for determining whether the speci�ed hypergraph has a closedinduced subhypergraph. Write down all truth assignments to X and delete thosenot satisfying B. For each remaining u, check whether it has an Ef -successor forall unary f and delete it if not (inductively, such a u cannot be contained in anyclosed subhypergraph). Repeat until no more vertices are deleted. The proceduresucceeds if not all vertices are deleted and for each nullary c there is a u 2 Ec. Inthat case, the resulting subhypergraph contains all closed subhypergraphs, and isclosed itself. There are at most 2m truth assignments, and the tests can be donee�ciently by evaluating Cf [u; v] and Cc[u].EXPTIME Lower Bound The exponential time lower bound for two unarysymbols is obtained by generalizing the lower bound construction for one unarysymbol. Instead of a deterministic LBA, we encode an alternating LBA M oninput w [8]. We assume without loss of generality that M has no negating transi-tions, that there is a unique accept and a unique reject con�guration for inputs oflength n, that M alternates strictly between universal and existential branches,that all branches are at most binary, that the start, accept, and reject con�gura-tions are universal branches, that all computation paths either accept or reject,that the unique accept con�guration enters a trivial loop, and that the uniquereject con�guration has no successor. We will construct a hypergraph that has aclosed induced subhypergraph i� M accepts w.Let � be a universal con�guration with successors �0 and �1 in lexicographicalorder. By assumption, �0 and �1 are existential con�gurations. Let �00 and �01be the two successors of �0 and let �10 and �11 be the two successors of �1 inlexicographical order. Then �00, �01, �10, and �11 are universal con�gurations.As in Section 6.2, we let B and Cc be Boolean formulas describing the set ofall legal con�gurations and the start con�guration, respectively. In addition, welet Cf describe the relation consisting of all pairs (�; �00) and (�; �01), and welet Cg describe the relation consisting of all pairs (�; �10) and (�; �11). The ideais that in the semantics of alternating Turing machines, � leads to acceptance i�both �0 and �1 lead to acceptance, which occurs i� at least one of �00 or �01leads to acceptance and at least one of �10 or �11 lead to acceptance. Thus Maccepts the input w i� there is a closed induced subhypergraph consisting of anaccepting computation tree of M . 12

6.4 One or More Binary SymbolsNEXPTIME Upper Bound With any number of symbols of any arity, we candetermine in nondeterministic exponential time whether there exists a closedinduced subhypergraph by guessing a subset U 0 � U and verifying that theinduced subhypergraph on U 0 is closed; i.e., for all u 2 U 0, u(B) = 1 and for allf 2 �n and u1; : : : ; un 2 U 0, there exists a u0 2 Ef (u1; : : : ; un) \ U 0. The set Uhas at most 2m elements, where m is the number of variables, and the predicatesCf [u0; : : : ; un] require polynomial time to evaluate. The entire algorithm runs innondeterministic exponential time.NEXPTIME Lower Bound We show that with a constant c and one ternarysymbol f , we can encode computations of a nondeterministic exponential-timeTuring machine. In Section 6.5 below we show how to reduce f to binary. LetM be such a machine with time and space bound N = 2O(n). Without loss ofgenerality, assume that M starts in its start state scanning the left endmarker `,that it has unique accept and reject con�gurations on inputs of length n and thatall computation paths lead to acceptance or rejection, that all nondeterministicbranches are at most binary, that once M accepts or rejects it enters a trivialloop in which it remains in the same state.Computation histories ofM on inputs of length n can be represented as N�Nmatrices. Each row i of the matrix encodes a possible con�guration of M at timei. The ijth entry of the matrix records the symbol occupying the jth tape cellat time i and whether that cell is being scanned by the machine at time i. If so,the current state of the �nite control is also recorded. An accepting computationhistory of M on input w is represented by a matrix whose �rst row encodes thestart con�guration of M on input w, whose i + 1st row follows from the ith bythe transition rules of M , and whose �nal row encodes the accept con�guration.Given M and input w = w1 : : :wn, we construct Boolean formulas B, Ccand Cf specifying a