Proc. of 1992 ACM-SIGMOD Conference, pages 59—68

Behavior of Database Production Rules:
Termination, Confluence, and Observable Determinism

Alexander Aiken
Jennifer Widom
Joseph M. Hellerstein™
IBM Almaden Research Center

650 Harry Road
San Jose, CA 95120

{aiken, widom}@almaden.ibm.com, joey@postgres.berkeley.edu

Abstract. Static analysis methods are given for determin-
ing whether arbitrary sets of database production rules are
(1) guaranteed to terminate; (2) guaranteed to produce a
unique final database state; (3) guaranteed to produce a
unique stream of observable actions. When the analysis de-
termines that one of these properties is not guaranteed, it
isolates the rules responsible for the problem and determines
criteria that, if satisfied, guarantee the property. The anal-
ysis methods are presented in the context of the Starburst
Rule System; they will form the basis of an interactive devel-
opment environment for Starburst rule programmers.

1 Introduction

Production rules in database systems allow specification
of data manipulation operations that are executed auto-
matically whenever certain events occur or conditions are
met, e.g. [GJ91,Han89,MD89,STIGP90,WF90]. Database
production rules provide a general and powerful mecha-
nism for integrity constraint enforcement, derived data
maintenance, triggers and alerters, authorization check-
ing, and versioning, as well as providing a platform for
large and efficient knowledge-bases and expert systems.
However, it can be very difficult in general to predict how
a set of database production rules will behave. Rule pro-
cessing occurs as a result of arbitrary database changes;
certain rules are triggered initially, and their execution
can trigger additional rules or trigger the same rules ad-
ditional times. The unstructured, unpredictable, and
often nondeterministic behavior of rule processing can
be a nightmare for the database rule programmer.

A significant step in aiding the database rule program-
mer is to provide information about the following three
properties of rule behavior:

o Termination: Is rule processing guaranteed to termi-

nate after any set of changes to the database in any
state?

*Current address: CS Division, Department of EECS,
University of California, Berkeley, CA 94720

e Confluence: Can the execution order of non-priori-
tized rules make any difference in the final database
state? That is, if multiple rules are triggered at
the same time during rule processing, can the final
database state at termination of rule processing de-
pend on which is considered first? If not, the rule set
is confluent.

e Observable Determinism: If a rule action is visible
to the environment (e.g., if it performs data retrieval
or a rollback statement), then we say it is observable.
Can the execution order of non-prioritized rules make
any difference in the order or appearance of observ-
able actions? If not, the rule set is observably deter-
ministic.

These properties can be very difficult or impossible to
decide in the general case. We have developed conserva-
tive static analysis algorithms that:

e guarantee that a set of rules will terminate or say
that it may not terminate;

e guarantee that a set of rules is confluent or say that
it may not be confluent;

e guarantee that a set of rules is observably determinis-
tic or say that it may not be observably deterministic.

Furthermore, when the answer is “may not” for any of
these properties, the analysis algorithms isolate the rules
responsible for the problem and determine criteria that,
if satisfied, guarantee the property. Hence the analysis
can form the basis of an interactive environment where
the rule programmer invokes the analyzer to obtain infor-
mation about rule behavior. If termination, confluence,
or observable determinism is desired but not guaranteed,
then the user may verify that the necessary criteria are
satisfied or may modify the rule set and try again.

Our analysis methods have been developed and are
presented in the context of the Starburst Rule System
[WCL91], a fully functional production rules facility in-
tegrated into the Starburst extensible relational DBMS
prototype at the IBM Almaden Research Center [H90].
Although some aspects of the analysis are dependent on
Starburst rules, we have tried to remain as general as
possible and our methods certainly can be adapted to
other database rule languages.

1.1 Related Work

Most previous work in static analysis of production rules
[HH91,Ras90,ZH90] differs from ours in two ways. First,
it considers simplified versions of the OPS5 production
rule language [BFKM85]. OPS5 has a quite different
model of rule processing than most database production
rule systems, including the Starburst Rule System. Sec-
ond, the goal of previous work is to impose restrictions
and/or orderings on OPS5 rule sets such that unique
fixed points are guaranteed. Our goal, on the other hand,
is to permit arbitrary rule sets and provide useful in-
formation about their behavior in the database setting.
In Section 9 we make some additional, more technical,
comparisons, and explain how our analysis techniques
subsume results in [HH91,Ras90,ZH90].

In [KU91], the issue of rule set termination is dis-
cussed, along with the issue of conflicting updates—
determining when one rule may undo changes made by
a previous rule. Although models and a problem-solving
architecture for rule analysis are proposed, no algorithms
are given. In [AS91], issues of termination and unique
fixed points are considered in the context of various
extensions to Datalog. In addition to the very differ-
ent semantics of Datalog (logic) and production rules,
[AS91] does not address the issue of determining whether
a given rule set exhibits certain properties (as we do),
but rather states results about whether all rule sets in a
given language are guaranteed to exhibit the properties.
In [CW90] we presented initial methods for analyzing
termination in the context of deriving production rules
for integrity constraint maintenance; these methods form
the basis of our approach to termination in this paper.

1.2 Outline of Paper

As an introduction to database production rule lan-
guages and to establish a basis for our analysis tech-
niques, in Section 2 we give the syntax and semantics of
Starburst production rules. In Section 3 we introduce
initial notation and definitions, and we describe some
straightforward preliminary analysis of rule sets. In Sec-
tion 4 we present a model of rule processing to be used
as the formal basis for our analysis algorithms. Termi-
nation analysis is covered in Section 5 and confluence
in Section 6. In Section 7 we give methods for analyz-
ing partial confluence, which specifies that a rule set is
confluent with respect to a portion of the database. Ob-
servable determinism is covered in Section 8. Finally, in
Section 9 we draw conclusions and discuss future work.

2 The Starburst Rule System

We provide a brief overview of the set-oriented, SQL-
based Starburst production rule language. Further de-
tails and numerous examples appear in [WCL91,WF90].

