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The response of an intervalence band to an applied electric field, called an intervalence band Stark effect, is
considered in detail. Because the application of an electric field to a symmetric mixed-valence complex will
break its symmetry in a way that depends on the strength of the field and the orientation of the complex in
the field, it is necessary to identify the most general treatment of the asymmetric vibronic coupling problem
for the calculation of intervalence band Stark effects. For this reason three previous treatments of the asymmetric
vibronic coupling problem are reviewed. Each treatment is found to be less appropriate for the calculation of
intervalence band Stark effects than a fourth that we introduce. It is also shown that a common choice of
vibrational basis in these treatments can lead to inaccurate calculations for some mixed-valence complexes;
an alternative is recommended. Particular attention is paid to the effects of the field on the line shapes of
intervalence bands and the sites of charge localization in mixed-valence complexes; both effects of the field
lead us to identify intervalence band Stark effects as examples of a broader class of nonclassical Stark effects.
A wide range of behavior for intervalence band Stark effects is predicted for isotropic samples. The Franck-
Condon principle is utilized to develop a qualitative understanding of this behavior. Two methods of analysis
are developed for determining the values of the vibronic coupling parameters that characterize a mixed-
valence complex in the absence of the field from intervalence band Stark effects measured for isotropic
samples; one of these methods can yield a complete description of the vibronic coupling parameters from an
intervalence band Stark effect when the dipole strength of the intervalence band is either poorly characterized
or poorly understood. The Stark effects of phase-phonon bands are also discussed. A graded description of
charge localization in mixed-valence complexes is emphasized throughout this work, and a simple criterion
for identifying the localized-to-delocalized transition is proposed.

Stark spectroscopy has proven to be a powerful technique
for characterizing the electronic and vibrational transitions of
molecules.1 A Stark spectrum is the change in an absorption
spectrum under the influence of an applied electric field,F:

Stark spectra have generally been interpreted using what we
refer to as the classical theory of Stark spectroscopy. Its principal
assumptions are thatFB perturbs an absorber’s transition dipole
moment,mb, and peak position,νjmax, but neither its population
or its line shape.2 Each absorber’s transition polarizability,
A, transition hyperpolarizability,B, difference dipole moment,
∆µb, and difference polarizability,∆R, are defined by power
series expansions truncated at second order inFB:

When the ensemble of absorbers is isotropic and the field
perturbations to the individual transitions are small compared
to their line widths and intensities,∆A can be expressed as a
sum of the zeroth, first, and secondνj-weighted derivatives of
the absorption spectrum:

where

In these equationsh is Planck’s constant andc is the speed of
light, ∆Rm ) (mb‚∆R‚mb)/|mb|2, ø is the angle betweenFB and the
polarization of the probing light field,ú is the angle between
∆µb and mb, and f is a scalar approximation to the local field
correction tensor. This tensor is intended to account for a
possible difference betweenFB, the externally applied field, and
FBint, the internal field at the position of a chromophore:FBint )
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f‚FB. It is generally believed that for most frozen organic or
aqueous glasses the value off should be between 1.0 and 1.3.1,10

The indicesi and j in eqs 5 and 6 run over the molecular
coordinatesx, y, andz.

Equations 4 and 7 suggest a common mode of analysis of
Stark spectra that we refer to as the classical Stark analysis:
Stark spectra recorded at two or more values ofø are fit to a
sum of theνj-weighted derivatives of the absorption spectrum;
the fit values ofCø as a function ofø are then used to determine
the magnitudes of∆µ andú. This procedure essentially redefines
Aø, Bø, and∆µ as fit parameters derived from the coefficients
of the zeroth-, first-, and second-derivative components, re-
spectively, of a fit to the Stark spectrum. For many electronic
and vibrational transitions, but not all of them, the assumptions
underlying the classical Stark theory are satisfied; in these cases
there is a theoretical justification for interpreting, for example,
the fit value of∆µ as the linear response ofνjmax to F. In these
cases we refer to the transitions as having classical Stark effects.
Nonclassical Stark effects are thus defined by contrast to the
assumptions of the classical Stark theory, as when the field
affects the line width of a transition or the population of the
absorbing species; nonclassical Stark effects may also be fit to
a sum of derivatives, but the information content of the Stark
spectrum is different than described by eqs 4-7. By this defi-
nition, examples of nonclassical Stark effects include resonance
Stark effects,3,4 field-modulated population effects,5,6 and
some Stark effects associated with intervalence band absorp-
tion,7 which we refer to as intervalence band Stark effects
(IVSEs).

An intervalence band (IVB) is a unique vibronic transition
in a mixed-valence complex (MVC) that is not present in either
of the monomers comprising this dimer.8 This transition arises
from the vibronic coupling between the two charge-localized
electronic states,ψL andψR, defined by the pictures

In most casesl ) 1, M1 and M2 are metals, and B is a bridging
ligand. In other casesl ) 2, M1 and M2 are functional groups
on a bridging organic molecule, or there is no bridge. On account
of the vibronic coupling between these states there is a
breakdown of the Born-Oppenheimer approximation for the
eigenstates of MVCs between the limits of weak and strong
mixing of ψL andψR.9 The adiabatic electronic states

and the difference dipole moment between them,∆µb12(q), thus
depend on the nuclear configurationq.

The Born-Oppenheimer violation that occurs for the eigen-
states of many MVCs is necessarily ignored when mixed-
valency and IVB absorption are treated with a purely elec-
tronic coupling model instead of a vibronic coupling model.10

Electronic coupling models of IVB absorption can also fail to
recognize that some MVCs have a double-welled adiabatic
potential energy surface corresponding toψ1(q), which can give
rise to two distinct, though generally overlapping, absorption
spectra. Thus a failure to recognize the intrinsically vibronic
nature of the coupling betweenψL and ψR could lead to a
misinterpretation of the results of a classical Stark analysis of
an IVSE for two reasons: on account of Born-Oppenheimer

violation, for many MVCs the adiabatic electronic states have
q-dependent dipole moments, so it is not clear what physical
property the fit value of∆µ from a classical Stark analysis
might represent; if an applied electric field should effect a
population transfer between two nearly degenerate wells, a
situation we refer to as a field-modulated population effect,6

this phenomenon would violate an assumption underlying the
classical Stark analysis.11 Such field-induced switching of
electronic states has been of great interest to the field of
molecular electronics.46

Since Oh and Boxer published the Stark spectrum of the IVB
of the Creutz-Taube ion in 1990,12,13 IVSEs have been
measured for a variety of MVCs,10 both symmetric (i.e., M1 )
M2, u ) v, and M1 and M2 have identical environments for
someq) and asymmetric, inorganic and organic, and with and
without a bridging ligand. Generally, these IVSEs have been
analyzed with the classical Stark analysis, and in some cases
the results have been interpreted with an electronic coupling
model of mixed-valency when a vibronic coupling model would
have been more appropriate for the reasons described above.
Although vibronic coupling treatments of IVSEs have been
presented,14-16 to our knowledge no one has provided a unifying
treatment of the complete range of the classical Stark effects
(in some limits of strong and weak mixing) and nonclassical
Stark effects (due to Born-Oppenheimer violation and field-
modulated population effects) that can be expected for IVBs
and other charge-transfer transitions. The primary purpose of
this paper is to provide this treatment. Toward this end, we
identify the MVCs that are expected to have classical Stark
effects on the basis of the values of the vibronic coupling
parameters describing them, and we develop and verify different
expressions forAø, Bø, and∆µ as functions of these parameters.
For some MVCs having nonclassical Stark effects, we attempt
to develop an intuition for the kind and extent of nonclassical
behavior that can be observed and suggest experiments for
further investigations of this behavior. One important conclusion
from this work is that some MVCs with similar values of their
vibronic coupling parameters may have much more dramatic
differences among their IVSEs than among their IVBs; thus
IVSEs can be used to constrain the values of these parameters
better than they are constrained from the IVB alone. Also, we
ask if there is any simple relationship between the IVSE line
shape and the localized or delocalized nature of a MVC. Toward
this end, we develop a useful criterion for identifying the
localized-to-delocalized transition in MVCs.

Theoretical Foundations

Any interpretation of a Stark spectrum has at its root an
expression for the intrinsic absorption spectrum of a single
absorber as a function ofF, ø, and its orientation in the lab
frame.17 The field-on and field-off absorption spectra for the
ensemble are then determined by integrating this expression over
the orientational distribution of absorbers present, and∆A is
calculated according to eq 1. When field-modulation at fre-
quencyω is coupled to lock-in detection for recording Stark
spectra, expressions for∆A(2ω) and the higher order Stark
spectra33 ∆A(nω) require additional considerations for their
derivation, but this does not change the underlying physical
picture.

Vibronic Coupling Models of IVB Absorption. As de-
scribed by Piepho, Krausz, and Schatz (PKS),28 the physical
picture for IVB absorption yields an expectation that the
nuclei around M1 and M2 should reorganize in a precisely

ψL ≡ M1
(u+l )+ - B - M2

(v)+

ψR ≡ M1
(u)+ - B - M2

(v+l )+

ψ1(q) ) c1(q)ψL + c2(q)ψR

ψ2(q) ) -c2(q)ψL + c1(q)ψR (8)
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opposite manner in response to the transfer of a charge between
M1 and M2 within a symmetric MVC. These coordinated
reorganizations are represented by combining the normal modes
of vibration within the two halves of the MVC,qM1 andqM2,
to yield antisymmetric normal modes of vibration for the
dimer:

Asymmetric MVCs are represented in the PKS model by the
vertical displacement of the quadratic potential energy surfaces
corresponding toψL and ψR, denoted here by∆νj. The PKS
model calculates IVB spectra as a function of this vertical
displacement (∆νj), the unitless horizontal displacement along
qanti of the ψL and ψR surfaces (δanti), the force constants of
these surfaces (νjanti), and the electronic coupling between them
(V0). In the limit of large∆νj one expectsqM1 andqM2 to decouple
such that a description in terms of antisymmetric modes is no
longer strictly appropriate. Nevertheless, the algebraic treatment
of vibronic couplings in this limit is generally identical to that
of the vibronic coupling toqanti for the symmetric vibronic
coupling problem.25 Thus the PKS model can be used to fit
IVBs for MVCs of all manner of asymmetry, but whether the
fit values of displacement correspond to individualqM1 andqM2

modes or to combination modes such asqanti is difficult to
determine.

