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Abstract. In recent work, Bellare, Hoang, and Keelveedhi (CRYPTO 2013) introduced a new abstrac-
tion called Universal Computational Extractors (UCEs), and showed how they can replace random
oracles (ROs) across a wide range of cryptosystems. We formulate a new framework, called Interac-
tive Computational Extractors (ICEs), that extends UCEs by viewing them as models of ROs under
unpredictable (aka. high-entropy) queries. We overcome a number of limitations of UCEs in the new
framework, and in particular prove the adaptive RKA and semi-adaptive KDM securities of a highly
efficient symmetric encryption scheme using ICEs under key offsets.

We show both negative and positive feasibility results for ICEs. On the negative side, we demonstrate
ICE attacks on the HMAC and NMAC constructions. On the positive side we show that: 1) ROs are
indeed ICE secure, thereby confirming the structural soundness of our definition and enabling a finer
layered approach to protocol design in the RO model; and 2) a modified version of Liskov’s Zipper Hash
is ICE secure with respect to an underlying fixed-input-length RO, for appropriately restricted classes
of adversaries. This brings the first result closer to practice by moving away from variable-input-length
ROs. Our security proofs employ techniques from indifferentiability in multi-stage settings.

Keywords. Random oracle, Unpredictability, UCE, RKA security, KDM security, Zipper Hash, Indif-
ferentiability, Multi-stage security.

1 Introduction

1.1 Background

Since their formal introduction by Bellare and Rogaway [BR93], random oracles (ROs) have found many
applications across a wide range of cryptographic protocols. However, due to an uninstantiability result of
Canetti, Goldreich, and Halevi [CGH98], which shows that certain (artificial) protocols become insecure
as soon as the random oracle is replaced by any concrete hash function, reliance on ROs has also become
somewhat debatable.

Two lines of research have been directed at dealing with such uninstantiability results. One is to
construct standard-model counterparts of cryptographic primitives designed in the RO model (ROM).
This approach comes with the drawback that the resulting cryptosystems often tend to be complex and
achieve a lower level of security and/or efficiency. A second, more modular, approach aims to formulate
abstractions of the proof-centric properties of random oracles such as extractability, programability, or
non-malleability [Can97,CD09,Nie02,CD08,BCFW09]. Assuming that a hash function meets the introduced
model, one proceeds to show that it can safely replace the random oracle in a protocol. These formalizations,
however, have only been successful to a limited extent, and the question of finding a flexible and general
framework that could be applied across a broad range of security goals and protocols remained open until
recently.

1.2 UCE security

Bellare, Hoang, and Keelveedhi (BHK) [BHK13a] revisit the above questions and present a powerful framework
called Universal Computational Extractors (UCEs) that allow to securely instantiate random oracles in an



interesting and diverse set of applications. These include, among other things, security under key-dependent-
message (KDM) attacks, security under related-key attacks (RKAs), simultaneous hard-core bits, point
function obfuscators, garbling schemes, proofs of storage, deterministic encryption, and message-locked
encryption, thereby going far beyond what was previously possible.

Behind UCEs lies a new way to model the indistinguishability of a keyed hash function from a random
oracle. Indeed, there are two direct ways to (incorrectly) model the security of a hash function:

(1) Provide the adversary with the hash key and ask it to distinguish an oracle implementing the hash
function from one implementing the random oracle. This approach immediately fails as this game can be
trivially won with the knowledge of the hash key by computing a hash value and checking the answer
against the oracle’s answer for the same query.

(2) Adopt the above approach, but now hide the hash key. This leads to PRF security—for which feasibility
results are known—but is not useful in the context of hashing as the hash key is typically publicly known.

BHK overcome the above shortcomings by splitting the attacker into two parts and constraining the
communication between the two. The first UCE attacker does not get to see the hash key, but has oracle
access to either the hash function under a random key or the random oracle according to a random bit. The
second attacker, on the other hand, does get to see the hash key, but can no longer access the oracle, and it
has to guess the bit; see Figure 1 (left). The two stages of the adversary can communicate only in restricted
ways since arbitrary communication would lead to an attack similar to that given above for formulation (1).

More formally, for a keyed hash function H, UCE security is defined via a two-stage game consisting of
algorithms S and D, called the source and the distinguisher respectively, as follows. In the first stage, the
source is given access to an oracle Hash that depending on a random bit b implements either the random
oracle or the concrete hash function H under a random hash key hk. The source terminates by outputting
some leakage L, which is then communicated to the second-stage distinguisher D. In addition to leakage L,
the distinguisher also gets the hash key hk as input. The distinguisher’s task is to guess b, i.e., guess whether
the source was talking to the random oracle or the hash function. The UCE advantage of the pair (S,D) is
defined as usual to be the probability of correctly guessing the bit b scaled away from one-half. We refer the
reader to the original work [BHK13b] for an excellent overview of this approach to modeling hash-function
security.

To see that without further restrictions UCE security cannot be achieved, consider a source that leaks
one of its oracle queries together with the corresponding oracle answer to the distinguisher. The distinguisher
then simply recomputes the hash value on the queried point—the distinguisher knows the hash key—and
compares it to the leaked value.

In their original work, BHK [BHK13a] define two restrictions on sources: computational unpredictability
and computational reset security. In the computational unpredictability game, it is required that when the
source is run with a random oracle its leakage does not computationally reveal any of its queries. This is
formalized by requiring that the probability of any efficient predictor P in guessing a query of S when given
L is negligible.

The class of computationally unpredictable sources is denoted by Scup, and the resulting UCE security
UCE[Scup] (aka. UCE1) of a hash function is defined by requiring the advantage of any efficient pair (S,D)
with an unpredictable S ∈ Scup in the UCE game to be negligible. Reset security imposes a weaker restriction
on the source class and leads to the stronger UCE2 notion.

UCE security has been the subject of many recent studies. Brzuska, Farshim, and Mittelbach (BFM) [BFM14]
show that, under new cryptographic assumptions, these restrictions are insufficient for a feasible definition.
More precisely, assuming the existence of indistinguishability obfuscators [BGI+01,GGH+13], BFM show
that the UCE[Scup] security of any hash function can be broken in polynomial time. To overcome this attack,
BFM [BFM14] (and subsequently BHK in an updated version of their paper [BHK13b]) propose a statistical
notion of unpredictability whereby the predictor can even run in unbounded time. Following the attack, BHK
also refine the UCE notions based on computational unpredictability and introduce the classes of bounded
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Fig. 1. The interactions in the UCE game (left) and the ICE game (right).

parallel and split sources.3 BFM show that security against bounded parallel source is also infeasible [BFM14],
and recently attacks against split sources have also been shown [BST15].

On the positive side, Brzuska and Mittelbach [BM14b,BM15] show how to construct UCEs for the class
of strongly unpredictable and statistically unpredictable sources for bounded number of queries. Bellare,
Hoang, and Keelveedhi [BHK14] develop domain extenders for UCEs, and Bellare and Hoang [BH15]
construct deterministic PKEs from UCEs for statistically unpredictable sources and lossy trapdoor functions.
BFM [BFM14] have shown that the existence of obfuscation-based attacks against statistically unpredictable
sources violates well-known impossibility results. A number of recent works have shown how to use UCEs as
RO replacements in other protocols [MH14,BK15,DGG+15].

Despite the above advances, and irrespective of the restrictions imposed on sources, the UCE framework
is intrinsically limited in a number of aspects: it only allows the source to place Hash queries which are
independent of the hash key; after leakage is communicated from the source to the distinguisher no further
Hash oracle queries can be made, and hence hash queries are inherently non-adaptive; UCEs cannot model
unkeyed hash functions nor hash functions with weak keys where the key does not come from the uniform
distribution. Motivated by these shortcomings, and the ultimate goal of basing the security of highly efficient
and practical protocols on well-defined and feasible properties of random oracles, we set out to formalize an
enhanced framework for the study ROM protocols.

1.3 Interactive computational extractors

Given the development of UCEs, defining an extended model which meets the above-mentioned specifications
is an intricate task. Indeed, well before the emergence of obfuscation-based attacks, BHK [BHK13b, page 9]
warned that extending UCEs to an interactive setting is “a dangerous path to tread.” As an example, assume
that we introduce a bi-directional communication channel between the distinguisher and the source so that
our adaptivity targets are met. This extension can be shown to fall prey to somewhat non-trivial attacks that
utilize general-purpose multi-party computation (MPC) protocols. Suppose the source S holds a random
input x whose hash is y, and D holds hk. The two parties then run an MPC protocol to compute the Boolean
value y = H(hk, x). The distinguisher finally returns this value as its guess. This attack would meet any
reasonable notion of computational unpredictability since the security of the MPC protocol would ensure
that the parties learn no more than what can be deduced from their individual private inputs.4 Allowing
hash queries to depend on the hash key hk is also challenging since similarly to approach (1) above access to
both hk and the hash oracle would trivialize the notion. For similar reasons, formulating a UCE-like model
for unkeyed hash functions is also non-trivial. As we shall see, other forms of attacks also arise that should be
ruled out for a feasible model.

The ICE framework. Let us call an input (hk, x), consisting of the hash key hk and a domain point x,
to a hash function a full input. One way to view UCEs is that they adopt the indistinguishability-based
approach (1) above, but restrict hash queries so that full inputs remain hidden from the attacker(s). It is

3 Such computational UCE notions are intrinsically needed for applications such as simultaneous had-core bits and
deterministic PKEs.

4 This can be viewed as an interactive analogue of BFM’s attack [BFM14].
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clear that such hidden queries are not meaningful in the presence of a single adversary—any adversary knows
its own queries—and hence UCEs come with two adversaries. Unpredictability together with denial of oracle
access to D ensures that the x components of full inputs remain hidden from D. On the other hand, the hk
components of full inputs remain hidden from S as the source is denied access to hk (and no communication
from D to S is allowed). As a result, full inputs (hk, x) remain hidden from both parties involved in a UCE
attack.

This perspective allows us to build on UCEs and extend them as follows. In our new framework, which
we call Interactive Computational Extractors (ICEs),5 a general mechanism for the joint generation of full
inputs is enabled and adversarial restrictions that formalize what it means for full hash inputs to have high
entropy are imposed.

We let two distinguishers (D1, D2) to take part in an attack, and allow them to communicate via a
bi-directional channel. Both distinguishers get access to a challenge hash oracle, which depending on a
challenge bit implements either the real hash function or a (keyed) random oracle. To enable the two parties
to make hidden queries, we introduce a shared write-only tape that both D1 and D2 can write onto. When a
distinguisher queries the hash oracle, the (real or ideal) hash of the full contents of the tape is returned. In
contrast to UCEs, D1 or D2 can generate a hash key and perhaps modify it throughout the attack. This
attack scenario is symmetric for D1 and D2 and, without loss of generality, the game terminates by D2

outputting with a bit. (Our formal definition, however, comes with a slightly more general return statement.)
For a class C of distinguishers, we define ICE[C] security by demanding that the probability of guessing the
challenge bit for any D = (D1, D2) ∈ C is negligibly close to 1/2. See Figure 1 (right) for a summary of this
interaction.

Entropic queries. Similarly to UCEs, the ICE notion cannot be achieved without constraining the way
the two distinguishers communicate. The main restriction that we introduce is analogous to statistical
unpredictability for UCEs: we demand the statistical unpredictability of full inputs to the hash function,
including the hash key hk, from each distinguisher’s point of view. We choose a statistical, rather than a
computational, notion so that our definitions do not become subject to the interactive versions of the attacks
highlighted in [BFM14].6 More precisely, we require that when the hash oracle implements a keyed random
oracle, no (possibly unbounded) predictor can guess a full input (hk, x) used to compute a hash value when
it is provided with a distinguisher’s view consisting of its inputs, random coins, and all incoming messages
and oracle responses.

