
Set Constraints: Results, Applications andFuture DirectionsAlexander AikenComputer Science DivisionUniversity of California, BerkeleyBerkeley, CA 94720-1776aiken@cs.berkeley.eduAbstract. Set constraints are a natural formalism for many problemsthat arise in program analysis. This paper provides a brief introductionto set constraints: what set constraints are, why they are interesting, thecurrent state of the art, open problems, applications and implementa-tions.1 IntroductionSet constraints are a natural formalism for describing relationships between setsof terms of a free algebra. A set constraint has the form X � Y , where Xand Y are set expressions. Examples of set expressions are 0 (the empty set),� (a set-valued variable), c(X;Y ) (a constructor application), and the union,intersection, or complement of set expressions.Recently, there has been a great deal of interest in program analysis algo-rithms based on solving systems of set constraints, including analyses for func-tional languages [AWL94, Hei94, AW93, AM91, JM79, MR85, Rey69], logic pro-gramming languages [AL94, HJ92, HJ90b, Mis84], and imperative languages[HJ91]. In these algorithms, sets of terms describe the possible values computedby a program. Set constraints are generated from the program text; solving theconstraints yields some useful information about the program (e.g., for type-checking or optimization).Set constraints have proven to be a very successful formalism. On the theo-retical side, rapid progress has been made in understanding the algorithms forand complexity of solving various classes of set constraints. On the practical side,several program analysis systems based either entirely or partially on set con-straint algorithms have been implemented. In addition, the use of set constraintshas simpli�ed previously known, but rather complicated, program analyses andset constraints have led directly to the discovery of other, previously unknown,analyses.Much of the work on set constraints is very recent. Consequently, many ofthe results are not well known outside of the community of researchers activein the area. The purpose of this paper is to provide a brief, accessible survey ofthe area: what set constraints are, why they are useful, what is and isn't knownabout solving set constraints, the important open problems, and likely directions



for future work. Section 2 gives de�nitions of the basic set constraint formalismand some illustrative examples. Section 3 presents a survey of results on the sat-is�ability, complexity, and solvability of various set constraint problems; openproblems are also discussed. In Section 4 a brief, informal description of algo-rithms for solving systems of set constraints is given; this discussion also pointsout basic trade-o�s between expressive power and computational complexity forvarious classes of set constraint problems. Section 5 surveys applications of setconstraints to program analysis. Section 6 concludes with a discussion of currentimplementations and likely directions for future work.2 Set ConstraintsLet C be a set of constructors and let V be a set of variables. Each c 2 C has a�xed arity a(c); if a(c) = 0 then c is a constant. The set expressions are de�nedby the following grammar:E ::= � j 0 j c(E1; : : : ; Ea(c)) jE1 [E2 jE1 \E2 j :E1In this grammar, � is a variable (i.e., � 2 V ) and c is a constructor (i.e., c 2 C).Set expressions denote sets of terms. A term is c(t1; : : : ; ta(c)) where c 2 C andevery ti is a term (the base cases of this de�nition are the constants). The setH of all terms is the Herbrand universe. An assignment is a mapping V ! 2Hthat assigns sets of terms to variables. The meaning of set expressions is givenby extending assignments from variables to set expressions as follows:�(0) = ;�(c(E1; : : : ; En)) = fc(t1; : : : ; tn)jti 2 �(Ei)g�(E1 [E2) = �(E1) [ �(E2)�(E1 \E2) = �(E1) \ �(E2)�(:E1) = H � �(E1)A system of set constraints is a �nite conjunction of constraints ViXi �Yi where each of the Xi and Yi is a set expression. A solution of a systemof set constraints is an assignment � such that Vi �(Xi) � �(Yi) is true. Asystem of set constraints is satis�able if it has at least one solution. The followingresult was proven �rst in [AW92]. Simpler proofs have been discovered since[BGW93, AKVW93].Theorem1. It is decidable whether a system of set constraints is satis�able.Furthermore, all solutions can be �nitely presented.It is important to note that the de�nition of set constraints used here doesdamage to history. The original formulation of set constraints, due to Heintzeand Ja�ar [HJ90a], also includes projection operations in the constraint lan-guage. However, it is convenient pedagogically to present results as extensions of



