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� Con
uence: Can the execution order of non-priori-tized rules make any di�erence in the �nal databasestate? That is, if multiple rules are triggered atthe same time during rule processing, can the �naldatabase state at termination of rule processing de-pend on which is considered �rst? If not, the rule setis con
uent.� Observable Determinism: If a rule action is visibleto the environment (e.g., if it performs data retrievalor a rollback statement), then we say it is observable.Can the execution order of non-prioritized rules makeany di�erence in the order or appearance of observ-able actions? If not, the rule set is observably deter-ministic.These properties can be very di�cult or impossible todecide in the general case. We have developed conserva-tive static analysis algorithms that:� guarantee that a set of rules will terminate or saythat it may not terminate;� guarantee that a set of rules is con
uent or say thatit may not be con
uent;� guarantee that a set of rules is observably determinis-tic or say that it may not be observably deterministic.Furthermore, when the answer is \may not" for any ofthese properties, the analysis algorithms isolate the rulesresponsible for the problem and determine criteria that,if satis�ed, guarantee the property. Hence the analysiscan form the basis of an interactive environment wherethe rule programmer invokes the analyzer to obtain infor-mation about rule behavior. If termination, con
uence,or observable determinism is desired but not guaranteed,then the user may verify that the necessary criteria aresatis�ed or may modify the rule set and try again.Our analysis methods have been developed and arepresented in the context of the Starburst Rule System[WCL91], a fully functional production rules facility in-tegrated into the Starburst extensible relational DBMSprototype at the IBM Almaden Research Center [H+90].Although some aspects of the analysis are dependent onStarburst rules, we have tried to remain as general aspossible and our methods certainly can be adapted toother database rule languages.



1.1 Related WorkMost previous work in static analysis of production rules[HH91,Ras90,ZH90] di�ers from ours in two ways. First,it considers simpli�ed versions of the OPS5 productionrule language [BFKM85]. OPS5 has a quite di�erentmodel of rule processing than most database productionrule systems, including the Starburst Rule System. Sec-ond, the goal of previous work is to impose restrictionsand/or orderings on OPS5 rule sets such that unique�xed points are guaranteed. Our goal, on the other hand,is to permit arbitrary rule sets and provide useful in-formation about their behavior in the database setting.In Section 9 we make some additional, more technical,comparisons, and explain how our analysis techniquessubsume results in [HH91,Ras90,ZH90].In [KU91], the issue of rule set termination is dis-cussed, along with the issue of con
icting updates|determining when one rule may undo changes made bya previous rule. Although models and a problem-solvingarchitecture for rule analysis are proposed, no algorithmsare given. In [AS91], issues of termination and unique�xed points are considered in the context of variousextensions to Datalog. In addition to the very di�er-ent semantics of Datalog (logic) and production rules,[AS91] does not address the issue of determining whethera given rule set exhibits certain properties (as we do),but rather states results about whether all rule sets in agiven language are guaranteed to exhibit the properties.In [CW90] we presented initial methods for analyzingtermination in the context of deriving production rulesfor integrity constraint maintenance; these methods formthe basis of our approach to termination in this paper.1.2 Outline of PaperAs an introduction to database production rule lan-guages and to establish a basis for our analysis tech-niques, in Section 2 we give the syntax and semantics ofStarburst production rules. In Section 3 we introduceinitial notation and de�nitions, and we describe somestraightforward preliminary analysis of rule sets. In Sec-tion 4 we present a model of rule processing to be usedas the formal basis for our analysis algorithms. Termi-nation analysis is covered in Section 5 and con
uencein Section 6. In Section 7 we give methods for analyz-ing partial con
uence, which speci�es that a rule set iscon
uent with respect to a portion of the database. Ob-servable determinism is covered in Section 8. Finally, inSection 9 we draw conclusions and discuss future work.2 The Starburst Rule SystemWe provide a brief overview of the set-oriented, SQL-based Starburst production rule language. Further de-tails and numerous examples appear in [WCL91,WF90].Starburst production rules are based on the notionof transitions. A transition is a database state changeresulting from execution of a sequence of data manipu-lation operations. Rules consider only the net e�ect oftransitions, meaning that: (1) if a tuple is updated sev-eral times, only the composite update is considered; (2)if a tuple is updated then deleted, only the deletion is