Although the PKS model argues that reorganizations along
the symmetric modes

are insignificant in the context of calculating absorption spec-
tra, Hush first noted that significant reorganizations are plau-
sible along another symmetry-preserving mode, one which
could not be constructed fromqM1 and qM2.24 In the limit of
strong mixing betweenψL andψR the adiabatic electronic states
are

In this case it is expected from the physical picture of a bonding
to antibonding transition that the separation between M1 and
M2 should increase in response toψ- r ψ+. This mode is also
denotedqsym because it belongs to the general class of modes
that do not lower the symmetry of the MVC.

Thus the PKS model has been modified by Piepho to include
the effect on the IVB of the unitless horizontal displacement
along anyqsym of the ψ+ and ψ- surfaces,δsym, and the
corresponding force constants,νjsym.22 However, the Piepho
model treated symmetric MVCs exclusively. Two recent models
of the asymmetric vibronic coupling problem that, unlike the
PKS model, include vibronic coupling to both symmetric and
antisymmetric modes are those of Gasyna, Schatz, and Boyle
(GSB) and Reimers and Hush (RH).19,20 Calculations with the
GSB model begin by projecting the total Hamiltonian,HT, upon
a diabatic basis{ψ1, ψ2} defined by fixed values of the
coefficientsc1 andc2 (eq 8). The values of these coefficients
are determined by an asymmetry parameter,R (R , 1). This
projection, denoted〈ψi|HT|ψj〉12 to indicate that the statesψi

andψj run over the statesψ1 andψ2, is given as

whereTn(q) is the nuclear kinetic energy, the electronic energy
is defined equal to zero at the minimum of theψ1 surface, and
q is defined equal to zero at the nuclear configuration about
which the displacements of theψ1 andψ2 surfaces are equal.26

Calculations with the RH model also begin by projectingHT

onto a diabatic basis that is not necessarily either{ψL, ψR} or
{ψ+, ψ-}; the fixed values ofc1 and c2 in this case are
determined by ignoring the contribution of symmetric modes
to the problem and diagonalizing〈ψi|HT|ψj〉LR at qanti ) 0.
Vibronic couplings to symmetric modes are then added to the
diagonal of〈ψi|HT|ψj〉12:

where

Comparison of the antisymmetric displacements of theψ1 and
ψ2 surfaces in eqs 12 and 13 suggestsR can be expressed as
∆νj/Ω0, which is approximately∆νj/2V0 whenR , 1.

Both models thus agree with each other and with that of
Piepho in their treatment of the symmetric vibronic coupling
problem, where the diabatic basis is chosen to be{ψ+, ψ-}
because eitherR ) 0 or ∆νj ) 0, but they differ between each
other in their treatment of the asymmetric vibronic coupling
problem, such as pertains to symmetric MVCs in an applied
electric field. These differences exist because the symmetry
considerations revealing the dynamic matrix of the symmetric
vibronic coupling problem cannot provide any direction for
constructing the dynamic matrices of the asymmetric vibronic
coupling problem.22,23 Before considering which of these
dynamic matrices, if any, is more appropriate for calculating
IVSEs, it is important first to consider the ways in which an
applied electric field might perturb the values of the vibronic
coupling parameters introduced above.

The Stark Effect. BecauseψL andψR have electric dipole
moments that differ by the product of the chargel and the
difference between the positions of M1 and M2, a product
denoted by∆µbCT, FB will perturb the value of∆νj according to

(Tn(q) +
νjanti

2
(qanti - Rδanti)

2 +

νjsym

2
(qsym + δsym)2

νjantiδantiqanti + Rνjsymδsymqsym

νjantiδantiqanti + Rνjsymδsymqsym 2V0 + Tn(q) +
νjanti

2
(qanti + Rδanti)

2 +

νjsym

2
(qsym - δsym)2

)
(12)

(Tn(q) +
νjanti

2
(qanti - danti)

2 +

νjsym

2
(qsym + δsym)2

Rantiqanti

Rantiqanti Ω0 + Tn(q) +
νjanti

2
(qanti+ danti)

2 +

νjsym

2
(qsym - δsym)2

)
(13)

danti ) δanti
∆νj
Ω0

(14)

Ranti ) νjantiδanti

2V0

Ω0
(15)

Ω0 ) (∆νj2 + 4V0
2)1/2 (16)

qanti ) (qM1
- qM2

)/x2 (9)

qsym ) (qM1
+ qM2

)/x2 (10)

ψ+ ) (ψL + ψR)/x2

ψ- ) (-ψL + ψR)/x2 (11)
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For example, if M1 and M2 are separated by 5 Å andl ) 1, an
applied field of 1 MV/cm aligned along the M1-M2 axis will
perturb ∆νj by 400 cm-1 when f ) 1.0. The second-order
response of∆νj to FB is proportional to the difference between
the polarizabilities,∆RCT, of ψL andψR. ∆RCT arises from field-
dependent interactions ofψL andψR with electronic states we
have otherwise ignored in the vibronic coupling problem.
Common molecular group polarizibilities are at most tens of
Å3.29 If ∆RCT were as large as 100 Å3, a field of 1 MV/cm
would perturb∆νj by only 5.6 cm-1. Thus, for experimentally
obtainable field strengths, the perturbation due to∆RCT is
generally negligible compared to that due to∆µCT.

Measurements of vibrational Stark effects suggest that the
sensitivity of a vibrational frequency to an electric field is
generally very small.36,37The largest sensitivities that have been
measured so far are less than 3 cm-1/(MV/cm). For a field of
1 MV/cm, this amounts to, at most, a 1% change for a
vibrational frequency of 300 cm-1.

If F were to affect eitherδanti or δsym, this would be another
way by whichF would influence the reorganization energies
defined by

Conversely, because the effect ofF upon eitherνjsym or νjanti is
negligible, if one could estimate its effect uponλ, one could
also estimate its effect uponδ. One important contribution to
reorganization energy is the electrostatic interactions among the
dipole moments of bonds in a MVC;25 the sizes of these dipole
moments and their interaction energies vary with nuclear
configuration, giving rise to potential energy surfaces that can
be approximated as harmonic in a neighborhood about their
minima. Another important contribution is the interaction of
these dipole moments with dipole moments in the frozen
solvent.25 Thus the field can affectλ by interacting with the
electronic polarizabilities of any of these dipole moments. If
these polarizabilities were as large as 100 Å3, a field of 1 MV/
cm would perturb these dipole moments by as much as 0.3 D.
Because common group polarizabilities are at most tens of Å3

and common group dipole moments are on the order of 1 D,29

a 1 MV/cm field should not affect the values ofδ by more
than a few percent. However, if an applied electric field
should affect the coupling between theqM1 andqM2 modes, this
could influence the values ofδ in complex ways, as discussed
below.

V0 is the least well understood of the parameters in the
vibronic coupling problem, so it is more difficult to estimate
the magnitude of its dependence onF. Two origins forV0 are
frequently identified, although there may be others. One
contribution toV0 is from the direct overlap of orbitals on M1
and M2, V0

M1M2.25 The other is aq-dependent superexchange
contribution43 from the overlap of orbitals on M1 and M2 with
orbitals on B,V0

SE(q):

F may influence both contributions due to its interactions with
group polarizabilities in the MVC that modifydee

XY, the edge-
to-edge distance between sites X and Y (X, Y) M1, M2 or B).
The dependence of the coupling between these sites,V0

XY, on

dee
XY is generally modeled as an exponential decay:25

Because group polarizabilities are generally not more than tens
of Å3, the change indee

XY due to a 1 MV/cm electric field is
inherently small. If the states corresponding to localization of
the charge on sites X and Y have the same polarizabilities (i.e.,
the difference polarizability∆RXY ) 0), then the field will not
influencedee

XY at all. For a large net difference polarizability of
100 Å3, the effect of a 1 MV/cm field is to changedee

XY by only
0.07 Å. If â is as large as 2.8 Å-1, its theoretical maximum
value (the one attributed toâ in a vacuum), this amounts to a
change inV0

XY of roughly 10%. For the smaller values ofâ
more appropriate to condensed phases, the field dependence of
V0 due to this mechanism will be less significant.

V0
SE(q) arises from the coupling ofψL and ψR to a third

state,ψB, which is defined by the chargel being localized on
the bridge.V0

SE(q) is inversely proportional to theq-dependent
energy differences between statesψL andψB and between states
ψR andψB.43 These energy differences can be perturbed by the
interaction of the field with the difference dipole moments,∆µLB

and∆µRB. According to the calculation at the beginning of this
subsection, a difference dipole moment representing 5 Å of
charge-transfer would result in a 400 cm-1 perturbation to∆νjXY.
Thus a typical small, conjugated bridging group (such as
pyrazine or cyanide) and a d-orbital on a metal would have a
value of ∆νjXY roughly 100 times larger thanF‚f∆µXY. Thus
the field dependence ofV0

SE(q) could often be insignificant
compared to the already small field dependence ofV0

M1M2.
When these estimated perturbations to∆νj, νjsym, νjanti, δ, and

V0 are considered in the context of eqs 12 and 13, one finds
that the first-order perturbation to∆νj will generally have the
most significant effect on the adiabatic surfaces defined by the
q-dependent diagonalization of the coupledψ1 andψ2 surfaces.
These observations justify fitting most IVSEs using eq 17 as
the only effect of the field within some vibronic coupling model
of IVB absorption. However, as when fitting IVBs, one may
question the nature of the coupled vibrational modes whose
displacements are fit; additionally, the field may alter the
coupling of theqM1 andqM2 modes, in which case the values of
δ may be altered by this alternate mechanism. Such changes
may be significant because, according to the PKS model for a
symmetric MVC, the displacements along the antisymmetric
and symmetric modes defined by eqs 9 and 10 are constructed,
respectively, as 1/x2 and zero times the equal displacements
alongqM1 andqM2.28 Despite having these limiting values ofδ,
it is not at all clear how a field would affect displacements
through this mechanism; thus we suggest fitting IVSEs using a
description in terms of antisymmetric and symmetric modes with
field-independent values of displacement, noting that this
remains an important area for investigation.