Since our framework allows oracle access to both parties, unlike UCEs the two distinguishers can implicitly
communicate via hash patterns as follows. Suppose D2 wants to leak a bit d to D1. Algorithm D2 starts by
writing a random string onto the second half of the input and hands over the attack to D1. Algorithm D1

writes a random value to the first half of the input, calls Hash to receive a first hash value h1, and hands
over the attack back to D2. Now algorithm D2, according to the value of d, either modifies the contents of
the second half of the input tape or leaves them unchanged. D1 can recover d by obtaining a second hash
value h2 and checking if (h1 = h2). The two distinguishers can also communicate via a bit-fixing attack: D2

samples many (unpredictable) random values x conditioned on its hash value beginning with bit d, which D1

can then recover via a hash query.

In our unpredictability definition the predictor gets to see all hash responses, and hence if there are any
repetitions they will be seen by the predictor. Unpredictability will therefore ensure that such repetition
patterns will not leak any of the queries. Sometimes, however, we need to explicitly disallow any repeat
queries to enable a security proof to go through. In such a scenario, we can ensure that there is no leakage
via hash patterns either. Repeat-freeness appears in other related settings such as related-key attacks or
correlated-input hashing [BK03,GOR11].

5 In UCEs, “universal” refers to the fact that extraction should work with respect to universal (i.e., all admissible)
sources. Analogously, “interactive” in ICEs refers to the fact that extraction should work for sources that can
interact.

6 This is also motivated by impossibility results for statistically secure two-party protocols.
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1.4 Applications

BHK [BHK13a] use UCEs to show that the encryption scheme of Black, Rogaway, and Shrimpton (BRS) [BRS03]
is secure under related-key attacks (RKAs) and key-dependent-message (KDM) attacks as long as the related
keys/key-dependent messages are derived non-adaptively at the onset and without access to the hash key or
previous ciphertexts.7

As we shall see, ICE encompasses UCE as a special case, and the BRS scheme can also be instantiated
under the above models using ICEs. We can however also obtain feasibility results that are outside the
reach of UCEs. A practically relevant and desirable level of RKA security is that corresponding to key
offsets (the so-called xor-RKA security [LRW02,BK09]). We show that ICEs are sufficient to prove the full
xor-RKA security of the BRS scheme. Our formal result is more general and applies to the larger class of
split functions that take the form φ(K1‖K2) = φ1(K1)‖φ2(K2). (Such functions have been used to build
RKA-secure PRFs [BC10], and also appear in other related contexts [CG14,LL12].) In addition to achieving
stronger security guarantees, ICEs allow instantiating the BRS scheme using unkeyed hash functions, which
is arguably closer to the original formulation of BRS.8

We also strengthen the attainable KDM security guarantees for BRS by showing that adversaries can
choose key-dependent messages adaptively based on the hash key and also semi-adaptively depending on
previous ciphertexts. We prove that ICEs are adaptively correlated-input secure [GOR11] and that they
relate well to other standard security properties of random oracles, such as pseudorandomness, randomness
extraction, and one-way security (see Appendix B). We leave it as open questions to see if full RKA beyond
xor offsets or full KDM security can be established using extractor-like notaions.

1.5 Instantiations

BHK show that random oracles fulfill their strongest proposed UCE notion, namely UCE security with
respect to computationally unpredictable sources.9 We prove that random oracles are also ICE secure. The
significance of these results are twofold [BHK13a]: (1) there are no generic attacks on ICEs and the model is
structurally sound; and (2) a layered approach to security analysis can be enabled, whereby one first proves
the security of a scheme under an ICE assumption and then applies the RO model feasibility result. The
latter is akin to security analyses carried out in the generic group model.

Practical hash functions, however, are not monolithic objects and often follow an iterative procedure to
convert a fixed-input-length random oracle (FIL-RO) into a variable-input-length random oracle (VIL-RO).
This, in turn, raises the question whether or not the above result can be brought closer to practice by
demonstrating positive feasibility results for VIL-ICEs in the FIL-RO model. A seemingly immediate way to
establish this result would be to start with a hash function that is known to be indifferentiable from a VIL
RO (e.g., the HMAC or the NMAC construction), and then apply the RO feasibility result above to conclude.
This argument, however, fails as the ICE game is multi-staged and indifferentiability does not necessarily
guarantee composition in such settings [RSS11].

Motivated by the above observations, we show both positive and negative feasibility results for ICEs.
On the negative side, we show that the indifferentiable HMAC and NMAC constructions are provably ICE
insecure in the FIL-RO model. On the positive side, and building on Mittelbach’s techniques [Mit14], we
prove that a keyed version of Liskov’s Zipper Hash [Lis07] is ICE secure (as a VIL hash function) under the
assumption that the underlying compression function is a FIL-RO. Zipper Hash can be seen as a variant of
the classical Merkle–Damg̊ard [Dam90,Mer90] construction where the message blocks are processed twice in
the forward and backward directions. Hence our results strengthen the VIL-RO feasibility result above, and
also provide formal evidence for the (intuitive) added security guarantees that multi-pass hash functions seem

7 Recall that in RKA security the adversary can see encryptions of messages under keys φ(K) for a random K and
functions φ of its choice. In KDM security the adversary can see encryptions of φ(K), under a random key K, for
φ’s of its choice.

8 BRS [BRS03] analyze their scheme in the unkeyed RO model, which translates to unkeyed instantiations in practice.
9 Note that this does not contradict the BFM attack as ROs do not have succinct descriptions.
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to offer over their single-pass counterparts. For instance, combined with our RKA and KDM results, we may
conclude that Zipper Hash can be safely used within the BRS scheme with no adverse affects on its security.

The above analysis can be further strengthened in at least two directions. First, one can weaken the
underlying assumption and assume that the compression function underlying Zipper Hash is only a FIL-ICE
(rather than a FIL-RO). To this end, BHK [BHK14] give domain extenders for UCEs. Second, and motivated
by the standard-model realizations of ICEs and UCEs, we ask if these primitives can be based on plausible
hardness assumptions. Brzuska and Mittelbach [BM14a,BM15] have recently shown positive results for UCEs
with respect to restricted classes of sources.

2 Notation

We denote the security parameter by λ ∈ N, which is implicitly given to all algorithms (if not explicitly stated
so) in the unary representation 1λ. By {0, 1}` we denote the set of all bit strings of length ` and {0, 1}∗ is
the set of all finite-length bit strings. For x, y ∈ {0, 1}∗ we denote their concatenation by x‖y, the length of
x by |x|, the ith bit of x by x[i], and the substring of x formed using bits i to j by x[i..j]. We denote the
empty string by ε. For X a finite set, |X| denotes its cardinality, and x←$X denotes the action of sampling
x uniformly at random from X. If Q is a list and x a string then Q : x denotes the list obtained by appending
x to Q. Similarly, If Q1 and Q2 are lists, then Q1 : Q2 denotes the concatenated list. Unless stated otherwise,
algorithms are assumed to be randomized. We call an algorithm efficient or PPT if it runs in time polynomial
in the security parameter. By y ← A(x; r) we denote that y was output by algorithm A on input x and
randomness r. If A is randomized and no randomness is specified, then we assume that A is run with freshly
sampled uniform random coins, and write y←$A(x). We use Coins[A] to denote the polynomially long string
of random coins r used by a PPT machine A. We say a function negl(λ) is negligible if negl(λ) ∈ λ−ω(1).

Hash functions. In the line with [BHK13a], we consider the following (simplified) formalization of hash
functions. A hash function consists of five PPT algorithms H := (H.Kg, H.Ev, H.kl, H.il, H.ol) as follows. The
key-generation algorithm H.Kg gets the security parameter 1λ as input and outputs a key hk ∈ {0, 1}H.kl(λ),
where H.kl(λ) is the key-length function. Algorithm H.il(λ) outputs the length of admissible inputs, which
could take the special value ∗ denoting the variable-length input space {0, 1}∗. Algorithm H.ol(λ) outputs the
length of admissible outputs, which we assumed to be a fixed polynomial function of the security parameter.
The deterministic evaluation algorithm H.Ev takes as input the security parameter 1λ, a key hk, a point
x ∈ {0, 1}H.il(λ), and generates a hash value H.Ev(1λ, hk, x) ∈ {0, 1}H.ol(λ). To ease notation, we often suppress
the security parameter and simply write H.Ev(hk, x).

3 The ICE Framework

In this section we precisely define the ICE framework. We refer the reader to the introduction for a high-level
overview of the model.

The ICE game. Let H = (H.Kg,H.Ev,H.kl,H.il,H.ol) be a hash function and let D = (D1, D2) be a pair of
algorithms. We define the ICE advantage of D against H as

Advice
H,D(λ) := 2 · Pr

[
ICEDH (λ)

]
− 1 ,

where game ICEDH (λ) is shown in Figure 2. As mentioned in the introduction, we may assume, without loss
of generality, that the game termites by D2 outputting a bit. However, in order to preserve the symmetry of
the definition (which will simplify our adversarial restrictions later on) and for added generality, we let the
distinguishers jointly guess the challenge bit by computing b1 ⊕ b2, where bi is Di’s guess. The interaction
terminates when both distinguishers return non-⊥ values for b1 and b2. For a class C of distinguishers, we
define ICE[C] security by requiring the advantage of any adversary D ∈ C to be negligible in the ICE game.

We require (D1, D2) not to leave any superfluous blank spaces on the joint tape. That is, a Write call
must ensure that before the Hash oracle is called there do not exist indices i < j such that x[i] = ε 6= x[j] or
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Main ICEDH (λ)

1 : b←$ {0, 1};L1 ← 1λ

2 : while b1 = ⊥ ∨ b2 = ⊥ do

3 : (b1, L2)←$DWrite,Hash
1 (L1)

4 : (b2, L1)←$DWrite,Hash
2 (L2)

5 : return (b1 ⊕ b2 = b)

Write(j, v)

(hk, x)[j..j + |v| − 1]← v

Hash()

if b = 1 then T [hk, x]← H.Ev(hk, x)

elseif T [hk, x] = ⊥ then

T [hk, x]←$ {0, 1}H.ol(λ)

return T [hk, x]

Fig. 2. The ICE game with respect to hash function H and distinguishers D = (D1, D2). We have omitted the
initialization of various variables for readability.

hk[i] = ε 6= hk[j]. We also demand that the full inputs (hk, x) are valid in the sense that prior to a Hash
call hk ∈ {0, 1}H.kl(λ) and x ∈ {0, 1}H.il(λ). Although the distinguishers D1 and D2 are in general stateful
algorithms, we omit the explicit handling of state values from the inputs and outputs of Di.

Restrictions. As discussed in the introduction, the ICE model is not feasible unless additional restrictions
on the distinguishers are imposed. We formulate our restrictions as joint properties of (D1, D2). Before
presenting our main restrictions corresponding to high-entropy queries, we give a set of basic classes that
will be useful in studying ICEs. As an example, for polynomials w, q, and r we define Cw,q,ri to be the set
of all (D1, D2) such that when (D1, D2) is run in the ICE game conditioned on b = 0 (i.e., with respect to
the random oracle), the distinguisher Di places at most w(λ) queries to Write, at most q(λ) queries to
Hash, and terminates after at most r(λ) invocations. We formalize a number of other notions below and
omit the preamble “The set of all (D1, D2) such that when (D1, D2) is run in ICE with b = 0, we have with
overwhelming probability that” from their definitions. Note that the classes below depend on i ∈ {1, 2}. For
classes Clabel

i we define Clabel := Clabel
1 ∩ Clabel

2 . In the following table we present several restrictions that we
will be using throughout this paper.

Class Description

Cw,q,ri Di places at most w(λ) queries to Write, at most q(λ) queries to Hash,
and terminates after at most r(λ) invocations.

