
A Decentralized Anonymity-Preserving Reputation
System with Constant-time Score Retrieval

Rémi Bazin∗, Alexander Schaub∗, Omar Hasan† and Lionel Brunie†
∗Department of Computer Science, École Polytechnique

91120 Palaiseau, France
†University of Lyon, CNRS

INSA-Lyon, LIRIS, UMR5205, F-69621, France

Abstract—Reputation systems are a major feature of every
modern e-commerce website, helping buyers carefully choose
their service providers and products. However, most websites use
centralized reputation systems, where the security of the system
rests entirely upon a single Trusted Third Party. Moreover, they
often disclose the identities of the raters, which may discourage
honest users from posting frank reviews due to the fear of
retaliation from the ratees. We present a reputation system that
is decentralized yet secure and efficient, and could therefore
be applied in a practical context. In fact, users are able to
retrieve the reputation score of a service provider directly from
it in constant time, with assurance regarding the correctness
of the information obtained. Additionally, the reputation system
is anonymity-preserving, which ensures that users can submit
feedback without their identities being associated to it. Despite
this anonymity, the system still offers robustness against attacks
such as ballot-stuffing and Sybil attacks.

I. INTRODUCTION

Reputation systems are very common on the Internet as they
help the users learn about the quality of a product, document or
other items of interest. Examples of reputation systems include
the systems used on eBay, Amazon or Shopzilla. All these
examples are based on centralized reputation systems, which
implies that their security relies on the assumption that the
underlying server is honest and secure.

Decentralized protocols (e.g. BitTorrent [1], BitCoin [2])
have emerged for mainly two reasons: releasing the central
server from resource consuming tasks to distribute these
among the peers, and getting rid of the security dependency
on the central server. Indeed, should a reputation protocol be
centralized, a privacy disclosure such as the AOL search data
leak in 2006 always remains a possible threat [3]. Neither
are we safe from sponsoring i.e. increasing a certain entity’s
reputation in exchange for some fee – be it a public practice
or a hidden activity. Although we usually trust well known
entities such as the ones quoted above to behave honestly, we
want to get rid of these trust requirements for a wider range
of systems. These reasons justify our need for a decentralized
scheme.

Another feature that we wish to provide is to preserve
the anonymity of the raters. This choice is motivated by
studies, such as the one on eBay [4], that show how sellers
might discriminate against customers based on their previous
feedback. Two solutions arise to achieve this goal. The first
one is to preserve the confidentiality of the rating values while

making the list of raters for a specific vendor public. The other
one is to hide everything but the aggregated reputation score by
making the feedback entries unlinkable with the transactions
and the identities of the customers. We will choose the latter
proposition; the privacy of the customers shall therefore be
entirely preserved.

The protocol that we propose is also resistant against Sybil
attacks [5]. These attacks consist of multiple fake identities
or bots controlled by a single malicious user acting like
legitimate clients in order to do ballot stuffing and send a high
amount of either positive feedback values (self-promotion) or
negative ones (bad-mouthing). We rely on blind signatures
in our proposed protocol to achieve resistance against bad-
mouthing attacks. The prevention of self-promotion attacks
however requires an external way of differentiating bots from
actual clients. This may for instance be done with fees or
external registration. Our scheme will incorporate tokens as
a way to prevent self-promotion, and several methods for
generating these tokens are formulated later in the paper.

The target application of our reputation system will be
e-commerce: we will consider Service Providers (SPs) who
want to sell goods, and clients who wish to buy the goods.
The SPs will be the ratees i.e. the ones who receive ratings,
whereas the clients will be the raters.

Our protocol fits into this e-commerce environment, while
being both anonymity preserving and decentralized. It is based
on Merkle trees [6], blind signatures [7] and non-interactive
zero-knowledge proofs, and will be efficient (constant-time)
when retrieving reputation. We also distribute the computa-
tional and memory load over the SPs in a fair manner.

The rest of the paper is organized as follows. Section II
provides an overview of the state of the art concerning privacy-
preserving reputation systems. Section III illustrates the model
for the environment in which our protocol is to be used while
Section IV highlights the objectives of our work. Our construct
of tokens is described in Section V. Section VI describes the
core protocol. An analysis of the protocol with regards to
the previously defined objectives is presented in Section VII.
Finally, we conclude in Section VIII.

II. RELATED WORK

Many privacy-preserving reputation systems have already
been proposed in the literature. However, some of the papers

http://www.ebay.com/
http://www.amazon.com/
http://www.shopzilla.com/


in this domain use theoretical adversarial models that may not
be appropriate for the real-world: for instance, the assumption
that there will be no collusion among malicious peers is
not realistic. As a matter of fact, some solutions proposed
by Pavlov et al. [8] and Dolev et al. [9] suffer from this
weakness, despite their significant contribution in the domain:
they do not resist an attack by a few colluding malicious
peers, which could reveal private feedback information. Some
other works are nonetheless more secure and resistant to small
groups of malicious peers: the StRM algorithm by Dimitriou
et al. [10] and the Malicious k-shares protocol by Hasan
et al. [11] are examples of such schemes. However, these
protocols are rather confidentiality-preserving than privacy-
preserving in the sense that they do not hide the list of users
who participated in the rating. This way of partially hiding
information leads to multiple issues linked to the mutability of
the set of participating peers. Even though these issues might
be tackled (e.g., by using source managers in [11]), the aim
of this paper is to find a fully privacy-preserving scheme that
satisfies all of our objectives.

Hence, we will focus on anonymity-preserving methods
that completely hide the identity of the raters. Protocols of
such type do already exist, but each one of them has some
attributes that we want to avoid. The works of Androulaki et
al. [12] and Petrlic et al. [13], for example, are instances of
pseudonym based schemes. Nonetheless, these two require a
centralized Trusted Third Party (TTP), and are thus not truly
decentralized. The works of Anceaume et al. [14] and Lajoie-
Mazenc et al. [15] on the other hand are more decentralized,
but they rely on properties that we want to avoid: the first
one prevents Sybil attacks by charging a fee, and in the
second one, accredited signers are required to make resource
heavy calculations for each rating of each SP. Even though
this last recent contribution is very close to what we are
looking for, we believe that our protocol succeeds better in
distributing the computational costs among the different peers,
notably by assigning the feedback records management to
the specific service provider that is concerned. The work of
Schaub et al. [16] is also decentralized and uses a blockchain
to attain some similar objectives, but ballot-stuffing is still
possible should the service provider be willing to pay fees
for some additional custom feedback. Finally, the paper by
Bethencourt et al. [17] illustrates a promising scheme based
on signatures on published data. While this protocol is very
interesting and secure, we can only regret the monotonic aspect
of the feedback that allows an attacker to take advantage of
his old good reputation without being affected by any new
dissatisfaction that his recent activity might cause. We do
however take inspiration from this work and use the same
kind of zero knowledge proofs in our paper.

III. MODEL

The model we choose for our protocol is consistent with
that of an e-commerce environment: as it was previously
mentioned, we will consider a simple two-sided model where
there are Service Providers (SPs) who sell goods and clients

who buy them. We will only consider ratings provided by
clients and destined for SPs.

Each transaction between a SP and a client should provide
the client with a way to later post a feedback about the SP.
The triggering event that enables a feedback to be sent should
be the financial transaction itself. Moreover, only a single
feedback may be valid per user per SP to prevent ballot-
stuffing. This feedback may however be replaced by a more
recent one before it expires.

In our scheme, to maintain unlinkability between the client
and the feedback, the feedback record would need to be sent
by the client a certain amount of time after the transaction.
This time-out may vary with the pace at which other clients’
feedback is sent to the corresponding SP. Each user may be
able to change this time-out privacy parameter according to
his needs.

IV. OBJECTIVES

Our objectives are to design a reputation system that is
efficient, anonymity-preserving, decentralized and robust. The
main novelty we propose is to ensure all of these contrasting
properties in a single protocol. In the literature, we only find
protocols that fulfill a subset of these attributes ( [8], [9], [10],
[11], [12], [13], [14], [15], [17]).

A. Efficiency

Clients may need to browse through the list of a large
number of SPs before choosing to transact with a specific
SP. Therefore, the ability to quickly retrieve reputation values
without overwhelming the network nor requiring excessive
computation and latency is an essential requirement in a
reputation system. The protocol must therefore ensure that
it is efficient for the clients to retrieve the reputation value
of a SP. As a matter of fact, we want to have a constant-
time reputation retrieval procedure, which is uncommon in
decentralized systems in the literature. Efficiency on the user
side is a key advantage of the protocol we aim to propose.

Furthermore, any processing and memory overhead gener-
ated by each new rating should be entrusted to the SPs, since
it is in their own interest to maintain their reputation. This dis-
tribution of the computational costs to the SPs proportionally
to their popularity seems fair.

B. User anonymity preservation

Anonymity is achieved by maintaining two types of unlink-
ability:

1) Transaction – rating unlinkability The transaction
itself may disclose the identity of the client, because
of his shipping address for instance. This first kind of
unlinkability consists in separating the transaction and
the rating, which should be anonymous. However, we
still want the transaction to enable the rating. This kind
of unlinkability is illustrated in Figure 1.