Choosing a Dynamic Matrix. Considering which dynamic
matrix to use for fitting IVSEs, we first note that〈ψi|HT|ψj〉12

in the GSB model (eq 12) resembles a rotation of〈ψi|HT|ψj〉+-
for the symmetric vibronic coupling problem through a small
angle equal toR in all respects except in its treatment ofV0.
Because a rotation of the diabatic basis should not affect the
calculated IVB, any field-perturbation to the IVB of a symmetric
MVC in this model can be traced to either its exceptional
treatment ofV0 under this rotation or to a violation of the small
angle condition. Because the range of asymmetries that both
satisfy the small angle condition and result in significant
perturbations to the IVB of a symmetric MVC is very small,

V0
XY ∝ exp[-âdee

XY/2] (21)

∆νj(FB) ) ∆νj - ∆µbCT‚fFB (17)

λanti ) 2νjantiδanti
2 (18)

λsym ) 2νjsymδsym
2 (19)

V0 ) V0
M1M2 + V0

SE(q) (20)
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this treatment of the asymmetric vibronic coupling problem
should not generally be used for fitting IVSEs.

To the credit of the RH model, its identical algebraic treatment
of vibronic couplings alongqanti andqsym in the limit of large
asymmetry echoes the expectations noted above that vibronic
couplings to the decoupledqM1 and qM2 modes in this limit
should behave asqanti in the symmetric vibronic coupling
problem. However, it does not make sense to treat the symmetric
mode describing the M1-M2 separation distance in this way
because it cannot be decomposed into a combination ofqM1

and qM2 modes. More appropriate, it would seem, is to treat
this symmetric mode exactly as it was treated in the symmetric
vibronic coupling problem, as justified by the physical picture
of a strongly mixed MVC, treating asymmetry strictly by
entering∆νj off the diagonal of〈ψi|HT|ψj〉+- as in the PKS
model. According to this model of the asymmetric vibronic
coupling problem, previously unexplored in the literature to our
knowledge,18 the dynamic matrix〈ψi|HT|ψj〉+- is

In contrast, rotation of either eqs 12 or 13 into the{ψ+, ψ-}
basis would yield a contribution of eitherV0 or δsym, re-
spectively, to the off-diagonal elements of〈ψi|HT|ψj〉+-. Ac-
cording to this model the projection ofHT onto the{ψL, ψR}
basis is

where we have redefined the zero of energy upon transformation
from eq 22 to 23 to highlight the similarity of these matrices.
Thus, of particular relevance for the calculation of IVSEs, and
in contrast to the treatment ofδsym in the RH model, in this
model a fixed value of the displacement along any symmetric
mode has an appropriately negligible effect on the adiabatic
surfaces ofHT in the limit of large asymmetry because it occurs
off the diagonal in eq 23. Cross-sections of the diabatic surfaces
corresponding to the diagonal elements of eqs 22 and 23 are
illustrated in Figure 1; these surfaces are denoted by labels
derived from the following compact notation for the elements
of the dynamic matrix in any diabatic basis:

In this equation the statesψi andψj can run over eitherψL and
ψR, ψ+ andψ-, or ψ1 andψ2. Having justified the use of eqs
22 and 23 for calculating IVSEs, we choose to use eq 22 to
representHT for subsequent calcualtions. It remains to project

the elements of this equation onto vibrational basis functions
and to calculate the intensities of the transitions between each
pair of eigenstates of the resulting matrix. As for the dynamic
matrices above, different methods have been utilized to treat
these other aspects of the vibronic coupling problem. To identify
the best of these treatments for calculating IVSEs, here we
review some often neglected peculiarities of the vibronic
coupling problem with regard to the choice of vibrational basis
and the calculation of transition intensities.

Choosing a Vibrational Basis. Implicit in the calculation
of the matrix elements above is the use of the Born-
Oppenheimer approximation for constructing vibronic basis
functions

where r denotes electronic coordinates,ψi is either of the
electronic basis statesψ+ or ψ-, andφn

i is a vibrational basis
state of quantum numbern associated withψi. Because theψ+
and ψ- surfaces have been assumed parabolic, harmonic
oscillator wave functions are a clear choice for these two
vibrational manifolds. What is less clear is which nuclear
configurations to choose as their origins. Many different choices
have been used to treat the vibronic coupling problem, each
yielding a different expression for theq-independent matrix
elements〈ψiφn

i |HT|ψjφm
j 〉+- from the sameq-dependent matrix

elements〈ψi|HT|ψj〉+-. Although one might expect the vibronic
coupling problem to be invariant to these translations, here we
show that these different projections ofHT can yield different
spectra from the same〈ψi|HT|ψj〉+-. For some of these projec-
tions we argue that the spectra are wrong.

One choice for the origins of theφn
+ andφm

- manifolds are
the two q corresponding to the minima of theψ+ and ψ-
surfaces, respectively.20 The drawback to this choice is that the
matrix 〈ψiφn

i |HT|ψjφm
j 〉+- has fewer zeros than when theseq

are the same. Thus it is tempting to choose identical origins for
φn

+ and φm
-, because this leads to selection rules that greatly

simplify the calculation of the matrix elements〈φn
+|φm

-〉 and
〈φn

+|q|φm
-〉 and shorten the computation time for diagonalizing

HT.

Figure 1. Selected cross-sections of diabatic potential energy surfaces
for the vibronic coupling problem defined by eqs 22 and 23. Panel A
illustratesV++(q) andV--(q) alongqsym whenqanti ) 0. The horizontal
displacement of the surfaces is-δsym, respectively; the vertical
displacement ofV--(q) is 2V0. Panel B illustratesV++(q) andV--(q)
alongqanti whenqsym ) 0. The horizontal displacement of the surfaces
is zero; the vertical displacement ofV--(q) is 2V0; V++(q) is offset
from zero byλsym/4. Panel C illustratesVLL(q) andVRR(q) alongqsym

when qanti ) 0. The horizontal displacement of the surfaces is zero;
the vertical displacement ofVRR(q) is ∆νj; VLL(q) is offset from zero
by λanti/4. Panel D illustratesVLL(q) andVRR(q) alongqanti whenqsym )
0. The horizontal displacement of the surfaces is(δanti, respectively;
the vertical displacement ofVRR(q) is ∆νj.

Ψs(r,q) ) [ψi(r)φn
i (q)]s (25)

(Tn(q) +
νjanti

2
qanti

2 +

νjsym

2
(qsym + δsym)2

∆νj
2

+ νjantiδantiqanti

∆νj
2

+ νjantiδantiqanti
2V0 + Tn(q) +

νjanti

2
qanti

2 +

νjsym

2
(qsym - δsym)2

) (22)

(Tn(q) +
νjsym

2
qsym

2 +

νjanti

2
(qanti - δanti)

2

-V0 + νjsymδsymqsym

-V0 + νjsymδsymqsym
∆νj + Tn(q) +

νjsym

2
qsym

2 +

νjanti

2
(qanti + δanti)

2

) (23)

〈ψi|HT|ψj〉 ) Tn(q)δij + Vij(q) (24)
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Both the Piepho and GSB models use (qanti, qsym) ) (0, -δsym)
as a common origin, presumably because this configuration is
close to that of maximum probability density in the ground state
of the strongly mixed MVC. The RH model instead uses (qanti,
qsym) ) (0,0) as a common origin. That these two choices can
yield different spectra for the sameHT is readily apparent for
the case where∆νj ) 0 andδanti ) 0, such that the eigenfunc-
tions ofHT are Born-Oppenheimer functions. In this case the
dynamic matrix of eq 22 is equal to

which can be written instead as

if, as is done by both Piepho and GSB,q ) 0 is defined as the
configuration corresponding to the minimum of theψ+ surface.
Although these representations ofHT are related by a translation,
a consideration of the energy of the 0-0 band forψ- r ψ+ in
each case reveals that they yield different spectra, regardless of
basis size. Becauseδsym perturbs the energies of the vibrational
manifolds on theψ+ andψ- surfaces identically in eq 26 (the
difference in the sign of this perturbation is inconsequential),
the energy of the 0-0 band for this choice of vibrational origin
is independent of the size ofδsym. On the other hand, because
δsym perturbs the energies of the vibrational manifold on the
ψ- surface alone in eq 27, the energy of the 0-0 band for this
other choice of vibrational origin does depend on the size of
δsym; this point is illustrated in Figure 3c of ref 22. Which of
these two behaviors is appropriate can be inferred from the
Franck-Condon principle, because the Born-Oppenheimer
approximation is applicable to this example of transitions
between the uncoupledψ+ andψ- surfaces. As discussed later,
the value ofδsym should have important consequences for the
envelope of an IVB, both its peak position and line shape;
however, according to the Franck-Condon principle, its value
should not affect the energies of the individual transitions
underlying this envelope. Because the choice of common origin
employed by Piepho and GSB leads to a change in the energy
of the 0-0 band for this example, we conclude that this choice
is generally inappropriate. By extrapolation, any choice of
common origin that is not the nuclear configuration midway
between the minima of the diabatic surfaces is inappropriate
for calculating IVBs. The fact that the treatments of the vibronic
coupling problem reviewed here are not translationally invariant
hints that any choice of Born-Oppenheimer basis may be

incomplete, such that these calculations of IVBs may be
compromised in ways that are difficult to determine. Being
unaware of a vibronic basis whose completeness has been
formally proven, we use the{ψ+, ψ-} basis withq ) 0 as
defined for eqs 22 and 26 as a common origin for the
calculations below because of its agreement with the Franck-
Condon principle in the example just described.