Starburst production rules are based on the notion
of transitions. A transition is a database state change
resulting from execution of a sequence of data manipu-
lation operations. Rules consider only the net effect of
transitions, meaning that: (1) if a tuple is updated sev-
eral times, only the composite update is considered; (2)
if a tuple is updated then deleted, only the deletion is

considered; (3) if a tuple is inserted then updated, this is
considered as inserting the updated tuple; (4) if a tuple
is inserted then deleted, this is not considered at all. A
formal theory of transitions and their net effects appears
in [WF90].

The syntax for defining a rule is:

create rule name on table
when transition predicate
[if condition |

then action

[precedes rule-list |

[follows rule-list]

The transition predicate specifies one or more trigger-
ing operations on the rule’s table: inserted, deleted,
or updated(cy,...,c,), where ¢i,...,c, are column
names. The rule is triggered by a given transition if
at least one of the specified operations occurred in the
net effect of the transition. The optional condition spec-
ifies an SQL predicate. The action specifies an arbitrary
sequence of SQL data manipulation operations to be exe-
cuted when the rule is triggered and its condition is true.
The optional precedes and follows clauses are used to
induce a partial ordering on the set of defined rules. If
a rule r; specifies a rule rs in its precedes list, or if r;
specifies r; in its follows list, then 7; is higher than r;
in the ordering. (We also say that r; has precedence or
priority over rz.) When no direct or transitive ordering
is specified between two rules, their order is arbitrary.

A rule’s condition and action may refer to the cur-
rent state of the database through top-level or nested
SQL select operations. In addition, rule conditions and
actions may refer to transition tables, which are logical
tables reflecting the changes to the rule’s table that have
occurred during the triggering transition. At the end of
a given transition, transition table inserted in a rule
refers to those tuples of the rule’s table that were in-
serted by the transition, transition table deleted refers
to those tuples that were deleted, and transition tables
new-updated and old-updated refer to the new and
old values (respectively) of the updated tuples. A rule
may refer only to transition tables corresponding to its
triggering operations.

Rules are activated at rule assertion points. There is
an assertion point at the end of each transaction, and
there may be additional user-specified assertion points
within a transaction. We describe the semantics of rule
processing at an arbitrary assertion point. The state
change resulting from the user-generated database oper-
ations executed since the last assertion point (or start
of the transaction) creates the first relevant transition,
and some set of rules are triggered by this transition. A
triggered rule r is chosen from this set for consideration.
Rule r must be chosen so that no other triggered rule
has precedence over r. If » has a condition, then it is
checked. If r’s condition is false, then another triggered
rule is chosen for consideration. Otherwise, if » has no
condition or its condition is true, then r’s action is ex-
ecuted. After execution of r’s action, all rules not yet
considered are triggered only if their transition predi-
cates hold with respect to the composite transition cre-

ated by the initial transition and subsequent execution
of r’s action. That is, these rules see r’s action as if it
were executed as part of the initial transition. Rules al-
ready considered (including r) have already “processed”
the initial transition; thus, they are triggered again only
if their transition predicate holds with respect to the
transition created by r’s action. From the new set of
triggered rules, a rule ' is chosen for consideration such
that no other triggered rule has precedence over r’. Rule
processing continues in this fashion.

At an arbitrary time in rule processing, a given rule
is triggered if its transition predicate holds with respect
to the (composite) transition since the last time it was
considered. If it has not yet been considered, it is trig-
gered if its transition predicate holds with respect to the
transition since the last rule assertion point or start of
the transaction. The values of transition tables in rule
conditions and actions always reflect the rule’s trigger-
ing transition. Rule processing terminates when there
are no triggered rules.

The analysis techniques we present are based on this
language and rule processing semantics, but with modifi-
cations they also could apply to other similar languages;
see Section 9.

3 Definitions and Preliminary Analysis

Let R = {r1,72,...,r,} denote an arbitrary set of Star-
burst production rules to be analyzed. Analysis is per-
formed on a fixed set of rules—when the rule set is
changed, analysis must be repeated. (Incremental meth-
ods are certainly possible; see Section 9.) Let P denote
the set of user-defined priority orderings on rules in R (as
specified by their precedes and follows clauses), includ-
ing those implied by transitivity. P = {r; > r;, rz >
71, ...}, where r; > r; denotes that rule »; has prece-
dence over rj. Let T = {t1,t2,...,tm} denote the tables
in the database schema, and let C = {t;.c;, tx.c;, ...}
denote the columns of tables in T'. Finally, let O denote
the set of database modification operations:

0 = {(ILt) [teT} U {(D,t) |t €T} U
{{U,t.c) | t.c€ C}

(I,t) denotes insertions into table ¢, (D, t) denotes dele-
tions from table ¢, and (U, t.c) denotes updates to col-
umn c of table ¢.

The following definitions are computed using straight-
forward preliminary analysis of the rules in R:

e Triggered-By takes a rule » and produces the set of
operations in O that trigger . Triggered-Byis trivial
to compute based on rule syntax.

e Performs takes a rule r and produces the set of op-
erations in O that may be performed by r’s action.
Performs is trivial to compute based on rule syntax.

e Triggers takes a rule » and produces all rules »’
that can become triggered as a result of r’s ac-
tion (possibly including r itself). Triggers(r) =
{r' € R | Performs(r) N Triggered-By(r') # 0}.

e Reads takes a rule r and produces all columns in C
that may be read by r in its condition or action.

Reads(r) contains every t.c referenced in a select or
where clause in r's condition or action. In addi-
tion, for every (trans).c referenced, where (trans) is
one of inserted, deleted, new-updated, or old-
updated, t.c is in Reads(r) for r’s triggering table
t. (Recall from Section 2 that inserted, deleted,
new-updated, and old-updated are transition ta-
bles based on changes to ¢.)!

e Can-Untrigger takes a set of operations O’ C O and
produces all rules that can be “untriggered” as a
result of operations in O'. A rule is untriggered if
it is triggered at some point during rule processing
but not chosen for consideration, then subsequently
no longer triggered because all triggering changes
were undone by other rules.? Can-Untrigger(O’) =
{r € R| (D,t) € O' and {I,t) or (U,t.c) € Trig-
gered-By(r) for some t € T, t.c € C}.

e Choose takes a set of triggered tules R C R and
produces a subset of R’ indicating those rules eligible
for consideration (based on priorities). Choose(R’)
= {r; | i € R' and there is no »; € R’ such that
ri >1; € P}

e Observable takes a rule r and indicates whether r’s
action may be observable. In Starburst, a rule’s ac-
tion may be observable iff it includes a select or roll-
back statement.