2) Rating – rating unlinkability It has been shown ( [3],
[18]) that this second kind of unlinkability – between
several ratings of a unique user – is also primordial to



Client
Service
Provider

Transaction

Feedback (anonymous)

Unlinkability

Fig. 1. Transaction – rating unlinkability

preserve the anonymity of the users. Ratings by a unique
client and for the same SP will nonetheless still be
linkable. It is indeed essential to prevent ballot-stuffing.

We do not aim to hide the identities of the SPs in our
protocol though. This means that they will be linkable to
all their previous ratings. In our e-commerce context, this
behavior is indeed desirable: these SPs would generally wish
to be known anyhow.

C. Decentralization

Our objective is also to design a decentralized scheme.
Security and privacy are better preserved in a decentralized
environment in the sense that one does not have to rely on a
single central entity that can become a single point of failure.
If we accepted centralized schemes and TTPs, a reputation
system such as the one used by Amazon would clearly be
sufficient for most e-commerce websites.

We do not exclude a Certification Authority if we want to
use it as a way to prevent Sybil attacks. This authority shall
nonetheless not have any other role in the protocol than giving
certificates. Moreover, it may be offline most of the time since
the only requirement is that it correctly delivers certificates. A
distributed authority may be used for increased security, and
its members may use multi-signatures [19] to create a compact
and secure certificate, that can be verified as quickly as a single
signature.

D. Robustness

Different levels of trust are usually considered in reputation
systems: each peer might be entirely honest, semi-honest or
malicious. In the semi-honest model, also known as honest-
but-curious, the peers do not deviate from the protocol, but
they try to gain as much information as possible with the data
they possess. Another aspect to consider, which makes curious
peers more threatening, is whether or not the peers collude
together. In our scheme, we place ourselves in a situation
where some peers might be colluding malicious, but most of
them – among what we will call the trackers – are honest or
at most non-colluding curious.

Thus we want our system to be able to resist attacks such
as ballot-stuffing, Sybil attacks and whitewashing. In order
to prevent self-promotion from the SPs, we will consider the
possibility to add a Certification Authority to the scheme.

V. TOKENS – SECURITY AGAINST SYBIL ATTACKS

In this section, we describe the tokens, a key building block
that we use in our protocol. Their utility is to prevent Sybil

attacks, and more precisely self-promotion, as highlighted in
the introduction. They might be used in other contexts for
protection against Sybil attacks in general. In that sense, their
goal is to distinguish bots from real users. There are several
ways to achieve this, which will be mentioned thereafter. Other
uses of these tokens may include:
• Replacing CAPTCHAs used in registration forms.
• Preventing comment attacks in web pages where anybody

can post comments, without the risk of rejecting the
comment of a rightful user and without requiring any
further identification of the users.

• Setting up one-time discounts and offers for individuals.
In our protocol, as well as in all these cases, the tokens are

to uniquely identify a couple user/service. In our case, it will
be a couple client/SP. However, we don’t want other people
to be able to reuse the token once the corresponding feedback
record has expired. To achieve this, we will either use one-time
tokens, that act like a fee for each single review, or add the
possibility to include a commitment to the one-time public key
K that is used in the feedback records (see Section VI-B2).

The following subsections describe different ways of im-
plementing such tokens. They could moreover be combined
together. On the one hand, one could require clients to use
simultaneously two types of tokens grouped into one big
token. On the other hand, we might use one of the following
token implementations as a certificate initiator. For example,
we could ask clients to pay a fee once and for all, that will
allow them to request a certificate from a group of peers (what
we will call the trackers for instance). This certificate could
then be used with NIZK proofs as in the last implementation
detailed below.

A. Using CAPTCHAs

The goal of our tokens is to tell computers and hu-
mans apart. This is somewhat reminiscent of the well-
known techniques grouped under the name CAPTCHA. These
CAPTCHAs may indeed be used for the generation of the to-
kens in our scheme, even though it is not highly recommended
because of the unfriendly time consumption it requires from
the users. In addition to this, they become more and more
vulnerable nowadays [20] and are thus also discouraged from
the security point of view.

The decentralized way to use them would be to carefully
select some witness peers in the network – using a Secure
MultiParty Computation algorithm such as a collective coin
flipping for instance. These peers would generate a CAPTCHA
problem, send it to the requiring user and sign the token
demand if and only if the answer is correct. The token
itself would thus be a collective signature (be it a group of
several signatures or a compact multi-signature [19]) over
some service-identifying data.

B. Using proofs of work

Another way to do this is to use proofs of work (as in the
Bitcoin protocol [2]), but this could be troublesome because

http://www.amazon.com/


it might be profitable for vendors to massively compute these
proofs of work, especially with dedicated hardware.

C. Using fees

A related proposition would be to use small fees for
posting feedback values. This could be achieved by using an
anonymous electronic cash system such as Dashcoin [21] or
Zerocash [22]. However, the SP could still find it profitable
to cheat, given that these fees would have to be quite low for
the system to be adopted.

D. Using certificates and NIZKs

The three previous methods have a common asset: they are
completely decentralized. However, they also have a common
drawback: the SP can get as many tokens as he wants, provided
that he has enough money to afford them. Apart from fees,
we can indeed easily imagine that proofs of work and even
CAPTCHA problems may be massively solved if given the
right amount of money. If the price for creating false feedback
is too low, the SPs will probably benefit from generating false
feedback records. On the contrary, if this price is too high,
it will be dissuasive for clients to use this reputation system.
Because of the lack of a good compromise, we will prefer
another solution to get rid of this issue: we will use a system
with certificates to differentiate people.

1) Presentation: For this method of generating tokens,
we assume the existence of a Certification Authority (CA),
at least at some point. This authority might however go
offline after delivering the certificates since only these ones
are used. We leave the criteria required for admission up to
the implementation. For decentralization purposes, we may
nonetheless use multiple CAs and require each one of them
to give its personal signature for the resulting certificate to be
valid. This can be done without increasing the size nor the
nature of the signature in the certificate by using the multi-
signature scheme by Blodyreva et al. [19].

In order to have identity-based tokens that are unlinkable
with the identity of the user himself, we will use non-
interactive zero-knowledge proofs of knowledge (NIZKs). The
role of the NIZK proof is to check the hidden credentials of
the client (both their integrity and the validity of the certificate
from the CA) and to assert that the plaintext value value that
is included in the token is uniquely identifying the client and
the SP. Additionally, it should also contain a signature by the
client on the one-time public key K of the feedback records
(see Section VI-B2) so as to prevent any subsequent use of
the token.

2) Formalization: We denote CRED.VERIFY(pk, sk) to
refer to the verification of a public and private key pair,
CERT.VERIFY(cert, pk) for the verification of a certificate
cert about a public key pk, and SIG.VERIFY(sign,M, pk)
for the verification of a signature sign on the data M using
the public key pk. TOKENIZE(vSP , sk) will be a procedure
that creates a token value uniquely identifying the SP vSP and
the client whose private key is sk.

Using the notation introduced by Camenisch and Stadler
[23], we want to construct the following proof :

NIZK


pkC , skC , cert :
CRED.VERIFY(pkC , skC)∧

CERT.VERIFY(cert, pkC)∧
SIG.VERIFY(sign,K, pkC)∧
[value = TOKENIZE(vSP , skC)]

 (1)

where the hidden variables pkC , skC and cert would respec-
tively be the public key of the client, his private (secret) key,
and the certificate from the CA validating his public key. The
external values sign and value should be given alongside with
the zero-knowledge proof. They are respectively a signature on
the one-time public key K and the unique identifier for the
couple SP / client. vSP should be a unique and publicly-known
identifier for the SP that is involved.

3) Implementation: In our proposed implementation, the
signatures would be implemented using the Boneh-Lynn-
Shacham (BLS) Signature Scheme [24]. As previously men-
tioned though, we might use a group of CAs that would act
collectively to sign a client’s public key, using a compact
multi-signature [19].

We will use the NIZK model proposed by Groth et al. [25]
to create the tokens. To this end, we will also use a bilinear
map between groups of prime order p, which is denoted by
e : G × Ĝ → GT . g and ĝ shall be generators for the two
groups G and Ĝ.

In our implementation, we propose the following setup and
verification procedure for a user’s credentials:

CRED.VERIFY(pkC , skC) :=
[
pkC = gskC

]
where skC ∈ Zp and pkC ∈ G.

For the CA, we use the same kind of signatures but in the
group Ĝ. We may improve it so that several entities can coop-
erate to create a collective public key ˆpkA = ĝskA,1·(··· )·skA,n

gathering the private keys of n participating CAs. The veri-
fication procedure would therefore still have the exact same
complexity. The signature algorithms are thus, with a message
M ∈ G, the credentials ( ˆpkS , skS) ∈ (Ĝ,Zp) of the signer in
Ĝ and a signature σ ∈ G:

SIG.CREATE(M, skS) := MskS

SIG.VERIFY(σ,M, ˆpkS) :=
[
e (σ, ĝ) = e

(
M, ˆpkS

)]
We propose to use this signature scheme for the certificates

cert ∈ G delivered by the CAs, which will be signatures on
the public keys of the clients:

CERT.CREATE(pkC , skA) := SIG.CREATE(pkC , skA)

CERT.VERIFY(cert, pkC) := SIG.VERIFY(cert, pkC , ˆpkA)

To check the signature of the key K, we will assume a full-
domain hash function Ĥ : {0, 1}∗ → Ĝ which we will treat
as random. We will therefore place the following check inside

http://dashcoin.net/
http://zerocash-project.org/


the NIZK, where the groups G and Ĝ need to be exchanged
for this variation of SIG.VERIFY:

̂SIG.VERIFY( ˆsign, Ĥ(K), pkC)

Finally, we will use the following identifier creation:

TOKENIZE( ˆvSP , skC) := ̂SIG.CREATE( ˆvSP , skC)

with ˆvSP ∈ Ĝ a unique identifier for the SP – that may be the
result of a map from its name – and ˆvalue ∈ Ĝ the created
unique identifier value.