Calculating the IVB Intensity. On account of the vibronic
coupling, the eigenfunctions ofHT,

with eigenvaluesνjt generally violate the Born-Oppenheimer
approximation used to construct the basis functions of eq 25.
As a result, it is not clear how best to calculate the transition
dipole matrix elements in the vibronic coupling problem:

wheremγ is the leading term in a Taylor’s series expansion of
the q-dependent electric dipole moment operator:

and γ ) x, y, or z. Talaga and Zink have even demonstrated
how different choices of diabatic basis can lead to different
calculated polarizations for some IVBs.21 Where the Born-
Oppenheimer approximation is satisfied, the Condon ap-
proximation is usually applied, such that

The 〈φn
i |φm

j 〉 are vibrational overlap integrals or Franck-
Condon factors. Thus, using the Condon approximation,mγ acts
only on the electronic parts of the wave function, and the
transition is referred to as an electronic transition. With regard
to MVCs, it is usually supposed that

such that

where ∆µbCT is the same difference dipole moment that
determines the field dependence of∆νj (eq 17). Thus it is the
mixing between theψL and ψR states that is the source of
oscillator strength for the IVB, and it is expected that the angle
úCT betweenmb and∆µbCT is zero.

However, because the Condon approximation is inapplicable
to many vibronic coupling problems, in general one must
consider other contributions to the transition dipole matrix
elements in addition to the electronic contribution. These other
contributions may be vibrational in nature, as inferred from the
q-dependent terms in eq 30. Truncated at first order inq, a
general expression for the transition dipole matrix element is
then

Wong and Schatz have estimated the size of〈ψi|mγ′|ψj〉+- for
the case of a single antisymmetric mode.9 In the rest of this

Φt ) ∑
s

cstΨs (28)

〈Φt|mγ|Φt′〉 ) ∑
s,s′

cstcs′t′〈Ψs|mγ|Ψs′〉 (29)

mγ(q) ) mγ + mγ′q + 1
2

mγ′′q2 + ... (30)

〈Ψs|mγ|Ψs′〉 ) 〈φn
i |φm

j 〉〈ψi|mγ|ψj〉 (31)

〈ψL|mγ|ψR〉 ) 0 (32)

〈ψ+|mb|ψ-〉 ) ∆µbCT /2 (33)

〈Ψs|mγ(q)|Ψs′〉 ) 〈ψi|mγ|ψj〉〈φn
i |φm

j 〉 + 〈ψi|mγ′|ψj〉〈φn
i |q|φm

j 〉
(34)
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2
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0 2V0 + Tn(q) +
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paper we will assume this term is zero, in accord with the
treatments of PKS, Piepho, GSB, and RH.

For an ensemble of MVCs at thermal equilibrium at temper-
atureT, the amplitude of the transition fromΦt to Φt′, with
energyνjt′ - νjt, is influenced not just by the transition dipole
moment matrix element for these states but also by the
populations of these states,Nt and Nt′, respectively. This
amplitude is given by

where

andkb is Boltzmann’s constant. Thus, if an electric field can be
shown to influence the energies of these states, it may also affect
the absorption spectrum of an ensemble of MVCs by affecting
the populations of these states. To calculate the extent of these
population changes, in addition to the vibronic coupling
parameters of the MVC it will also be important to consider
the available thermal energy and the time scale defined by the
field-modulation frequency.

Summary of Vibronic Coupling Model Recommended for
Calculating IVSEs. The IVB of a single MVC, oriented with
respect to the axes defined by bothFB and the polarization of
the probing light fieldsthemselves defining an angleøscan
be calculated by first incorporating eq 17 into the dynamic
matrix of eq 22. Choosingq ) 0 for the origins of our
vibrational wave functions, the matrix elements ofHT in the
{ψ+, ψ-} basis are then

whereδi,j is the Kronecker delta.
This matrix is diagonalized and line spectra are calculated

using eq 35 for all possible transitions between eigenstates.
These line spectra are broadened with a Gaussian and the result
is weighted byνj to produce the final IVB absorption spectrum.
To calculate the absorption spectrum for an ensemble, this
calculation is repeated for different orientations of the MVC
with respect toFB and the polarization of the probing light field,
and the results are combined to yield an orientational average
as described elsewhere.15,23 To calculate the IVSEs presented
in this paper, field-on and field-off absorption spectra are both
calculated according to this method and entered into eq 1.

Adiabatic Surfaces and the Franck-Condon Principle.
For a given set of the frequenciesνjsym andνjanti, a great diversity
of IVSE behavior is possible for different combinations of the
values ofλsym, λanti, ∆νj, andV0. Although the diabatic model
presented above is used to calculate IVSEs quantitatively, much

qualitative insight can be gained by applying the Franck-
Condon principle to transitions between the adiabatic surfaces
corresponding toψ1(q) andψ2(q) given by

Here we have usedVij in place of∆νj/2 or V0 andVjj in place
of 2V0 or ∆νj, respectively, to express the generality of this
approach for any diabatic basis (eqs 22 and 23).

Underlying the Franck-Condon principle is the Condon
approximation, itself resting upon the Born-Oppenheimer
approximation. As discussed above, the eigenfunctions of the
vibronic coupling problem generally violate the Born-Oppen-
heimer approximation, so that the Franck-Condon principle
does not strictly apply. Nevertheless, this approach leads to
useful qualitative estimates, and in some cases quantitative
estimates, of howF will affect the position and width of an
IVB.

In this regard there are two important elements of the Franck-
Condon principle as applied to the two noninteracting potential
energy surfaces in Figure 2A (i.e.,Vij(q) ) 0, i * j). First, the
peak position of the IVB can be estimated as the energy
difference betweenV1(q) and V2(q) evaluated at the nuclear
configuration having the largest probability density in the ground
state. This particular nuclear configuration can itself be estimated
as the nuclear configuration corresponding to the minimum of
V1(q). Second, the width of the IVB can be considered to
increase monotonically with the slope ofV2(q) evaluated at this
same nuclear configuration; this slope is illustrated by the line
drawn tangent toV2(q). Thus increasing the horizontal displace-
ment between the surfaces increases the broadness of the
electronic absorption band.

It is thus straightforward to determine the consequences of
imposing the Franck-Condon principle upon the adiabatic
surfaces in the general vibronic coupling problem (i.e.,Vij(q)
* 0). In Figure 2B, the surfacesVii(q) and Vjj(q) are weakly
interacting, leading to adiabatic surfaces that follow these
surfaces closely except in a small neighborhood about their
crossing point. In Figure 2C, the surfaces are strongly interact-
ing, leading to adiabatic surfaces that deviate significantly from

Nt - Nt′

N
|〈Φt|mb|Φt′〉|2 (35)

Nt ) exp(-νjt/kbT) (36)

N ) ∑
t

Nt (37)

〈ψiφn
i |HT|ψjφm

j 〉+- ) δi,j{[2V0δi,- + νjanti(nanti + 0.5)+

νjsym(nsym + 0.5)]δnanti,manti
δnsym,msym

+

(νjsymδsym[max (nsym,msym)/2]0.5)δnanti,manti
δ|nsym-msym|,1} +

(1 - δi,j){∆νj(FB)
2

δnanti,manti
δnsym,msym

+

νjantiδanti[max(nanti,manti)/2]0.5δ|nanti-manti|,1δnsym,msym} (38)

Figure 2. Adiabatic surfaces and the Franck-Condon principle. The
lengths of the vertical arrows approximate the peak positions of the
absorption bands in each case. The slopes of the illustrated tangents
yield estimations of the peak widths of these bands. The two surfaces
V1(q) andV2(q) in panel A do not interact in the absence of the light
field. In panel B the diabatic surfacesVii(q) and Vjj(q) (solid lines)
interact weakly in the absence of the light field to yield the adiabatic
surfacesV1(q) andV2(q) (dashed lines). In panel C the diabatic surfaces
Vii(q) and Vjj(q) (solid lines) interact strongly in the absence of the
light field to yield the adiabatic surfacesV1(q) and V2(q) (dashed
lines).
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2
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2
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these surfaces except at values ofq that are far from their
crossing point. In either Figure 2B or 2C, the Franck-Condon
principle suggests that the peak position of the IVB,νjmax, can
be estimated by the length of the vertical arrow drawn toV2(q)
from the minimum ofV1(q). The effect ofF on νjmax can thus
be approximated by its effect on the length of the vertical arrows
in Figure 2. In both Figure 2B and 2C, the Franck-Condon
principle suggests that the width of the IVB increases monotoni-
cally with |dV2(q)/dq| evaluated at the nuclear configuration of
the minimum ofV1(q), qmin. If this slope is insensitive toF,
there will be insignificant changes in the line shape of the IVB,
and classical Stark effects will result, so long as there are no
field-modulated population effects. Alternatively, this slope can
be influenced significantly by the effects ofF on ∆νj, resulting
in interesting nonclassical Stark effects.

The effect ofF on ∆νj can also affect an IVB in two other
ways. First, the perturbation to∆νj can affect the transition dipole
matrix element:

by perturbing the mixing between the diabatic basis states which
leads to ψ1(q) and ψ2(q). Because it is unclear how to
appropriately eliminate theq dependence of this matrix element
for estimating the intensity of the IVB, it is common to use its
value atqmin for the same reasons thatνjmax is estimated at this
configuration. Second, the double minimum ofV1(q) in Figure
2B suggests that the perturbation to∆νj can influence an IVB
by perturbing the populations of these two wells.

Results and Discussion

In this section we develop an intuition for calculated IVBs
and IVSEs by applying the Franck-Condon principle to the
adiabatic surfaces in the vibronic coupling problem. In each
case stick spectra are calculated usingνjsym ) νjanti ) 300 cm-1,
T ) 77 K, ø ) 90°, f ) 1.0, ∆µCT ) 30 Debye, andF ) 1
MV/cm. The corresponding value ofF‚f∆µCT ) 500 cm-1

provides an important benchmark for comparison with the values
of ∆νj and other parameters in these calculations. For the single-
mode calculations, the vibronic basis contains the 21× 2 states
lowest in energy on theψ+ andψ- surfaces; for the two-mode
calculations, the vibronic basis contains the lowest 56× 2 states.
Gaussian broadening with a full width at half-maximum of either
700 or 70 cm-1 is applied to transitions above and below 300
cm-1, respectively.