Cpolyi Di makes polynomially many oracle queries.

Cppti Di runs in polynomial time on each invocation and terminates after a
polynomial number of rounds.

C0i Di sets bi := 0 in all invocations.

Cεi Di sets L3−i := ε in all invocations.

C0-hki Di never writes onto the hk part of the tape.

C1-hki On its first invocation, Di writes a random hk onto the hk-part of the
tape. In subsequent invocations, Di never writes onto the hk-part of
the tape.

Cdisti Di makes distinct queries to Hash. That is, for lists Q1 and Q2 defined
in Figure 3, the combined list Q1 : Q2 is repetition-free. Note that
Cdisti = Cdist3−i = Cdist.

Csupi The probability that any (possibly unbounded) predictor P can guess
a full query of Di is negligible. We call this the class of statistically
unpredictable Di. See Figure 3 for the formal definition. Class Ccupi is
the computational analogue, where P is restricted to be ppt.

An example: UCE within ICE. We describe how UCEs can be captured within the ICE framework. Since
ICE is more expressive a framework, we need to (drastically) restrict the distinguishers. In modeling UCEs, we
identify the UCE distinguisher with D1 and the UCE source with D2. All parties typically run in polynomial
time and hence we restrict to Cppt := Cppt

1 ∩ Cppt
2 . In UCEs, the source queries Hash on an unknown hash

key. The distinguisher, on the other hand, gets to see the hash key. Thus, we let D1 (which represents the
distinguisher) write a random hk to the joint input and then hand the attack to D2 on the first invocation,
i.e., D ∈ C1-hk

1 . We further restrict to Cε1 , as a UCE distinguisher does not leak. Since the UCE game only has
a single round, we also restrict to C1,0,2

1 (one round is used to write the hk). Finally, the source does not take
part in decision making and cannot modify the hash key: UCEs are modeled by ICE[Cuce] where

Cuce := Cppt ∩ C1-hk
1 ∩ Cε1 ∩ C1,0,2

1 ∩ C0
2 ∩ C0-hk

2 .

Note that the above models UCEs without any additional restrictions on the source classes. Such
requirements can be added on top by appropriately restricting Cuce.
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Main PredPi,D(λ)

1 : L1 ← 1λ

2 : while b1 = ⊥ ∨ b2 = ⊥ do

3 : k←1; (b1, L2)←$DWrite,Hash
1 (L1)

4 : Lki ← Lki : Li

5 : k←2; (b2, L1)←$DWrite,Hash
2 (L2)

6 : (hk, x)←$P (Coins[Di],Ai, Lki)

7 : return (hk, x) ∈ Q1 : Q2

Write(j, v)

(hk, x)[j..j + |v| − 1]← v

Hash()

if T [hk, x] = ⊥ then

T [hk, x]←$ {0, 1}H.ol(λ)

Qk ← Qk : (hk, x)

Ak ← Ak : T [hk, x]

return T [hk, x]

Fig. 3. The unpredictability game.

Unpredictability. We now formally define what we mean by a D that has unpredictable (aka. high-entropy)
queries. We focus on a statistical notion of unpredictability [BFM14,BST15].10 We say D = (D1, D2) is
statistically unpredictable for the distinguisher i, and write D ∈ Csup

i , if the advantage of any unbounded
predictor P defined by

Advpred
i,D,P (λ) := Pr

[
PredPi,D(λ)

]
,

is negligible, where game PredPi,D(λ) is shown in Figure 3.
Note that the predicator only gets to see the hash responses for distinguisher Di—these are within Di’s

view—and has to guess a query made by either distinguisher in the concatenated list Q1 : Q2. It is easy to
check that UCE security with respect to statistically unpredictable sources is equivalent to ICE[Cuce ∩ Csup]
security.

Remark. Since predictor P receives the full view of a distinguisher Di, it can perfectly simulate a run of Di

in the ICE game with respect to a random implementation of the hash oracle, without any need to see the
view of the partner distinguisher D3−i. We will rely on this observation in our proofs.

4 Example Applications

In this section we demonstrate two example use cases of ICEs. Further applications are given in Appendix B
and summarized in Table 2 below. These applications serve to demonstrate that many properties of random
oracles that are useful in analyses of ROM cryptosystems can be modeled in a unified way within the ICE
framework.

4.1 Split RKA security

We show that the symmetric encryption scheme proposed by Black, Rogaway, and Shrimpton (BRS) [BRS03]
is secure against related-key attacks (RKAs) when instantiated with an ICE-secure hash function. The
encryption algorithm of the BRS scheme is implemented via EncH(K,M ;R) := (R,M ⊕ H(K‖R)), for a
hash function H, randomness R and key K. Recall that in an RKA, an adversary can obtain encryptions
of messages of its choice under correlated keys (e.g., under K and K ⊕ 1). See Appendix A for the formal
definition.

Split related-key derivation (RKD) functions φ decompose into two sub-RKD functions φ1 and φ2 that
are applied in parallel to two (fixed) sub-strings of the key: φ(K1‖K2) = φ1(K1)‖φ2(K2).11 Split functions

10 We emphasize that computational notions are still valuable as combined with our feasibility results, they would
enable easier and more modular security proofs in the RO model.

11 For simplicity we assume that these are just the left and right halves of the key. Our proof will however also apply
to any two substrings of super-logarithmic lengths.

8



Goal/Model Class Used/Achieved

Split RKA C∗ ∩ Csup ∩ C02

Split KDM C∗ ∩ Csup ∩ C01

Split/claw-free CIH C∗ ∩ Csup ∩ C02

Extractor C∗ ∩ Csup ∩ C01 ∩ Cε ∩ C1,1,2

Weak PRF C∗ ∩ Csup ∩ C01 ∩ Cε ∩ Cpoly,poly,1

poly-regular OWF C∗ ∩ Csup ∩ C01 ∩ C1,1,1

VIL-ROM Cppt ∩ Ccup and Cpoly ∩ Csup; both contain C∗ ∩ Csup

FIL-ROM C∗ ∩ Ccup, which contains C∗ ∩ Csup

Table 2. Distinguisher classes used (above) and shown feasibility for (below). Here C∗ := Cppt∩Cdist∩C1-hk1 ∩C0-hk2 ∩Cε2 .

capture many RKA cases of interest including the case of xoring constants into keys. Without the minimal
assumption that φ’s have unpredictable outputs (i.e., the guessing probability of the outputs of φ(K) over
randomly chosen K is negligible) RKA security is not achievable [BK03]. In our proof, we will require a
slightly stronger condition that the sub-RKD functions φ1(K1) and φ2(K2) are individually unpredictable.
(See Appendix A for the formal definition.) Note that offsetting keys via xor enjoys this property as xor
induces a permutation over the two halves of the key.

BHK [BHK13a], by interpreting encryption randomness as hash keys, show that BRS is selectively RKA
secure using a multi-key extension of UCE[Scup]. In contrast, the adversary in our model retains its capability
to adaptively query RKD functions of its choice depending both on the hash key and the ciphertexts that it
has previously seen. For this result, although ICE[Cppt ∩ Csup] is sufficient, the assumption can be fine-tuned
to ICE[C] where

C := Cppt ∩ Csup ∩ Cdist ∩ C1-hk
1 ∩ C0-hk

2 ∩ C0
2 ∩ Cε2 .

We defer the formal proof to Appendix A and give a detailed outline here.

The ICE adversary. Given an RKA adversary A, we construct an ICE adversary (D1, D2), where D1

handles the left components of A’s RKA queries and D2 handles the right components as follows.

D1(L1) : On initial invocation, generate a hash key hk, a random K1, and a random bit b. Store these values
and write hk onto the hk-part of the tape. Run A(hk) to get an RKA query ((φ1, φ2),M0,M1). Output
(b1, L2) := (⊥, φ2). Proceed as follows in subsequent invocations. Generate and store a random R and
write φ1(K1) onto the 1st segment (out of three segments) of the x-part of the tape and R onto its 3rd
segment. Query Hash to get H. Recover R and resume A on (R,H ⊕Mb) to get a new RKA query
((φ1, φ2),M0,M1), or a bit b′. If A outputs a bit b′, return (b1, L2) := (b = b′, ε) and terminate. Else
output (b1, L2) := (⊥, φ2).

D2(L2) : When initially invoked, generate a random K2 and store it. In all invocations (including the first),
recover φ2 from L2. If φ2 = ε, return (b2, L1) := (0, ε) and terminate. Else write φ2(K2) onto the 2nd
segment of the x-part of the tape. Output (b2, L1) := (0, ε).

Unpredictability. We show that D ∈ C for class C as defined above. To this end, we only prove membership
in Csup ∩ Cdist as other cases follow via syntactic checks. This follows from the following two observations:
(1) The Hash queries are distinct with overwhelming probability since before each query a fresh random value
R is written onto the joint tape. (2) The functions φ1 and φ2 are run on independently chosen substrings of
the key. Since they are assumed to be individually statistically unpredictable, D1 observing independently
generated random strings corresponding to hash values never gets to know the contents of the tape written
by D2, and vice versa, D2 never gets to know what is written on to the tape by D1.
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4.2 KDM security

When the random oracle in the BRS scheme is instantiated with an ICE-secure hash function, we are able to
show that the BRS scheme resists a partially adaptive form of KDM security for split key-dependent-message
derivation (KDMD) functions φ. As for RKD functions, such KDMD functions consist of sub-KDMD functions
φ1 and φ2 of the form φ(K1‖K2) := φ1(K1)‖φ2(K2). The adaptivity level that we can tolerate is as follows.
In an initial phase of the attack, the adversary can fully adaptively query split KDMD functions that do not
depend on K2. That is, for these functions φ2(K2) is constant and independent of K2 and its value can be
predicted. In a second phase of the attack, the adversary can query split KDMD functions of its choice as
long as either φ1(K1) is constant or φ1(K1) was used in the first phase. (We emphasize that these functions
are not required to be unpredictable.) This model is strong enough to imply IND-CPA security (without any
restrictions), a case that could not be treated using UCEs.

The ICE adversary. Let A be a KDM adversary against the BRS scheme in the model above. Our
ICE[Cppt ∩ Csup ∩ Cdist] adversary corresponding to A is as follows, where for simplicity we have assumed the
lengths of keys, randomness and messages are all `. (The ICE class can be further restricted as is shown in
Table 2.) In this reduction, D1 faithfully runs the first stage of the attack, while D2 runs its second stage. To
answer KDM queries, D2 relies on the “homomorphic” property that H⊕(x1‖x2) = H⊕(x1‖0|x2|)⊕(0|x1|‖x2).

D1(L1) : When initially invoked, generate a random hk, K1 and b and store them. Write hk to the hk-part and
K1 to the 1st (out of three) segments of the x-part of the tape. (The segments are of lengths `/2, `/2 and
` corresponding to K1, K2 and R respectively.) Output (⊥, ε). On the second invocation, run A(hk) and
answer its KDM queries ((φ0

1, φ
0
2), (φ1

1, φ
1
2)) as follows. Write a fresh random value R onto the 3rd segment of

the x-part of the tape. Call Hash to get H, and resume A on (R,H⊕(φ1(K1)‖M∗2 )), where M∗2 := φ2(0`/2)
is the right K2-independent part of the message. Continue this process until A decides to proceed to its
second stage. Let stA denote A’s state. Generate sufficiently many copies (R1, C

′
1), . . . , (Rq, C

′
q) of each

of the KDM queries made in the first phase. Let List1 denote the corresponding list of queried φb1. Return
(0, (b, stA, (R1, C

′
1), . . . , (Rq, C

′
q), List1)) and terminate.