considered; (3) if a tuple is inserted then updated, this isconsidered as inserting the updated tuple; (4) if a tupleis inserted then deleted, this is not considered at all. Aformal theory of transitions and their net e�ects appearsin [WF90].The syntax for de�ning a rule is:create rule name on tablewhen transition predicate[ if condition ]then action[ precedes rule-list ][ follows rule-list ]The transition predicate speci�es one or more trigger-ing operations on the rule's table: inserted, deleted,or updated(c1; : : : ; cn), where c1; : : : ; cn are columnnames. The rule is triggered by a given transition ifat least one of the speci�ed operations occurred in thenet e�ect of the transition. The optional condition spec-i�es an SQL predicate. The action speci�es an arbitrarysequence of SQL data manipulation operations to be exe-cuted when the rule is triggered and its condition is true.The optional precedes and follows clauses are used toinduce a partial ordering on the set of de�ned rules. Ifa rule r1 speci�es a rule r2 in its precedes list, or if r2speci�es r1 in its follows list, then r1 is higher than r2in the ordering. (We also say that r1 has precedence orpriority over r2.) When no direct or transitive orderingis speci�ed between two rules, their order is arbitrary.A rule's condition and action may refer to the cur-rent state of the database through top-level or nestedSQL select operations. In addition, rule conditions andactions may refer to transition tables, which are logicaltables re
ecting the changes to the rule's table that haveoccurred during the triggering transition. At the end ofa given transition, transition table inserted in a rulerefers to those tuples of the rule's table that were in-serted by the transition, transition table deleted refersto those tuples that were deleted, and transition tablesnew-updated and old-updated refer to the new andold values (respectively) of the updated tuples. A rulemay refer only to transition tables corresponding to itstriggering operations.Rules are activated at rule assertion points. There isan assertion point at the end of each transaction, andthere may be additional user-speci�ed assertion pointswithin a transaction. We describe the semantics of ruleprocessing at an arbitrary assertion point. The statechange resulting from the user-generated database oper-ations executed since the last assertion point (or startof the transaction) creates the �rst relevant transition,and some set of rules are triggered by this transition. Atriggered rule r is chosen from this set for consideration.Rule r must be chosen so that no other triggered rulehas precedence over r. If r has a condition, then it ischecked. If r's condition is false, then another triggeredrule is chosen for consideration. Otherwise, if r has nocondition or its condition is true, then r's action is ex-ecuted. After execution of r's action, all rules not yetconsidered are triggered only if their transition predi-cates hold with respect to the composite transition cre-



ated by the initial transition and subsequent executionof r's action. That is, these rules see r's action as if itwere executed as part of the initial transition. Rules al-ready considered (including r) have already \processed"the initial transition; thus, they are triggered again onlyif their transition predicate holds with respect to thetransition created by r's action. From the new set oftriggered rules, a rule r0 is chosen for consideration suchthat no other triggered rule has precedence over r0. Ruleprocessing continues in this fashion.At an arbitrary time in rule processing, a given ruleis triggered if its transition predicate holds with respectto the (composite) transition since the last time it wasconsidered. If it has not yet been considered, it is trig-gered if its transition predicate holds with respect to thetransition since the last rule assertion point or start ofthe transaction. The values of transition tables in ruleconditions and actions always re
ect the rule's trigger-ing transition. Rule processing terminates when thereare no triggered rules.The analysis techniques we present are based on thislanguage and rule processing semantics, but with modi�-cations they also could apply to other similar languages;see Section 9.3 De�nitions and Preliminary AnalysisLet R = fr1; r2; : : : ; rng denote an arbitrary set of Star-burst production rules to be analyzed. Analysis is per-formed on a �xed set of rules|when the rule set ischanged, analysis must be repeated. (Incremental meth-ods are certainly possible; see Section 9.) Let P denotethe set of user-de�ned priority orderings on rules in R (asspeci�ed by their precedes and follows clauses), includ-ing those implied by transitivity. P = fri > rj; rk >rl; : : :g, where ri > rj denotes that rule ri has prece-dence over rj . Let T = ft1; t2; : : : ; tmg denote the tablesin the database schema, and let C = fti:cj; tk:cl; : : :gdenote the columns of tables in T . Finally, let O denotethe set of database modi�cation operations:O = fhI; ti j t 2 Tg [ fhD; ti j t 2 Tg [fhU; t:ci j t:c 2 CghI; ti denotes insertions into table t, hD; ti denotes dele-tions from table t, and hU; t:ci denotes updates to col-umn c of table t.The following de�nitions are computed using straight-forward preliminary analysis of the rules in R:� Triggered-By takes a rule r and produces the set ofoperations in O that trigger r. Triggered-By is trivialto compute based on rule syntax.� Performs takes a rule r and produces the set of op-erations in O that may be performed by r's action.Performs is trivial to compute based on rule syntax.� Triggers takes a rule r and produces all rules r0that can become triggered as a result of r's ac-tion (possibly including r itself). Triggers(r) =fr0 2 R j Performs(r) \ Triggered-By(r0) 6= ;g.� Reads takes a rule r and produces all columns in Cthat may be read by r in its condition or action.

Reads(r) contains every t:c referenced in a select orwhere clause in r0s condition or action. In addi-tion, for every htransi:c referenced, where htransi isone of inserted, deleted, new-updated, or old-updated, t:c is in Reads(r) for r's triggering tablet. (Recall from Section 2 that inserted, deleted,new-updated, and old-updated are transition ta-bles based on changes to t.)1� Can-Untrigger takes a set of operations O0 � O andproduces all rules that can be \untriggered" as aresult of operations in O0. A rule is untriggered ifit is triggered at some point during rule processingbut not chosen for consideration, then subsequentlyno longer triggered because all triggering changeswere undone by other rules.2 Can-Untrigger(O0) =fr 2 R j hD; ti 2 O0 and hI; ti or hU; t:ci 2 Trig-gered-By(r) for some t 2 T; t:c 2 Cg.� Choose takes a set of triggered rules R0 � R andproduces a subset of R0 indicating those rules eligiblefor consideration (based on priorities). Choose(R0)= fri j ri 2 R0 and there is no rj 2 R0 such thatrj > ri 2 Pg.� Observable takes a rule r and indicates whether r'saction may be observable. In Starburst, a rule's ac-tion may be observable i� it includes a select or roll-back statement.4 Execution ModelWe now de�ne a formal model of execution-time ruleprocessing. The model is based on execution graphs andaccurately captures the semantics of rule processing de-scribed in Section 2. Note that execution graphs are usedto discuss and to prove the correctness of our analysistechniques, but they are not part of the analysis itself.A directed execution graph has a distinguished ini-tial state representing the start of rule processing (atany rule assertion point) and zero or more �nal statesrepresenting termination of rule processing. The pathsin the graph represent all possible execution sequencesduring rule processing; branches in the graph result fromchoosing di�erent rules to consider when more than oneis eligible. (Hence any graph for a totally ordered ruleset has no branches.) The graph may have in�nitelylong paths, possibly due to cycles, and these representnontermination of rule processing.More formally, a state (node) S in an execution graphhas two components: (1) a database state D; (2) aset TR containing each triggered rule and its associatedtransition tables. We denote this state as S = (D;TR).The initial state I is created by an initial transition,which results from a sequence of user-generated databaseoperations. Hence, I = (DI ;TRI) where DI is a data-1Note that, unlike in OPS5, there is no distinction be-tween reading values \positively" and \negatively" in thisrule language.2As an example, a rule r1 might be triggered by insertions,but another rule r2 might delete all inserted tuples before r1is chosen for consideration. Untriggering is rare in practice.