We have defined nonclassical Stark effects by contrast to the
assumptions of the classical Stark theory, including the implicit
assumptions of field-independent line shapes and populations.
To identify the presence of nonclassical behavior in some IVSEs,
calculated IVSEs are analyzed using the classical Stark analysis
to determine the fit values ofAø, Bø, and∆µ (with ú ) 0°). In
the figures below, calculated IVSEs are illustrated with solid
lines; the fits to these curves using the zeroth, first, and second
νj-weighted derivatives of the calculated IVBs are illustrated with
circles. We then use the fit value of∆µ and the calculated
transition dipole momentm to calculate

∆µel is the value of the difference dipole moment betweenψL

andψR that might be inferred from the fit value of∆µ according
to a purely electronic coupling model of mixed valency
developed first by Reimers and Hush30 and then elaborated by
Shin et al.31 By comparing∆µel with ∆µCT, the true value of

the difference dipole moment betweenψL andψR, we can get
a sense of how significantly some of the nonclassical Stark
effects predicted by the vibronic coupling model deviate from
the classical Stark effects predicted by this electronic coupling
model.

Because many measurements of IVSEs have been used to
address the localized or delocalized nature of a MVC, we also
address this issue here. However, we note that the question of
whether the chargel is localized or delocalized is one of degree.
If ψL andψR do not mix,l is completely localized on either M1
or M2; otherwisel could be said to be delocalized to an extent
that depends on the degree to whichψL andψR are mixed. If
this degree is difficult to characterize, it is reasonable to search
for a criterion for delocalization that, when satisfied, defines a
delocalized MVC (or when not satisfied, defines a localized
MVC). However, as discussed in detail by Demadis, Hartshorn,
and Meyer, even criteria based upon experimental observables
can lead to the situation of a MVC being both localized and
delocalized.32 Because such intermediate behavior is common,
it is important to define a criterion for delocalization that will
identify such intermediate cases from the values of the vibronic
coupling parameters of an MVC.

Symmetric MVCs will exhibit localized behavior on the
shortest time scales ifV1(q) has a double minimum and the
barrier atq ) 0 is larger than the zero-point energy of the MVC
and the thermal energy available. Yet on longer time scales, if
the barrier can be crossed quickly enough, the behavior of the
same MVC may appear to be delocalized. For example, the same
MVC may have both a vibrational spectrum showing signs of
symmetry breaking due to hole localization and an EPR
spectrum showing hyperfine couplings to nuclei in the ligands
of both M1 and M2 that are precisely halved with respect to
their values in the monomeric species from which the MVC is
derived. Such interesting intermediate behavior, defined in this
case by behavior consistent with both localization and delocal-
ization, will not exist when the barrier inV1(q) is either high
enough to confer localization on all time scales or nonexistent,
so as to confer delocalization on all time scales. Thus the
localized-to-delocalized transition for symmetric MVCs can be
associated with the single- to double-welled transition of
V1(q),9 and intermediate cases lie close to the transition defined
by the curvature ofV1(q) equaling zero when evaluated at
q ) 0.

Symmetric MVCs for which this curvature equals zero are
cases of severe Born-Oppenheimer violation; thus they are the
same MVCs that have nonclassical Stark effects due to field-
dependent line widths. Thus we decide that any criterion for
delocalization that we might use to identifyasymmetricMVCs
that are intermediate in the sense of having field-dependent line
widths should reduce to the criterion identifying this single- to
double-welled transition forsymmetricMVCs. However, one
important reason we cannot use the single- to double-welled
transition itself as this criterion is that some asymmetric MVCs
(e.g., those with∆νj g λanti) will have a single-welledV1(q)
whether or not the value ofV0 is large enough to yield
delocalized behavior.

By setting the second derivative of eq 39 forV1(q) equal to
zero atq ) 0, we find that symmetric MVCs for which

have either negative or zero curvature atq ) 0. Thus this is a
mathematical expression of the previously defined criterion for

〈ψ1(q)|mb|ψ2(q)〉 ) c1(q) c2(q)∆µbCT (41)

∆µel ) (∆µ2 + 4m2)1/2 (42)
4V0

2

λanti
2 + 4V0

2
g

1
2

(43)
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delocalization for symmetric MVCs. Using eq 41 for the
transition moment, one can show that MVCs satisfying this
inequality also satisfy

In other words, symmetric MVCs that are delocalized according
to eq 43 have a value ofm2(q) evaluated atqanti ) δanti that is
greater than or equal to one-half its value upon full delocaliza-
tion. When this statement is applied to asymmetric MVCs, we
get a criterion for delocalization that is widely applicable for
identifying MVCs that are intermediate, both in the sense that
there is substantial but not complete mixing betweenψL and
ψR and in the sense that they have significantly field-dependent
line widths:

Although we will refer to MVCs satisfying this inequality as
delocalized (and conversely, we will refer to those MVCs not
satisfying this inequality as localized), we will also refer to
any MVC lying close to this line of demarcation as inter-
mediate. Because this new designation introduces a need for
yet more lines of demarcation (e.g., between localized and
intermediate/localized), we also choose to discuss localization
in terms of the percentage localization of the hole on M1, %L.
This finely graded description of a MVC can be estimated
simply by calculating the probability density ofψL in ψ1(q)
at qmin:

Using both the absolute criterion for delocalization and this value
of the percentage delocalization, we ask if there is any simple
relationship between either of these quantities and the line shape
of an IVSE. To address this question, we overlay the calculated
IVSEs in the figures below with a dashed line corresponding
to the νj-weighted second-derivative contribution to the Stark
effect.

One Symmetric Mode.To isolate the effect on IVSEs of
linear vibronic coupling toqsym, we setλanti ) 0. Because linear
vibronic coupling toqanti plays a significant role for the IVBs
of localized MVCs, we will here consider only delocalized and
intermediate MVCs, as identified by eq 45.

In the limits of a small field perturbation and substantial
delocalization,∆νj(FB) mixesψ+ andψ- weakly for all orienta-
tions of the MVC in the field. In this case|dV2(q)/dq| evaluated
atqmin is insignificantly affected byF. According to the Franck-
Condon principle we thus expect the IVB line shape to be
independent ofF. BecauseV1(q) is additionally single-welled
in this case, these two conditions together predict classical Stark
effects; i.e., eqs 4-7 should describe both the line shape and
information content of the Stark spectrum, as well as itsF and
ø dependences. Becauseψ1(q) ≈ ψ+ and ψ2(q) ≈ ψ- for all
values ofq in the neighborhood ofqmin ≈ -δsym, the Born-
Oppenheimer approximation is satisfied, andψ1(q) andψ2(q)
have aq-independent difference dipole moment in this neigh-
borhood that should be equal to the fit value of∆µ.

For this delocalized case, the value of∆µb, as well as the
values of∆R, A, and B as defined by eqs 2 and 3, can be
estimated from power series expansions ofνjmax(FB) andmb(FB).

According to the Franck-Condon principle, we estimate the
expression forνjmax asV2(-δsym) - V1(-δsym). Thus

The transition dipole matrix element evaluated at this same
nuclear configuration is

When the dependence of∆νj on FB (eq 17) is inserted into eqs
47 and 48 and the expansion coefficients of the power series
are determined, the nonzero elements of these tensors are

Substitution of these equations into eqs 5 and 6 forAø andBø
yields predictions for the fit values of these coefficients. The
values of these coefficients whenø ) 90° are denotedA90 and
B90.

Figure 3 shows two calculated IVBs and IVSEs for the case
whereλanti ) 0, λsym ) 500 cm-1, andV0 ) 2000 cm-1. The
left panels were calculated for MVC 1, a delocalized MVC with
∆νj ) 500 cm-1 and %L ) 56; the calculated value ofm is
14.9 D and the fit value of∆µ is 2.3 D, making the value of
∆µel equal to 30 D. The right panels were calculated for MVC

|〈ψ1(q)|mb|ψ2(q)〉|qanti)δanti

2 g
∆µCT

2

8
(44)

4V0
2

(∆νj + λanti)
2 + 4V0

2
g

1
2

(45)

%L ) |c1(qmin)|2 × 100 (46)

Figure 3. IVBs (A) and IVSEs (∆A) for delocalized and intermediate/
delocalized MVCs assuming linear vibronic coupling to only a single
symmetric mode:V0 ) 2000 cm-1, λsym ) 500 cm-1, andνjsym ) 300
cm-1. Whereas the value of∆νj is 500 cm-1 for MVC 1 (left), its value
is 2000 cm-1 for MVC 2 (right). T ) 77 K, F ) 1.0 MV/cm, andø )
90°. Solid lines are calculated using the numerical procedure outlined
in the theoretical foundations section. Dashed lines are the second-
derivative contributions to the fits of the calculated IVSEs using sums
of the zeroth, first, and secondνj-weighted derivatives of the calculated
IVBs; these sums are illustrated with circles and are indistinguishable
from the calculated Stark spectra. Calculated transition dipole moments
mand fit values of∆µ are indicated in units of Debye. IVBs have been
scaled to an optical density of 1.0 at their peak for ease of comparison.

νjmax ≈ [(2V0 + λsym)2 + ∆νj2]1/2 ≡ Ω+- (47)
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2, an intermediate/delocalized MVC with∆νj ) 2000 cm-1 and
%L ) 70; the calculated value ofm is 13.7 D and the fit value
of ∆µ is 11 D, making the value of∆µel equal to 30 D. In both
cases the IVSEs are fit so closely to a sum of theνj-weighted
derivatives of the IVB absorption that the fit (circles) overlays
the calculated IVSE (solid line) everywhere. The observation
that ∆µel ) ∆µCT in both cases also suggests that both MVCs
1 and 2 have classical Stark effects.