4 Execution Model

We now define a formal model of execution-time rule
processing. The model is based on ezecution graphs and
accurately captures the semantics of rule processing de-
scribed in Section 2. Note that execution graphs are used
to discuss and to prove the correctness of our analysis
techniques, but they are not part of the analysis itself.

A directed execution graph has a distinguished ini-
tial state representing the start of rule processing (at
any rule assertion point) and zero or more final states
representing termination of rule processing. The paths
in the graph represent all possible execution sequences
during rule processing; branches in the graph result from
choosing different rules to consider when more than one
is eligible. (Hence any graph for a totally ordered rule
set has no branches.) The graph may have infinitely
long paths, possibly due to cycles, and these represent
nontermination of rule processing.

More formally, a state (node) S in an execution graph
has two components: (1) a database state D; (2) a
set TR containing each triggered rule and its associated
transition tables. We denote this state as S = (D, TR).
The initial state I is created by an initial transition,
which results from a sequence of user-generated database
operations. Hence, I = (Dy, TR;) where Dy is a data-

!Note that, unlike in OPS5, there is no distinction be-
tween reading values “positively” and “negatively” in this
rule language.

2 As an example, a rule r; might be triggered by insertions,
but another rule r2 might delete all inserted tuples before r;
is chosen for consideration. Untriggering is rare in practice.

base state and there is some (possibly empty) set of op-
erations O’ C O such that:

TR; = {r € R | O' N Triggered-By(r) # 0}

O' are the operations producing the initial transition,
and TR; contains the rules triggered by those opera-
tions. A final state F is some (Dp, 0), since no rules are
triggered when rule processing terminates.

Each directed edge in an execution graph is labeled
with a rule r and represents the consideration of » during
rule processing. (This includes determining whether 7’s
condition is true and, if so, executing r’s action.) Using
definitions from Section 3, the following lemma states
certain properties that hold for all execution graphs. The
lemma is stated without proof—it follows directly from
the semantics of rule processing described in Section 2.

Lemma 4.1 (Properties of Execution Graphs)
Consider any execution graph edge from a state (D1,
TR,) to a state (D3, TR;) labeled with a rule r. Then:

e 7 € Choose(TR;)
e There is some (possibly empty) set of operations O’ C

Performs(r) such that the triggered rules in TR; can
be derived from the triggered rules in TR; by:

1. removing rule r

2. removing some subset of the rules in
Can- Unirigger(O’)

3. adding all rules 7' € R such that
O’ N Triggered-By(r') £ 0 O

The operations in O’ are those executed by r’s action. If
r’s condition is false then O’ is empty. If »’s condition is
true then O’ still may be a proper subset of Performs(r)
since, by the semantics of SQL, for most operations there
are certain database states on which they have no effect.
Finally, note that although rule r is removed in step 1, »
may be added again in step 3 if O’ N Triggered-By(r) # 0.

The properties in Lemma 4.1 are guaranteed for all
execution graphs. By performing more complex analysis
on rule conditions and actions, by incorporating proper-
ties of database states, and by considering a variety of
special cases, we probably can identify additional prop-
erties of execution graphs. Since our analysis techniques
are based on execution graph properties, more accu-
rate properties may result in more accurate rule anal-
ysis. We believe that the properties used here, although
somewhat conservative, are sufficiently accurate to yield
strong analysis techniques.

5 Termination

We want to determine whether the rules in R are guar-
anteed to terminate. That is, we want to determine if for
all user-generated operations and initial database states,
rule processing always reaches a point at which there are
no triggered rules to consider. We take as an assump-
tion that individual rule actions terminate. Hence, in
terms of execution graphs, the rules in R are guaranteed
to terminate iff all paths in every execution graph for R
are finite.

As suggested in [CW90], termination is analyzed by
constructing a directed triggering graph for the rules in

R, denoted TGr. The nodes in TGp, represent the rules
in R and the edges represent the Triggers relationship.
That is, there is an edge from »; to r; in TGg iff r; €
Triggers(r;).

Theorem 5.1 (Termination) If there are no cycles
in TGpg then the rules in R are guaranteed to terminate.

Proof: Omitted due to space constraints; see [AWH92].

Hence, to determine whether the rules in R are
guaranteed to terminate, triggering graph T'Gg is con-
structed and checked for cycles. Although this may ap-
pear to be a very conservative approach, by considering
only the known properties of our execution graph model
(Lemma 4.1), we see that whenever there is a cycle in the
triggering graph, our analysis cannot rule out the possi-
bility that there is an execution graph with an infinite
path. Clearly, however, there are a number of special
cases in which there is a cycle in the triggering graph
but other properties (not captured in Lemma 4.1) guar-
antee termination. Examples are:

e The action of some rule r on the cycle only deletes
from a table ¢, and no other rules on the cycle insert
into t. Eventually r’s action has no effect.

e The action of some rule r on the cycle only performs
a “monotonic” update (e.g. increments values), guar-
anteeing that the condition of some rule r' on the
cycle eventually becomes false (e.g. some value is less
than 10).

Although some such cases may be detected automati-
cally, for now we assume that they are discovered by the
user through the interactive analysis process: Once the
analyzer has built the triggering graph for the rules in R,
the user is notified of all cycles (or strong components).
If the user is able to verify that, on each cycle, there is
some rule 7 such that repeated consideration of the rules
on the cycle guarantee that r’s condition eventually be-
comes false or r’s action eventually has no effect, then
the rules in R are guaranteed to terminate.