D2(L2) : When initially invoked, generate a random K2, store it, and write it to the 2nd segment of the
x-part of the tape. Hand the attack back to D1, by outputting (⊥, ε). On the second invocation, parse L2

appropriately as above. Resume A on stA and answer its KDM queries ((φ0
1, φ

0
2), (φ1

1, φ
1
2)) as follows. If

φb1 ∈ List1 pick a fresh ciphertext (R,C ′) corresponding to φb1 and complete the ciphertext preparation by
setting C ← C ⊕ (0`/2‖φb2(K2)). Otherwise generate a random R, write it onto the 3rd segment of the
x-part of the tape, query Hash to get H, and set C ← H ⊕ (φb1(0`/2)‖φb2(K2)). Resume A on (R,C; stA)
and continue in this manner until A outputs a bit b′. Return (b = b′, ε) and terminate.

Unpredictability. D’s queries are distinct with overwhelming probability as fresh randomness R is written
on the tape before each query. Throughout the attack, and when the hash oracle implements a random
function, K2 remains hidden from D1 as D1 only sees distinct random values as hash responses. Key K1 also
remains hidden from D2 as the (incomplete) ciphertext components received from D1 are random strings.
Hence D ∈ Cppt ∩ Csup ∩ Cdist.

5 Feasibility

In this section we start by showing that random oracles are ICE secure with respect to interesting distinguisher
classes (in particular, with respect to the restrictions needed for the presented applications). We then consider
the ICE security of practical hash constructions built from fix-input-length (FIL) ROs. In particular, we look
at a keyed variant of Liskov’s Zipper Hash [Lis07] and show that it achieves ICE security in the FIL-RO model.
Interestingly, we show that both HMAC and NMAC constructions [BCK96], which were recently shown to be
UCE secure in FIL-ROM [Mit14], fail to be ICE secure. This result yields a natural counterexample to the
composability of HMAC in multi-stage settings, similarly to that given by Ristenpart, Shacham, and Shrimpton
in [RSS11]. Furthermore, it provides a separation between ICE and UCE. Our results also demonstrate that
Zipper Hash can provide a higher level of security compared to HMAC when used in multi-stage settings.
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5.1 ICEs from random oracles

BHK [BHK13b] show that UCE-secure hash functions can be provably constructed in the RO model. The
philosophical justifications of this result are that there are no structural weaknesses in the definitional frame-
work, and more importantly, a layered approach to protocol design in the RO model can be enabled [BHK13b].
We show that ICEs also enjoy RO feasibility.

Let H.kl(·) and H.ol(·) be two arbitrary functions as in the syntax of a hash function. Let R be a family of
variable-input-length (VIL) ROs (i.e., with domain {0, 1}∗) and range {0, 1}H.ol(λ). We construct the required
hash function HR by defining the key-generation algorithm H.Kg(1λ) to return a random hk←$ {0, 1}H.kl(λ)

and the evaluation algorithm H.EvR(hk, x) to return R(hk‖x). Our first feasibility result is as follows.

Theorem 1 (ICE feasibility in ROM). The VIL hash function HR constructed above is ICE[C] secure in
the VIL-RO model for R for the following (incomparable) classes of adversaries:

C := Cpoly ∩ Csup and C := Cppt ∩ Ccup .

The proof of this theorem is similar to the proof of [BHK13b, Theorem 6.1] for UCEs, and we give the
details in Appendix C. Intuitively, we rely on unpredictability of queries to simulate the random oracles used
in the construction and implicit in the ICE game independently. Interestingly, distinctness of queries will not
be needed in this proof and we do not restrict the classes to Cdist. We note that the above classes include
all those needed for the applications, as listed in Table 2. We also note that this theorem generalizes the
feasibility of UCEs for unpredictable sources in ROM [BHK13b] as it can be easily verified that

Cuce ∩ Ccup
2 ⊆ Cppt ∩ Ccup and Cuce ∩ Csup

2 ⊆ Cppt ∩ Csup .

5.2 VIL-ICEs from ideal compression

Practical variable-input-length (VIL) hash functions are not monolithic objects. They often follow iterative
modes of chaining that convert a fix-input-length (FIL) compression function to one that accepts variable-length
inputs. This design principle has been successfully validated via the indifferentiability framework of Maurer,
Renner, and Holenstein [MRH04,CDMP05], whereby an indifferentiable hash-function construction is shown
to securely compose when used in place of a random oracle. As pointed out in [RSS11], the indifferentiability
framework only guarantees composition in single-stage environments. The ICE and UCE games, however, are
inherently multi-staged and lie outside the reach of (plain) indifferentiability. Mittelbach [Mit14] develops
new techniques to extend the reach of (plain) indifferentiability to certain classes of multi-stage games. In
particular, he shows that the HMAC and NMAC constructions are UCE secure. Interestingly, we show that
these results do not carry over to the ICE model: HMAC and NMAC provably fail to be ICE secure. On the
other hand, we build on Mittelbach’s techniques to prove that a variant of Zipper Hash [Lis07] is provably
ICE secure.

Attacks on HMAC and NMAC. The HMAC and NMAC constructions are shown in Figure 4. If we denote
the iterated compression function used in HMAC by h, then it is easily seen that key hk is only used on the
“outer” h-evaluations. Consider an ICE distinguisher D1 which holds hk, computes the values

y1 := h(hk ⊕ ipad, IV) and y2 := h(hk ⊕ opad, IV)

and sends them to distinguisher D2. Given (y1, y2), distinguisher D2 can compute the HMAC values for any
x ∈ {0, 1}∗ under hk. Thus, in order to win the ICE game, D2 simply chooses a random x and writes it
on the input tape, and calls Hash to receive a value y. It then locally recomputes H.Evh(hk, x) using the
compression function h and values (y1, y2). If the results match, it outputs 1, and else it outputs 0. It is easily
seen that this adversary wins ICE with overwhelming probability. Furthermore, given (y1, y2), the hash key
hk remains statistically hidden from D2 (as the number of h queries is bounded by a polynomial). Value x,
being random, also remains statistically hidden from D1. Formally, this attack breaks ICE[C] for

C := Cppt ∩ Csup ∩ C1,1,1 ∩ C1-hk
1 ∩ C0

1 ∩ C0-hk
2 ∩ Cε2 .
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hk ⊕ ipad

h

m1

h

m2

h

m`

h

h

IV

h
hk ⊕ opad

IV
H.Evh(hk,m)

replaced by k1 for NMAC

replaced by k2 for NMAC

Fig. 4. The HMAC construction. If the dashed boxes are exchanged for independent keys k1 and k2, we obtain NMAC.
Here we are ignoring padding.

Zipper Hash. The above attack raises the question if any iterative hash function can be ICE[C] secure for a
meaningful class of distinguishers C. We show that a hybrid construction of a keyed version of Liskov’s Zipper
Hash construction [Lis07] and chopped Merkle–Damg̊ard (chop-MD) of Coron et al. [CDMP05] is ICE secure.
Zipper Hash can be regarded as a basic Merkle–Damg̊ard scheme where the message is processed twice, the
second time in reversed block order. chop-MD refers to the construction where a hash value consists only of
the first half of the output bits of the final compression function. Our hybrid construction results from adding
the chop step to Zipper Hash. Furthermore, we consider a keyed variant of Zipper Hash by prepending the
hash key to the message. We assume that key length matches block length, which means that the first and
last evaluations of the compression function operate on the hash key. We denote this keyed variant of Zipper
Hash by chop-KZIP. Figure 5 shows a schematic diagram of the construction, and Appendix D.1 gives further
details.

Theorem 2 (Zipper Hash’s ICE security). The VIL hash function chop-KZIPh constructed above is
ICE[C] secure in the FIL-RO model for h : {0, 1}µ × {0, 1}n −→ {0, 1}n for the class

C := Cpoly ∩ Csup ∩ Cdist ∩ C1-hk
1 ∩ C0

1 ∩ C0-hk
2 ∩ Cε2 .

An analogous result holds for polynomial-time distinguishers that are only computationally unpredictable.

In Appendix D.2 we give the proof, where we also present a self-contained introduction to the unsplittability
technique [Mit14]. Appendix D.3 contains the full security analysis.

Note that class C above contains that class used to attack HMAC and hence chop-KZIPh provably achieves
a higher level of security in multi-stage games. We note that the reach of the above feasibility result includes
all applications scenarios listed in Table 2. In particular, chop-KZIPh can security replace the random oracle
in these applications. For this also note that we can easily drop C0

1 by requesting that in the last round D1

outputs a guess for b which D2 echoes. With the other restrictions present this change is without loss of
generality.

This result cannot be strengthened for the (large) adversarial classes that were used in Theorem 1. To
see this, consider two distinguishers that engage in a distributed computation of chop-KZIPh hash values as
follows. Distinguisher D1 knows hk and m1 and D2 knows m2, where message m := m1‖m2 is being hashed.
Distinguisher D1 computes an intermediate hash digest using (hk,m1) and forwards it to D2. Distinguisher
D2 now computes another iteration of the hash using m2 and forwards the result to D1. Distinguisher D1

can now complete the hash computation using its knowledge of (hk,m1) and the intermediate hash digest
that it receives.

A straightforward generalization of this attack also rules out multi-pass variants of chop-KZIPh (where
messages are processed multiple times in the forward and backward directions), including those whose number
of passes is not fixed a priori and can depend on the number of message blocks. This is due to the fact that
the number of rounds in an ICE attack is not fixed. This, in turn, raises the question if ICE[Cpoly ∩ Csup] is
feasible in the FIL-RO model. We conclude the paper with a candidate construction that we conjecture to
reach this level of security.
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h g H.Ev(hk,m)

Fig. 5. The Zipper Hash construction merged with chop-MD [CDMP05] and keyed with hk. The final node g
corresponds to the projection to the first half of the output of h.

Mix Hash. Let h : {0, 1}n×{0, 1}n −→ {0, 1}n be a compression function. Let m := m1‖ · · · ‖m` ∈ ({0, 1}n)`

be a message with ` blocks of length n each. Let Mixh(m) denote the transformation that maps m to
M := ‖i‖jMi,j where Mi,j := h(mi,mj) for 1 ≤ i < j ≤ `. (Therefore M has `(` − 1)/2 blocks.) Now let
hk ∈ {0, 1}n be a hash key and define

MixHashh(hk,m) := HMACh(0n,Mixh(hk‖m)) .

Note that MixHashh places Θ(`2) calls to its compression function h.12 The design rationale behind MixHashh

is as follows. All intermediate digests values Mi,j are needed in order to successfully compute a hash value.
These values, however, consist of all pairs (mi,mj) compressed through h. Since h is a monolithic object,
Mi,j cannot be computed in a distributed way, a strategy that was used in all previous attacks. In other
words, one of the distinguishers has to know (hk,m) in full and hence will violate unpredictability. To see
this, suppose D1 does not know mj in full and D2 does not know mi in full for some i < j. Then there is no
way for these parties to learn Mi,j := h(mi,mj) without one of them explicitly quarrying h on (mi,mj). This
however means that both mi and mj are known to the quarrying party, which leads to a contradiction. We

leave a formal analysis of MixHashh in the FIL-RO model for h as future work.
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A Split RKA Security

Symmetric encryption. A symmetric key encryption scheme consists of six PPT algorithms SE :=
(SE.kl,SE.il,SE.cl,SE.Kg,SE.Enc,SE.Dec) as follows. Algorithms SE.kl,SE.il,SE.cl are deterministic and on
input 1λ specify the key, message and ciphertexts lengths. The key generation algorithm SE.Kg(1λ) generates
keys K of length SE.kl(1λ). The encryption algorithm SE.Enc takes as input a key K and a message M
of length SE.il(1λ) and returns a ciphertext C of length SE.cl(1λ). The decryption algorithm SE.Dec is
deterministic and takes as input a key K and a ciphertext C and returns a message M . Correctness requires
that for all K that are output by SE.Kg(1λ) and for all messages M of length SE.il(1λ), and all ciphertexts
C ←$SE.Enc(K,M) we have that M = SE.Dec(K,C).