Whereas the IVSE for MVC 1 has a first-derivative-like line
shape (i.e., one zero-crossing located close to the position of
νjmax), the IVSE for MVC 2 has a second-derivative-like line
shape (i.e., two zero crossings, with the peak of the central band
located close to the position ofνjmax). In the latter case the
overlaid second derivative (dashed line) closely follows the
IVSE. These different line shapes can be understood by
analyzing the effect ofFB on νjmax for two extreme orientational
subpopulations of MVCs:1 population 1 is defined by∆µbCT

parallel toFB, and population 2 is defined by∆µbCT antiparallel
to FB. In Figure 4 we plotνjmax vs ∆νj according to eq 47, using
λsym ) 500 cm-1 andV0 ) 2000 cm-1. As evident from this
figure, when∆νj ) 500 cm-1, an applied field of 1 MV/cm
interacts withf∆µCT ) 30 Debye such thatνjmax increases much
more for population 2 (∆νj(FB) ) 1000 cm-1) than it decreases
for population 1 (∆νj(FB) ) 0 cm-1); thus the IVSE of MVC 1
has a first-derivative-like line shape because the absorption
maximum of the ensemble experiences a net shift to higher
energy by application of the field. In contrast, when∆νj ) 2000
cm-1, νjmax increases for population 2 (∆νj(FB) ) 2500 cm-1) to
a similar extent as it decreases for population 1 (∆νj(FB) ) 1500
cm-1); thus the IVSE of MVC 2 has a second-derivative-like
line shape because the band is essentially broadened by
application of the field.

Table 1 compares the fit values ofA90, B90, and∆µ to the
values predicted by combining eqs 5 and 6 with eqs 49-52.
Absolute agreement is good for both MVCs 1 and 2, despite
their distinct line shapes and different values of %L. Because
these equations were derived for the limit of significant

delocalization, this agreement supports the description of both
MVCs as delocalized. Thus we conclude that there is no simple
relationship between the line shape of an IVSE and the localized
or delocalized nature of a MVC.

One Antisymmetric Mode. To isolate the effect of linear
vibronic coupling toqanti on IVSEs, we setλsym ) 0. The
discussion is broken into three parts on the basis of a comparison
between the values ofλanti andV0.

λanti /4 , V0: This comparison defines a regime whereψ1(q)
≈ ψ+ andψ2(q) ≈ ψ- for all values ofq in the neighborhood
of qmin ≈ 0 when∆νj ) 0. Thus in this regime we expect similar
behavior as for MVCs 1 and 2 described above. Figure 5 shows
the IVB and IVSE for the case whereλsym ) 0, λanti ) 500
cm-1, andV0 ) 2000 cm-1. The left panels were calculated for
MVC 3, a delocalized MVC with∆νj ) 500 cm-1 and %L)
60; the calculated value ofm is 14.9 D and the fit value of∆µ
is 5.3 D, making the value of∆µel equal to 30 D. The right
panels were calculated for MVC 4, an intermediate/delocalized
MVC with ∆νj ) 2000 cm-1 and %L) 76; the calculated value
of m is 13.1 D and the fit value of∆µ is 15 D, making the
value of∆µel equal to 30 D. In both cases the IVSEs are fit so
closely to a sum of theνj-weighted derivatives of the IVB
absorption that the fit (circles) overlays the calculated IVSE
(solid line) everywhere. The observation that∆µel ) ∆µCT in

TABLE 1: Vibronic Coupling Parameters for MVCs 1 -8, with Comparison of Fit Values of A90, B90, and ∆µ to Their Values
Calculated Using Eqs 4-7 and 49-52

A90 B90 (cm-1) ∆µ (Debye)

λsym (cm-1) λanti (cm-1) ∆νj (cm-1) V0 (cm-1) calc fit calc fit calc fit

MVC 1 500 0 500 2000 -2.4× 10-3 -2.3× 10-3 -79 -76 3.3 2.3
MVC 2 500 0 2000 2000 -7.1× 10-4 -5.9× 10-4 -14 -30 12 11
MVC 3 0 500 500 2000 -2.9× 10-3 -3.6× 10-3 -87 -94 3.7 5.3
MVC 4 0 500 2000 2000 -5.1× 10-4 -4.5× 10-4 0.0 70 13 15
MVC 5 0 4000 0 2000 -3.2× 10-3 -5.9× 10-2 -95 -405 0.0 14
MVC 6 0 4000 500 2000 -2.9× 10-3 -9.3× 10-3 -87 360 3.7 Im
MVC 7 0 4000 0 100 -1.3× 100 -1.1× 10-1 -1900 -2700 0.0 30
MVC 8 0 4000 500 100 4.3× 10-1 1.4× 10-2 2300 570 28 36

Figure 4. νjmax vs |∆νj| according to eq 47, usingλsym ) 500 cm-1 and
V0 ) 2000 cm-1. Horizontal and vertical lines that intersect on the
curve are used to understand the evolution of band-shifting line shapes
at low values of∆νj into band-broadening line shapes at larger values
of ∆νj.

Figure 5. IVBs (A) and IVSEs (∆A) for delocalized and intermediate/
delocalized MVCs assuming linear vibronic coupling to only a single
antisymmetric mode:V0 ) 2000 cm-1, λanti ) 500 cm-1, andνjanti )
300 cm-1. Whereas the value of∆νj is 500 cm-1 for MVC 3 (left), its
value is 2000 cm-1 for MVC 4 (right). T ) 77 K, F ) 1.0 MV/cm,
andø ) 90°. Solid lines are calculated using the numerical procedure
outlined in the theoretical foundations section. Dashed lines are the
second-derivative contributions to the fits of the calculated IVSEs using
sums of the zeroth, first, and secondνj-weighted derivatives of the
calculated IVBs; these sums are illustrated with circles and are
indistinguishable from the calculated Stark spectra. Calculated transition
dipole momentsmand fit values of∆µ are indicated in units of Debye.
IVBs have been scaled to an optical density of 1.0 at their peak for
ease of comparison.
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both cases also suggests that both MVCs 3 and 4 have classical
Stark effects. The first- and second-derivative-like line shapes
of MVCs 3 and 4, respectively, can be explained in the same
manner as was done for MVCs 1 and 2.

In comparison to the IVBs of MVCs 1 and 2, those of MVCs
3 and 4 are narrower. This is expected according to the Franck-
Condon principle because the horizontal separation between the
minima of V1(q) and V2(q) is nearly 2δ for the first two, but
considerably less for the others. The classical Stark effects are
correspondingly narrower for MVCs 3 and 4 than for MVCs 1
and 2. Despite these differences in the IVBs and their IVSEs,
the fit values ofA90, B90, and ∆µ in Table 1 are not much
different in an absolute sense and are again similar to the values
predicted by combining eqs 5 and 6 with eqs 49-52. Although
the fit values ofB90 have different signs for MVC 2 and MVC
4, this difference is negligible when one considers that the
absolute magnitude of both fit values are small compared to
other fit values ofB90 in Table 1.

As was noted for MVCs 1 and 2, the success of eqs 49-52,
derived in the limit of delocalization, suggests that MVCs 3
and 4 are indeed delocalized. Thus, as with MVCs 1 and 2, the
distinct line shapes of the IVSEs of MVCs 3 and 4 suggests
that there is no simple relationship between the line shape of
an IVSE and the localized or delocalized nature of a MVC.

λanti /4 ∼ V0: This comparison defines the regime of most
severe Born-Oppenheimer violation when∆νj ) 0. Thus
nonclassical Stark effects due to field-dependent absorption line
widths are expected. Here we consider a case whereV0 is large
enough in comparison toλanti/4 thatV1(q) is single-welled for
all values of∆νj, such that no field-modulated population effects
are expected. Figure 6 shows the IVB and IVSE for the case
whereλsym ) 0, λanti ) 4000 cm-1 andV0 ) 2000 cm-1; the
expanded features below 300 cm-1 are another consequence of
Born-Oppenheimer violation and are discussed in the following
section. The left panels were calculated for MVC 5, an
intermediate/delocalized MVC with∆νj ) 0 cm-1 and %L)

80; the calculated value ofm is 14.8 D and the fit value of∆µ
is 14 D, making the value of∆µel equal to 33 D. The right
panels were calculated for MVC 6, an intermediate/localized
MVC with ∆νj ) 500 cm-1 and %L) 84. The calculated value
of m is 13.3 D and the fit value of∆µ is imaginary; i.e., the fit
value ofC90 is negative. Assuming∆µ ) 0, the value of∆µel

is then equal to 27 D. For both MVCs 5 and 6 their calculated
IVSEs (solid lines) can be easily distinguished from a sum of
theνj-weighted derivatives of the IVB (circles). That both MVC
5 and MVC 6 have nonclassical Stark effects is further supported
by their values of∆µel being different than the value of∆µCT.

We can use the Franck-Condon principle to understand not
only this nonclassical behavior but also some other details of
the IVSEs of MVCs 5 and 6. As|∆νj| increases, the horizontal
displacement between the minima ofV1(q) andV2(q) increases.
This increased displacement results in an increased value of
|dV2(q)/dq| evaluated atqmin. For this reason the absorbers that
experience a shift to higher energy also experience a significant
broadening. Accordingly, the higher energy band in the IVSE
of MVC 5 is noticeably broader than the lower energy band.
Moreover, because the field causes the mixing betweenψL and
ψR to decrease atqmin, the absorbers that are broadened also
suffer a loss of intensity. Accordingly, the integrated intensity
of the IVSE of MVC 5 is negative.

Because classical Stark effects sometimes require higher order
derivatives to be fit well,11,33 it is important to note that the
nonclassical Stark effects of MVCs 5 and 6 could not be fit
much better if one were to include higher order derivatives in
the classical Stark analysis. These derivatives oscillate strongly
in the vicinity ofνjmaxand have much smaller intensities at higher
energies, where the quality of the fit is poorest; thus, any attempt
to increase the quality of the fit in this region by including these
higher order derivatives will significantly decrease the quality
of the fit in the vicinity of νjmax. Also, in contrast to classical
Stark effects that require higher order derivatives to be fit well,
the F and ø dependences of these IVSEs are similar to those
predicted by eqs 4-7 when ú ) 0°. Figure 7 illustrates the
similarity of this prediction (dashed line) to theF and ø
dependences for MVC 5 (solid lines).