hypergraph H = (U; Ec; Ef) where c is nullary and f isternary (thus Ec is a unary and Ef is quaternary). Each entry of the matrix isrepresented by a vertex of the hypergraph, which is a truth assignment satisfyingB. The hyperedge relation Ef enforces constraints between adjacent entries. Thehypergraph has a closed induced subhypergraph if and only if there exists amatrix representing an accepting computation history of M .We �rst de�ne the set of Boolean variables X. There is a variable Aa foreach symbol a of the tape alphabet, a variable Qq for each machine state q, m =dlog2Ne variables t0; : : : ; tm�1 encoding the time (row number of the matrix) inbinary, m variables s0; : : : ; sm�1 encoding the position of the tape cell (columnof the matrix) in binary, and a variable choice determining the nondeterministicchoice.The vertices of the hypergraph are the truth assignments to X such thatat most one state and exactly one tape symbol have Boolean value 1. This isspeci�ed by the formulaB = ([a Aa) \ \a6=b(�Aa[�Ab)13

\ \p 6=q(�Qp[�Qq)Each truth assignment u to X corresponds to an index ij into the array, 0 �i; j � N � 1, where i and j are the numbers encoded in binary by the truthvalues u(tk) and u(sk), 0 � k � m � 1. We denote i and j by time(u) andspace(u), respectively. Also, each u satisfying B has exactly one symbol a withu(Aa) = 1, which we denote by sym(u). Finally, each u satisfying B has at mostone state q with u(Qq) = 1, which we denote by state(u). If u(Qq) = 0 for allstates q, we write state(u) = ?.We will need to perform modular addition and comparisons on numbers inthe range 0 � i � N �1 in terms of their binary representations. For example, weneed formulas expressing conditions such as time(u) = time(v)+1 and time(u) >time(v). These constructions are quite easy and well known, so we omit thedetails.The unary predicate Cc speci�es the 00th entry (upper left corner) of thematrix. It speci�es that the machine is in its start state s scanning the leftmosttape cell, which contains the left endmarker `:Cc[u] = (time(u) = 0) \ (space(u) = 0) \ Qs \ A` :There are exactly two truth assignments satisfying B and Cc, one for each valueof choice, and one of these must be contained in any closed subhypergraph.The quaternary predicate Cf [u; v; w; x] serves several purposes. It is de�nedas the conjunction of several formulas describing the format of con�gurations,the initial con�guration (�rst row of the matrix), the �nal con�guration (last rowof the matrix), and the legal transitions.First we specify that there is at most one truth assignment for every ij:(time(w) = time(x) \ space(w) = space(x))) w = x : (7)Inclusion of this formula as a conjunct of Cf [u; v; w; x] guarantees that there canbe no closed induced subhypergraph containing two distinct vertices w and xsuch that time(w) = time(x) and space(w) = space(x).We also wish to specify that for every i, the value of the variable choice at alltape cells in row i of the matrix is the same:time(w) = time(x)) (w(choice) = x(choice)) : (8)To specify the initial con�guration, we must ensure that the �rst n tape cellsafter the left endmarker contain the input string w = w1 � � �wn, that all remainingcells to their right except the last contain the blank symbol \, the last tape cellcontains the right endmarker a, and no other cell besides the leftmost contains astate: (v = w = x \ time(v) = 0 \ space(v) < N � 1)) (time(u) = 0 \ space(u) = space(v) + 1 \ state(u) = ?14

\ n\i=1(space(u) = i) sym(u) = wi) (9)\ n < space(u) < N � 1) sym(u) = \\ space(u) = N � 1) sym(u) =a) :If the premise of (9) is true of v, w and x, then there is exactly one choice ofu that satis�es the conclusion. The two truth assignments satisfying Cc satisfythe premise of (9), and it can be shown inductively that any closed subhyper-graph must contain the entire �rst row of the matrix representing the initialcon�guration.To capture valid transitions of the machine, we write(time(v) = time(w) = time(x) < N � 1\ space(x) = space(w) + 1 = space(v) + 2)) (time(u) = time(w) + 1 \ space(u) = space(w) (10)\ (sym(u); state(u)) =next(choice(v); sym(v); state(v); sym(w); state(w); sym(x); state(x)))where the function next encodes the transition relation of M . The nondetermin-istic choice is determined by the value of the variable choice. Addition in thisexpression is modulo N . We are using the fact that the state and symbol at timei+1 and position j depends only on the state and symbol