Split RKD functions. A related-key derivation (RKD) function is a circuit φ which maps keys to keys in
some key space. We denote by a family of RKD function sets parameterized by λ by Φ. (We will suppress the
explicit dependency on λ to ease notation.) An RKD family Φ is split if there are RKD families Φ1 and Φ2

with half the key size such that for any φ ∈ Φ there is a (φ1, φ2) ∈ Φ1 × Φ2 such that for all K = K1‖K2,
where K1 and K2 are of length half the key size (which for simplicity we assume to be even), we have

φ(K1‖K2) = φ1(K1)‖φ2(K2) .

We assume that given a split RKD function φ its split representation consisting of (φ1, φ2) can be efficiently
computed. Note it might not necessarily be the case that Φ = Φ1 × Φ2.

RKA security. Let SE be a symmetric encryption scheme, and let Φ be a family of RKD functions with
key space identical to that of SE. We define the Φ-RKA advantage of an adversary A against SE by

Advrka
SE,Φ,A(λ) := 2 · Pr

[
RKAA

SE,Φ(λ)
]
− 1 ,
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Main RKAA
Φ,SE(λ)

b←$ {0, 1}
K ←$ {0, 1}SE.kl(λ)

b′ ←$ALR(1λ)
return (b′ = b)

LR(φ,M0,M1)

K′ ← φ(K)
C ←$SE.Enc(K′,Mb)
return C

Main SPUPPΦ(λ)

(K1,K2, φ1, φ2)←$P (1λ)

(K1,K2)←$ {0, 1}SE.kl(λ)/2 × {0, 1}SE.kl(λ)/2

return (K1 = φ1(K1) ∨K2 = φ2(K2))

Fig. 6. The RKA and split unpredictability games. A RKA adversary is legitimate if it calls RKEnc only with
functions φ = (φ1, φ2) in Φ = Φ1 × Φ2. A SPUP adversary in is legitimate if it outputs a (φ1, φ2) ∈ Φ1 × Φ2.

where game RKAA
SE,Φ(λ) is shown in Figure 6. We define Φ-RKA security by requiring this advantage to be

negligible for all PPT adversaries A.

Split unpredictability. A family of split RKD functions Φ is called split-unpredictable if the advantage of
any (possibly unbounded) predictor P against Φ defined by

Advspup
Φ,P (λ) := Pr

[
SPUPPΦ(λ)

]
,

is negligible, where game SPUPPΦ(λ) is shown in Figure 6. Standard (thats is, non-split) unpredictability is
defined similarly.

Theorem 3 (Split RKA security of the BRS scheme). Let SE denote the BRS symmetric encryption
scheme, where the hash oracle is instantiated with H. Let Φ be a split RKD function family. Then for any
Φ-RKA adversary A against SE there exists an ICE adversary D = (D1, D2) ∈ Cppt ∩ Csup ∩ Cdist such that

Advrka
SE,Φ,A(λ) ≤ 2 ·Advice

H,D(λ) +
Q(λ)2

2SE.rl(λ)
.

Furthermore, for any predictor P against adversary D constructed above, there are predictors P ′i for i ∈ {1, 2}
such that

Advpred
i,D,P (λ) ≤ Q(λ) ·Advspup

Φ,P ′i
(λ) +

Q(λ)2

2SE.rl(λ)+1
,

where Q(λ) denotes the number of LR queries of A.

Proof. For an intuition of the proof we refer the reader to Section 4. Given A we construct an ICE adversary
(D1, D2) as shown in Figure 7. We denote the internal state of Di by sti, which is initialized to ε. We assume,
without loss of generality, that A places at least one RKA query.

Let d denote the hidden bit in the ICE game. When d = 1 adversary A is run in an environment that is
identical to the RKA game for BRS with respect to hash function H and challenge bit b. Since the output of
the ICE game is d′ := (b′ = b), where b′ denotes A’s output, we have

Pr
[
ICEDH (λ)

∣∣ d = 1
]

= Pr
[
RKAA

SE,Φ(λ)
]
.

On the other hand, when d = 0, subject to the condition that all R-values generated by D1 are distinct,
adversary A receives uniform random strings. Hence b remains information theoretically hidden from A:

Pr
[
ICEDH (λ)

∣∣ d = 0
]
≤ 1

2
+

Q(λ)2

2SE.rl(λ)+1
.

Subtracting we get

2 ·Advice
H,D(λ) ≥ Advrka

SE,Φ,A(λ)− Q(λ)2

2SE.rl(λ)
.
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DWrite,Hash
1 (L1; st1)

if (st1 = ε) then

hk←$ {0, 1}H.kl(λ)

K1 ←$ {0, 1}SE.kl(λ)/2

b←$ {0, 1}
(φ1, φ2,M0,M1; stA)←$A(hk)
st1 ← (hk,K1, b, φ1,M0,M1, stA)
return (⊥, φ2; st1)

if (st1 6= ε) then
(hk,K1, b, φ1,M0,M1, stA)← st1

R←$ {0, 1}SE.rl(λ)

Write(H.kl(λ) + 1, φ1(K1))
Write(H.kl(λ) + SE.kl(λ) + 1, R)
H ←$Hash()
(aux; stA)← A(R,H ⊕Mb; stA)
if (aux ∈ {0, 1}) then

return (aux = b, ε;⊥)
(φ1, φ2,M0,M1)← aux
st1 ← (hk,K1, b, φ1,M0,M1, stA)
return (⊥, φ2; st1)

DWrite,Hash
2 (L2; st2)

if (st2 = ε) then

K2 ←$ {0, 1}SE.kl(λ)/2

st2 ← K2

if (L2 = ε) then
return (0, ε;⊥)

K2 ← st2
φ2 ← L2

Write(H.kl(λ) + SE.rl(λ)/2 + 1, φ2(K2))
return (0, ε; st2)

Fig. 7. Distinguishers D1 and D2 corresponding to an RKA adversary A. State value sti =⊥ indicates termination.

This proves the first part of the theorem.
We next prove that D ∈ Csup

i for i = 1, 2. (Membership in Cppt ∩ Cdist is easy to check.) Let P be a

predictor against D in game PredPi,D(λ). We construct a predictor P ′i in game Φ-SPUP. Intuitively, algorithm
P ′i will use D to construct a list of candidate sub-RKD functions whose output it will then predict using P .13

We consider a slight modification of PredPi,D(λ), where Hash queries are answered by returning uniform

and independent strings in {0, 1}SE.rl(λ) × {0, 1}H.ol(λ) in a forgetful manner. Modulo the distinctness of the
sampled R values, this game is identical to the real unpredictability game. Hence the two games are within
statistical distance Q(λ)2/2SE.rl(λ)+1.

We introduce a final modification. If i = 1, when computing the list of queries Q1 and Q2 the game uses
φ2(K̃2) for an independent key K̃2. Analogously, when i = 2, when computing Q1 and Q2 the game uses
φ1(K̃1) for an independent key K̃1. In each case, these modifications do no affect P ’s success probability. To
see this, note that for each i, the distributions of the inputs of P even in the presence of the list of queries
Q1 : Q2 in the two cases are identical (as P does not get to see K3−i).

We now construct the predictors for i = 1, 2. Algorithm P ′i runs (D,P ) by simulating its Hash queries
forgetfully as above and ignoring its Write queries. It forms a list of all RKD functions that are internally
generated. It generates random Coins[Di], forms A2 via simulated hash values, and Lki via the list of quarried
RKD functions. When P returns (hk, x), algorithm P ′i returns (K1,K2, φ1, φ2) for a randomly sampled split
RKD function (φ1, φ2) from the set of all queried RKD functions, and (K1,K2) recovered from x. See Figure 8
for the details.

For each i, when P is successful, it guesses the contents of the tape formed via an RKD function with
respect to an independent key K̃3−i With probability 1/Q(λ) algorithm P ′i picks the RKD query that resulted
in the predicted contents of the tape. It follows that for i = 1, 2 we have

Pr
[
SPUP

P ′i
Φ (λ)

]
≥ 1

Q(λ)
·
(

Pr
[
PredPi,D(λ)

]
− Q(λ)2

2SE.rl(λ)+1

)
.

The second part of the theorem follows.

13 Note that a direct simulation of (D,P ) by P ′i would not work at this point since P ′i will guess the output of a
sub-RKD with respect to a known key K.
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P ′i (1
λ)

L1 ← 1λ

while b1 = ⊥ ∨ b2 = ⊥ do

k ← 1; (b1, L2)←$DWrite,Hash
1 (L1)

Lki ← Lki : Li
k ← 2; (b2, L1)←$DWrite

2 (L2)
L← [φ internally generated by D1]

(hk, x)←$P (Coins[Di],Ai, Lki)
(R,K1,K2)← x
φ←$ L; (φ1, φ2)← φ
return (K1,K2, φ1, φ2)

Write(j, x)

return ε

Hash()

T [hk, x]←$ {0, 1}H.ol(λ)

Ak ← Ak : T [hk, x]
return T [hk, x]

Fig. 8. Φ-SPUP predictor P ′i corresponding to ICE adversary D = (D1, D2) and predictor P . Here L denotes the list
of RKD functions (φ1, φ2) that are internally generated by D as it runs A.

B Other Applications

In this section we give an overview of how the ICE framework can be applied in a number of other cryptographic
settings. Proofs of our results below can be formalized following the approach of Appendix A.

B.1 Correlated-input hashing

In correlated-input hashing, an adversary is able to obtain real or ideal hash values of points φ(x), where
functions φ are chosen by the adversary from a pre-specified set, and x is a randomly chosen value which is
kept hidden from the adversary. The task of the adversary is to guess if the real or ideal hash is being used.
An adversary similar to the one given for the RKA security of the BRS scheme can be used to show that
a hash function that meets the ICE definition of security also achieves security under correlated inputs as
introduced by Goyal, O’Neill, and Rao [GOR11]. As before we require that the corresponding correlated-input
derivation (CID) functions to split into two parallel components. In this setting, however, not only do we
need the sub-CID functions to be individually output unpredictable, but also require that the (full) outputs
of any two CID functions φ and φ′ collide with negligible probability over a random choice of (common) input
x. This property is also known as claw-freeness. The ICE distinguishers interact as follows.

D1(L1) : When initially invoked, generate a random hk and write it. Also generate a random x1 and store
it. Run A(hk) to get a first query (φ1, φ2). Write φ1(x1) and output (0, φ2). In subsequent invocations,
query Hash to get H and resume A on H to get a new (φ1, φ2) or a bit b′. In the latter case return (b′, ε)
and terminate. In the first case write φ1(x1) and output (0, φ2).

D2(L2) : When initially invoked, generate a random x2 and store it. In all invocations, if L2 = ε return (0, ε)
and terminate. Else recover φ2 from L2 and write φ2(x2). Output (0, ε).

The claw-freeness property implies that only with negligible probability the Hash oracle will be called on
repeated inputs. Moreover, the split unpredictability condition ensures that the contents of the first segment
of the input tape are hidden from D2 and the contents of the second segment of the input tape are hidden
from D1 when these are run with respect to a random oracle. The argument is similar to the RKA setting,
but claw-freeness will be used to forgetfully simulate the Hash oracle. Hence D ∈ Csup ∩ Cdist.

B.2 Randomness extraction

In a secure randomness extractor no adversary A should be able to distinguish a uniformly chosen random
string from the output of the extractor when applied to a high-entropy input generated by a source S. Given
a pair (S,A), we construct an ICE adversary as follows.
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D1(L1) : When initially invoked, generate a random hk. Write hk to the tape. Output (0, ε). On the second
invocation, query Hash to get H. Run A(hk,H) to get a bit b′. Return (b′, ε) and terminate.