the de�nition above. This organization also re
ects the manner in which recentresearch has progressed.From the de�nition above, it is easy to see that the set expressions consistonly of elementary set operations plus constructors|simply put, it is a set theoryof terms. The constraint language is rich enough, however, to describe all of thedata types commonly used in programming, and it is this property that makesset constraints a natural tool for program analysis. For example, programminglanguage data type facilities provide \sums of products" data types, which meanssimply unions of (usually distinct) data type constructors. All such data typescan be expressed as set constraints.Let X = Y stand for the pair of constraints X � Y and Y � X. Considerthe constraint � = cons(�; �) [ nilIf cons and nil are interpreted in the usual way, then the solution of this con-straint assigns to � the set of all lists with elements drawn from �. This examplealso shows that a special operation for recursion is not required in the set expres-sion language|recursion is obtained naturally through recursive constraints.The set of non-nil lists (with elements drawn from �) can be de�ned as
 = � \ :nil, where � is de�ned as above. The set 
 is useful because itdescribes the proper domain of the function that selects the �rst element of alist; such a function is unde�ned for empty lists. This example also illustratesthat set constraints can describe proper subsets of standard sums of productsdata types.The �nal example shows a non-trivial set of constraints where some work isrequired to derive the solutions. Consider the universe of the natural numberswith one unary constructor succ and one nullary constructor zero. Let thesystem of constraints be:succ(�) � :� ^ succ(:�) � �These constraints say that if x 2 � (resp. x 2 :�) then succ(x) 2 :� (resp.succ(x) 2 �). In other words, these constraints have two solutions, one where� is the set of even integers and one where � is the set of odd integers. Thesolutions are described by the following equations:� = zero[ succ(succ(�))� = succ(zero) [ succ(succ(�))Note that the two solutions are incomparable; in general, there is no least solutionof a system of set constraints.3 Results and Open ProblemsThe set constraint language de�ned in Section 2 is henceforth called the basiclanguage. There are several interesting extensions to the basic language, each



of which substantially alters the set constraint problem. Three extensions arediscussed in this paper: projections, function spaces, and negative constraints.For every constructor c of arity n, a family of projections c�1; : : : ; c�n canbe de�ned such that�(c�i(E)) = ftij9t1; : : : ; tn: c(t1; : : : ; tn) 2 �(E)gTo date, projections are used primarily in set constraint analyses for logic pro-gramming languages [HJ90b].A separate extension is adding sets of functionsX ! Y to the set expressions.This is a major change, because it not only enriches the language, but alsorequires a new domain. The construction of a suitable domain with functionspaces is beyond the scope of this paper; somewhat surprisingly, however, givensuch a domain, set constraint techniques still apply. In an appropriate domain,the meaning of X ! Y isX ! Y = ff jx 2 X ) f(x) 2 Y gFunction spaces are used primarily in the analysis of functional programminglanguages [AW93, AWL94].Finally, negative constraints are strict containments X 6� Y . Negative con-straints can express the set of non-solutions of a system of positive constraints:: î (Xi � Yi) =_i Xi 6� YiSince conjunctions of positive constraints correspond to an existential property(i.e., is any assignment a solution of the constraints) disjunctions of negativeconstraints can express universal properties (i.e., is every assignment a solutionof the constraints) [AKW93, GTT93].Four proofs of decidability of the satis�ability problem for the basic languageare known [AW92, GTT92, BGW93, AKVW93]. Remarkably, each proof is basedon completely di�erent techniques. A particularly elegant proof is due to Bach-mair, Ganzinger, and Waldmann [BGW93]; their result shows set constraints areequivalent to the monadic class, the class of �rst order formulas with arbitraryquanti�cation but only unary predicates and no function symbols. In additionto satis�ability, constraint resolution algorithms are known that construct ex-plicit representations of the solutions of systems of set constraints for the basiclanguage.The situation with the various extensions is less clear. Table 1 summarizesthe current state of knowledge. The decidability of the satis�ability of set con-straints with projections was open for several years [HJ90a] and has only veryrecently been resolved [CP94b]. Constraint resolution algorithms for restrictedforms of the general problem are known [HJ90a, Hei92]; the current state of theart permits the full basic language and restricts only projections [BGW93].Work on set constraints extended with negative constraints has been moti-vated in part because it is an intermediate step toward handling projections.To see this, consider the expression c�1(c(X;Y )). Note that if Y = 0, then