at time i and positionsj � 1, j, and j + 1. The function next also encodes the fact that if the machineis not scanning tape cell j at time i, then the symbol on tape cell j is unchangedat time i+ 1.By (9), any closed subhypergraph contains the start con�guration of the com-putation. Inductively, assume any closed subhypergraph contains the �rst i con�g-urations. By (8), entries in con�guration i must agree on the value of the variablechoice. Furthermore, given any v, w, and x satisfying the premise of (10), thereare exactly two u satisfying the conclusion of (10) with di�erent values of choicebut otherwise identical. One of these must be in any closed subhypergraph.Finally, we need to check that the accept state occurs someplace in the lastrow of the matrix. Since the machine has either accepted or rejected by timeN � 1, and since we have already insured that the matrix accurately encodes acomputation history, we need only check that the reject state r does not occur inthe last row. We use the formulatime(x) = N � 1) state(x) 6= r : (11)Finally, we de�ne Cf [u; v; w; x] to be the conjunction of (7), (8), (9), (10), and(11).We have argued that the problem of deciding whether a given system ofconstraints with one ternary and one nullary symbol is satis�able is NEXPTIME -complete. It will follow from the result of the next section that the problem withone nullary and one binary symbol is also NEXPTIME -complete.15

6.5 Symbols of Greater ArityIn this section we show that any system with symbols of arbitrary arity can bereduced to a system with a single binary symbol and a single constant. By the re-sults of Section 6.4, it su�ces to prove this result for a signature with one ternarysymbol and one constant. This will establish the NEXPTIME -completeness ofthe satis�ability problem for systems with at least one constant and at least onesymbol of arity two or greater.Let � = fg; bg and let � = ff; ag, where a and b are constants, f is binary,and g is ternary. Let B, Cb, and Cg be formulas describing a hypergraph H =(U; Eb; Eg), where Eb is unary and Eg is quaternary. We will de�ne a newhypergraph bH = (bU; Ea; Ef) speci�ed by formulas bB, Cf , and Ca such that bHhas a closed induced subhypergraph i� H does. The idea behind the constructionis to encode one application of Eg in H with two nested applications of Ef in bH.The vertices of bH are bU = U [(U �U). Elements of U �U are denoted hu; vi.If X is the set of variables used in the de�nition of H such that elements of Uare truth assignments to X, then we can take bU to be a set of truth assignmentsto X [X 0 [fxg, where X 0 is a disjoint copy of X and x is a new variable whosesole purpose is to distinguish between U and U � U . We de�ne bB, Cf , and Casuch that the following equations hold for any s; t; u; v; w 2 U and p; q 2 bU :bB[p] = �B[u] ; if p = u;B[u] \B[v] ; if p = hu; vi (12)Ca[p] = �Cb[u] ; if p = u;0 ; if p = hu; vi (13)Cf [p; u; v] = �1 ; if p = hu; vi0 ; otherwise (14)Cf [p; hu; vi; w] = �Cg[t; u; v; w] ; if p = t;0 ; if p = hs; ti (15)Cf [p; q; hu; vi] = 1 (16)Here we are using notation similar to that de�ned at the end of Section 4.1, inwhich Boolean formulas are considered to be Boolean-valued functions on atomsor sequences of atoms.To be more precise, the value of x tells whether the truth assignment toX [X0 [fxg encodes an element of U (say if x = 0) or an element of U � U(say if x = 1). If the former, we only consider the truth assignment to X, whichdenotes an atom u. In that case we want u in the hypergraph i� u is an elementof U ; this is speci�ed by the �rst alternative in (12). If the latter, then the truthassignment to X denotes an atom u and the truth assignment to X 0 denotes anatom v, and in that case we would like to have hu; vi in the hypergraph i� bothu and v are elements of U ; this is speci�ed by the second alternative in (12).Formally, (12) describes the following formula bB over X [X 0 [fxg:bB = (�x \B) [(x \B \B(X 0)) ;16