To sum everything up, if we replace the expressions in
Equation (1) with their equivalents, we are left with a NIZK
that looks like:

NIZK

pkC , skC , cert :

pkC = gskC∧
e (cert, ĝ) = e

(
pkC , ˆpkA

)
∧
e
(
g, ˆsign

)
= e

(
pkC , ĥ

)
∧ ˆvalue = ˆvSP

skC


where ˆpkA and ĥ := Ĥ(K) are supposed to be known
and ˆsign and ˆvalue explicitly contained inside the token,
alongside with the NIZK. We should point out that we can
further simplify this NIZK: since skC is part of the vari-
ables, we can replace ̂SIG.VERIFY( ˆsign, Ĥ(K), pkC) with

ˆsign = ̂SIG.CREATE(Ĥ(K), skC), thus leading to:

NIZK

pkC , skC , cert :

pkC = gskC∧
e (cert, ĝ) = e

(
pkC , ˆpkA

)
∧

ˆsign = ĥskC∧ ˆvalue = ˆvSP
skC


(2)

This NIZK being compatible with the ones supported in the
paper by Groth et al. [25], this concludes the implementation
part. In the following parts of this paper, we will be referring
to the creation of tokens with:

CREATETOKEN(SP,K) :=
(

ˆsign, ˆvalue,NIZK{· · · }
)

(3)

where “NIZK{· · · }” has been made explicit in Equation (2)
and SP is the domain name associated with the SP, thus
identifying him; ˆvSP := Ĥ(SP ). The verification of the
zero-knowledge proof inside a token t will be written as
VERIFYTOKEN(t, vSP ,K).

VI. DESCRIPTION OF THE PROTOCOL

A. Outline

Our protocol involves three kinds of nodes, as listed below
and as shown in Figure 2.
• Clients: They are the ones who buy goods. Every user

can be a client, assuming that they can produce tokens.
• Service Providers (SPs): They are the ones who sell

goods. They are publicly registered. A SP is in charge
of saving all the feedback records that are related to it.

• Trackers: They are a group of servers who are in the sys-
tem mainly to control the good behavior of the SPs. Their
role is therefore limited to the security and robustness of

Bob Alice

Service Provider

trackers

Transaction

Feedback

Rep
uta

tio
n

ret
rie

va
l

:
anonymous
interaction

Fig. 2. Overview of the different entities and some primitive operations

the scheme. We will minimize their involvement in the
protocol in terms of resource usage.

The term peer will denote a computing unit that may be either
of the three kinds of node above.

Below are brief summaries of the primitive operations in
our reputation protocol, which are described in more detail in
Section VI-C
• Reputation retrieval: The client obtains the reputation

value of a SP from the SP itself, and verifies the trackers’
signature.

• Transaction: The client asks for a blind signature from
the SP while paying for his purchase. This will enable
him to post a feedback record later. He also anonymously
declares his purchase.

• Sending feedback: The client generates a feedback
record from a token, the previous blind signature and his
feedback value – which may also contain a comment. He
sends it to the concerned SP who is required to include
it in his next block of records (see Section VI-B3).

• Feedback aggregation: The trackers periodically (e.g.
once a day) sign the header of the next block, containing
the current aggregated reputation value, so that the SPs
can distribute it directly to the peers without any trust
requirement between peers and SPs.

B. Setup

1) Trackers: What we will call trackers are a group of
several servers whose aim is to guarantee the security of the
scheme. They fulfill this task by providing the following public
information, which they can provide along with a time-stamp
and a signature:
• The list lt of all the current trackers.
• A hash table b1t containing proofs of malicious behavior

and / or proofs of intentional withdrawal of old trackers.
• A hash table b2t containing for each SP a list – which is

possibly empty – of proofs of bad behavior.
Anyone should not be able to become a tracker without

any protection against Sybil attacks, since the corruption of
a majority of these trackers threatens the security of the



scheme. The inclusion of a new tracker would need to be
carefully checked as well as validated by the previously
existing trackers.

Although we are including these supposedly trusted parties,
the security is no longer dependent on a single third party
but on an aggregate trustworthiness of a large number of
trusted parties. Even if a few become corrupted, the security
is still upheld as long as a majority of them is honest. One
possible way of selecting the trackers would be to ask many
different well-established and well-trusted organizations to
become trackers. Competition between some of them and the
fear of fraud discovery would potentially prevent any colluding
malicious majority.

In our model with tokens, these tokens could in fact be
used to allow anyone to become a tracker. The assumption
is that these tokens are a secure defense (e.g. the previously
proposed implementation with a secure Certificate Authority)
against Sybil attacks. We would however still need to restrict
the number of trackers to a reasonable quantity, not to impinge
on efficiency.

A possible outcome of the proofs of bad behavior would
be the exclusion of a tracker or SP, once a maximum limit of
malicious activities has been reached. We propose to set this
limit to 1 for the trackers because of the importance of their
honesty.

2) Feedback records: A feedback record is comprised of a
tuple (d, v, c, t,K, s1, s2) containing:
• d: Date of publication
• v: Feedback value
• c: Feedback comment (optional, may be empty)
• t: Token (see Section V)
• K: A one-time public key (part of a signature key pair)
• s1: (Blind) Signature of the SP on K
• s2: Signature on (d, v, c, t,K, s1), verifiable with K

3) SP – Persistence of the records: The SP is in charge of
maintaining the data of its records, meaning the records that
rate him. This is a fair task allocation since: the more feedback
records a SP has, the more known he is and therefore the more
computational resources we may reasonably ask him to deliver.

The records are to be kept in a special list of data blocks
where each block contains the records data for a given time
period T . T must not be too long (for adaptability to new
feedback) nor too short (for efficiency reasons). We will take
the compromise T = 1 day to simplify the description. An-
other parameter also drives the temporal aggregation function:
the number nt of periods – days – during which a given
feedback record is valid. For a living duration of the feedback
records of one year, for instance, we would have something
like nt = 365. In other words, it is the number of blocks that
account for the current overall reputation value. The length of
the list of blocks that the SP should save and publish should
be nt+1 for verification purposes. Once a new block is added,
the oldest one is discarded from the list, provided that the SP
is at least nt + 1 days old.

Each block is a tuple (d, vcurrent, vtotal, h, s3, data) where:

• d: Date of publication
• vT : Aggregated reputation value over the latest period T
• vtot: Aggregated reputation value over the period ntT
• h: Hash of (SP, h′, r1, r2, r3) with SP being the identity

of the SP, h′ the hash of data and r1, r2 and r3 the root
labels of the three Merkle trees T1, T2 and T3 that are
detailed below

• s3: Signature of the trackers on (d, vT , vtot, h)
• data: List of all the feedback records for this period T
This block is designed so that it can be sent without its

data element for any client to be able to retrieve and verify
the current aggregated reputation value (with vtot, s3 and d).

In addition to these blocks of data, the SPs are required
to maintain three Merkle trees. The first one T1 is to contain
all the one-time public keys K that have been used so far in
the blind signature scheme and published in feedback records.
The second one T2 gathers all the currently used identities
(i.e. token values). These trees are detailed in Section VI-D2.
The third and last one T3 contains the identities of all the
clients who made at least one financial transaction with the SP,
regardless of whether or not they posted a feedback record.
These identities are tokens that have been generated based
on a derived version of the SP domain name identifier SP ,
along with the date of the last transaction, committed inside
the token. In this last Merkle tree, each node will also contain
the number of leaves – i.e. identities – beneath it in addition to
the usual hash of its children. That way, any peer can quickly
retrieve the total number of buyers from the root of the tree,
and verify it with r3. The inspectors for the updates of this
total number also benefit from the structure of this Merkle
tree, because only the updated branches need to be verified.

4) Updating the list of trackers: A peer will have a possibly
outdated list of trackers in memory when it tries to connect for
the first time. To update this list in case it is too old, or gets
too old, we will ask all the listed trackers for their updated
list, as well as the list of proofs they have for each of the old
trackers. The application will then decide which trackers are
to be trusted and which to eliminate, based on the minority /
majority aspect of the answers (see Section VI-D1). All the
trackers who have a valid proof of withdrawal or an undeniable
proof of malicious behavior will however not be taken into
account in this decision process, whether they responded or
not. A detailed implementation of this procedure is given in
Algorithm 6, Appendix B. This update process will allow us
to assume in the following sections that the clients have a list
of trackers that can be considered up-to-date.

C. Primitive operations

1) Reputation retrieval: Each peer who wants to know the
reputation of a SP just has to ask this SP for its reputation and
the SP is expected to send back the signed data. The querying
peer can then check the signatures of the trackers and retrieve
the aggregated reputation value, as well as ask the SP for the
rest of the block which contains the feedback records, i.e. the
comments and individual feedback values.