c(X;Y ) = 0, since constructors function as cross products. Therefore, the mean-ing of this expression can be characterized asc�1(c(X;Y )) = � 0 if Y = 0X if Y 6= 0Thus, even a restricted form of projection implicitly involves negative con-straints (Y 6= 0 in the right-hand side above). Three independent proofs ofthe decidability of set constraints with negative constraints have been discov-ered [AKW93, GTT93, CP94a]; currently there is only one reported proof ofthe decidability of set constraints with projections [CP94b]. These are decisionprocedures only, however, and do not characterize the solution sets.Problem Satis�ability Constraint Resolutionbasic yes yesbasic with projections yes with restrictionsbasic with function spaces yes with restrictionsbasic with negative constraints yes ?Table 1. Status of set constraint problems.Set constraints extended with function spaces have been used to develop veryexpressive subtype inference systems for functional languages. Currently, con-straint solving algorithms for a fairly general class of set constraints with func-tion types are known [AW93, AWL94]. Damm has proven the surprising resultthat satis�ability of set constraints with function spaces is decidable [Dam94].Set constraint resolution algorithms can be computationally expensive ingeneral. For the basic problem, deciding satis�ability is NEXPTIME-complete[BGW93] and even if the language is restricted to the set operations over con-stants satis�ability remains NP-complete [AKVW93]. By restricting the set op-erations (instead of the arity of constructors) it is possible to achieve polynomialtime algorithms for interesting classes of constraints [JM79, MR85, Hei92].4 AlgorithmsAt the current time, the literature on set constraint algorithms is very diverse inmany dimensions, with a wide variety of notation and algorithmic techniques inuse. Unfortunately, no reference provides a systematic introduction to more thana small portion of the body of existing work. This section gives a very brief andrelatively informal overview of the basic algorithmic issues in solving systemsof set constraints. For a more detailed treatment of the various algorithms, theinterested reader should consult sources listed in the bibliography.



All set constraint resolution algorithms have the same basic structure. Aninitial system of constraints is systematically transformed until the constraintsreach a particular syntactic solved form. In most cases, the solved form is equiv-alent to one or more regular tree grammars. More precisely, the �nal result is aset of equations � = c(X1; : : : ; Xn) [ : : :[ d(Y1; : : : ; Ym)which can viewed equivalently as the productions of a grammar� ::= c(X1; : : : ; Xn) j : : : j d(Y1; : : : ; Ym)The language generated by the tree grammar then describes the solution of theconstraints.Unfortunately, this simple explanation of the solutions of set constraints isa bit oversimpli�ed. In reality, set constraints are more general than tree gram-mars. In the solutions of set constraints, this extra generality appears as \free"variables in the solved form equations. A free variable is one that does not ap-pear on the left-hand side of any equation. Thus, a more accurate description ofthe solutions of set constraints is that they are tree grammars that may includefree variables.At their core, all set constraint algorithms have two characteristic formsof constraints: transitive constraints and structural constraints. Transitive con-straints arise from combining upper and lower bounds on variables:X � � ^ � � Y ) X � YBecause of the need to resolve transitive constraints, most interesting set con-straint problems have at least O(n3) time complexity.Structural constraints are constraints between constructor expressions:c(X1; : : : ; Xn) � c(Y1; : : : ; Yn)In general, there may be many incomparable solutions of such a constraint. Forexample, because the semantics of a constructor is essentially a cross product, aconstructor expression is 0 if any component is 0, and therefore the constraint issatis�ed if Xi = 0 for any i. Of course, the constraint is also satis�ed if Xi � Yifor all i. Thus, the complete set of solutions isc(X1; : : : ; Xn) � c(Y1; : : : ; Yn), X1 = 0_: : :_Xn = 0_(X1 � Y1^: : :̂ Xn � Yn)Searching for a solution of such a constraint requires guessing a disjunct thatcan be satis�ed. This non-deterministic choice increases the complexity of setconstraint problems above the complexity of the corresponding tree automataproblems. For example, deciding whether the language of one tree automata isa subset of another is complete for EXPTIME [Sei90]; solving a general systemof set constraint inclusions is complete for NEXPTIME.If it is known that the system of constraints under consideration has a leastsolution and the goal is to compute only the least solution, then it is easy to see