D2(L2) : Run S(1λ) to get x. Write x to the tape. Return (0, ε) and terminate.

Note that there is a single Hash query and hence there are no repeat queries. Observe that the hash key
hk is statistically hidden from D2. Since S is assumed to generate (statistically) high-entropy values, the
single query to Hash also remains statistically hidden from D1 when Hash implements a random oracle. We
conclude that D ∈ Csup ∩ Cdist.

B.3 Weak pseudorandomness

A weak pseudorandom function F needs to be indistinguishable from a random function by adversaries that
are given input/output samples (x, FK(x)) for a randomly chosen key K and randomly chosen points x. Any
ICE-secure hash function is also a weak pseudorandom function.

D1(L1) : Generate a random hk and write it. Return (0, ε) and terminate.
D2(L2) : Run the weak-PRF adversary A(1λ). When a sample is requested, pick a random value x and write

it, call Hash to get H, and resume A(H). When A outputs a bit b′, return (b′, ε) and terminate.

Statistical unpredictability follows as hk remains hidden from D2 with respect to a random Hash, and
queries x being random remain hidden from D1. Note also that with overwhelming probability there are no
repeat queries to Hash. Hence D ∈ Csup ∩ Cdist.

B.4 One-way hashing

We show that any ICE-secure hash function with a polynomial upper bound on its regularity (i.e., a polynomial
number of pre-images for any given image) is one way.

D1(L1) : Choose a random hk. Choose a random x1. Write hk and x1. Return (0, hk) and terminate.
D2(L2) : Choose a random x2 and write it. Query Hash to get a value H. Run A(hk,H) to get a candidate

pre-image (x̃1‖x̃2). Return (x̃2 = x2, ε) and terminate.

The above reduction relies on the fact that due to polynomial regularity, a successful A, when run with
respect to the hash function, will recover the pre-image used in challenge generation with high probability.
On the other hand, when A is run with respect to the random oracle, it will recover x2 with only a negligible
probability.

There is a single query to Hash, the input x1 chosen by D1 remains hidden from D2 with respect to a
random oracle, and the input x2 chosen by D2 remains hidden from D1. The adversary is in Csup ∩ Cdist.

C Proof of Theorem 1: ICE Feasibility in ROM

Let H.kl(·) and H.ol(·) be two arbitrary functions as in the syntax of a hash function. Let R be a family of
variable-input-length (VIL) ROs (i.e., with domain {0, 1}∗) and range {0, 1}H.ol(λ). We construct the required
hash function HR by defining H.Kg(1λ) to return a random hk←$ {0, 1}H.kl(λ) and the evaluation algorithm
H.EvR(hk, x) to return R(hk‖x).

Theorem 1 (restated from page 11). The VIL hash function HR constructed above is ICE[C] secure in
the VIL-RO model for R for the following (incomparable) classes of adversaries:

C := Cpoly ∩ Csup and C := Cppt ∩ Ccup .
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Main GD1 (λ) GD2 (λ)

L1 ← 1
λ

; QH ← [ ];QR ← [ ]

while b1 = ⊥ ∨ b2 = ⊥ do

(b1, L2)←$D
Ro1,Write,Hash
1 (L1)

(b2, L1)←$D
Ro2,Write,Hash
2 (L2)

return (b1 ⊕ b2 = 1)

Write(j, v)

if j < H.kl(λ) then

hk[j..j + |v|]← v

else x[j..j + |v|]← v

Hash()

v ← hk‖x

if v ∈ QR then bad← true

QH ← QH : v

if H[v] = ⊥ then H[v]←$ {0, 1}H.ol(λ)

return H[v]

Ro1(v)

if v ∈ QH then bad← true

QR ← QR : v

if H[v] = ⊥ then H[v]←$ {0, 1}H.ol(λ)

return H[v]

Ro2(v)

if v ∈ QH then bad← true

QR ← QR : v

if H[v] = ⊥ then H[v]←$ {0, 1}H.ol(λ)

return H[v]

Main GD3 (λ)

L1 ← 1
λ

while b1 = ⊥ ∨ b2 = ⊥ do

(b1, L2)←$D
Ro1,Write,Hash
1 (L1)

(b2, L1)←$D
Ro2,Write,Hash
2 (L2)

return (b1 ⊕ b2 = 1)

Write(j, v)

if j < H.kl(λ) then

hk[j..j + |v|]← v

else x[j..j + |v|]← v

Hash()

v ← hk‖x
if H[v] = ⊥ then H[v]←$ {0, 1}H.ol(λ)

return H[v]

Ro1(v)

if T [v] = ⊥ then T [v]←$ {0, 1}H.ol(λ)

return T [v]

Ro2(v)

if T [v] = ⊥ then T [v]←$ {0, 1}H.ol(λ)

return T [v]

Fig. 9. Games for the random-oracle feasibility of ICEs.
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Proof. We prove the theorem for the first class corresponding to poly-query and statistically unpredictable
distinguishers. The proofs for computational distinguishers that are computationally unpredictable are
analogous. The only difference is that the predictors that we construct run the distinguishers, and hence their
assumed computational complexities should match.

Let
D = (D1, D2) ∈ Cpoly ∩ Csup .

Consider games G1–G3 in Figure 9, where game G1 does not include the boxed statements. Let d denote
the challenge bit in the ICE security game. Game G1 is identical to the ICE game with d = 1, where Hash
implements the construction. Game G3 is identical to the ICE game with d = 0, where Hash is a lazily
sampled random function independent of the random oracle used in the construction. In all games, Ro1 and
Ro2 are the interfaces for the random oracle given to D1 and D2 respectively. We have that

Pr
[
GD1 (λ)

]
= Pr

[
ICEDH (λ)

∣∣ d = 1
]

Pr
[
GD3 (λ)

]
= 1− Pr

[
ICEDH (λ)

∣∣ d = 0
]
.

Thus
Advice

H,D(λ) = Pr
[
GD1 (λ)

]
− Pr

[
GD3 (λ)

]
.

Game G2 (shown in Figure 9 on top with boxed statements included) simply adds sets for bookkeeping
and two bad flags. Therefore,

Pr
[
GD1 (λ)

]
= Pr

[
GD2 (λ)

]
.

Game G3 (shown in Figure 9 bottom) exchanges the random oracle for adversaries D1 and D2 by an
independent oracle; that is, the answers are no longer consistent with those of the Hash oracle (note the
different tables T and H used). As long as a full query to Hash (with the hash key prepended) never collides
with one to Ro1 or Ro2, this modification does not change the game.14 This collision event is captured by a
flag bad. Since G2 and G3 are identical until bad,

Pr
[
GD2 (λ)

]
− Pr

[
GD3 (λ)

]
≤ Pr

[
GD3 (λ) sets bad

]
.

Flag bad can be set in two ways:

Event E1: An Ro1 query of D1 matches a query of either D1 or D2 to Hash.
Event E2: An Ro2 query of D2 matches a query of either D1 or D2 to Hash.

We bound the proabrbility of each of these events in G3 via the unpredictability of D1 in the first case, and
the unpredictability of D2 in the second case.

The predictors. We bound the probability that flag bad gets set via a D1 query to Ro1 by constructing a
predictor PR1 against D1 (event E1 above). Predictor PR1 uses a full view of D1 provided in its inputs and R
to perfectly simulate a run of D1 in the ICE game with respect to an (independent) random implementation
of the hash oracle (see remark on page 8). Hence PR1 runs D1 in an environment that is identical to G3.
Algorithm PR1 picks a random query v of D1 to Ro1 and outputs it. Whenever flag bad is set due to event
E1, algorithm PR1 wins the prediction game as long as it correctly guesses the query that set bad. Hence, if
we let Q1(λ) denote an upper bound on the number of Ro1 queries of D1, we may conclude that

Pr
[
GD3 (λ) sets bad in Ro1

]
≤ Q1(λ) · Pr

[
PredP1

1,D(λ)
]
.

14 We emphasize that we do not simulate the queries of D1 and D2 to Hash independently. Doing so would arguably
lead to an easier simulation of the oracles, but comes at the cost of introducing the extra restriction that the
distinguishers belong to Cdist. Interestingly, similar restrictions are necessarily in related contexts (e.g., [BK03]).
The reason we can avoid Cdist is that the predictor explicitly sees these hash values. When not provided with these
values, the distinctness of queries would ensure that these hash values are random and independent, and hence of
little use to a predictor.
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h g H.Evh(hk,m)

Fig. 10. The Zipper Hash construction [Lis07] merged with chop-MD [CDMP05] evaluated on a message m1‖ . . . ‖m` :=
m where |m| := `k is a multiple of the block size λ and hash key hk. The final node g corresponds to the projection of
the first half of the output of h, that is, g : {0, 1}n → {0, 1}n/2.

The second predictor PR2 corresponding to event E2 is constructed and analyzed analogously:

Pr
[
GD3 (λ) sets bad in Ro2

]
≤ Q2(λ) · Pr

[
PredP2

2,D(λ)
]
.

It follows that

Advice
H,D(λ) ≤ Pr

[
GD3 (λ) sets bad

]
≤ Q1(λ) ·Advpred

1,D,P1
(λ) +Q2(λ) ·Advpred

2,D,P2
(λ) .

The theorem follows for D ∈ Cpoly ∩ Csup.

D Proof of Theorem 2: VIL-ICEs from FIL-RO

In the following section we consider instantiatoions of ICEs via a hybrid between Zipper Hash [Lis07] and
chop-MD [CDMP05] and analyzed in the ideal compression function model (where the compression function
is assumed to be a fixed-input-length random oracle).

D.1 Chopped & keyed Zipper Hash

Liskov’s Zipper Hash can be seen as a variant of the Merkle–Damg̊ard construction [Mer90,Dam90]. The basic
Merkle–Damg̊ard construction Hh(m1, . . . ,m`) is computed recursively as Hh(m1, . . . ,m`) := h(m`, x`−1)
where x0 := IV is some initialization vector and xi := h(mi, xi−1) is computed as the compression function
evaluated on the current message block and the last chaining value. In the Zipper Hash construction, the
message is not passed once, but twice, the second time in reversed block order. In Liskov’s original formulation
of Zipper Hash [Lis07] two independent compression functions were used, one for the first message pass, and
one for the second. For our proof, this is not necessary, and we consider only a single (idealized) compression
function. We denote this construction with ZHh.

The chop Merkle–Damg̊ard (chop-MD) construction is essentially the basic Merkle–Damg̊ard construction
appended by a projection map that drops half of the bits of the final compression function evaluation [CDMP05].
We consider a hybrid construction: Zipper Hash with a final projection.

Zipper Hash is specified as an unkeyed hash function. We will, however, consider a keyed variant of Zipper
Hash, and define chop-KZIPh as

chop-KZIPh(hk,M) := g(ZHh(hk‖M)) ,

where we assume that hk is padded to the length of one message block and g is a projection to the first half
of its input. As a consequence, during the evaluation of chop-KZIPh(hk,M), the first call to the compression
function as well as the last call, both take the key hk as input, which is crucial to proving that the construction
is ICE secure. We give a schematic diagram of an evaluation of the resulting hybrid called Chopped & Keyed
Zipper Hash (chop-KZIP) in Figure 10. Note, that chop-KZIP is also a key-prefixed hash construction in the
terminology of Mittelbach [Mit14].
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D.2 Proof for restricted ICE[C ∩ Cskup]

To show that the keyed function chop-KZIPh is ICE[C] secure for the class

C := Cpoly ∩ Ccup ∩ Cdist ∩ C0
1 ∩ C1-hk

1 ∩ C0-hk
2 ∩ Cε2 ,

and an ideal compression function h, we first look at a more restricted class where the hash key hk remains
statistically hidden from distinguisher D2. We denote the corresponding class of adversaries Cskup. We start
with the following proposition.