As part of a case study, we used this approach to es-
tablish termination for a set of rules in a power network
design application [CW90].

6 Confluence

Next we want to determine whether the rules in R are
confluent. That is, we want to determine if the final
database state at termination of rule processing can de-
pend on which rule is chosen for consideration when mul-
tiple non-prioritized rules are triggered. In terms of ex-
ecution graphs, the rules in R are confluent if every ex-
ecution graph for R has at most one final state. (Recall
that all final states in an execution graph have an empty
set of triggered rules, so two different final states cannot
represent the same database state.)

Confluence for production rules is a particularly diffi-
cult problem because, in addition to the standard prob-
lems associated with confluence [Hue80], we must take
into account the interactions between rule triggering and
rule priorities. For example, it is not sufficient to simply
consider the combined effects of two rule actions; it also

Figure 1: Commutative rules

is necessary to consider all rules that can become trig-
gered, directly or indirectly, by those actions, and the
relative ordering of these triggered rules. These issues
are discussed as we develop our requirements for conflu-
ence in Section 6.3. As preliminaries, we first introduce
the notion of rule commutativity, and we make a useful
observation about execution graphs.

6.1 Rule Commutativity

We say that two rules »; and r; are commutative (or r;
and r; commute) if, given any state S in any execution
graph, considering rule r; and then rule r; from state S
produces the same execution graph state S’ as consider-
ing rule r; and then rule r;; this is depicted in Figure 1.
If this equivalence does not always hold, then r; and »;
are noncommutative (or r; and T do not commute).
Each rule clearly commutes with itself. Based on the
definitions of Section 3, we give a set of conditions for
analyzing whether pairs of distinct rules commute.

Lemma 6.1 For distinct rules »; and r;, if any of the
following conditions hold then »; and r; may be noncom-
mutative; otherwise they are commutative:

1. 7; € Triggers(r;), i.e. r; can cause 7; to become trig-
gered

2. rj € Can-Untrigger(Performs(r;)), i.e. r; can untrig-
ger 7

3. (I,t), (D,t), or (U,t.c)is in Performs(r;) and t.c is
in Reads(r;) for some t.c € C, i.e. 7;’s operations can
affect what r; reads

4. (I,t) is in Performs(r;) and (D,t) or (U,t.c) is in
Performs(r;) for some t € T or t.c € C, ie. r’s
insertions can affect what r; updates or deletes®

5. (U,t.c) is in both Performs(r;) and Performs(r;), i.e.
r;’s updates can affect r;’s updates

6. any of 1-5 with r; and r; reversed O

We leave it to the reader to verify that if a pair of rules
does not satisfy any of 1-6 then the rules are guaranteed
to commute.

The conditions in Lemma 6.1 are somewhat conserva-
tive and probably could be refined by performing more
complex analysis on rule conditions and actions and by
considering a variety of special cases. As two examples
of this, consider rules r; and r; such that:

3In SQL it is possible to delete from or update a table
without reading the table, which is why cases 4 and 5 are
distinct from case 3.

1. r; inserts into a table £ and r; deletes from ¢, but the
tuples inserted by r; never satisfy the delete condition
of r;, or

2. r; and r; update the same table but never the same
tuples.

In the first example, r; and r; are noncommutative ac-
cording to condition 4 of Lemma 6.1, but they do ac-
tually commute. In the second example, r; and r; are
noncommutative according to condition 5 but do com-
mute. Although some such cases may be detected au-
tomatically, for now we assume that they are specified
by the user during the interactive analysis process: We
allow the user to declare that pairs of rules that ap-
pear noncommutative according to Lemma 6.1 actually
do commute. The analysis algorithms then treat these
rules as commutative.

6.2 Observation

We say that two rules »; and r; are unordered if neither
7i > rj nor r; > r; is in P. (Similarly, we say two rules
ri and r; are orderedif r; > rj or r; > r; isin P.) Based
on our execution graph model, we make the following
observation about possible states, which is used in the
next section to develop our criteria for confluence.

Observation 6.2 Consider any two unordered rules r;
and r; in R. It is very likely that there is an execu-
tion graph with a state that has (at least) two outgoing
edges, one labeled r; and one labeled ;. (Informally,
there is very likely a scenario in which both »; and »;
are triggered and eligible for consideration. Recall that
a triggered rule 7 is eligible for consideration iff there is
no other triggered rule with precedence over r.)

Justification: Let O’ = Triggered-By(r;) U Triggered-
By(r;). Consider an execution graph for which the op-
erations in O’ are the initial user-generated operations,
so that r; and r; are both triggered in the initial state.
Consider any path of length 0 or more from the initial
state to a state S = (D, TR) in which there are no rules
r € TR such that » > r; or » > r; is in P, i.e. there are
no triggered rules with precedence over r; or r;.* State
S has at least two outgoing edges, one labeled r; and one
labeled »;. O

6.3 Analyzing Confluence

We now return to the question of confluence. We want to
determine if every execution graph for R is guaranteed
to have at most one final state. For two execution graph
states S; and Sj, let S; — S; denote that there is an
edge in the execution graph from state S; to state S;

and let S; 5 S; denote that there is a path of length

0 or more from S; to §;. (i> is the reflexive-transitive
closure of —.) Our first Lemma establishes conditions

*
for confluence based on —:

*Such a path does not exist if r; or r; is untriggered along
all potential paths, or if rules with precedence over r; or r;
are considered indefinitely along all potential paths. These
are highly unlikely (and probably undesirable) circumstances,
but are why this is an observation rather than a theorem.

(a) Based on paths

(b) Based on edges

Figure 2: Conditions for confluence

Lemma 6.3 (Path Confluence) Consider an arbi-
trary execution graph EG and suppose that for any three

states S, S;, and S; in EG such that S X S, and S 5 S;,
there is a fourth state S’ such that S; = $' and S; Ny
(Figure 2a). Then EG has at most one final state.’