that the cases Xi = 0 need not be considered and the last case can be chosendeterministically. Thus, more e�cient algorithms are possible in the special casethat a system of constraints has a least solution.Finally, the set operators \;[; and : play roles very similar to their roles inother logics. There are some distributive laws involving constructors, but theseare not surprising:1c(X1; : : : ; Xn) \ c(Y1; : : : ; Yn) = c(X1 \ Y1; : : : ; Xn \ Yn)c(X1 [ Y1; Z2; : : : ; Zn) = c(X1; Z2; : : : ; Zn) [ c(Y1; Z2; : : : ; Zn):c(X1; : : : ; Xn) = c(:X1; 1; : : : ; 1) [ : : :[ c(1; : : : ; 1;:Xn) [[d 6=c d(1; : : : ; 1)For set constraint problems with restricted set operations and where the con-straints have least solutions, it is possible to design polynomial time algorithmsto compute the least solution; for examples, see [JM79, MR85, Hei92, Hei94].If the set operations are not restricted, then it becomes possible to describesome complex sets of terms very succinctly with set expressions, which raisesthe computational complexity of constraint resolution to exponential time.5 ApplicationsSet constraints have a long history and, in fact, less general formalisms predatethe term \set constraints" by many years. The basic language of set constraintsis now known to be equivalent to the monadic class of logical formulas [BGW93];the �rst decision procedure for the monadic class was given by L�owenheim in1915 [L�15]. Within the realm of computer science, Reynolds was the �rst todevelop a resolution algorithm for a class of set constraints [Rey69]. Reynolds wasinterested in the analysis and optimization of Lisp programs. In this application,set constraints were used to compute a conservative description of the datastructures in use at a program point. Using this information, a Lisp programcould be optimized by, for example, eliminating run-time type checks where itwas provably safe to do so.Independently of Reynolds, Jones and Muchnick developed a di�erent anal-ysis system for Lisp programs based on solving systems of set equations [JM79].This analysis was used not only to eliminate dynamic type checks but also toreduce reference count operations in automatic memory management systemsbased on reference counting. Recently Wang and Hil�nger have proposed an-other analysis method for Lisp based on set equations [WH92].1 As written, the law for negation appears to require that the set of all constructors dsuch that d 6= c can be enumerated and thus the set of constructors must be �nite. Infact, this restriction is not necessary, and it is a simple matter to implement negationfor in�nite sets of constructors.



A di�erent set of applications provide type inference algorithms for func-tional languages that verify the type correctness of a larger class of programsthan the standard Hindley/Milner type system. Mishra and Reddy describeda type system based on a set constraint resolution algorithm that could handleconsiderably more complex constraints than previous algorithms [MR85]. Thatteintroduced partial types [Tha88], the type inference problem for which, whilesubstantially di�erent from earlier systems, is also reducible a set constraint res-olution problem. The most recent work in this area is due to Wimmers and theauthor [AW93, AWL94], who provide a type inference system that generalizesthe results in [MR85, Tha88]. An implementation of this last system is publiclyavailable (see Section 6).A natural application area for set constraints is the analysis of logic programs.The idea was �rst explored by Mishra [Mis84]; more recently, this line of work hasbeen well developed in a series of papers by Ja�ar and Heintze [HJ90b, HJ90a,HJ92], as well as in Heintze's thesis [Hei92]. Many of the techniques developedin [Hei92] have been fruitfully applied to compile time analysis in other areas,especially the compile-time analysis of ML programs [Hei94].6 Conclusions and DirectionsInterest in set constraints originally arose from the needs of researchers workingin program analysis. Currently, there is a lively, continuing interplay betweenthe theoretical and practical e�orts in the area. Future work is most likely toproceed along three lines. First, the open problems in Table 1 may be resolved.Second, e�orts to apply set constraints to new problems will lead to additionalvariations on the basic language. Third, there will be additional e�ort devotedto the e�cient implementation of set constraint resolution algorithms. This islikely to include not only new engineering techniques, but also exploration ofrestricted classes of constraints for which good worst-case complexity resultscan be obtained.Besides a number of prototype or special purpose systems, there are currentlytwo substantial, complete set constraint resolution implementations, one byNevin Heintze at CMU [Hei92] and one by the author and colleagues at IBM. Thelatter implementation is available by anonymous ftp and comes with a type infer-ence system for a functional language based on solving systems of set constraints[AWL94]. To get this system, retrieve pub/personal/aiken/Illyria.tar.Zfrom the machine s2k-ftp.cs.berkeley.edu.References[AKVW93] A. Aiken, D. Kozen, M. Vardi, and E. Wimmers. The complexity of setconstraints. In Computer Science Logic '93, Swansea, Wales, September1993. To appear.[AKW93] A. Aiken, D. Kozen, and E. Wimmers. Decidability of systems of set con-straints with negative constraints. Research Report RJ 9421, IBM, 1993.
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