base state and there is some (possibly empty) set of op-erations O0 � O such that:TRI = fr 2 R j O0 \ Triggered-By(r) 6= ;gO0 are the operations producing the initial transition,and TRI contains the rules triggered by those opera-tions. A �nal state F is some (DF ; ;), since no rules aretriggered when rule processing terminates.Each directed edge in an execution graph is labeledwith a rule r and represents the consideration of r duringrule processing. (This includes determining whether r'scondition is true and, if so, executing r's action.) Usingde�nitions from Section 3, the following lemma statescertain properties that hold for all execution graphs. Thelemma is stated without proof|it follows directly fromthe semantics of rule processing described in Section 2.Lemma 4.1 (Properties of Execution Graphs)Consider any execution graph edge from a state (D1;TR1) to a state (D2;TR2) labeled with a rule r. Then:� r 2 Choose(TR1)� There is some (possibly empty) set of operations O0 �Performs(r) such that the triggered rules in TR2 canbe derived from the triggered rules in TR1 by:1. removing rule r2. removing some subset of the rules inCan-Untrigger(O0)3. adding all rules r0 2 R such thatO0 \ Triggered-By(r0) 6= ; 2The operations in O0 are those executed by r's action. Ifr's condition is false then O0 is empty. If r's condition istrue then O0 still may be a proper subset of Performs(r)since, by the semantics of SQL, for most operations thereare certain database states on which they have no e�ect.Finally, note that although rule r is removed in step 1, rmay be added again in step 3 if O0 \Triggered-By(r) 6= ;.The properties in Lemma 4.1 are guaranteed for allexecution graphs. By performing more complex analysison rule conditions and actions, by incorporating proper-ties of database states, and by considering a variety ofspecial cases, we probably can identify additional prop-erties of execution graphs. Since our analysis techniquesare based on execution graph properties, more accu-rate properties may result in more accurate rule anal-ysis. We believe that the properties used here, althoughsomewhat conservative, are su�ciently accurate to yieldstrong analysis techniques.5 TerminationWe want to determine whether the rules in R are guar-anteed to terminate. That is, we want to determine if forall user-generated operations and initial database states,rule processing always reaches a point at which there areno triggered rules to consider. We take as an assump-tion that individual rule actions terminate. Hence, interms of execution graphs, the rules in R are guaranteedto terminate i� all paths in every execution graph for Rare �nite.As suggested in [CW90], termination is analyzed byconstructing a directed triggering graph for the rules in

R, denoted TGR. The nodes in TGR represent the rulesin R and the edges represent the Triggers relationship.That is, there is an edge from ri to rj in TGR i� rj 2Triggers(ri).Theorem 5.1 (Termination) If there are no cyclesin TGR then the rules in R are guaranteed to terminate.Proof: Omitted due to space constraints; see [AWH92].Hence, to determine whether the rules in R areguaranteed to terminate, triggering graph TGR is con-structed and checked for cycles. Although this may ap-pear to be a very conservative approach, by consideringonly the known properties of our execution graph model(Lemma 4.1), we see that whenever there is a cycle in thetriggering graph, our analysis cannot rule out the possi-bility that there is an execution graph with an in�nitepath. Clearly, however, there are a number of specialcases in which there is a cycle in the triggering graphbut other properties (not captured in Lemma 4.1) guar-antee termination. Examples are:� The action of some rule r on the cycle only deletesfrom a table t, and no other rules on the cycle insertinto t. Eventually r's action has no e�ect.� The action of some rule r on the cycle only performsa \monotonic" update (e.g. increments values), guar-anteeing that the condition of some rule r0 on thecycle eventually becomes false (e.g. some value is lessthan 10).Although some such cases may be detected automati-cally, for now we assume that they are discovered by theuser through the interactive analysis process: Once theanalyzer has built the triggering graph for the rules in R,the user is noti�ed of all cycles (or strong components).If the user is able to verify that, on each cycle, there issome rule r such that repeated consideration of the ruleson the cycle guarantee that r's condition eventually be-comes false or r's action eventually has no e�ect, thenthe rules in R are guaranteed to terminate.As part of a case study, we used this approach to es-tablish termination for a set of rules in a power networkdesign application [CW90].6 Con
uenceNext we want to determine whether the rules in R arecon
uent. That is, we want to determine if the �naldatabase state at termination of rule processing can de-pend on which rule is chosen for consideration when mul-tiple non-prioritized rules are triggered. In terms of ex-ecution graphs, the rules in R are con
uent if every ex-ecution graph for R has at most one �nal state. (Recallthat all �nal states in an execution graph have an emptyset of triggered rules, so two di�erent �nal states cannotrepresent the same database state.)Con
uence for production rules is a particularly di�-cult problem because, in addition to the standard prob-lems associated with con
uence [Hue80], we must takeinto account the interactions between rule triggering andrule priorities. For example, it is not su�cient to simplyconsider the combined e�ects of two rule actions; it also