As anybody can ask the SP for his reputation, clients have
the choice to either ask him directly or use an anonymous
connection such as Tor [26]. If he is asked directly, the query
is no longer anonymous, but it is faster.

Should a SP refuse to send his signed reputation, any peer
may then use the trackers: they can either directly answer
the request, or collectively sign a proof of bad behavior if
they realize that the SP also refuses to tell them (they might
also use an anonymous connection to hide their identity while
requesting this information).

The main reputation retrieval procedure on the client side
is detailed in Algorithm 1 below, which aims at retrieving the
reputation of a SP SP at date d. The returned value is a tuple
(vtot, header, s4) where vtot is the aggregated reputation we
want, while header and s4 may be used for further analysis
and data retrieval. It is used for instance in the DATRET
Algorithm (Algorithm 8 in Appendix B) which collects the
data – feedback records – of the block.

Algorithm 1 Retrieve the reputation of a SP
procedure REPRET(SP, d)

if (d > today()) ∨ (d < today()− ntT ) then
fail with Wrong date d

end if
if ¬CONNECTTO(SP ) then

fail with Unable to connect to SP
end if
(header, s4)← ASKBLOCKHEADER(SP, d)
(d′, vT , vtot, h, s3)← header
if (d 6= d′) ∨ ¬CHECKSIG (SP, s4, header) then

fail with Non-cooperative SP
end if
if ¬CHECKSIG (trackers, s3, (d′, vT , vtot, h)) then

p← (REPRET, (header, s4),∅)
Send (SP, p) to the trackers
fail with Bad behavior

end if
return (vtot, header, s4)

end procedure

2) Transaction: The transaction proceeds in three steps:
1) The client generates a one-time couple of public and

private keys for a signing scheme, the public key being
called K. He asks the SP to blindly sign his public key
K during the financial transaction (see Section VI-E).

2) He gives a token generated with his identity and a
derived version S̃P of the SP identifier SP to the SP,
so that it is included in the Merkle tree T3.

The client memorizes the keys and the blind signature so
that he might use them later to publish a feedback value. In
the corresponding Algorithm 2 executed by the client, SP is
the SP with whom the client is to pay for a specific good, and
context contains information about this good and the purchase
in general. It uses the blind signature Algorithm 5: BLINDSIG
to do the financial transaction in itself (see Section VI-E). It

also uses the token creation scheme CREATETOKEN (Equa-
tion 3) defined in Section V.

Algorithm 2 Make a transaction (client side)
procedure CTRANSACTION(SP, context)

(sk,K)← KEYGEN()
sSP ← BLINDSIG(SP,K, context)
d← today()
t← CREATETOKEN(vSP ||“.transaction”, d)
SP.TRANSACTIONTOKEN(t, d)
return (sk,K, sSP )

end procedure

3) Sending feedback: When a client wants to rate a SP, after
having done a transaction with it, he proceeds as follows:

1) The client waits until the anonymity set of the SP
satisfies him, which means until there are enough buyers
for this client to remain sufficiently anonymous (see
Section VII-B2).

2) He fills a feedback record with the public key K
and the blind signature that were generated during the
transaction, the value and the comment of the feedback
itself, and a token (see Section V). He then signs the
whole record so that it can be verified with K.

3) He anonymously gives the record to the SP, and asks
a signed commitment from the SP stating that he will
include this feedback record in his next block.

4) He checks for its effective inclusion later on.
For the whole publication part, it is assumed that the client

uses an anonymous connection. This can for instance be
achieved using a MIX network such as Tor [26].

Should the record not be included in the next block, the
client can then send the signed commitment he received from
the SP as well as the signed block which should have contained
the record to the trackers. This data is in itself a proof
of bad behavior which would then be appended inside the
corresponding hash map entry in each tracker.

Should the SP even refuse to deliver the signed commitment
when being sent the feedback record, the client also has the
possibility to send his feedback record to the trackers so that
they try themselves to get this commitment and send it back
to the client. If the SP also refuses to them, the trackers build
a proof of bad behavior based on that fact, which is signed by
all the trackers – or at least a majority of them.

In the following Algorithm 3 that describes this procedure,
the client calls SENDFB with the identity of the concerned
SP, the tuple that was returned by a previous call to the
procedure CTRANSACTION, the feedback value v to submit
and a comment c that is possibly empty.

4) Feedback aggregation: In order to minimize the work-
load of the trackers, we want them to collectively only sign
the header of each SP’s new block for each period, so that
the clients asking for the reputation of a SP directly ask the
SP instead of asking the trackers. Since they only sign one



Algorithm 3 Send a feedback record
procedure SENDFB(SP, (sk,K, sSP ), v, c)

Get and verify the root of SP.T3
while client not satisfied with the anonymity set do

Wait for some time and retrieve it again
end while
if Feedback about SP already sent today then

fail with Only one per day, please return tomorrow
end if
if Feedback aggregation period then

Wait for the end of the day
end if
d← today()
t← CREATETOKEN(vSP ,K)
s2 ← CREATESIG(sk, (d, v, c, t,K, sSP ))
rec← (d, v, c, t,K, sSP , s2) . Feedback record
α← ANONYMOUSCONNECTION(SP )
α.SEND(rec)
C ← α.RECEIVECOMMITMENT()
if ¬CHECKSIG(SP,C, (RECEIVED, rec)) then

Send rec to a few trackers
if They don’t send back some valid C then

fail with Bad behavior
end if

end if
Wait (schedule the following) for the next day or later
repeat

α← ANONYMOUSCONNECTION(SP )
(vtot, header, s4)← α.REPRET(SP, d+ 1)
hinfo← CHECKHASH(SP, header, s4)
data← α.DATRET(SP, header, s4, hinfo)

until Reputation retrieved or too many fails
if rec 6∈ data then

p← (SFB, (rec, C, header, s4, hinfo, data),∅)
Send (SP, p) to the trackers
fail with Bad behavior

end if
end procedure

block per period per SP, it is possible to check its integrity
afterwards, and maybe create a proof of bad behavior that
will be validated thanks to this signature. Of course, we could
also decide that the trackers verify it, in full or in part, before
giving their signature.

The deterrence that are the proofs of bad behavior make it
possible to increase the efficiency of the computation. Indeed,
only a partial verification of the data should be sufficient to
dissuade malicious SPs from misbehaving.

The trackers do need to check the hash h however, to ensure
that this block header won’t be used by another SP.

This scheme is designed so that the computation and verifi-
cation of the reputation vtot is made easier thanks to the daily
values vT . Indeed, to check a new vT , one needs to go through
all the records of the day. To check a new vtot however,
one should only need to take into account the previous total

Algorithm 4 Feedback aggregation (tracker side)
procedure TFBAGGREGATE(SP, tosign, hinfo, s6)

if SP ∈ keys(b2t ) then
fail with Malicious behavior (send b2t [SP ])

. Example of “punishment”: exclusion
end if
(d, vT , vtot, h)← tosign
if d 6= today() + 1 then

fail with Wrong day
end if
if SP already aggregated today then

fail with Only one per day (send last data)
end if
(h′, r1, r2, r3)← hinfo
if h 6= HASH(SP, h′, r1, r2, r3) then

fail with Wrong hash
end if
if ¬CHECKSIG(SP, s5, tosign) then

fail with Wrong signature
end if
Mark SP as aggregated for today
return CREATESIG(tosign)

end procedure

aggregated reputation (vtot) of the day before, and the values
vT for the incoming and expiring days. Being able to calculate
a reputation based on a previous reputation and aggregated
new and old feedback values is the only requirement that we
want for the aggregation formula. We leave the choice of this
formula up to the implementation, as long as it is consistent
with the previous prerequisite.

Most systems (at least all the ones with a finite set of
feedback values) are compatible with such a requirement. To
compute the average of the feedback values for instance, we
can save the sum σ of these values as well as their number
m in both vtot and vT . The verification of the new vtot value
can easily be done thanks to the following formula, where E
evaluates to a quantity that may be σ or m, and Si is the set
of feedback records for day i (mutually exclusive):

E

(
d⋃

i=d−nt+1

Si

)
= E

(
d−1⋃

i=d−nt

Si

)
− E (Sd−nt) + E (Sd)

(4)
Which translates into:

vtot,d = vtot,d−1 − vT,d−nt
+ vT,d

This equation is the reason why each SP is responsible for
saving nt + 1 blocks of records, and not just nt: this is for
inspectors to be able to retrieve and check vT,d−nt

when
verifying vtot,d.

Along the same lines, if we use a finite set of possible
feedback values (a system with stars for instance, where
there are at most 5 or 10 possible values), we can also rely
on Equation 4 to aggregate the feedback, by only counting
the number of reviews a certain feedback value corresponds



to. When displaying the reputation, these totals may then
be further aggregated to display a unique mark. The Beta
reputation system [27] proposed by Jøsang and Ismail is an
example of such an aggregation that could be used when
displaying vtot.

An interesting fact is that the feedback aggregation can also
take into account the number of clients who went through a
transaction but did not rate the SP, during the ntT period. This
quantity can be obtained thanks to the difference between the
number of buyers for this period and the number of records
for this period. Both can be integrated into vT and vtot and
then updated, thanks to the list of records and thanks to the
Merkle tree T3 (see Section VI-B2).