Proposition 1. The chop-KZIPh construction described above is an ICE[C ∩ Cskup]-secure hash function for
C as above and whenever h : {0, 1}µ × {0, 1}n −→ {0, 1}n is a FIL-RO.

Mittelbach [Mit14] presents a composition theorem for multi-stage games which intuitively says that if
a game is unsplittable for an iterative hash construction then security in the random-oracle model implies
security for the iterative hash construction where the underlying compression function is ideal and assuming
that the hash construction is indifferentiable from a random oracle. Thus, in order to prove the proposition 1
it is sufficient to show that:

(1) chop-KZIP is an iterative hash construction (within the framework of Mittelbach [Mit14]);
(2) chop-KZIP is indifferentiable from a random oracle;
(3) and the ICE game is unsplittable for chop-KZIPfor class C ∩ Cskup.

When introducing Zipper Hash, Liskov also gave a proof of indifferentiability [Lis07]. It is easily seen that the
function remains indifferentiable under composition with transformation g (dropping half of the bits). We
consider (1) and (3) next.

chop-KZIP is iterative. Mittelbach [Mit14] gives a framework for hash functions Hh that are built by iterating
a fixed-input-length compression function h. We describe a simplified version of the framework here and
refer to [Mit14] for details. The idea is that the computation of a hash function can be described by a
directed acyclic graph that is independent of the compression function h. In other words, for a given key
hk and message M , there is an algorithm that constructs an execution graph which, basically, consists of
message-block nodes (for message blocks mi in message M) an IV-node (for the initialization vector), h-nodes
representing compression function evaluations and a single g-node representing the final transformation.
Furthermore, a universal algorithm Eval given oracle access to h and the unique execution graph for (hk,M)
can compute value Hh(hk,M). In Figure 10 we give the execution graph for a chop-KZIP evaluation for
message m1‖ . . . ‖m` = M and key hk (for ease of presentation we ignore padding).15 To compute the
corresponding hash value relative to function h the generic algorithm Evalh recursively performs the following
steps on the execution graph: Search for a node that has no ingoing edges. If it is a message-block node or an
IV-node then label all outgoing edges with the corresponding value (message-block or IV) and remove the
node from the graph. If the node is an h-node or the single g-node such that all ingoing edges are labeled, then
compute the corresponding function taking the labels of the ingoing edges as input, label all outgoing edges
with the result and remove the node from the graph. Finally, return the result from the final g computation.

Zipper Hash, chop-MD and also chop-KZIP can be casted in this way and, indeed, Zipper Hash and
chop-MD are examples used in [Mit14].

Unsplittability. It remains to show unsplittability for ICE[C ∩ Cskup]. Unsplittability is defined relative to
certain events regarding queries of adversaries to the compression function h. Consider a specific game

GHh,A1,...,Am with respct to an iterative hash construction Hh and adversarial procedures A1, . . . ,Am. In our

specific case this would be the ICE game with adversary D. Now consider an execution of game GHh,A1,...,Am

15 In [Mit14] execution graphs are defined to have one message-block node per message-block mi in M . Here, we relax
this requirement to support the presentation. We refer to [Mit14] for a detailed description of how Zipper Hash is
represented in that framework.
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on some random coins r. Then, we can formalize predicates on the compression function queries by the
adversaries, for example, we say that the second h-query by adversary A3 has a certain property. A query is
called an initial query if it is of the form (m, IV), that is, the second input to the compression function is the
initialization vector. A query (m,x) to h is called a chained query if previously during the game there are h
queries (m0, x0), . . . , (m`, x`) such that

x0 = IV and ∀i = 1, . . . , `− 1 : xi+1 = h(mi, xi) and x = h(m`, x`) .

Note that here we consider all queries that were made during the game by the adversaries before the point
in time where (m,x) is queried. A query is called a result query, if it is a chained query and the structure
of the chain corresponds to a correct evaluation of Zipper Hash, that is: hk,m1, . . . ,m`,m`, . . . ,m1, hk for
some value hk and message blocks m1 to m`. We say that an h-query (m,x) by an adversary Ai is bad if it is
a chained query, but that it is not chained with respect to only the queries by adversary Ai that occurred
before (m,x). Finally, a query is a bad result query if it is a result query and a bad query. We refer to [Mit14]
for formal definitions.

We now recall the definition of unsplittability. Let Hh be an iterative hash function and let h be an ideal
compression function. We say game G, where only adversarial procedures access h directly,16 is unsplittable
for Hh if for every efficient adversary A1, . . . ,Am there exist efficient algorithms A∗1, . . . ,A∗m and negligible
function negl such that

AdvGHh,A1,...,Am(λ) ≤ AdvGHh,A∗1 ,...,A∗m(λ) + negl(λ) ,

where AdvGHh,A1,...,Am denotes the success probability of (A1, . . . ,Am) in game G with hash construction Hh.

Moreover, it holds for game GHh,A∗1 ,...,A∗m that bad result queries occur only with negligible probability.

Unsplittability allows composition. We present a self-contained explanation of how unsplittability can be used
to argue composition [Mit14].

Figure 11 (top) shows the ICE game with respect to chop-KZIP and the ICE game with respect to the
random oracle is shown on the bottom. We next, give the intuition on how unsplittability allows us to go
from an adversary in the Zipper Hash setting to an adversary in the random-oracle setting.

Let function HR denote the hash function with H.EvR(hk,m) := R(hk‖m) which is ICE secure in the
random-oracle model (see Theorem 1) for a superclass of adversaries considered here. From any efficient ICE
adversary D we will, in several steps of which one is using the unsplittability property, construct an adapted
adversary D∗ such that

Pr
[
ICEDchop-KZIPh(λ)

]
≤ Pr

[
ICED

∗

HR(λ)
]

+ negl(λ)

and thus

Advice
chop-KZIPh,D(λ) ≈ Advice

HR,D∗(λ)

by the composition theorem of Mittelbach. Note that on the left we are considering the ICE game with
respect to chop-KZIP and the ideal compression function h (see also top of Figure 11), while on the right we
have the ICE game with respect to hash construction HR in the random-oracle model (Figure 11, bottom),
for which we know by Theorem 1 that

Advice
HR,D∗(λ) ≤ negl(λ) .

We will construct adversary D∗ as

D∗1 := D′Sim1 D∗2 := D′Sim2

16 This corresponds to a functionality respecting game, in the terminology of Ristenpart, Shacham and Shrimp-
ton [RSS11].
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where adversary D′ will be the adversary guaranteed by the unsplittability property, and simulator SimR is
an indifferentiability simulator that uses the random oracle to simulate h for D′.

To construct the simulator SimR we will use the generic indifferentiability simulator from [Mit14]. This
generic simulator exists and is a good indifferentiability simulator, if the hash function in question is an
iterative hash construction and is indifferentiable from a random oracle. As discussed, both properties hold in
case of chop-KZIP.

We briefly sketch how the generic simulator works, and refer to [Mit14] for a detailed discussion. Simulator
SimR keeps an internal list of all queries it receives. (Note that each adversary runs an independent copy of
SimR.) On query (m,x) simulator SimR checks if this query is “part of a valid execution” of chop-KZIP, that
is, whether the internal list of queries contains a chain of queries starting from an initial query and leads to
this query.

The simulator distinguishes between result queries and non-result queries. If it sees all the queries in
the chain of a result query, it is easily seen that the simulator can reconstruct key hk and message M and,
thus, recognize a result query. If so it uses its access to the random oracle to return R(hk‖M). Else, if a
query (m,x) is not a result query, then the simulator responds with a randomly chosen value. We stress that
this random value does not depend on the state of the simulator but only on the query and the simulator’s
random coins (which is important for consistency across different instances of the simulator).

For a single-stage game, the story ends here. The single adversary composed with the simulator will
be as good when playing in the random-oracle setting as it is when playing in the chop-KZIP setting. For
multi-stage games, however, this does not directly work, as queries by different adversarial stages (in our case
D1 and D2) must be answered consistently. This difference between multi-stage and single-stage games was
first noted by Ristenpart, Shacham and Shrimpton [RSS11]. That is (1) the same query must get the same
answer, and (2) if D1 starts to compute a hash value, sends an intermediate compression function result to
D2, and D2 continues the evaluation (note that this corresponds to a bad query) we need to argue that the
simulator can still detect the final result query.

Unsplittability, solves problem (2). Given an adversary D we can build an adversary D′ that has the same
advantage in the ICE game, but does not make bad result queries. To solve problem (1), Mittelbach [Mit14]
uses a derandomization technique due to Bennet and Gill [BG81] that allows to derandomize the simulator
relative to the adversary using the random oracle. Hence any non-potential hash query is answered with a
random value that is now generated deterministically (relative to the random oracle) and, thus, the same
query (m,x) will be answered identically by any instance of simulator SimR.

This yields that if we compose adversary D′ with the derandomized simulator then this adversary will be
(almost) as good in the random-oracle setting as adversary D in the chop-KZIP setting.

ICE[C ∩ Cskup] is unsplittable for chop-KZIP. We now turn to showing that ICE[C ∩ Cskup] is unsplittable for
chop-KZIP. Assume that adversary D during the ICE game makes a bad result query, that is, D1, or D2 makes
a query to the compression function without having queried all intermediary queries in the corresponding chain.
We have to show that in this case an adversary D′ exists which is at least as good but, with overwhelming
probability, does not make bad result queries. We will show that the original adversary is already of this form.

As h is ideal, a bad query means that an intermediary value must have been communicated from one
stage to another (also see [Mit13, Lemma 3.3]). Note that there is direct communication from D1 to D2 and
indirect communication from D2 to D1 via the Hash oracle (i.e., we restrict the second distinguisher to be
in Cε2). For the second case, note that via calls to Hash distinguisher D1 receives value chop-KZIP(hk,M)
for whatever message M was written on the shared tape. Since, chop-KZIP only returns half of the bits of
the final compression function computation distinguisher D1 does not learn a full result of a compression
function. Together with the restriction, that distinguishers must always query the Hash oracle on distinct
messages we can, thus, conclude that only D2 can make bad queries.

Now assume that D2 makes a bad result query. Then, by the definition of result query for chop-KZIP,
distinguisher D2 uses hash key hk. We define efficient predictor P as follows. Predictor P takes as input the
view of D2 and outputs one of its h-queries at random. If Q(λ) is an upper bound on the number of h-queries
by D2 then predictor P outputs hash key hk with probability 1/Q(λ) times the probability that D2 makes a
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bad result query. This, however, directly contradicts the assumption that adversary D is in class Cskup, the
class of adversaries where hash key hk remains statistically hidden from D2.

It follows that ICE[C∩Cskup] is unsplittable for chop-KZIP and the proposition follows with the composition
theorem for unsplittable games [Mit13, Theorem 4.2].

D.3 chop-KZIP is ICE[C] secure

In this section we extend the previous discussion to general C adversaries where the second distinguisher may
or may not learn the hash key.

Theorem 2 (restated from page 12). The VIL hash function chop-KZIPh constructed above is ICE[C]
secure in the FIL-RO model for h : {0, 1}µ × {0, 1}n −→ {0, 1}n for the class

C := Cpoly ∩ Csup ∩ Cdist ∩ C1-hk
1 ∩ C0

1 ∩ C0-hk
2 ∩ Cε2 .

An analogous result holds for polynomial-time distinguishers that are only computationally unpredictable.