����S����Si ����Sj����S0���	ri @@@Rrj@@@Rrj ���	 riFigure 1: Commutative rulesis necessary to consider all rules that can become trig-gered, directly or indirectly, by those actions, and therelative ordering of these triggered rules. These issuesare discussed as we develop our requirements for con
u-ence in Section 6.3. As preliminaries, we �rst introducethe notion of rule commutativity, and we make a usefulobservation about execution graphs.6.1 Rule CommutativityWe say that two rules ri and rj are commutative (or riand rj commute) if, given any state S in any executiongraph, considering rule ri and then rule rj from state Sproduces the same execution graph state S0 as consider-ing rule rj and then rule ri; this is depicted in Figure 1.If this equivalence does not always hold, then ri and rjare noncommutative (or ri and rj do not commute).Each rule clearly commutes with itself. Based on thede�nitions of Section 3, we give a set of conditions foranalyzing whether pairs of distinct rules commute.Lemma 6.1 For distinct rules ri and rj, if any of thefollowing conditions hold then ri and rj may be noncom-mutative; otherwise they are commutative:1. rj 2 Triggers(ri), i.e. ri can cause rj to become trig-gered2. rj 2 Can-Untrigger(Performs(ri)), i.e. ri can untrig-ger rj3. hI; ti, hD; ti, or hU; t:ci is in Performs(ri) and t:c isin Reads(rj) for some t:c 2 C, i.e. ri's operations cana�ect what rj reads4. hI; ti is in Performs(ri) and hD; ti or hU; t:ci is inPerforms(rj) for some t 2 T or t:c 2 C, i.e. ri'sinsertions can a�ect what rj updates or deletes35. hU; t:ci is in both Performs(ri) and Performs(rj), i.e.ri's updates can a�ect rj 's updates6. any of 1{5 with ri and rj reversed 2We leave it to the reader to verify that if a pair of rulesdoes not satisfy any of 1{6 then the rules are guaranteedto commute.The conditions in Lemma 6.1 are somewhat conserva-tive and probably could be re�ned by performing morecomplex analysis on rule conditions and actions and byconsidering a variety of special cases. As two examplesof this, consider rules ri and rj such that:3In SQL it is possible to delete from or update a tablewithout reading the table, which is why cases 4 and 5 aredistinct from case 3.

1. ri inserts into a table t and rj deletes from t, but thetuples inserted by ri never satisfy the delete conditionof rj, or2. ri and rj update the same table but never the sametuples.In the �rst example, ri and rj are noncommutative ac-cording to condition 4 of Lemma 6.1, but they do ac-tually commute. In the second example, ri and rj arenoncommutative according to condition 5 but do com-mute. Although some such cases may be detected au-tomatically, for now we assume that they are speci�edby the user during the interactive analysis process: Weallow the user to declare that pairs of rules that ap-pear noncommutative according to Lemma 6.1 actuallydo commute. The analysis algorithms then treat theserules as commutative.6.2 ObservationWe say that two rules ri and rj are unordered if neitherri > rj nor rj > ri is in P . (Similarly, we say two rulesri and rj are ordered if ri > rj or rj > ri is in P .) Basedon our execution graph model, we make the followingobservation about possible states, which is used in thenext section to develop our criteria for con
uence.Observation 6.2 Consider any two unordered rules riand rj in R. It is very likely that there is an execu-tion graph with a state that has (at least) two outgoingedges, one labeled ri and one labeled rj . (Informally,there is very likely a scenario in which both ri and rjare triggered and eligible for consideration. Recall thata triggered rule r is eligible for consideration i� there isno other triggered rule with precedence over r.)Justi�cation: Let O0 = Triggered-By(ri) [ Triggered-By(rj). Consider an execution graph for which the op-erations in O0 are the initial user-generated operations,so that ri and rj are both triggered in the initial state.Consider any path of length 0 or more from the initialstate to a state S = (D;TR) in which there are no rulesr 2 TR such that r > ri or r > rj is in P , i.e. there areno triggered rules with precedence over ri or rj.4 StateS has at least two outgoing edges, one labeled ri and onelabeled rj . 26.3 Analyzing Con
uenceWe now return to the question of con
uence. We want todetermine if every execution graph for R is guaranteedto have at most one �nal state. For two execution graphstates Si and Sj , let Si ! Sj denote that there is anedge in the execution graph from state Si to state Sjand let Si �! Sj denote that there is a path of length0 or more from Si to Sj . ( �! is the re
exive-transitiveclosure of !.) Our �rst Lemma establishes conditionsfor con
uence based on �!:4Such a path does not exist if ri or rj is untriggered alongall potential paths, or if rules with precedence over ri or rjare considered inde�nitely along all potential paths. Theseare highly unlikely (and probably undesirable) circumstances,but are why this is an observation rather than a theorem.