D. Handling malicious peers

1) Handling malicious trackers: When a peer obtains di-
verging answers from the trackers, the law of the majority
is used: the response given by the majority is accepted
considering the assumption that the majority is honest. The
diverging minority is considered dishonest and the signed
messages received from the minority trackers are considered
to be proofs of bad behavior of these trackers. The peer will
send them to the honest ones in order for these proofs to be
appended to their hash table b1t , and for the corresponding
trackers to be excluded from the system.

There are three kinds of proofs of bad behavior that can be
generated for the trackers:
• The ones inherent to the procedure UPDATETRACKERS

whose aim is for clients to update their list of trackers.
• When a tracker refuses without any appropriate reason to

sign the block header of a SP, this SP can ask the other
trackers to communicate themselves with the corrupted
tracker. This might lead to a proof of bad behavior if
these trackers also face an unexplained refusal.

• A tracker signs several block headers from a single SP
for the same day.

2) Handling malicious SPs: Some of the possible bad
behaviors of the SP can be detected directly while processing
the previous primitive operations. However, other verification
procedures – such as checking the correctness of the feedback
records included inside a block – are not necessarily included
in these operations. Still, thanks to the signatures of the track-
ers on the blocks, uniqueness of the signed blocks is ensured.
That means that anybody can do all the remaining checks
over this block of data. We leave it to the implementation
to decide who does these security checks. It might be the
trackers before signing the blocks, the SP checking the blocks
of their competitors or even the client themselves, by activating
an option on the application to do some background checks,
for instance. Note that the blocks do not need to be checked
in entirety. The system of proofs of bad behavior is to be
dissuasive enough so that even a slight probability of being
caught is sufficient to discourage SPs from deviating from
the protocol. This way of controlling the SPs enables anyone
to do the verification work and maybe construct proofs of

bad behavior that will be sent to the trackers. We will call
inspectors the peers who run verification procedures, whoever
they are and whatever verification they do.

The proofs of bad behavior may be generated in two ways.
The first case happens when a SP refuses to deliver some
information or gives information with a bad signature. Then
the inspector can ask the trackers for this information. If a
majority of trackers fails to retrieve the information, they
generate and sign a proof of bad behavior that says so. On
the other hand, if the trackers get the information, then they
just forward it to the inspector. This first kind of proof of bad
behavior ensures the availability of the SPs, meaning that they
are forced to provide an answer to every information demand,
with a valid signature if required.

The second kind of proofs of bad behavior is more straight-
forward: when an inspector receives some signed information
that is erroneous, this constitutes in itself a proof of bad
behavior, that can be sent to the trackers who are to directly
accept it – provided that it is valid.

Our scheme is designed so that this system of proofs of bad
behavior deters the SPs from doing any malicious activity.

For example, to prevent any ballot-stuffing attack that uses
the same blind signature several times, we make sure that the
one-time public keys K that are in the feedback records are
not used twice. To do this check efficiently, each SP maintains
a Merkle tree T1 that contains all the one-time public keys that
have been used thus far.

A second Merkle tree T2 containing the currently-used token
values along with their publication date d is also updated in
the same manner. In a similar way, this is to efficiently prevent
two feedback records having the same token value ˆvalue from
being both aggregated. In order to be able to quickly check a
specific identity, the nodes of this tree are to be sorted based
on the token value ˆvalue itself.

In addition to the trackers’ proofs that ensure the availability
of the SPs, inspectors may generate the following types of
proof of bad behavior for a specific SP:
• REPRET: Wrong trackers’ signature on the block header.
• SENDFB: The feedback record has not been included in

the data block despite the commitment C.
• DATRET: Wrong hash h′ for the block data data.
• A record has been added with an already used identity

(T2), but the new aggregated feedback does not take into
account the removal of the previous feedback value (i.e.
wrong aggregation vT ).

• Added record with an already used public key K (T1).
• Wrong aggregation vtot.
• Invalid feedback record in a data block (wrong date,

value, token or signature).
• Same public key K or same token value ˆvalue twice in

the same block.
• Malformed Merkle tree: T1, T2 or T3 is malformed or

incoherent with the corresponding expected root ri.
• A record has been added, but not its public key in T1.
• A public key has been added in T1 without any corre-

sponding feedback record.



• A public key has disappeared from T1.
• A record has been added, but not its token value in T2.
• An identity has been added in T2 without any correspond-

ing record.
• An identity has not been removed from T2 whereas the

air date for this identity has expired.
• An identity has been removed from T2 whereas the air

date for this identity has not expired.
• A record has been added with an already used identity,

but the publication date for the corresponding identity has
not been updated in T2.

• The publication date of an identity in T2 has been altered
without this identity being in a new feedback record.

• A token disappeared in T3 (verification is not really
necessary since SP have an incentive to keep them).

• T3 contains an invalid token.

E. Blind signatures

Many algorithms exist for blind signatures: from the most
well-known and simple one based on RSA cryptography [28]
to other more complex ones [29], [30]. Some anonymous e-
cash schemes may also be derived to be used as blind signature
schemes. This is the case for the untraceable electronic cash
by D. Chaum et al. [31], which is actually only a singular case
of the RSA blind signature.

We face the following issue in implementing blind signa-
tures for our scheme: how can we ensure that the blind sig-
nature is executed simultaneously with the payment? Indeed,
should one of the two procedures terminate before the other,
the one or the other of the two parties can stop the trade
in the middle and use the half-trade to his advantage. If the
blind signature finishes before the payment for instance, the
user is able to rate the SP without even doing the trade (blind
signature rendered useless). If it happens after the payment,
the SP would be able to refuse the signing, and therefore the
feedback. Even though it might not be much of a problem
in this case, since refusing signatures means less feedback
and less reputation for the SP, we still want to propose an
alternative solution.

1) Payment server as a TTP: Although this solution does
not have its place in a fully-decentralized scheme, it is still
interesting as long as the payment procedure involves a
specific agent referred to as the bank. In this case, and with
most blind signature schemes, the bank can act as a Trusted
Third Party (TTP) and relay the blind signature while checking
its validity to trigger the payment.

This can for instance be done with RSA blind signatures
[28], where the bank can check the signature of the blinded
message.

2) Fair Exchange Signature Scheme (FESS): We can fairly
assume that most payment schemes can be triggered with an
electronic signature by the client on the financial transaction,
which may then be transferred to the SP via the bank or
network. Many e-cash systems already use such signatures to
validate transactions (e.g. Bitcoin, Dashcoin, Zerocash).

Besides, it is most likely that a chosen blind signature
scheme will end with a final message from the signer to the
enquirer, thus activating the blind signature.

From these two assumptions, we can design a more generic
scheme that may work with any blind signature protocol. This
sub-protocol is described in Appendix A. It can nonetheless be
simplified for the cases when a third party may check the blind
signature without having to know any sensitive information.
This is the type of signatures that we consider most appropriate
for our implementation.

3) Simplification for special cases: As mentioned previ-
ously, although generic as it is, the last protocol can be greatly
simplified if it is adapted to some particular blind signature
schemes. It can actually be adapted to all the blind signatures
schemes in which a third party can verify the validity of
the last message enabling the blind signature, without having
learned any hidden information.

This can be applied for RSA blind signatures [28]; the
protocol is then reduced to the following steps, later formalized
in the Algorithm 5:

1) The client asks the SP to give a signature over the
commitment that, should the signature of the client over
the financial transaction be published, he is to blindly
sign a specific masked message – Mre.

2) Once he does so, the client can then safely sign the
financial transaction.

3) The client asks the blind signature, and uses the signed
commitment as well as the system of the trackers in case
of bad behavior (see Section VI-D2).

Algorithm 5 RSA Blind signature (client side)
procedure BLINDSIG(SP,K, context)

T ← SP.GETTRANSACTIONTOSIGN(context)
(e, n)← public key of SP for the blind signatures
r ← random(), k ← HASH(K)
m← kre mod n
T̃ ← SP.GETCOMMITMENT(T,m)
if ¬CHECKSIG(SP, T̃ , (BLINDCOMMIT,m, T )) then

fail with Wrong commitment from SP
end if
sT ← SIGNTRANSACTION(T )
m̄← SP.ASKBS(sT )
if m̄e mod n 6= m then

Send (T,m, T̃ , sT ) to a few trackers
if They don’t send back some valid m̄ then

fail with Bad behavior
end if

end if
return m̄r−1

end procedure

VII. ANALYSIS

We will analyze our scheme by following each one of the
objectives we set in Section IV.



A. Efficiency

Our main goal regarding the efficiency aspects was to have a
quick and light way of retrieving the reputation of a SP. This
objective is achieved in our protocol because this operation
operates in constant time in both network usage and computing
power (even if we use multi-signatures [19] for s3 in the
feedback data block). As a matter of fact, the network usage
only consists in a query to the SP that is concerned, and his
answer. That is if everything goes well but it should be the case
since it is in the own interest of the SP (see Section VII-D3).
Also, the client only has to check two electronic signatures,
which is still very quickly computable.