Proof. Given the above discussion it remains to show that distinguisher D2 does not make any bad result
queries. Let us assume the contrary, i.e., we fix the randomness r of game ICE[C] and assume that distinguisher
D2 makes a bad result query (mb, xb) to compression function h. Then, by the definition of a bad query,
the query is not properly chained, that is, it is chained with respect to all h-queries by D1 and D2, but it
is not chained with respect to only the h-queries by D2. Let qryhDi [r] denote the sequence of h-queries by
distinguisher Di (for i ∈ {1, 2}) up to and (possibly) including the bad result query (mb, xb). We distinguish
two types of bad result queries BQ-TYPE:

BQ-TYPE1: The type BQ-TYPE1 corresponds to the bad query appearing in the first message pass for a
message M = m1‖, . . . ,m`. In Figure 12 we illustrate how the hash function evaluation is divided over
the two distinguishers. Formally, there exists an index j ≤ `+ 1 such that

(m0, x0), . . . , (mj , xj) ∈ qryhD1
[r]

and
(mj+1, xj+1), . . . , (m`, x`), (m`, x`+1), . . . , (m0, x2`) ∈ qryhD2

[r]

for xi = h(mi1 , xi−1) and (m0, x0) := (hk, IV).
BQ-TYPE2: Type BQ-TYPE2 corresponds to the bad query appearing in the second message pass. Formally,

there exists index `+ 1 ≤ j ≤ 2` such that

(m0, x0), . . . , (m`, x`), (m`, x`+1), . . . , (mj , xj) ∈ qryhD1
[r]

and
(mj+1, xj+1), . . . , (m0, x2`) ∈ qryhD2

[r]

for xi = h(mi1 , xi−1) and (m0, x0) := (hk, IV).

In the following we construct an adapted distinguisher that does not make any bad result queries. For
this we argue that the distinguisher does not make a bad result query in either of the above two cases: We
consider the ICE game together with the following adversary (D′1, D

′
2). Before we describe the distinguishers

in detail let us describe the underlying idea.
Result queries are always of the form (hk, x), that is the key is used in the first slot (cf. Figure 12). In order

for D′2 to recognize such queries (and perform adequate steps) it must, thus, be able to recognize key hk. We
can, however, not simply forward the key from D′1 to D′2 since this might lead to the distinguishers making
predictable Hash queries. Instead D′1 forwards a random value TestKey together with value h(hk,TestKey).
This allows D′2 to test if a given query from D2 contains key hk and at the same time hides the key from D′2
unless it is communicated by D1.

26



ICEDchop-KZIPh(λ)

b←$ {0, 1}; b′ ← ⊥;L1 ← 1
λ

while b1 = ⊥ ∨ b2 = ⊥ do

(b1, L2)←$D
h1,Write,Hash
1 (L1)

(b2, L1)←$D
h2,Write,Hash
2 (L2)

return (b1 ⊕ b2 = b)

h1(x)

if Th[x] = ⊥ then Th[x]←$ {0, 1}n/2

return Th[x]

h2(x)

if Th[x] = ⊥ then Th[x]←$ {0, 1}n/2

return Th[x]

hH(x)

if Th[x] = ⊥ then Th[x]←$ {0, 1}n/2

return Th[x]

Write(j, v)

if j < H.kl(λ) then

hk[j..j + |v|]← v

else x[j..j + |v|]← v

Hash()

if T [x] = ⊥ then

if b = 1 then

T [x]← chop-KZIPhH (hk, x)

else T [x]←$ {0, 1}n/2

return T [x]

ICEDHR(λ)

b←$ {0, 1}; b′ ← ⊥;L1 ← 1
λ

while b1 = ⊥ ∨ b2 = ⊥ do

(b1, L2)←$D
h1,Write,Hash
1 (L1)

(b2, L1)←$D
h2,Write,Hash
2 (L2)

return (b1 ⊕ b2 = b)

h1(x)

return Sim(x)

h2(x)

return Sim(x)

SimR(x)

run generic chop-KZIP simulator [Mit14,Mit13]

derandomized via [BG81] on input x and

wrt. random oracle R.

Write(j, v)

if j < H.kl(λ) then

hk[j..j + |v|]← v

else x[j..j + |v|]← v

Hash()

if T [x] = ⊥ then

if b = 1 then

T [x]← R(hk‖x)

else T [x]←$ {0, 1}n/2

return T [x]

R(x)

if R[x] = ⊥ then R[x]←$ {0, 1}n/2

return R[x]

Fig. 11. On the top we depict the ICE game relative to chop-KZIP in the ideal-compression-function model; that is,
where compression function h which is used by chop-KZIP is assumed to be a fixed-input-length random oracle to
which all parties have access to. On the bottom we give the target ICE game relative to hash construction HR with
H.EvR(hk,m) := R(hk‖m) where R is a random oracle. The simulator SimR simulates h for the adversary. Note that
h takes values in {0, 1}n and due to chopping chop-KZIP has values in {0, 1}n/2.
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h

m`

hx` x`+1

m`
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m1

h

hk

hx2` g

j + 1queries by D1 queries by D2

Fig. 12. Splitting of an execution of chop-KZIP.Evh(hk,M) for some message M = m1‖ . . . ‖m` where the first
distinguisher computes the first j + 1 compression function calls up to and including h(mj , xj), and the second
distinguisher computes the remainder.

Now that D′2 can recognize potential result queries, D′2 can ensure that the above described types of
bad result queries do not occur. For type BQ-TYPE1 note that the entire second message pass is performed
by D2. On seeing a result query D2 can, thus, extract the corresponding message M and recompute
chop-KZIP.Evh(hk,M) thereby avoiding bad result queries of type BQ-TYPE1. For bad result queries of type
BQ-TYPE2 we use a similar trick as before and let D′1 forward the necessary information to recognize and
properly answer such queries without needing to call h (and thereby avoiding the bad result query). For
this, we let D′1 choose two additional random values TestVal and BlindVal (which it also forwards to D′2).
Furthermore, D′1 keeps track of all h queries by D1 and constructs all (partial) chains. For each of those partial
chains it then reconstructs the corresponding message M—message M consists j message blocks if the chain
consists of j + 1 queries; note that the first query contains key hk—and computes chop-KZIP.Evh(hk,M).
Let query (hk, x2j) be the final h query in that computation. Distinguisher D′1 computes values

h(TestVal, x2j) and h(BlindVal, x2j)⊕ h(hk, x2j)

which it also forwards to distinguisher D′2. Given these two values, distinguisher D′2 can check if a potential
result query (i.e., a query of the form (hk, x)) is equivalent to a precomputed result query by D′1 by comparing
h(TestVal, x) to the values received from D′1. If so, it can recover value h(hk, x2j) from h(BlindVal, x2j) ⊕
h(hk, x2j) without having to make the bad result query. Further note, that the additionally leaked values
statistically hide key hk as well as x2j and h(hk, x2j) as long as the number of oracle h queries is bounded by
a polynomial.

We now describe the distinguishers in detail.

Distinguisher D′1. On the first invocation distinguisher D′1 chooses values

TestKey ∈ {0, 1}n and BlindVal,TestVal ∈ {0, 1}µ .

Distinguisher D′1 runs distinguisher D1 forwarding oracle calls to its own oracles and keeping track of all
h queries in set Q. When distinguisher D1 finishes and outputs leakage L, then distinguisher D′1 stops and
outputs the following leakage L′. From all queries to h it constructs all valid (partial) chains C as follows:
remove query (hk, IV) from Q and add chain1 := [(hk, IV)] to C, where chain1 is a sequence of tuples containing
only tuple (hk, IV). Repeat the following steps until Q is empty, or no new chain was constructed in the last
step. For each chaini ∈ C let (mi, xi) be the last tuple in the chain. If there exists query (m,x) ∈ Q such that
h(mi, xi) = x then create a new chain chain ← [chaini‖(m,x)] whereby [chaini‖(m,x)] we mean the chain
that contains all tuples from chaini and as (additional) final tuple in the sequence tuple (m,x). Add chain to
C.

In a next step distinguisher D′1 further processes each chain. Let T ← [ ] be an empty table. For each
chain ∈ C the following steps are performed. If |chain| = 1 (that is the chain only consists of query (hk, IV))
then nothing is done. Else, set j := |chain| − 1. The distinguisher extracts M = m1, . . . ,mj from chain chain

where mi corresponds to the first entry of the ith tuple. It then computes chop-KZIP.Evh(hk,M). Let (hk, x2j)
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be the final h query in the computation of chop-KZIP.Evh(hk,M). It then sets

T [h(TestVal, x2j)]← h(BlindVal, x2j)⊕ h(hk, x2j)

and prepares its leakage as

L′ ←
(
TestKey,TestVal,BlindVal, h(hk,TestKey), T, L

)
.

Distinguisher D′2. Distinguishers D′2 parses the leakage as

(TestKey,TestVal,BlindVal, h(hk,TestKey), T, L) ,

and runs distinguisher D2. It forwards oracle queries to its own oracles keeping track of h-calls in set Q and
furthermore handling h-calls as follows: on an h query (m,x) by distinguisher D2, distinguisher D′2 computes
h(m,TestKey) and compares it to h(hk,TestKey). If the two values do not match, then it forwards the query
to h and returns the result to D2. If, on the other hand h(m,TestKey) = h(hk,TestKey), then distinguisher
D′2 further distinguishes two cases: T [h(TestVal, x)] = ⊥ and T [h(TestVal, x)] 6= ⊥. In the first case, where
table T does not contain an entry for value h(TestVal, x) distinguisher D′2 reconstructs all (tail) chains from
Q that end in query (m,x). This can be done with a similar process as the chain reconstruction by D′1. For
each chain it extracts the corresponding message M and computes chop-KZIP.Evh(hk,M) where we denote
by (hk, x2j) the final h query. If for any of these x2j = x then D′2 returns the result of h(hk, x2j) to D2. If
this is not the case for all reconstructed chains it queries h on (hk, x) and forwards the result to D2.

In case table T contains a value for h(TestVal, x), that is, T [h(TestVal, x)] 6= ⊥, then distinguisher D′2
returns

T [h(TestVal, x)⊕ h(BlindVal, x)

to D2. When D2 stops and outputs a bit b, then so does D2.

Analysis. We need to argue that (1) the adapted adversary D′ has a similar advantage as the original
adversary, (2) bad result queries in the ICE game with adversary D′ and hash construction chop-KZIPh (for
ideal h) occur only with negligible probability and (3) D′ ∈ C, that is, the Hash queries by D′1 and D′2 are
statistically unpredictable.

For (1) note that unless D1 or D2 make an h query containing any of the random values TestVal, BlindVal,
TestKey and furthermore no h-collision occurs then the view of D1 and D2 simulated by D′1 and D′2 is perfect.
The collision probability is negligible since h is ideal and since values TestVal,BlindVal,TestKey are chosen
uniformly at random and not given to D1 nor D2 the probability of either distinguisher guessing any of the
three constants is also negligible.

For (2) note that the probability of guessing a value within a hash chain for an iterative hash function
without honestly computing the chain is negligible (see Lemma 3.3 and its strengthened version in [Mit13]).
As intuition note that h is ideal and thus a value h(m,x) has n bits of min-entropy. As the result of each h
query goes into the next query in a chain this entropy is, so to speak, passed on. It follows that for potential
bad result queries of type BQ-TYPE1 distinguisher D′2 will with overwhelming probability recover the correct
message M . Similarly for potential bad result queries of type BQ-TYPE2 table T will with overwhelming
probability contain the necessary information to answer the query without making the bad result query.

Finally, for (3) note that all that is additionally leaked by D′1 are the randomly chosen values TestVal,
BlindVal, TestKey and the result of specially crafted h-queries of the forms:

h(hk,TestKey) and h(TestVal, x2j) and h(BlindVal, x2j)⊕ h(hk, x2j)

All these values are statistically hidden from D1 and D2 since values TestVal, BlindVal, TestKey remain hidden.
Furthermore, values hk, x2j and h(hk, x2j) remain hidden unless values hk or x2j can be reconstructed given
the view of distinguisher D2. For this note that also the unbounded predictors can only make polynomially
many h queries.
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