����S����Si ����Sj����S0���	� @@@R�@@@R� ���	 �(a) Based on paths ����S����Si ����Sj����S0���	ri @@@Rrj@@@R� ���	 �(b) Based on edgesFigure 2: Conditions for con
uenceLemma 6.3 (Path Con
uence) Consider an arbi-trary execution graph EG and suppose that for any threestates S, Si, and Sj in EG such that S �! Si and S �! Sj ,there is a fourth state S0 such that Si �! S0 and Sj �! S0(Figure 2a). Then EG has at most one �nal state.5Proof: Suppose, for the sake of a contradiction, that EGhas two distinct �nal states, F1 and F2. Let I be the ini-tial state, so I �! F1 and I �! F2. Then, by assumption,there must be a fourth state S such that F1 �! S andF2 �! S. Since F1 and F2 are both �nal states, S = F1and S = F2, contradicting F1 6= F2. 2It is quite di�cult in general to determine when the sup-position of Lemma 6.3 holds, since it is based entirelyon arbitrarily long paths. The following Lemma gives asomewhat weaker condition that is easier to verify andimplies the supposition of Lemma 6.3; it does, however,add the requirement that rule processing is guaranteedto terminate:Lemma 6.4 (Edge Con
uence) Consider an arbi-trary execution graph EG with no in�nite paths. Sup-pose that for any three states S, Si, and Sj in EG suchthat S ! Si and S ! Sj , there is a fourth state S0 suchthat Si �! S0 and Sj �! S0 (Figure 2b). Then for anythree states S, Si, and Sj in EG such that S �! Si andS �! Sj , there is a fourth state S0 such that Si �! S0 andSj �! S0.Proof: Classic result; see e.g. [Hue80].We use Lemma 6.4 as the basis for our analysis tech-niques. Based on this Lemma (along with Lemma 6.3),we can guarantee con
uence for the rules in R if we know1. there are no in�nite paths in any execution graph forR (i.e., the rules in R are guaranteed to terminate),and2. in any execution graph for R, for any three states S,Si, and Sj such that S ! Si and S ! Sj , there is afourth state S0 such that Si �! S0 and Sj �! S0.We assume that the �rst condition has been establishedthrough the analysis techniques of Section 5; we focus5Sometimes the term con
uence is used to denote the sup-position of this Lemma [Hue80], which then implies con
u-ence in the sense that we've de�ned it.

����S����Si ����Sj���� ��������S0i ����S0j
���	ri @@@Rrj? ?R1 � R2�?rj ?riFigure 3: Paths towards common state S0our attention on analysis techniques for establishing thesecond condition.Consider any execution graph for R and any threestates S, Si, and Sj such that S ! Si and S ! Sj . Thiscon�guration is produced by every state S that has atleast two unordered triggered rules that are eligible forconsideration. Let ri be the rule labeling edge S ! Siand rj be the rule labeling edge S ! Sj , as in Figure 2b.We want to prove that there is a fourth state S0 such thatSi �! S0 and Sj �! S0. It is tempting to assume that if riand rj are commutative, then rj can be considered fromstate Si and ri from Sj , producing a common state S0 asin Figure 1. Unfortunately, this is not always possible:If ri causes a rule r with precedence over rj to becometriggered, then rj is not eligible for consideration in stateSi (similarly for ri in state Sj). Since the new triggeredrule r must be considered before rule rj, r must commutewith rj . Furthermore, r may cause additional rules withprecedence over rj to become triggered.With this in mind, we motivate the requirements forthe existence of a common state S0 that is reachable fromboth Si and Sj . We do this by attempting to \build"valid paths from Si and Sj towards S0; call these paths p1and p2, respectively. From state Si, triggered rules withprecedence over rj are considered until rj is eligible; callthese rules R1. Similarly, from Sj triggered rules withprecedence over ri are considered until ri is eligible; callthese rules R2. After this, rj can be considered on pathp1 and ri can be considered on path p2. Paths p1 and p2up to this point are depicted in Figure 3.Now suppose that from state S0i we can continue pathp1 by considering the rules in R2 (in the same order), i.e.suppose the rules in R2 are appropriately triggered andeligible. Similarly, suppose that from S0j we can considerthe rules in R1. Then the same rules are consideredalong both paths. Consequently, if each rule in frig [R1 commutes with each rule in frjg [R2, then the twopaths are equivalent and reach a common state S0; thisis depicted in Figure 4.Unfortunately, even this scenario is not necessarilyvalid: There is no guarantee that the rules in R2 are trig-gered and eligible from state S0i; similarly for R1 and S0j.



����S����Si ����Sj���� ��������S0i ����S0j����S0
���	ri @@@Rrj? ?R1 � R2�?rj ?ri@@@R ���	R2 � R1�Figure 4: Paths reaching common state S0(For example, a rule in R2 may not be eligible from stateS0i because rj triggered a rule with higher priority.) Wecan guarantee this, however, if we extend the rules orig-inally considered in R1 to include all eligible rules withprecedence over rules in R2, and extend the rules in R2similarly. Using this mutually recursive de�nition of R1and R2, the pairwise commutativity of rules in frig[R1with rules in frjg[R2 guarantees the existence of stateS0, and consequently guarantees con
uence.To establish con
uence for the rules in R, then, wemust consider in this fashion every pair of rules ri andrj such that some state in some execution graph for Rmay have two outgoing edges, one labeled with ri andone with rj. Recall Observation 6.2: For any two un-ordered rules ri and rj, it is very likely that there isan execution graph with a state that has two outgoingedges, one labeled ri and one labeled rj. Consequently,we consider every pair of unordered rules, and our anal-ysis requirement for con
uence is stated as follows.De�nition 6.5 (Con
uence Requirement) Con-sider any pair of unordered rules ri and rj in R. LetR1 � R and R2 � R be constructed by the followingalgorithm:R1 frigR2 frjgrepeat until unchanged:R1 R1 [ fr 2 R j r 2 Triggers(r1) for some r1 2 R1and r > r2 2 P for some r2 2 R2and r 6= rjgR2 R2 [ fr 2 R j r 2 Triggers(r2) for some r2 2 R2and r > r1 2 P for some r1 2 R1and r 6= rigFor every pair of rules r1 2 R1 and r2 2 R2, r1 and r2must commute. 2The following lemma and theorem formally prove thatthe requirement of De�nition 6.5 indeed guarantees con-
uence.