Besides, this efficiency of the reputation retrieval procedure
is not detrimental to the efficiency of the other procedures.
These other procedures are indeed also doable in constant time
for the clients, as well as for the trackers if we don’t handle
the verification procedures to them. Finally, the SPs are the
ones who are required to do most of the computations, but
that is not problematic since the amount of work delegated to
them is proportional to their number of feedback values, that
is to say to their fame and presumably to their computational
capacity.

B. User anonymity preservation

1) Assumptions: For user anonymity to be preserved, we
have to make the following assumptions:

Assumption 1. The anonymizing network interface that is
used (e.g. Tor [26]) is not breached.

Assumption 2. The blind signature scheme that is used is
indeed unlinkable.

Assumption 3. The NIZK proofs and the BLS signatures are
secure, and they do not reveal any hidden information. Also,
the hashes that are used throughout the paper are considered
resistant to collisions.

Assumption 4. The correctness of the Merkle tree T3 is
ensured (see Section VII-D3).

Assumption 5. The number of different identities (i.e. people
owning different certificates) colluding with a specific SP
can be upper bounded by some constant number ΩSP . The
number of different identities declaring that they went through
a transaction with a SP while they did not can be upper
bounded by some constant number ∆SP .

The anonymizing method that is proposed, Tor, comes with
some limitations of its own ( [32], [33]), but the establishment
of such an anonymous connection is out of scope of this paper.

On the other hand, most of the blind signature schemes (at
least [28] and [31]) have been proven to be unlinkable. Even
if they are breached in the future, meaning that everybody
is able to sign messages on behalf of a SP, the unlinkability
property will still be preserved, thus ensuring the anonymity
of the past signatures.

2) Anonymity set: Although feedback records and transac-
tions are unlinkable, a specific SP knows which transactions he
made, and his current feedback records are necessarily coming
from clients who were involved in these transactions. We can
therefore only ensure anonymity among a subset of the whole
population. This subset of possible clients for a given feedback
record will be called the anonymity set of the client who posted
this record.

For major SPs, this will not be a problem since they have a
lot of buying clients and each one of them takes more or less
time to submit a feedback – assuming that they do send one.
For small SPs, one may have to wait a while before sending his
feedback, in order to better preserve his privacy and increase
the size of his anonymity set. This waiting parameter may be
adjusted by each user to better fit their own needs.

An important point though is that no other anonymity-
preserving reputation system is capable of avoiding this issue.
However, our system will ensure that each client gets an
anonymity set suited to his or her needs. The role of the Merkle
tree T3 maintained by the SPs is for the clients to be able to
calculate their anonymity set, and decide whether to wait or
not before engaging in a transaction. This tree contains the
identities of all the users who went through a transaction,
including the ones who did not send any feedback. This
information, coupled with the feedback records themselves,
will give enough knowledge for the clients to compute a lower
bound of their anonymity set.

Property 1. The client can choose his anonymity set (or a
lower bound of it) for a future feedback submission.

Proof. Thanks to the Assumption 4, the client can retrieve the
number N of different identities having declared that they went
through a transaction with the SP. At most ΩSP +∆SP of these
identities can be ruled out by the SP as buyers for a transaction
that they did not initiate, because of the Assumption 5. Let M
be the number of feedback records so far. Then if the client
waits until N −ΩSP −∆SP −M ≥ A, he gets an anonymity
set of at least A buyers.

Further analysis could even get a weaker condition for
the same anonymity set, but this condition is sufficient to
demonstrate our property.

Property 2. The client / feedback unlinkability remains in
agreement with the anonymity set defined by the client.

Proof. The client / feedback unlinkability could only be threat-
ened by the following items:
• The transition and relation between the transaction phase

and the subsequent feedback submission steps
• The communication when the client sends the feedback

record to the SP (or the trackers)
• The feedback record itself

These three points do not alter the unlinkability because of the
following reasons:
• The blind signature (only link between the financial

transaction and the future events that might occur due to



feedback submission) is unlinkable: Assumption 2. The
anonymity set is controlled by the client: Property 1.

• The connection is anonymous: Assumption 1.
• The date d is not an issue thanks to the statement of

Property 1. We do not consider the feedback itself as
an issue against unlinkability here, since the clients are
well aware of the implications of any specific content
they might publish – this is the very goal of a reputation
system. The token is unlinkable because of the Assump-
tion 3. K has been randomly chosen so it is unlinkable
too. s1 and s2 are signatures by publicly known entities
on the previous data: they are also unlinkable.

Property 3. The feedback / feedback unlinkability is guaran-
teed within the anonymity set chosen by the client.

Proof. This type of unlinkability is based on these two facts:
• The two tokens of two feedback records from the same

client to two different SPs are unlinkable because of the
Assumption 3.

• The remaining threat to the unlinkability of those two
feedback records is the linkability of both feedbacks to
the same client. But, once again, this unlinkability is
within the anonymity set defined by the client, according
to the Property 2.

C. Decentralization

The only potentially centralized entity in this protocol is
the CA. The presence of a CA to create the tokens is a
necessity to prevent Sybil attacks (and more precisely self-
promotion) if we want to avoid the use of fees. However, as
it was discussed in the corresponding section, this CA could
be comprised of several entities and thus decentralized, using
some multi-signature scheme such as [19].

The trackers are also comprised of several distributed enti-
ties. Even though there has to be a limited number of trackers
for the protocol to remain efficient, it is still to be considered
as decentralized.

The presence of some TTP and the requirement that it
should be non-malicious are nonetheless often essential in
network protocols, in particular for the bootstrap or peer
discovery phase. Many well known decentralized protocols –
BitTorrent, Bitcoin, etc. – rely on singular servers in order to
retrieve the list of peers (and/or other information): these are
respectively trackers, and the servers corresponding to hard-
coded IP addresses and DNS records such as bitseed.xf2.org1.
The key point is for these servers to have a minimal role in the
protocol and/or to be discovered and proven wrong in case of
fraudulent behavior. A significant improvement still is to rely
on a group of several servers instead of a unique one; these
servers correspond to our network of trackers. This way, we
can still afford to have a minority of malicious servers, as long
as the majority behaves correctly.

1See https://en.bitcoin.it/wiki/Satoshi Client Node Discovery

D. Robustness

1) Assumptions: This scheme is robust against colluding
malicious peers – meaning that it remains correct and func-
tional – given that the following two assumptions hold:

Assumption 6. If the peers have a list of N running trackers,
at least bN2 c+ 1 of them are honest.

Assumption 7. The CA only delivers certificates to individual
and unique users.

2) Correctness:

Property 4. The reputation score that is retrieved by clients
is the aggregated feedback from all the buyers and the few
identities ΩSP colluding with the SP, if this SP does not
undertake any detectable malicious behavior.

We will see below that the SPs have no interest in behaving
maliciously when they can be detected. This condition is
therefore not a real issue.

Proof. Assumption 3 implies that only the clients who have
certificates can create valid tokens, since the zero-knowledge
proof verifies these certificates. Moreover, the token value that
is disclosed is blindly linked to the corresponding identity. This
means that one cannot create more valid tokens about some
SP with different values ˆvalue than the number of certificates
he owns, which should be one according to Assumption 7. In
addition to this, only one feedback record per token value may
be accepted in the current reputation blocks. This is ensured
with the Merkle tree T2, and would be detectable otherwise.

The signature on the one-time public key K in the NIZK
proof prevents anyone from reusing the feedback record after it
has been integrated inside a block, because each new feedback
record should contain a new K. This is verified thanks to T1,
and would be detectable otherwise. Also, the feedback record
cannot be changed by someone other than the one who created
it, because of the signature s2 on the whole record. The blind
signature scheme also prevent this person from creating several
valid feedback records from a single transaction.

We have seen that these feedback records cannot be forged.
The Assumption 7 restricts the number of valid feedback
records without transaction to ΩSP (i.e. the people to whom
the SP accepts to sign keys K without any transaction).

The only remaining threat would be the refusal of the SP
to include some feedback records inside the next reputation
block. This is not possible because of the verification of the
clients who submit feedback (see Section VI-C3).

3) Preventing and detecting malicious behavior: Malicious
behavior from the SPs is to be prevented in a dissuasive way.
As we already mentioned, trackers, SPs, clients, everybody
can participate in the verification of each SP, and potentially
report a malicious behavior. The implications of a proof of
such behavior should be undesirable for the SP: a decrease of

https://en.bitcoin.it/wiki/Satoshi_Client_Node_Discovery


his reputation score or even an expulsion from the reputation
system are conceivable outcomes.

Even though all the data does not need to be checked, the
amount of verification and threat should guarantee the statisti-
cal non-profitability of any misbehavior of a SP. This way, we
may assume for correctness that they are not misbehaving. To
prevent important fraud from remaining undiscovered, we can
also do some targeted verification. Should the daily aggregated
feedback of a specific SP suspiciously increase one day, for
instance, it should be all the more verified.