where X = fx1; : : : ; xng, X 0 = fx01; : : : ; x0ng, and B(X 0) denotes B with xi re-placed by x0i, 1 � i � n.Similarly, (13) describes the formula Ca =�x \ Cb over X [X 0 [fxg. Theremaining equations describe a formula Cf over the variablesX [X 0 [fxg [Y [Y 0 [fyg [Z [Z 0 [fzg :Each of p, q and r in Cf [p; q; r] is of the form either u or hu; vi, where p isdescribed by X [X 0 [fxg, q is described by Y [Y 0 [fyg, and r is described byZ[Z 0[fzg. The equations (14) and (15) say that (u; v; w; x) 2 Eg i� (u; hv; wi; x)and (hv; wi; v; w) 2 Ef .The last equation (16) insures that for each q 2 bU and u; v 2 U , there is somep 2 bU for which Cf [p; q; hu; vi], so that closure in bH does not depend on q andhu; vi.These formulas are easily derived from B, Cb, and Cg, and imply that theinduced subhypergraph of H on vertices U 0 is closed if and only if the inducedsubhypergraph of bH on vertices U 0 [(U 0 � U 0) is closed.7 Future WorkWe would like to extend these techniques to projection functions. For every sym-bol f 2 �n, one can de�ne a family of projection functions f�1; : : : ; f�n withsemantics �(f�i(E)) = fti j ft1 : : : tn 2 �(E)gAlgorithms for solving special cases of set constraints with projections are known[17, 13, 11, 6]. Projection functions subsume negative constraints because theconstraint system S [fb � f�1(fby)g is satis�able only if S is satis�able withy 6= 0. The results of [2, 10, 18] on negative constraints are presumably a steptowards solving systems with projections.AcknowledgementsDexter Kozen was supported by the Danish Research Academy, the National Sci-ence Foundation, the John Simon Guggenheim Foundation, and the U.S. ArmyResearch O�ce through the ACSyAM branch of the Mathematical Sciences In-stitute of Cornell University under contract DAAL03-91-C-0027.References1. A. Aiken, D. Kozen, M. Vardi, and E. Wimmers. The complexity of set constraints.Technical Report 93-1352, Computer Science Department, Cornell University, May1993. 17

2. A. Aiken, D. Kozen, and E. Wimmers. Decidability of systems of set constraintswith negative constraints. Technical Report 93-1362, Computer Science Depart-ment, Cornell University, June 1993.3. A. Aiken and B. Murphy. Implementing regular tree expressions. In Proc. 1991Conf. Functional Programming Languages and Computer Architecture, pages 427{447, August 1991.4. A. Aiken and B. Murphy. Static type inference in a dynamically typed language.In Proc. 18th Symp. Principles of Programming Languages, pages 279{290. ACM,January 1991.5. A. Aiken and E. Wimmers. Solving systems of set constraints. In Proc. 7th Symp.Logic in Computer Science, pages 329{340. IEEE, June 1992.6. Leo Bachmair, Harald Ganzinger, and Uwe Waldmann. Set constraints are themonadic class. In Proc. 8th Symp. Logic in Computer Science, pages 75{83. IEEE,June 1993.7. J. A. Brzozowski and E. Leiss. On equations for regular languages, �nite automata,and sequential networks. Theor. Comput. Sci., 10:19{35, 1980.8. A. Chandra, D. Kozen, and L. Stockmeyer. Alternation. J. Assoc. Comput. Mach.,28(1):114{133, 1981.9. R. Gilleron, S. Tison, and M. Tommasi. Solving systems of set constraints usingtree automata. In Proc. Symp. Theor. Aspects of Comput. Sci., volume 665, pages505{514. Springer-Verlag Lect. Notes in Comput. Sci., February 1993.10. R. Gilleron, S. Tison, and M. Tommasi. Solving systems of set constraints withnegated subset relationships. Technical Report LIFL IT 247, Lille 1 University,March 1993.11. N. Heintze and J. Ja�ar. A decision procedure for a class of set constraints. InProc. 5th Symp. Logic in Computer Science, pages 42{51. IEEE, June 1990.12. N. Heintze and J. Ja�ar. A �nite presentation theorem for approximating logicprograms. In Proc. 17th Symp. Principles of Programming Languages, pages 197{209. ACM, January 1990.13. N. D. Jones and S. S. Muchnick. Flow analysis and optimization of LISP-like struc-tures. In Proc. 6th Symp. Principles of Programming Languages, pages 244{256.ACM, January 1979.14. K. Marriott and M. Odersky. Systems of negative boolean constraints. Techni-cal Report YALEU/DCS/RR-900, Computer Science Department, Yale University,April 1992.15. P. Mishra. Towards a theory of types in PROLOG. In Proc. 1st Symp. LogicProgramming, pages 289{298. IEEE, 1984.16. P. Mishra and U. Reddy. Declaration-free type checking. In Proc. 12th Symp.Principles of Programming Languages, pages 7{21. ACM, 1985.17. J. C. Reynolds. Automatic computation of data set de�nitions. In InformationProcessing 68, pages 456{461. North-Holland, 1969.18. Kjartan Stefansson. Systems of set constraints with negative constraints areNEXPTIME-complete. Technical Report TR93-1380, Cornell University, August1993.19. J. Young and P. O'Keefe. Experience with a type evaluator. In D. Bj�rner, A. P.Ershov, and N. D. Jones, editors, Partial Evaluation and Mixed Computation, pages573{581. North-Holland, 1988.This article was processed using the LaTEX macro package with LLNCS style18