Lemma 6.6 (Con
uence Lemma) Suppose theCon
uence Requirement (De�nition 6.5) holds for R.Then in any execution graph EG for R, for any threestates S, Si, and Sj in EG such that S ! Si and S ! Sj,there is a fourth state S0 such that Si �! S0 and Sj �! S0.Proof: Omitted due to space constraints; see [AWH92].(The formal proof parallels the motivation shown in Fig-ure 4, although the full construction is slightly more com-plex.)Theorem 6.7 (Con
uence Theorem) Suppose theCon
uence Requirement holds for R and there are noin�nite paths in any execution graph for R. Then anyexecution graph for R has exactly one �nal state, i.e. therules in R are con
uent.Proof: Let EG be any execution graph for R. By Con-
uence Lemma 6.6, for any three states S, Si, and Sjin EG such that S ! Si and S ! Sj , there is a fourthstate S0 such that Si �! S0 and Sj �! S0. Therefore, byEdge Con
uence Lemma 6.4, for any three states S, Si,and Sj in EG such that S �! Si and S �! Sj , there is afourth state S0 such that Si �! S0 and Sj �! S0. By PathCon
uence Lemma 6.3, EG has at most one �nal state,hence (since there are no in�nite paths) EG has exactlyone �nal state. 2Thus, analyzing whether the rules in R are con
uent re-quires considering each pair of unordered rules ri and rjin R: Sets R1 and R2 are built from ri and rj accordingto De�nition 6.5, and the rules in R1 and R2 are checkedpairwise for commutativity.6.4 Using Con
uence AnalysisIf our analysis determines that the rules in R are notcon
uent, it can be attributed to pairs of unordered rulesri and rj that generate sets R1 and R2 such that rulesr1 2 R1 and r2 2 R2 do not commute. (In the mostcommon case, r1 and r2 are ri and rj themselves; seeCorollary 6.8 below.) With this information, it appearsthat the user has three possible courses of action towardscon
uence (short of modifying the rules themselves):1. Certify that rules r1 and r2 actually do commute2. Specify a user-de�ned priority between rules ri andrj so they no longer must satisfy the Con
uence Re-quirement3. Remove user-de�ned priorities so r1 or r2 is no longerpart of R1 or R2Approach 1 is clearly the best when it is valid. Approach3 is non-intuitive and in fact useless: removing orderingsto eliminate r1 or r2 from R1 or R2 simply produces acorresponding violation to the Con
uence Requirementelsewhere. Hence, if Approach 1 is not applicable (i.e.rules r1 and r2 do not commute) then Approach 2 shouldbe used. Note, however, that adding an ordering be-tween rules ri and rj does not immediately guaranteecon
uence|sets R1 or R2 may increase for other pairs ofrules and indicate that the rule set is still not con
uent.66Intuitively, a source of non-con
uence can appear to\move around", requiring an iterative process of adding or-



As guidelines for developing con
uent rule sets, thefollowing corollaries indicate simple properties that aresatis�ed by the rules in R if they are found to be con
u-ent using our methods.Corollary 6.8 If R is found to be con
uent and ri andrj are unordered rules in R, then ri and rj commute.Proof: Unordered rules ri and rj generate sets R1 andR2 such that ri 2 R1 and rj 2 R2. Hence, by the Con-
uence Requirement, ri and rj must commute. 2Corollary 6.9 If R is found to be con
uent and P = ;(i.e. there are no user-de�ned priorities between any rulesin R), then every pair of rules in R commutes.Proof: Follows directly from Corollary 6.8. 2Corollary 6.10 If R is found to be con
uent and ri andrj in R are such that ri may trigger rj (or vice-versa),then ri and rj are ordered.Proof: Since rj 2 Triggers(ri), by our conditions fornoncommutativity (Lemma 6.1), ri and rj do not com-mute. Suppose, for the sake of a contradiction, that riand rj are unordered. Then by Corollary 6.8 they mustcommute. 2Additional similar corollaries certainly exist and provideuseful initial tools for the rule programmer.We used our approach (by hand) to analyze con
uencefor several medium-sized rule applications. In most casesthe rule sets were initially found to be non-con
uent.However, for those rule sets that actually were con
u-ent, user speci�cation of rule commutativity eventuallyallowed con
uence to be veri�ed. Furthermore, for somerule sets the analysis uncovered previously undetectedsources of non-con
uence.7 Partial Con
uenceCon
uence may be too strong a requirement for some ap-plications. It sometimes is useful to allow rule set R tobe non-con
uent for certain \unimportant" (e.g. scratch)tables in the database, but to ensure that R is con
uentfor other \important" (e.g. data) tables. We call this par-tial con
uence, or con
uence with respect to T 0, where T 0is a subset of the set of tables T in the database schema.In terms of execution graphs, the rules in R are con
uentwith respect to T 0 if, given any execution graph EG forR and any two �nal states F1 = (D1; ;) and F2 = (D2; ;)in EG, the tables in T 0 are identical in database statesD1 and D2. (Partial con
uence obviously is implied bycon
uence, since con
uence guarantees at most one �nalstate.)Partial con
uence is analyzed by analyzing con
uencefor a subset of the rules in R: those rules that can directlyor indirectly a�ect the �nal value of tables in T 0.derings (or certifying commutativity) until the rule set ismade con
uent. This happens because our analysis tech-niques simply detect that con
uence requires two rules to beordered|the user chooses an ordering, and this choice a�ectswhich additional rules must be ordered.