λanti /4 . V0: This comparison defines a regime whereqmin

is insensitive to small changes in the value of∆νj, such that
absorption line widths are unaffected by these changes. For

Figure 6. IVBs (A) and IVSEs (∆A) for intermediate/delocalized and
intermediate/localized MVCs assuming linear vibronic coupling to only
a single antisymmetric mode:V0 ) 2000 cm-1, λanti ) 4000 cm-1,
andνjanti ) 300 cm-1. The expanded scales from 0 to 300 cm-1 contain
phase-phonon bands and corresponding Stark effects. Whereas the value
of ∆νj is 0 cm-1 for MVC 5 (left), its value is 500 cm-1 for MVC 6
(right). T ) 77 K, F ) 1.0 MV/cm, andø ) 90°. Solid lines are
calculated using the numerical procedure outlined in the theoretical
foundations section. Dashed lines are the second-derivative contributions
to the fits of the calculated IVSEs using sums of the zeroth, first, and
secondνj-weighted derivatives of the calculated IVBs; these sums are
illustrated with circles. Unlike MVCs 1-4, these sums can be
distinguished from the calculated Stark spectra. Calculated transition
dipole momentsmand fit values of∆µ are indicated in units of Debye.
IVBs have been scaled to an optical density of 1.0 at their peak for
ease of comparison.

Figure 7. F andø dependences for the IVSE of MVC 5 (solid lines).
In the upper panel the amplitude of the Stark spectrum at 4100 cm-1

is plotted againstF2 for values ofF between 0 and 1 MV/cm. In the
lower panel the amplitude of the Stark spectrum at 4100 cm-1 is plotted
against cos2 ø for values ofø between 0 and 90°. Dashed lines illustrate
examples of theF andø dependences of classical Stark effects withú
) 0°.
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many values of∆νj less thanλanti/4 in this regime,V1(q) will be
double-welled, such that field-modulated population effects are
expected. Figure 8 shows the IVB and IVSE for the case where
λsym ) 0, λanti ) 4000 cm-1, andV0 ) 100 cm-1. The left panels
were calculated for MVC 7, a localized MVC with∆νj ) 0
cm-1 and %L equal to either 100 or 0 depending on which of
the two degenerate minima ofV1(q) is used to calculate its value;
the calculated value ofm is 1.15 D and the fit value of∆µ is
30 D, making the value of∆µel equal to 30 D. The right panels
were calculated for MVC 8, a localized MVC with∆νj ) 500
cm-1 and %L) 100; the calculated value ofm is 0.74 D and
the fit value of∆µ is 36 D, making the value of∆µel equal to
36 D. In both cases the IVSEs are fit so closely to a sum of the
νj-weighted derivatives of the IVB absorption that the fits
(circles) overlay the calculated IVSEs (solid lines) everywhere.
In addition to the good quality of this fit, the equality between
∆µel and ∆µCT for MVC 7 might also suggest that it has a
classical Stark effect; however, other aspects of its IVSE indicate
that nonclassical Stark effects are present.

To more fully characterize these nonclassical Stark effects,
Figure 9 illustrates that the IVSE of MVC 7 (solid lines) has
neither theF nor theø dependence characteristic of classical
Stark effects that are fit well by a sum of zeroth, first, and second
νj-weighted derivatives whenú ) 0° (dashed lines). One
important consequence of these facts is that the fit value of∆µ
reported above (and thus the value of∆µel as well) depends on
the value ofF underlying the Stark effect. The unusualF and
ø dependences can be attributed to the often severely nonlinear
nature of field-modulated population effects. Because the field-
dependent equilibrium constant for the populations of the
two wells ofV1(q) is, in the limit of weak mixing betweenψL

andψR

if F‚f∆µCT > kbT, as is the case here, the field perturbation to
the populations cannot be well-approximated by a quadratic
polynomial. Because it is the accuracy of the truncation of eqs

2 and 3 atF2 that results in the expectedF andø dependence
of a classical Stark spectrum, eq 53 suggests that these
expectations should not be met for MVC 7.

It is this nonlinear nature of the field-modulated population
effect that results in the curious observation that the fit value
of ∆µ for MVC 7 is as large as∆µCT, yet the Stark effect has
a first-derivative-like line shape. In contrast, for MVCs 1, 3,
and 5, the first-derivative-like line shapes of their IVSEs result
not so much from the enormity of the first-derivative contribu-
tion to the Stark effect, but from the smaller values of∆µ. These
nonlinear field-modulated population effects are also present
for MVC 8, but to a smaller extent, as judged by its second-
derivative-like IVSE. The different IVSE line shapes of the
localized MVCs 7 and 8 suggest yet again that there is no simple
relationship between the line shape of an IVSE and the localized
or delocalized nature of a MVC.

In the limit where∆νj . F‚f∆µCT and∆νj . kbT, only one
well of V1(q) is significantly populated for all orientations of a
MVC in a field. Because, in this limit,ψ1(q) ≈ ψL andψ2(q)
≈ ψR for all values ofq in the neighborhood ofqmin ≈ δanti,
the Born-Oppenheimer approximation is satisfied, andψ1(q)
and ψ2(q) have aq-independent difference dipole moment in
this neighborhood. Thus classical Stark effects are predicted
for localized, asymmetric MVCs. Just as values of∆µb, ∆R, A,
andB were derived above for the classical Stark effects of some
delocalized MVCs, their values can be derived for the localized
case in this limit where there are neither any field-dependent
line widths nor field-modulated population effects. According
to the Franck-Condon principle, the expression forνjmax in this
limit is estimated asV2(δanti) - V1(δanti). Thus

The transition dipole matrix element evaluated at this same
nuclear configuration is

When the dependence of∆νj on FB (eq 17) is inserted into eqs
54 and 55 and the expansion coefficients of the power series

Figure 8. IVBs (A) and IVSEs (∆A) for localized MVCs assuming
linear vibronic coupling to only a single antisymmetric mode:V0 )
100 cm-1, λanti ) 4000 cm-1, andνjanti ) 300 cm-1. Whereas the value
of ∆νj is 0 cm-1 for MVC 7 (left), its value is 500 cm-1 for MVC 8
(right). T ) 77 K, F ) 1.0 MV/cm, andø ) 90°. Solid lines are
calculated using the numerical procedure outlined in the theoretical
foundations section. Dashed lines are the second-derivative contributions
to the fits of the calculated IVSEs using sums of the zeroth, first, and
secondνj-weighted derivatives of the calculated IVBs; these sums are
illustrated with circles and are nearly as difficult to distinguish from
the calculated Stark spectra as for MVCs 1-4. Calculated transition
dipole momentsmand fit values of∆µ are indicated in units of Debye.
IVBs have been scaled to an optical density of 1.0 at their peak for
ease of comparison.

Keq(FB) ) exp[-(∆νj - FB‚f∆µbCT)/kbT] (53)

Figure 9. F andø dependences for the IVSE of MVC 7 (solid lines).
In the upper panel the amplitude of the Stark spectrum at 2800 cm-1

is plotted againstF2 for values ofF between 0 and 1 MV/cm. In the
lower panel the amplitude of the Stark spectrum at 2800 cm-1 is plotted
against cos2 ø for values ofø between 0 and 90°. Dashed lines illustrate
examples of theF andø dependences of classical Stark effects withú
) 0°.

νjmax ≈ [(∆νj + λanti)
2 + 4V0

2]1/2 ≡ ΩLR (54)

〈ψ1(δanti)|mb|ψ2(δanti)〉 )
V0

ΩLR
∆µbCT (55)
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are determined, the nonzero elements of these tensors are

For MVC 8, with ∆νj ) F‚f∆µCT, the fit values ofAø, Bø, and
∆µ predicted by combining these equations with eqs 5 and 6
for Aø and Bø are 0.0074, 330 cm-1, and 30 D, respectively.
The actual fit values for MVC 8, tabulated in Table 1, are on
the whole much closer to these values than to those predicted
by eqs 49-52. As we would expect, the quality of this
agreement can be shown to increase as∆νj increases.

Phase-Phonon Stark Effects.MVCs 5 and 6 (Figure 6) have
absorption bands below the value ofνjanti that exist in stark
contrast to the predictions of imposing the Franck-Condon
principle uponV1(q) andV2(q). In these cases one refers only
to the main bands near 4200 cm-1 as intervalence bands, and
the bands below 300 cm-1 are known variously as “phase-
phonon bands”,20 “tunneling transitions”,9 or “dimer charge
oscillations”;35 however, it has been suggested that the term
“phase-phonon band” be reserved to describe just those low-
energy transitions falling betweenνjanti/4 andνjanti and that the
term “tunneling transition” be reserved for transitions occurring
much closer to zero.34 Thus tunneling transitions occur only in
the limit whereV0 , λanti/4; they are quite intense when∆νj )
0 but have almost negligible intensity otherwise.45 Phase-phonon
bands have considerably less intensity than tunneling transitions,
but their properties are not as strongly dependent on the value
of ∆νj, as illustrated by the phase-phonon bands of MVCs 5
and 6 in Figure 6.

It is interesting to note that for both MVCs 5 and 6 the phase-
phonon Stark effects have the same first- and second-derivative-
like line shapes of their respective IVSEs. This correspondence
could be useful for distinguishing some phase-phonon bands,
which arise from the purely electronic part of the electric dipole
moment operator (the first term on the right-hand side of eq
30), from purely vibrational transitions, which arise from the
q-dependent part of the electric dipole moment operator (the
second term on the right-hand side of eq 30). The modeling of
phase-phonon Stark effects may provide additional constraints
to fitting the values of the vibronic coupling parameters for a
MVC.