VIII. CONCLUSION

In this article, we have presented a reputation system that is
consistent with our objectives: efficient, anonymity-preserving,
decentralized, and robust against various known attacks against
reputation systems, such as ballot-stuffing and Sybil attacks.
To the best of our knowledge, this is the only scheme in the
state-of-the-art that achieves these attributes concurrently in
a single protocol. We use Merkle trees and signed blocks
of data to minimize the workload on the trackers and to
fairly distribute the record maintenance tasks to the service
providers. Clients are able to retrieve the reputation of a given
service provider in constant time. Despite the fact that the
SPs are in charge of maintaining their own reputation records,
the proofs of malicious behavior provided by the protocol
deter them from acting maliciously. The protocol remains
secure as long as a majority of the trackers behaves correctly.
We introduce the construct of tokens implemented with Non-
Interactive Zero Knowledge proofs to prevent Sybil attacks.
For future work, some improvements can be considered to
further minimize the role of the trackers. Using our system
of tokens to allow any peer to become a tracker while still
preventing Sybil attacks would be a conceivable approach.

REFERENCES

[1] “Bittorrent protocol.” [Online]. Available: http://www.bittorrent.com/
[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

[Online]. Available: https://bitcoin.org/bitcoin.pdf
[3] M. Barbaro and T. Zeller Jr, “A face is exposed for aol searcher no.

4417749,” August 2006. [Online]. Available: http://query.nytimes.com/
gst/abstract.html?res=9E0CE3DD1F3FF93AA3575BC0A9609C8B63

[4] P. Resnick and R. Zeckhauser, Trust among strangers in internet
transactions: Empirical analysis of eBay’ s reputation system, ch. 6,
pp. 127–157. [Online]. Available: http://www.emeraldinsight.com/doi/
abs/10.1016/S0278-0984%2802%2911030-3

[5] J. R. Douceur, “The sybil attack,” in Proceedings of 1st International
Workshop on Peer-to-Peer Systems (IPTPS), 2002. [Online]. Available:
http://research.microsoft.com/apps/pubs/default.aspx?id=74220

[6] R. Merkle, “A certified digital signature,” in Advances in Cryptology
CRYPTO 89 Proceedings, ser. Lecture Notes in Computer Science,
G. Brassard, Ed. Springer New York, 1990, vol. 435, pp. 218–238.
[Online]. Available: http://dx.doi.org/10.1007/0-387-34805-0 21

[7] D. Chaum, “Blind signatures for untraceable payments,” in Advances
in Cryptology, D. Chaum, R. Rivest, and A. Sherman, Eds. Springer
US, 1983, pp. 199–203. [Online]. Available: http://dx.doi.org/10.1007/
978-1-4757-0602-4 18

[8] E. Pavlov, J. Rosenschein, and Z. Topol, “Supporting privacy in
decentralized additive reputation systems,” in Trust Management,
ser. Lecture Notes in Computer Science, C. Jensen, S. Poslad,
and T. Dimitrakos, Eds. Springer Berlin Heidelberg, 2004, vol.
2995, pp. 108–119. [Online]. Available: http://dx.doi.org/10.1007/
978-3-540-24747-0 9

[9] S. Dolev, N. Gilboa, and M. Kopeetsky, “Efficient private multi-party
computations of trust in the presence of curious and malicious users,”
Journal of Trust Management, vol. 1, no. 1, p. 8, 2014. [Online].
Available: http://www.journaloftrustmanagement.com/content/1/1/8

[10] T. Dimitriou and A. Michalas, “Multi-party trust computation in
decentralized environments in the presence of malicious adversaries,”
Ad Hoc Netw., vol. 15, pp. 53–66, Apr. 2014. [Online]. Available:
http://dx.doi.org/10.1016/j.adhoc.2013.04.013

[11] O. Hasan, L. Brunie, E. Bertino, and N. Shang, “A decentralized
privacy preserving reputation protocol for the malicious adversarial
model,” IEEE Transactions on Information Forensics and Security,
vol. 8, no. 6, pp. 949–962, 2013. [Online]. Available: http:
//dx.doi.org/10.1109/TIFS.2013.2258914

[12] E. Androulaki, S. G. Choi, S. M. Bellovin, and T. Malkin,
“Reputation systems for anonymous networks,” in Proceedings of the
8th International Symposium on Privacy Enhancing Technologies, ser.
PETS ’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 202–218.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-70630-4 13

[13] R. Petrlic, S. Lutters, and C. Sorge, “Privacy-preserving reputation
management,” in Proceedings of the 29th Annual ACM Symposium
on Applied Computing, ser. SAC ’14. New York, NY, USA: ACM,
2014, pp. 1712–1718. [Online]. Available: http://doi.acm.org/10.1145/
2554850.2554881

[14] E. Anceaume, G. Guette, P. Lajoie Mazenc, N. Prigent,
and V. Viet Triem Tong, “A Privacy Preserving Distributed
Reputation Mechanism,” Oct. 2012. [Online]. Available: https:
//hal.archives-ouvertes.fr/hal-00763212

[15] P. Lajoie-Mazenc, E. Anceaume, G. Guette, T. Sirvent, and V. Viet
Triem Tong, “Efficient Distributed Privacy-Preserving Reputation
Mechanism Handling Non-Monotonic Ratings,” Jan. 2015. [Online].
Available: https://hal.archives-ouvertes.fr/hal-01104837

[16] A. Schaub, R. Bazin, O. Hasan, and L. Brunie, “A trustless privacy-
preserving reputation system,” IFIP SEC - Privacy, 2016.

[17] J. Bethencourt, E. Shi, and D. Song, “Signatures of reputation,”
in Proceedings of the 14th International Conference on Financial
Cryptography and Data Security, ser. FC’10. Berlin, Heidelberg:
Springer-Verlag, 2010, pp. 400–407. [Online]. Available: http://dx.doi.
org/10.1007/978-3-642-14577-3 35

[18] A. Narayanan and V. Shmatikov, “Robust de-anonymization of large
sparse datasets,” in Security and Privacy, 2008. SP 2008. IEEE Sympo-
sium on, May 2008, pp. 111–125.

[19] A. Boldyreva, “Threshold signatures, multisignatures and blind
signatures based on the gap-diffie-hellman-group signature scheme,”
in Public Key Cryptography PKC 2003, ser. Lecture Notes in
Computer Science, Y. Desmedt, Ed. Springer Berlin Heidelberg, 2002,
vol. 2567, pp. 31–46. [Online]. Available: http://dx.doi.org/10.1007/
3-540-36288-6 3

[20] E. Bursztein, M. Martin, and J. Mitchell, “Text-based captcha strengths
and weaknesses,” in Proceedings of the 18th ACM Conference
on Computer and Communications Security, ser. CCS ’11. New
York, NY, USA: ACM, 2011, pp. 125–138. [Online]. Available:
http://doi.acm.org/10.1145/2046707.2046724

[21] E. Duffield and D. Diaz, “Dash : A privacy-centric crypto-currency,”
2014. [Online]. Available: https://www.dashpay.io/wp-content/uploads/
2015/04/Dash-WhitepaperV1.pdf

[22] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,
and M. Virza, “Zerocash: Decentralized anonymous payments from
bitcoin,” in Security and Privacy (SP), 2014 IEEE Symposium on, May
2014, pp. 459–474.

[23] J. Camenisch and M. Stadler, “Proof systems for general statements
about discrete logarithms,” Institute for Theoretical Computer Science,
ETH Zurich, Tech. Rep. 260, Mar. 1997.

[24] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from
the weil pairing,” in Advances in Cryptology ASIACRYPT 2001,
ser. Lecture Notes in Computer Science, C. Boyd, Ed. Springer
Berlin Heidelberg, 2001, vol. 2248, pp. 514–532. [Online]. Available:
http://dx.doi.org/10.1007/3-540-45682-1 30

[25] J. Groth and A. Sahai, “Efficient non-interactive proof systems for
bilinear groups,” in Advances in Cryptology EUROCRYPT 2008,
ser. Lecture Notes in Computer Science, N. Smart, Ed. Springer
Berlin Heidelberg, 2008, vol. 4965, pp. 415–432. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-78967-3 24

[26] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” in Proceedings of the 13th Conference on

http://www.bittorrent.com/
https://bitcoin.org/bitcoin.pdf
http://query.nytimes.com/gst/abstract.html?res=9E0CE3DD1F3FF93AA3575BC0A9609C8B63
http://query.nytimes.com/gst/abstract.html?res=9E0CE3DD1F3FF93AA3575BC0A9609C8B63
http://www.emeraldinsight.com/doi/abs/10.1016/S0278-0984%2802%2911030-3
http://www.emeraldinsight.com/doi/abs/10.1016/S0278-0984%2802%2911030-3
http://research.microsoft.com/apps/pubs/default.aspx?id=74220
http://dx.doi.org/10.1007/0-387-34805-0_21
http://dx.doi.org/10.1007/978-1-4757-0602-4_18
http://dx.doi.org/10.1007/978-1-4757-0602-4_18
http://dx.doi.org/10.1007/978-3-540-24747-0_9
http://dx.doi.org/10.1007/978-3-540-24747-0_9
http://www.journaloftrustmanagement.com/content/1/1/8
http://dx.doi.org/10.1016/j.adhoc.2013.04.013
http://dx.doi.org/10.1109/TIFS.2013.2258914
http://dx.doi.org/10.1109/TIFS.2013.2258914
http://dx.doi.org/10.1007/978-3-540-70630-4_13
http://doi.acm.org/10.1145/2554850.2554881
http://doi.acm.org/10.1145/2554850.2554881
https://hal.archives-ouvertes.fr/hal-00763212
https://hal.archives-ouvertes.fr/hal-00763212
https://hal.archives-ouvertes.fr/hal-01104837
http://dx.doi.org/10.1007/978-3-642-14577-3_35
http://dx.doi.org/10.1007/978-3-642-14577-3_35
http://dx.doi.org/10.1007/3-540-36288-6_3
http://dx.doi.org/10.1007/3-540-36288-6_3
http://doi.acm.org/10.1145/2046707.2046724
https://www.dashpay.io/wp-content/uploads/2015/04/Dash-WhitepaperV1.pdf
https://www.dashpay.io/wp-content/uploads/2015/04/Dash-WhitepaperV1.pdf
http://dx.doi.org/10.1007/3-540-45682-1_30
http://dx.doi.org/10.1007/978-3-540-78967-3_24


USENIX Security Symposium - Volume 13, ser. SSYM’04. Berkeley,
CA, USA: USENIX Association, 2004, pp. 21–21. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1251375.1251396

[27] A. Jøsang and R. Ismail, “The beta reputation system,” in In Proceedings
of the 15th Bled Conference on Electronic Commerce, 2002.