Proof: Suppose, for the sake of a contradiction, that EG
has two distinct final states, F; and Fs. Let I be the ini-
tial state, so I = Fy and I 2 F,. Then, by assumption,
there must be a fourth state .5 such that Fy % § and

F, 5 S. Since F; and F, are both final states, S = F;
and S = F3, contradicting F; £ F,. O

It is quite difficult in general to determine when the sup-
position of Lemma 6.3 holds, since it is based entirely
on arbitrarily long paths. The following Lemma gives a
somewhat weaker condition that is easier to verify and
implies the supposition of Lemma 6.3; it does, however,
add the requirement that rule processing is guaranteed
to terminate:

Lemma 6.4 (Edge Confluence) Consider an arbi-
trary execution graph EG with no infinite paths. Sup-
pose that for any three states S, S;, and S; in EG such
that § — S; and S — 5, there is a fourth state S’ such

that S; 5 §" and S; 5 S’ (Figure 2b). Then for any
three states S, S;, and S; in EG such that S % §; and
55 Sj, there is a fourth state S’ such that S; % 5" and
s; 5 s,

Proof: Classic result; see e.g. [Hue80].

We use Lemma 6.4 as the basis for our analysis tech-
niques. Based on this Lemma (along with Lemma 6.3),
we can guarantee confluence for the rules in R if we know

1. there are no infinite paths in any execution graph for
R (i.e., the rules in R are guaranteed to terminate),
and

2. in any execution graph for R, for any three states S,
S;, and S; such that § — S; and § — §;, thereis a

fourth state S’ such that S; =5 S’ and S; X 9.

We assume that the first condition has been established
through the analysis techniques of Section 5; we focus

5Sometimes the term confluence is used to denote the sup-
position of this Lemma [Hue80], which then implies conflu-
ence in the sense that we’ve defined it.

(%)

Figure 3: Paths towards common state S’

our attention on analysis techniques for establishing the
second condition.

Consider any execution graph for R and any three
states S, S;, and S; such that § — S; and S — S;. This
configuration is produced by every state S that has at
least two unordered triggered rules that are eligible for
consideration. Let r; be the rule labeling edge S — S;
and r; be the rule labeling edge S — Sj, as in Figure 2b.
We want to prove that there is a fourth state S’ such that
S; = S’ and S; X, §’. It is tempting to assume that if 7;
and r; are commutative, then »; can be considered from
state S; and r; from S;, producing a common state 5’ as
in Figure 1. Unfortunately, this is not always possible:
If r; causes a rule r with precedence over r; to become
triggered, then r; is not eligible for consideration in state
S; (similarly for r; in state S;). Since the new triggered
rule 7 must be considered before rule r;, » must commute
with r;. Furthermore, r may cause additional rules with
precedence over r; to become triggered.

With this in mind, we motivate the requirements for
the existence of a common state S’ that is reachable from
both S; and S;. We do this by attempting to “build”
valid paths from S; and S; towards S’; call these paths p;
and ps, respectively. From state S;, triggered rules with
precedence over r; are considered until r; is eligible; call
these rules R;. Similarly, from S; triggered rules with
precedence over r; are considered until 7; is eligible; call
these rules R;. After this, »; can be considered on path
p1 and r; can be considered on path ps. Paths p; and ps
up to this point are depicted in Figure 3.

Now suppose that from state S] we can continue path
p1 by considering the rules in R, (in the same order), i.e.
suppose the rules in R, are appropriately triggered and
eligible. Similarly, suppose that from S;- we can consider
the rules in R;. Then the same rules are considered
along both paths. Consequently, if each rule in {r;} U
R, commutes with each rule in {r;} U Ry, then the two
paths are equivalent and reach a common state S’; this
is depicted in Figure 4.

Unfortunately, even this scenario is not necessarily
valid: There is no guarantee that the rules in R, are trig-
gered and eligible from state S;; similarly for R; and S;.

Figure 4: Paths reaching common state S’

(For example, a rule in R, may not be eligible from state
S; because 7; triggered a rule with higher priority.) We
can guarantee this, however, if we extend the rules orig-
inally considered in R; to include all eligible rules with
precedence over rules in R3, and extend the rules in R,
similarly. Using this mutually recursive definition of R
and Rj, the pairwise commutativity of rules in {r;} U R,
with rules in {r;} U R, guarantees the existence of state
S’, and consequently guarantees confluence.

To establish confluence for the rules in R, then, we
must consider in this fashion every pair of rules r; and
r; such that some state in some execution graph for R
may have two outgoing edges, one labeled with r; and
one with r;. Recall Observation 6.2: For any two un-
ordered rules r; and rj, it is very likely that there is
an execution graph with a state that has two outgoing
edges, one labeled r; and one labeled r;. Consequently,
we consider every pair of unordered rules, and our anal-
ysis requirement for confluence is stated as follows.

Definition 6.5 (Confluence Requirement) Con-
sider any pair of unordered rules »; and r; in R. Let
R; C R and R; C R be constructed by the following
algorithm:
Ry —{ri}
Ry — {rj}
repeat until unchanged:
Ry — Ry U{r € R | r € Triggers(r1) for some r; € Ry
and » > ro € P for some 7, € Ry
and » # r;}
Ry, — R, U{r € R | r € Triggers(ry) for some ry € Ry
and » > r; € P for some r; € R;
and r #£ r;}
For every pair of rules r1 € Ry and r; € Ra, 71 and 7,
must commute. 0O

The following lemma and theorem formally prove that
the requirement of Definition 6.5 indeed guarantees con-
fluence.

Lemma 6.6 (Confluence Lemma) Suppose the
Confluence Requirement (Definition 6.5) holds for R.
Then in any execution graph EG for R, for any three
states S, S;, and S; in EG such that § — S; and § — 5,

there is a fourth state S’ such that S; = S’ and S; X 9.

Proof: Omitted due to space constraints; see [AWH92].
(The formal proof parallels the motivation shown in Fig-
ure 4, although the full construction is slightly more com-
plex.)

Theorem 6.7 (Confluence Theorem) Suppose the
Confluence Requirement holds for R and there are no
infinite paths in any execution graph for R. Then any
execution graph for R has exactly one final state, i.e. the
rules in R are confluent.