Determining the Values of Vibronic Coupling Parameters
from IVSEs. The parameters that determine the size and shape
of an IVSEs∆νj, V0, λ, and ∆µCTsare the same parameters
that determine the size and shape of an IVB. Although the
intensity, position, and line shape of an IVB contain enough
information to uniquely determine the values of its vibronic
coupling parameters in theory, in practice there are many
complications preventing the determination of these values from
an IVB alone. Such complications have motivated much of the
previous use of Stark spectroscopy for characterizing MVCs.10

Here we discuss some of these complications and describe two

ways in which the equations developed above can be applied
to the determination of the values of vibronic coupling
parameters from IVSEs.

If a MVC is known to be delocalized (eq 45), eqs 47 and 48
for the peak position and transition dipole moment of its IVB
may be used to constrain the values of∆νj, V0, λsym, and∆µCT;
if a MVC is known to be localized, eqs 54 and 55 may be used
instead to constrain the values of∆νj, V0, λanti, and ∆µCT. In
either case the system of two equations is not large enough to
uniquely determine the values of the four vibronic coupling
parameters that are sought; moreover, if a MVC is known to
be intermediate, or if the localized or delocalized nature of an
MVC is unknown, neither set of equations should be used.
Additional relations betweenλ and the line width of an IVB
have been derived for these two limiting cases,8,40 but the
resulting systems of three equations and four unknowns are still
underdetermined; moreover, other sources of broadening may
prohibit the accurate determination ofλ from these relations.
A fourth constraint may be assumed for some symmetric MVCs,
because one expects the differences between the standard free
energies ofψL andψR to be zero, but the solvent may act such
that the value of∆νj on the time scale of electronic absorption
is not in fact zero and is thus unknown.27 A more generally
applicable method for determining the values of vibronic
coupling parameters from an IVBsone that does not rely on
expressions developed for limiting cases or other assumptionss
is numerical modeling of the IVB, for example, using eq 38.
Numerical modeling of an IVB can, in theory, capture additional
information contained within the skewness and higher moments
of its line shape for any kind of MVC, but in many cases this
information has proved difficult to fit uniquely. Such degenera-
cies of fit quality can even extend from the localized regime to
the delocalized regime, thereby prolonging debates over the
localized or delocalized nature of MVCs such as the special
pair radical cation, P+, in bacterial photosynthetic reaction
centers.20

Measurements of IVSEs can provide the additional quantita-
tive constraints needed in such cases to uniquely determine the
values of∆νj, V0, λ, and∆µCT. We have demonstrated that the
shape of an IVSE is sensitive to changes in the values of∆νj,
V0, andλ; its size is sensitive also to∆µCT. In particular, as is
evident from Figures 6 and 8, a change of only a few hundred
wavenumbers to∆νj can cause much larger changes to the peak
positions and line shapes of an IVSE than to those of an IVB.
This demonstration suggests that IVSEs can be especially useful
for studying series of MVCs with slightly different energetic
asymmetries. For example, special pair radical cations in mutant
reaction centers, many of which have been shown to have very
similar IVBs,38 may nevertheless have dramatically different
IVSEs.39 The additional constraints imposed by an IVSE can
be applied either by a classical Stark analysis or by numerical
modeling. Like the two methods just described for constraining
the values of vibronic coupling parameters using an IVB alone,
the first is simpler to use, but the second can be used more
generally.

When the values of the coefficientsAø, Bø, andCø (eqs 4-7)
are combined with the values ofm andνjmax, the values of∆µz,
∆Rzz, Azz, andBzzzcan be uniquely determined using either eqs
47-52 for delocalized MVCs or eqs 54-59 for asymmetric,
localized MVCs. For delocalized MVCs these values can, in
turn, uniquely determine the values of∆νj, ∆µCT, and 2V0 +
λsym; for asymmetric, localized MVCs these values can, in turn,
uniquely determine the values ofV0, ∆µCT, and ∆νj + λanti.
Combined with the appropriate equation for the line width of

∆µz )
∆νj + λanti

ΩLR
∆µCT (56)

∆Rzz) [(∆νj + λanti)
2

ΩLR
3

- 1
ΩLR]∆µCT

2 (57)

Azz)
V0(∆νj + λanti)

ΩLR
3

∆µCT
2 (58)

Bzzz)
V0

2 [3(∆νj + λanti)
2

ΩLR
5

- 1

ΩLR
3 ]∆µCT

3 (59)
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the IVB as a function ofλ, in each limiting case the values of
the vibronic coupling parameters are thus completely deter-
mined. In other words, the limiting expressions we have derived
for Aø, Bø, andCø provide important analytical relationships to
supplement those for the intensity, position, and line width of
the IVB; however, the resulting systems of equations apply only
to delocalized MVCs or asymmetric, localized MVCs, and they
encounter some of the same complications as described above.
Although we know of only a few delocalized systems for study,
such as the triarylamine systems recently described by Coropceanu
et al.,40 nearly all charge-transfer bands arise from asymmetric,
localized systems. It is interesting to note that if we impose a
value of zero forλ the equations for∆µz, ∆Rzz, Azz, andBzzzfor
both delocalized and asymmetric, localized MVCs would reduce
to the same equations developed by Shin et al. using a purely
electronic coupling model of mixed valency.31

Numerical modeling of IVSEs is an especially powerful
method for uniquely determining the values of vibronic coupling
parameters. In fact, the line shapes of an IVB and its IVSE,
taken together with their relative sizes, can provide enough
information to uniquely determine the values of∆νj, V0, λ, and
∆µCT even if the dipole strength of the IVB (m2) has not been
determined. This method was recently applied to the charac-
terization of P+.39 Its IVB was first measured in 1992, when it
was noted that its low dipole strength suggested this MVC was
localized.41 After EPR and Raman measurements suggested P+

was instead intermediate/delocalized, with %L) 70, Reimers
and Hush used matrix elements derived from eq 13 to calculate
two equally good fits to the peak position and line shape of its
IVB, corresponding to these two degrees of localization.18,20

When the IVSE of P+ was recently measured, eq 38 was used
successfully to distinguish the two sets of fit parameters, lending
additional support to the claim that %L) 70 for P+. It is
important to note that, because the fit to its IVSE supports P+

as a case of significant Born-Oppenheimer violation, it proved
inappropriate to analyze its IVSE using the classical Stark
analysis. Additionally, the modeling yielded a value of∆µCT

that implied its observed dipole strength is roughly an order of
magnitude less than the value predicted by eq 55. Whether this
unexpectedly small dipole strength is due to intensity borrowing
by other transitions in the RC or whether it is due to some of
the shortcomings in our understanding of this property, as
discussed above, this discrepancy is a clear warning against the
use of the simpler methods that rely on the dipole strength as
a constraint for analyzing either IVBs or their IVSEs.

Conclusions

Using a new vibronic coupling model of mixed valency, we
have illustrated the diverse behavior that can be expected from
IVSEs as a function of the values of the vibronic coupling
parameters describing a MVC. We have shown that both the
line shape and magnitude of an IVSE are sensitive to the values
of the electronic coupling, reorganization energy, and energetic
asymmetry of a MVC, suggesting that this vibronic coupling
model can be used to determine the values of these parameters
for an observed IVSE. As predicted also by an electronic
coupling model of mixed valency, we have shown that the fit
value of ∆µ is generally not equal to the value of∆µCT;
however, we have also shown that in some cases the fit value
of ∆µ cannot be used to determine accurately the value of∆µCT

in the manner prescribed by this electronic coupling model.
Two limits have been identified in which classical Stark

effects are expected, and we have developed and verified
analytical equations that predict the magnitudes and line shapes

of the Stark spectra in these limits. In both the limits of strong
and weak mixing betweenψL andψR we find that the second-
derivative contribution to the IVSE line shape can be either
insignificant or dominant, demonstrating that there is no simple
relationship between the localized or delocalized nature of a
MVC and its IVSE line shape. Nevertheless, for a wide range
of weakly and strongly mixed MVCs there is a general trend
from first-derivative-like line shapes for symmetric MVCs
toward second-derivative-like line shapes for increasingly
asymmetric MVCs.

Born-Oppenheimer violation and field-modulated population
effects are seen to be separate mechanisms that underlie the
nonclassical Stark effects of many IVSEs. We have shown that
some nonclassical Stark effects arising from Born-Oppenheimer
violation can have line shapes that are impossible to fit using
the classical Stark analysis, yet haveF andø dependences that
are as predicted from the classical Stark analysis; some
nonclassical Stark effects arising from field-modulated popula-
tion effects can have line shapes that are well-fit using the
classical Stark analysis, yet theirF andø dependences are not
as predicted using the classical Stark analysis.

An awareness of the possible failures of the classical Stark
analysis for IVBs and their Stark effects is important for the
design of experiments and the interpretation of data. For
example, we have shown that MVCs that are localized and
symmetric, or nearly symmetric, can give rise to field-modulated
population effects having unusualF and ø dependences that
should be investigated. If a field-modulated population mech-
anism may influence an IVSE, one should also investigate how
the IVSE changes with the temperature and time scale of
observation because these factors can affect an IVSE by
affecting the extent to which an ensemble of MVCs can relax
to its equilibrium population distribution in the presence of the
field.6 Whereas we have conducted our calculations above in
the limit of infinite time, many intramolecular charge-transfer
processes are effectively shut off at the low temperatures that
are most convenient for forming a glass for Stark experiments.
However, the intermediate MVCs that are interesting because
they lie on the localized-to-delocalized transition are the same
MVCs that are likely to have rates of intramolecular electron
transfer that are accessible on experimental time scales.
Although some MVCs on the localized side of this transition
have been studied using Stark spectroscopy, to the best of our
knowledge there is no published account of the effect of either
temperature or time upon the Stark spectra of these MVCs.
Higher order Stark spectra,33 which have yielded important
information for characterizing both resonance Stark effects4 and
field-modulated population effects,42 may also prove to be useful
for characterizing IVSEs.44

Although we have referred to these interesting Stark effects
as intervalence band Stark effects, it is important to note that
the results here have been derived from a general treatment of
the vibronic coupling problem. Thus they are applicable to the
Stark effects of any kind of charge-transfer transition.
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