De�nition 7.1 (Signi�cant Rules) Let T 0 � T be aset of tables. The set of rules that are signi�cant withrespect to T 0, denoted Sig(T 0), is computed by the fol-lowing algorithm:Sig(T 0) fr 2 R j hI; ti, hD; ti, or hU; t:ciis in Performs(r) for some t 2 T 0grepeat until unchanged:Sig(T 0) Sig(T 0) [fr 2 R j there is an r0 2 Sig(T 0) such thatr0 and r do not commuteg 2That is, Sig(T 0) contains all rules that modify any tablein T 0, along with (recursively) all rules that do not com-mute with rules in Sig(T 0). This algorithm determineswhether rules commute using our conservative conditionsfor noncommutativity from Lemma 6.1. Hence, the usercan in
uence the computation of Sig(T 0) by specifyingthat pairs of rules that appear noncommutative accord-ing to Lemma 6.1 actually do commute.As in Con
uence Theorem 6.7, partial con
uence re-quires that rules are guaranteed to terminate. In thiscase, however, the rule set under consideration is Sig(T 0).Thus, before analyzing partial con
uence, termination ofthe rules in Sig(T 0) must be established using the tech-niques of Section 5.7Theorem 7.2 (Partial Con
uence) Let T 0 � T bea set of tables. Suppose the Con
uence Requirement(De�nition 6.5) holds for the rules in Sig(T 0) and thereare no in�nite paths in any execution graph for Sig(T 0).Then given any two �nal states F1 and F2 in any execu-tion graph for R, the tables in T 0 are identical in F1 andF2, i.e. the rules in R are con
uent with respect to T 0.Proof: Omitted due to space constraints; see [AWH92].Hence, analyzing whether the rules in R are con
u-ent with respect to T 0 requires �rst computing Sig(T 0),then considering each pair of unordered rules ri and rjin Sig(T 0): Sets R1 and R2 are built according to Def-inition 6.5 and checked pairwise for commutativity. Ifthe analysis determines that the rules in R are not par-tially con
uent, then the same interactive approach asthat described in Section 6.4 for con
uence can be usedhere to establish partial con
uence.8 Observable DeterminismIn some database production rule languages, such asStarburst, the �nal database state may not be the onlye�ect of rule processing|some rule actions may be visi-ble to the environment (observable) while rules are beingprocessed. When this is the case, the user may want todetermine whether a rule set is observably deterministic,i.e. whether the order and appearance of observable ruleactions is the same regardless of which rule is chosenfor consideration when multiple non-prioritized rules are7That is, even though the rules in Sig(T 0) are never pro-cessed on their own, it must be established that if they wereprocessed on their own they would terminate. As in Sec-tion 6.3, this is necessary for De�nition 6.5 to guaranteecon
uence.



triggered. Note that observable determinism and con
u-ence are orthogonal properties: a rule set may be con-
uent but not observably deterministic or vice-versa.We analyze observable determinism using our tech-niques for partial con
uence. Intuitively, we add a �c-tional table Obs to the database, and we pretend thatthose rules with observable actions also \timestamp andlog" their observable actions in table Obs. We analyzethe resulting rule set for con
uence with respect to ta-ble Obs; if partial con
uence holds, then the rule set isobservably deterministic.More formally, recall the de�nitions of Section 3. LetTobs = T [ fObsg be an extended set of tables, letCobs = C [ fObs:cg be an extended set of columns, andlet Oobs be the corresponding extended set of operations.Let Readsobs and Performsobs extend the de�nitions ofReads and Performs as follows. For every r 2 R suchthat Observable(r), add Obs:c to Reads(r) and hI;Obsito Performs(r). For convenience, we say that a rule r isobservable if Observable(r).Theorem 8.1 (Observable Determinism) Sup-pose, using extended de�nitions Tobs, Cobs, Oobs,Readsobs, and Performsobs, that our analysis methodsfor partial con
uence determine that rule set R is con-
uent with respect to Obs. That is, suppose (from The-orem 7.2) that the Con
uence Requirement of De�ni-tion 6.5 holds for the rules in Sig(Obs) and there are noin�nite paths in any execution graph for R. Then therules in R are observably deterministic.Proof: By supposition, any hypothetical behavior ofthe rules in R that is consistent with the de�nitions ofReadsobs and Performsobs is con
uent with respect toObs. Consider the following such behavior. Supposeeach observable rule r, in addition to its existing actions,inserts a new tuple into Obs that contains the currentnumber of tuples in Obs (the \timestamp") and a com-plete description of r's observable actions (the \log").Since there is a unique �nal value for Obs, the hypo-thetical tuples written to Obs must be identical on allexecution paths. Consequently, there is only one possi-ble order and appearance of observable actions, and therules in R are observably deterministic. 2If, using the analysis methods indicated by this theo-rem, the rules in R are not found to be observably de-terministic, then the same interactive approach as thatdescribed in Section 6.4 can be used to establish con
u-ence with respect to Obs, and consequently observabledeterminism. Although this requires the user to be awareof �ctional table Obs, the use of Obs in the analysis tech-niques is quite intuitive and may actually guide the userin establishing observable determinism.The following corollary gives a simple property that issatis�ed by the observable rules in R if they are foundto be deterministic using our methods. Additional usefulcorollaries certainly exist.Corollary 8.2 If R is found to be observably determin-istic and ri and rj are distinct observable rules in R,then ri and rj are ordered.88Note that this is not an if and only if condition: order-