Proof: Let EG be any execution graph for R. By Con-
fluence Lemma 6.6, for any three states S, S;, and S;
in EG such that S — S; and § — §;, there is a fourth

state S’ such that S; % S’ and S; 2, §'. Therefore, by
Edge Confluence Lemma 6.4, for any three states S, S,

and S; in EG such that S X 8;and S 5 S;, there is a

fourth state S’ such that S; > §’ and S; %, §'. By Path
Confluence Lemma 6.3, FG has at most one final state,
hence (since there are no infinite paths) FG has exactly
one final state. 0O

Thus, analyzing whether the rules in R are confluent re-
quires considering each pair of unordered rules r; and »;
in R: Sets R; and R; are built from r; and r; according
to Definition 6.5, and the rules in R; and R, are checked
pairwise for commutativity.

6.4 TUsing Confluence Analysis

If our analysis determines that the rules in R are not
confluent, it can be attributed to pairs of unordered rules
r; and r; that generate sets R; and R; such that rules
r1 € Ry and r; € Rz do not commute. (In the most
common case, r1 and r; are r; and r; themselves; see
Corollary 6.8 below.) With this information, it appears
that the user has three possible courses of action towards
confluence (short of modifying the rules themselves):

1. Certify that rules r; and 73 actually do commute

2. Specify a user-defined priority between rules »; and
r; so they no longer must satisfy the Confluence Re-
quirement

3. Remove user-defined priorities so 1 or 73 is no longer
part of Ry or R,

Approach 1is clearly the best when it is valid. Approach
3 is non-intuitive and in fact useless: removing orderings
to eliminate r; or r; from R; or R, simply produces a
corresponding violation to the Confluence Requirement
elsewhere. Hence, if Approach 1 is not applicable (i.e.
rules r; and r; do not commute) then Approach 2 should
be used. Note, however, that adding an ordering be-
tween rules r; and r; does not immediately guarantee
confluence—sets R; or R may increase for other pairs of
rules and indicate that the rule set is still not confluent.®

8Intuitively, a source of non-confluence can appear to
“move around”, requiring an iterative process of adding or-

As guidelines for developing confluent rule sets, the
following corollaries indicate simple properties that are
satisfied by the rules in R if they are found to be conflu-
ent using our methods.

Corollary 6.8 If R is found to be confluent and r; and
r; are unordered rules in R, then r; and r; commute.

Proof: Unordered rules »; and r; generate sets R; and
R, such that r; € Ry and r; € R;. Hence, by the Con-
fluence Requirement, »; and r; must commute. O

Corollary 6.9 If R is found to be confluent and P = @
(i.e. there are no user-defined priorities between any rules
in R), then every pair of rules in R commutes.

Proof: Follows directly from Corollary 6.8. O

Corollary 6.10 If R is found to be confluent and r; and
r; in R are such that r; may trigger r; (or vice-versa),
then r; and r; are ordered.

Proof: Since r; € Triggers(r;), by our conditions for
noncommutativity (Lemma 6.1), r; and r; do not com-
mute. Suppose, for the sake of a contradiction, that r;
and r; are unordered. Then by Corollary 6.8 they must
commute. O

Additional similar corollaries certainly exist and provide
useful initial tools for the rule programmer.

We used our approach (by hand) to analyze confluence
for several medium-sized rule applications. In most cases
the rule sets were initially found to be non-confluent.
However, for those rule sets that actually were conflu-
ent, user specification of rule commutativity eventually
allowed confluence to be verified. Furthermore, for some
rule sets the analysis uncovered previously undetected
sources of non-confluence.

7 Partial Confluence

Confluence may be too strong a requirement for some ap-
plications. It sometimes is useful to allow rule set R to
be non-confluent for certain “unimportant” (e.g. scratch)
tables in the database, but to ensure that R is confluent
for other “important” (e.g. data) tables. We call this par-
tial confluence, or confluence with respect to T', where T
is a subset of the set of tables T" in the database schema.
In terms of execution graphs, the rules in R are confluent
with respect to 7" if, given any execution graph EG for
R and any two final states F; = (D1, 0) and F; = (D, 0)
in EG, the tables in 7' are identical in database states
D, and D;. (Partial confluence obviously is implied by
confluence, since confluence guarantees at most one final
state.)

Partial confluence is analyzed by analyzing confluence
for a subset of the rules in R: those rules that can directly
or indirectly affect the final value of tables in 7”.

derings (or certifying commutativity) until the rule set is
made confluent. This happens because our analysis tech-
niques simply detect that confluence requires two rules to be
ordered—the user chooses an ordering, and this choice affects
which additional rules must be ordered.

Definition 7.1 (Significant Rules) Let 7' C T be a
set of tables. The set of rules that are significant with
respect to T', denoted Sig(T”), is computed by the fol-
lowing algorithm:

Sig(T") — {r € R | (I,t), (D, 1}, or (U, t.c)
is in Performs(r) for some t € T'}
repeat until unchanged:

Sig(T") «Sig(T") U
{r € R | there is an r' € Sig(T") such that
r' and r do not commute} O

That is, Sig(T”) contains all rules that modify any table
in 7", along with (recursively) all rules that do not com-
mute with rules in Sig(T"). This algorithm determines
whether rules commute using our conservative conditions
for noncommutativity from Lemma 6.1. Hence, the user
can influence the computation of Sig(7”) by specifying
that pairs of rules that appear noncommutative accord-
ing to Lemma 6.1 actually do commute.

As in Confluence Theorem 6.7, partial confluence re-
quires that rules are guaranteed to terminate. In this
case, however, the rule set under consideration is Sig(7").
Thus, before analyzing partial confluence, termination of
the rules in Sig(7”) must be established using the tech-
niques of Section 5.7

Theorem 7.2 (Partial Confluence) Let 77 C T be
a set of tables. Suppose the Confluence Requirement
(Definition 6.5) holds for the rules in Sig(T') and there
are no infinite paths in any execution graph for Sig(7").
Then given any two final states F; and F3 in any execu-
tion graph for R, the tables in 7" are identical in F; and
F,, i.e. the rules in R are confluent with respect to 7".

Proof: Omitted due to space constraints; see [AWH92].

Hence, analyzing whether the rules in R are conflu-
ent with respect to 7" requires first computing Sig(7"),
then considering each pair of unordered rules »; and »;
in Sig(T"): Sets R; and R, are built according to Def-
inition 6.5 and checked pairwise for commutativity. If
the analysis determines that the rules in R are not par-
tially confluent, then the same interactive approach as
that described in Section 6.4 for confluence can be used
here to establish partial confluence.

8 Observable Determinism

In some database production rule languages, such as
Starburst, the final database state may not be the only
effect of rule processing—some rule actions may be visi-
ble to the environment (observable) while rules are being
processed. When this is the case, the user may want to
determine whether a rule set is observably deterministic,
i.e. whether the order and appearance of observable rule
actions is the same regardless of which rule is chosen
for consideration when multiple non-prioritized rules are

"That is, even though the rules in Sig(T') are never pro-
cessed on their own, it must be established that if they were
processed on their own they would terminate. As in Sec-
tion 6.3, this is necessary for Definition 6.5 to guarantee
confluence.

triggered. Note that observable determinism and conflu-
ence are orthogonal properties: a rule set may be con-
fluent but not observably deterministic or vice-versa.

We analyze observable determinism using our tech-
niques for partial confluence. Intuitively, we add a fic-
tional table Obs to the database, and we pretend that
those rules with observable actions also “timestamp and
log” their observable actions in table Obs. We analyze
the resulting rule set for confluence with respect to ta-
ble Obs; if partial confluence holds, then the rule set is
observably deterministic.

More formally, recall the definitions of Section 3. Let
T,ps = T U {Obs} be an extended set of tables, let
C,ps = C U{Obs.c} be an extended set of columns, and
let O ,p, be the corresponding extended set of operations.
Let Reads,p, and Performs,;, extend the definitions of
Reads and Performs as follows. For every r € R such
that Observable(r), add Obs.c to Reads(r) and (I, Obs)
to Performs(r). For convenience, we say that a rule r is
observable if Observable(r).

Theorem 8.1 (Observable Determinism) Sup-
pose, using extended definitions T,p,, Coper Ogpss
Readsp,, and Performs,;,, that our analysis methods
for partial confluence determine that rule set R is con-
fluent with respect to Obs. That is, suppose (from The-
orem 7.2) that the Confluence Requirement of Defini-
tion 6.5 holds for the rules in Sig(Obs) and there are no
infinite paths in any execution graph for R. Then the
rules in R are observably deterministic.

Proof: By supposition, any hypothetical behavior of
the rules in R that is consistent with the definitions of
Readsp, and Performs is confluent with respect to
Obs. Consider the following such behavior. Suppose
each observable rule r, in addition to its existing actions,
inserts a new tuple into Obs that contains the current
number of tuples in Obs (the “timestamp”) and a com-
plete description of r’s observable actions (the “log”).
Since there is a unique final value for Obs, the hypo-
thetical tuples written to Obs must be identical on all
execution paths. Consequently, there is only one possi-
ble order and appearance of observable actions, and the
rules in R are observably deterministic. 0O

If, using the analysis methods indicated by this theo-
rem, the rules in R are not found to be observably de-
terministic, then the same interactive approach as that
described in Section 6.4 can be used to establish conflu-
ence with respect to Obs, and consequently observable
determinism. Although this requires the user to be aware
of fictional table Obs, the use of Obsin the analysis tech-
niques is quite intuitive and may actually guide the user
in establishing observable determinism.

The following corollary gives a simple property that is
satisfied by the observable rules in R if they are found
to be deterministic using our methods. Additional useful
corollaries certainly exist.

Corollary 8.2 If R is found to be observably determin-
istic and r; and r; are distinct observable rules in R,
then r; and r; are ordered.®

8Note that this is not an if and only if condition: order-

Proof: Since r; is observable, Obs.c € Reads(r;) and
(I, Obs) € Performs(r;); similarly for r;. Therefore, by
Definition 7.1, 7; and r; are both in Sig(Obs). In ad-
dition, by Lemma 6.1, r; and r; satisfy our conditions
for noncommutativity. Suppose, for the sake of a con-
tradiction, that r; and r; are unordered. Then r; and
r; generate sets Ry and Ry (from Definition 6.5) such
that »; € Ry and »; € R;. Hence, by the Confluence
Requirement, r; and r; must commute. O

9 Conclusions and Future Work

We have given static analysis methods that determine
whether arbitrary sets of database production rules are
guaranteed to terminate, are confluent, are partially con-
fluent with respect to a set of tables, or are observably
deterministic. Owur algorithms are conservative—they
may not always detect when a rule set satisfies these
properties. However, they isolate the responsible rules
when a property is not satisfied, and they determine
simple criteria that, if satisfied, guarantee the property.
Furthermore, for the cases when these criteria are not
satisfied, our methods often can suggest modifications
to the rule set that are likely to make the property hold.
Consequently, our methods can form the basis of a pow-
erful interactive development environment for database
rule programmers.

Although our methods have been designed for the
Starburst Rule System, we expect that they can be
adapted to accommodate the syntax and semantics of
other database rule languages. In particular, the fun-
damental definitions of Section 3 (Triggers, Performs,
Choose, etc.) can simply be redefined for an alterna-
tive rule language. Alternative rule processing semantics
will probably require that the execution graph model
is modified, which consequently will cause algorithms
(and proofs) to be modified. However, our fundamental
“building blocks” of rule analysis techniques can remain
the same: the triggering graph for analyzing termina-
tion, the Edge and Path Lemmas for analyzing conflu-
ence, the notion of partial confluence, and the use of
partial confluence in analyzing observable determinism.