Proof: Since ri is observable, Obs:c 2 Reads(ri) andhI;Obsi 2 Performs(ri); similarly for rj. Therefore, byDe�nition 7.1, ri and rj are both in Sig(Obs). In ad-dition, by Lemma 6.1, ri and rj satisfy our conditionsfor noncommutativity. Suppose, for the sake of a con-tradiction, that ri and rj are unordered. Then ri andrj generate sets R1 and R2 (from De�nition 6.5) suchthat ri 2 R1 and rj 2 R2. Hence, by the Con
uenceRequirement, ri and rj must commute. 29 Conclusions and Future WorkWe have given static analysis methods that determinewhether arbitrary sets of database production rules areguaranteed to terminate, are con
uent, are partially con-
uent with respect to a set of tables, or are observablydeterministic. Our algorithms are conservative|theymay not always detect when a rule set satis�es theseproperties. However, they isolate the responsible ruleswhen a property is not satis�ed, and they determinesimple criteria that, if satis�ed, guarantee the property.Furthermore, for the cases when these criteria are notsatis�ed, our methods often can suggest modi�cationsto the rule set that are likely to make the property hold.Consequently, our methods can form the basis of a pow-erful interactive development environment for databaserule programmers.Although our methods have been designed for theStarburst Rule System, we expect that they can beadapted to accommodate the syntax and semantics ofother database rule languages. In particular, the fun-damental de�nitions of Section 3 (Triggers, Performs,Choose, etc.) can simply be rede�ned for an alterna-tive rule language. Alternative rule processing semanticswill probably require that the execution graph modelis modi�ed, which consequently will cause algorithms(and proofs) to be modi�ed. However, our fundamental\building blocks" of rule analysis techniques can remainthe same: the triggering graph for analyzing termina-tion, the Edge and Path Lemmas for analyzing con
u-ence, the notion of partial con
uence, and the use ofpartial con
uence in analyzing observable determinism.Some technical comparisons can be drawn betweenthis work and the results in [HH91,Ras90, ZH90]. In[HH91], a version of the OPS5 production rule languageis considered, and a class of rule sets is identi�ed that(conservatively) guarantees the unique �xed point prop-erty, which essentially corresponds to our notion of con-
uence. By de�ning a mapping between our languageand the language in [HH91], we have shown that our con-
uence requirements properly subsume their �xed pointrequirements: if a rule set has the unique �xed pointproperty according to [HH91], then our methods deter-mine that the corresponding rule set is con
uent, butnot always vice-versa. The methods in [HH91] have pre-viously been shown to subsume those in [Ras90,ZH90],hence our approach, although still conservative, appearsquite accurate when compared with previous work.ings between all pairs of observable rules does not necessarilyguarantee observable determinism.



Finally, we plan a number of improvements and ex-tensions to this work:� Incremental methods: In our current approach,complete analysis is performed after any change tothe rule set. In many cases it is clear that most re-sults of previous analysis are still valid and only in-cremental additional analysis needs to be performed.We plan to modify our methods to incorporate incre-mental analysis. At the coarsest level, most rule ap-plications can be partitioned into groups of rules suchthat, across partitions, rules reference di�erent setsof tables and have no priority ordering. Althoughrules from di�erent partitions are processed at thesame time and their execution may be interleaved,they have no e�ect on each other. Hence, analysiscan be applied separately to each partition, and itneeds to be repeated for a partition only when rulesin that partition change.� Less conservative methods: As discussedthroughout the paper, many of our assumptions, def-initions, and algorithms are conservative, and thereis room for re�nement. This may include more com-plex analysis of SQL, more accurate properties of ourexecution model, and a suite of special cases.� Restricted user operations: Our analysis assumesthat the user-generated operations that initiate ruleprocessing are arbitrary. However, in some cases itmay be known that these will be of a particular type,i.e. users will only perform certain operations on cer-tain tables. This may reduce possible execution pathsduring rule processing, and consequently may guar-antee properties that otherwise do not hold. We planto extend our methods so that termination, con
u-ence, and observable determinism can be analyzed inthe context of limited user-generated operations.� Implementation and experimentation: We planto implement our algorithms as part of an interac-tive development environment for the Starburst RuleSystem. Although we have veri�ed by hand that ourmethods are indeed useful, implementation will al-low practical experimentation with large and realisticrule applications.AcknowledgementsThanks to Stefano Ceri and Guy Lohman for helpfulcomments on an initial draft.References[AS91] S. Abiteboul and E. Simon. Fundamental proper-ties of deterministic and nondeterministic exten-sions of datalog. Theoretical Computer Science,78:137{158, 1991.[AWH92] A. Aiken, J. Widom, and J.M. Hellerstein. Be-havior of database production rules: Termina-tion, con
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