Some technical comparisons can be drawn between
this work and the results in [HH91, Ras90,ZH90]. In
[HH91], a version of the OPS5 production rule language
is considered, and a class of rule sets is identified that
(conservatively) guarantees the unigque fized point prop-
erty, which essentially corresponds to our notion of con-
fluence. By defining a mapping between our language
and the language in [HH91], we have shown that our con-
fluence requirements properly subsume their fixed point
requirements: if a rule set has the unique fixed point
property according to [HH91], then our methods deter-
mine that the corresponding rule set is confluent, but
not always vice-versa. The methods in [HH91] have pre-
viously been shown to subsume those in [Ras90,ZH90],
hence our approach, although still conservative, appears
quite accurate when compared with previous work.

ings between all pairs of observable rules does not necessarily
guarantee observable determinism.

Finally, we plan a number of improvements and ex-
tensions to this work:

e Incremental methods: In our current approach,
complete analysis is performed after any change to
the rule set. In many cases it is clear that most re-
sults of previous analysis are still valid and only in-
cremental additional analysis needs to be performed.
We plan to modify our methods to incorporate incre-
mental analysis. At the coarsest level, most rule ap-
plications can be partitioned into groups of rules such
that, across partitions, rules reference different sets
of tables and have no priority ordering. Although
rules from different partitions are processed at the
same time and their execution may be interleaved,
they have no effect on each other. Hence, analysis
can be applied separately to each partition, and it
needs to be repeated for a partition only when rules
in that partition change.

e Less conservative methods: As discussed
throughout the paper, many of our assumptions, def-
initions, and algorithms are conservative, and there
is room for refinement. This may include more com-
plex analysis of SQL, more accurate properties of our
execution model, and a suite of special cases.

e Restricted user operations: Our analysis assumes
that the user-generated operations that initiate rule
processing are arbitrary. However, in some cases it
may be known that these will be of a particular type,
i.e. users will only perform certain operations on cer-
tain tables. This may reduce possible execution paths
during rule processing, and consequently may guar-
antee properties that otherwise do not hold. We plan
to extend our methods so that termination, conflu-
ence, and observable determinism can be analyzed in
the context of limited user-generated operations.

e Implementation and experimentation: We plan
to implement our algorithms as part of an interac-
tive development environment for the Starburst Rule
System. Although we have verified by hand that our
methods are indeed useful, implementation will al-
low practical experimentation with large and realistic
rule applications.

Acknowledgements

Thanks to Stefano Ceri and Guy Lohman for helpful
comments on an initial draft.

References

[AS91] S. Abiteboul and E. Simon. Fundamental proper-
ties of deterministic and nondeterministic exten-
sions of datalog. Theoretical Computer Science,
78:137-158, 1991.

[AWH92] A. Aiken, J. Widom, and J.M. Hellerstein. Be-
havior of database production rules: Termina-
tion, confluence, and observable determinism.
IBM Research Report RJ 8562, IBM Almaden
Research Center, San Jose, California, January
1992.

[BFKM85] L. Brownston, R. Farrell, E. Kant, and N. Mar-

[CW90]

[GI91]

[H*90]

[Han89]

[HH91]

[Hue80]

[KU91]

[MD89]

[Ras90]

[SIGP90]

[WCL91]

[WF90]

tin. Programming FEzpert Systems in OPS5:
An Introduction to Rule-Based Programming.
Addison-Wesley, Reading, Massachusetts, 1985.

S. Ceri and J. Widom. Deriving production rules
for constraint maintenance. In Proceedings of the
Sizteenth International Conference on Very Large
Data Bases, pages 566-577, Brisbane, Australia,
Avugust 1990.

N. Gehani and H.V. Jagadish. Ode as an ac-
tive database: Constraints and triggers. In Pro-
ceedings of the Seventeenth International Confer-
ence on Very Large Data Bases, pages 327-336,
Barcelona, Spain, September 1991.

L.M. Haas et al. Starburst mid-flight: Asthe dust
clears. IFEEE Transactions on Knowledge and
Data Engineering, 2(1):143-160, March 1990.

E.N. Hanson. An initial report on the design
of Ariel: A DBMS with an integrated produc-
tion rule system. SIGMOD Record, Special Issue
on Rule Management and Processing in Ezpert
Database Systems, 18(3):12-19, September 1989.

J.M. Hellerstein and M. Hsu. Determinism in
partially ordered production systems. IBM Re-
search Report RJ 8009, IBM Almaden Research
Center, San Jose, California, March 1991.

G. Huet. Confluent reductions: Abstract prop-
erties and applications to term rewriting sys-
tems. Journal of the ACM, 27(4):797-821, Oc-
tober 1980.

A.P. Karadimce and S.D. Urban. Diagnosing
anomalous rule behavior in databases with in-
tegrity maintenance production rules. In Third
Workshop on Foundations of Models and Lan-
guages for Data and Objects, Aigen, Austria,
September 1991.

D.R. McCarthy and U. Dayal. The architecture
of an active database management system. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 215—
224, Portland, Oregon, May 1989.

L. Raschid. Maintaining consistency in a strat-
ified production system. In Proceedings of the
AAAI National Conference on Artificial Intelli-
gence, 1990.

M. Stonebraker, A. Jhingran, J. Goh, and
S. Potamianos. On rules, procedures, caching
and views in data base systems. In Proceedings
of the ACM SIGMOD International Conference
on Management of Data, pages 281-290, Atlantic
City, New Jersey, May 1990.

J. Widom, R.J. Cochrane, and B.G. Lindsay. Im-
plementing set-oriented production rules as an
extension to Starburst. In Proceedings of the Sev-
enteenth International Conference on Very Large
Data Bases, pages 275-285, Barcelona, Spain,
September 1991.

J. Widom and S.J. Finkelstein. Set-oriented pro-
duction rules in relational database systems. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 259—
270, Atlantic City, New Jersey, May 1990.

[ZH90]

Y. Zhou and M. Hsu. A theory for rule triggering
systems. In Advances in Database Technology—
EDBT ’90, Lecture Notes in Computer Sci-

ence 416, pages 407-421. Springer-Verlag, Berlin,
March 1990.