[28] S. Goldwasser and M. Bellare, “Lecture notes on cryptography,” 2001,
page 235. [Online]. Available: http://cseweb.ucsd.edu/∼mihir/papers/gb.
html

[29] J. Camenisch, M. Koprowski, and B. Warinschi, “Efficient blind
signatures without random oracles,” in Security in Communication
Networks, ser. Lecture Notes in Computer Science, C. Blundo and
S. Cimato, Eds. Springer Berlin Heidelberg, 2005, vol. 3352, pp. 134–
148. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-30598-9
10

[30] T. Okamoto, “Efficient blind and partially blind signatures without
random oracles,” in Theory of Cryptography, ser. Lecture Notes
in Computer Science, S. Halevi and T. Rabin, Eds. Springer
Berlin Heidelberg, 2006, vol. 3876, pp. 80–99. [Online]. Available:
http://dx.doi.org/10.1007/11681878 5

[31] D. Chaum, A. Fiat, and M. Naor, “Untraceable electronic cash,”
in Advances in Cryptology CRYPTO 88, ser. Lecture Notes in
Computer Science, S. Goldwasser, Ed. Springer New York, 1990,
vol. 403, pp. 319–327. [Online]. Available: http://dx.doi.org/10.1007/
0-387-34799-2 25

[32] D. Kesdogan, D. Agrawal, V. Pham, and D. Rautenbach, “Fundamental
limits on the anonymity provided by the mix technique,” in Security and
Privacy, 2006 IEEE Symposium on, May 2006, pp. 14 pp.–99.

[33] M. Reed, P. Syverson, and D. Goldschlag, “Anonymous connections
and onion routing,” Selected Areas in Communications, IEEE Journal
on, vol. 16, no. 4, pp. 482–494, May 1998.

[34] J. Liu, R. Sun, and K. Kwak, “Fair exchange signature schemes,”
Science China Information Sciences, vol. 53, no. 5, pp. 945–953, 2010.
[Online]. Available: http://dx.doi.org/10.1007/s11432-010-0065-1

APPENDIX A
GENERIC FAIR EXCHANGE SCHEME

As stated in Section VI-E2, we describe here a generic
way of implementing a fair exchange with any blind signature
scheme, under the two fair assumptions previously mentioned.

Let M be the (valid) message to sign, and I an invalid
message that is fixed, public and always the same. The scheme
is described as follows, and illustrated in Figure 3:

Start
the blind

signature of
I1, · · · ,M,
· · · , InClient

SP
Remaining packets:

P0, · · · , Pi, · · · , Pn

H(P0),
· · · , H(Pi),
· · · , H(Pn),
commitment

Unblinding
I1, · · · , In

P0,
· · · ,
Pn

FESS

ch
ec

k

ch
ec

k Sign
transaction

Sign
H(Pi)

time

Fig. 3. Blind signature scheme using FESS (H: hash function)

1) The client asks the SP to blindly sign the message M as
well as some number of invalid messages I (a few ones
should be enough, since the SP wants to avoid proofs
of bad behavior at all costs – see Section VII-D3). The
messages are to be shuffled, for the SP not to be able to
know which is the real message. The two sides interact
until the last step of the signature scheme.

2) The server sends the hashes of the last data packets it
has to send to make the signatures valid, as well as a
signed commitment on the current situation.

3) The client saves this data, tells which is the real message
– without revealing it – and also shares the information
that will prove to the SP that all the other messages are
indeed I .

4) After checking this information, the SP sends back the
last packets it was holding for all the signatures of I .
Should he fail to do so, send wrong messages or ones
that do not correspond with the previous hashes, the
client is free to use the SP’s last commitment as well as
his unblinding messages in order to ask for the trackers’
help (see the first kind of proof of bad behavior in
Section VI-D2).

5) If everything worked fine so far, the two peers shall
proceed to the Fair Exchange Signature Scheme (FESS)
as described in the paper by J. Liu et al. [34]. The SP is
to sign a commitment on the previously disclosed hash
of the remaining packet that the client should receive.
The client on the other hand is to sign the financial
transaction so that it takes effect. The SP should be
the one to disclose his signature (keystone in [34]), thus
making the one of the client valid.

6) The SP is then expected to deliver the last packet to the
client. Should he fail to do so, the signature on its hash
that has been disclosed by the FESS protocol is a proof
that can be transmitted to the trackers to either indirectly
get the packet or generate a proof of bad behavior. With
the last packet received, the client has his blind signature
of M .

APPENDIX B
OTHER ALGORITHMS

This first algorithm (Algorithm 6) helps the clients update
their list of trackers. It takes a possibly outdated list of trackers
l as only argument, and returns the updated list named rv .
The information that the client uses to update the list is the
tuple (d′, lt, b

1
t , st) returned by the trackers that have been

contacted. As introduced in Section VI-B1, lt is supposed to
be the current list of trackers, b1t the hash table containing
proofs of bad behavior of intentional withdrawal for each of
the former trackers. st is the signature of the sender over the
rest of the message.

Algorithm 7 is used to check the hash in the block headers
that the SPs provide. It is called in Algorithm 3 and it result
is an input of the following algorithm.

Algorithm 8 is used to retrieve the block data and is also
called in Algorithm 3. While hinfo comes from the previous
algorithm, header and s4 come from Algorithm 1.

Algorithm 9 checks for the validity of a single feedback
record that is to be part of a data block. See Section VI-B2
for the description of the feedback record itself.

http://dl.acm.org/citation.cfm?id=1251375.1251396
http://cseweb.ucsd.edu/~mihir/papers/gb.html
http://cseweb.ucsd.edu/~mihir/papers/gb.html
http://dx.doi.org/10.1007/978-3-540-30598-9_10
http://dx.doi.org/10.1007/978-3-540-30598-9_10
http://dx.doi.org/10.1007/11681878_5
http://dx.doi.org/10.1007/0-387-34799-2_25
http://dx.doi.org/10.1007/0-387-34799-2_25
http://dx.doi.org/10.1007/s11432-010-0065-1


Algorithm 6 Update the list of trackers
procedure UPDATETRACKERS(l) . Update the list l

M, P ← EmptyMap(), d← today()
for all t ∈ l do

if t ∈ keys(P ) then . t is corrupted
continue

end if
(d′, lt, b

1
t , st)← t.GETTRACKERS(d) . see VI-B1

if d′ 6= d ∨ ¬CHECKSIG(t, st, (d
′, lt, bt)) then

continue . Wrong date or signature
end if
if lt ∩ keys(b1t ) 6= ∅ then

P [t]← (TINCONSISTENT, (d′, lt, b
1
t , st),∅)

continue
end if
for all t′ ∈ keys(b1t ) do

if CHECKPROOF(b1t [t′]) then
P [t′]← b1t [t′]

else
P [t]← (WRONGTPROOF, (d′, lt, b

1
t , st), t

′)
end if

end for
if lt ∈ keys(M) is defined then

M [lt]←M [lt] ∪ {t}
else

M [lt]← {t}
end if

end for
if ‖keys(P ) ∩ l‖ = ‖l‖ then

fail with No more valid trackers
end if
rc ← 0, rv ← ∅
for all M [α] do

M [α]←M [α]\S
if ‖M [α]‖ > rc then

rc ← ‖M [α]‖, rv ← α
end if

end for
if rc < b‖l‖−‖S‖2 c+ 1 then

fail with Too few honest trackers
end if
for all t ∈ rv ∩ keys(P ) do

Send proof (t, P [t]) to all trackers in rv\t
end for
for all t ∈ rv\M [rv] do

p← (WRONGTLIST, (d′, lt, b
1
t , st),∅)

Send proof (t, p) to all trackers in rv\t
end for
return rv . Updated list of trackers

end procedure

Algorithm 7 Check the hash in the block header
procedure CHECKHASH(SP, header, s4)

(d, vT , vtot, h, s3)← header
hinfo← ASKHASHINFO(SP, d)
(h′, r1, r2, r3)← hinfo
if h 6= HASH(SP, h′, r1, r2, r3) then

Ask a valid hinfo for header to a few trackers
if They did not obtain one then

fail with Bad behavior
end if

end if
return hinfo

end procedure

Algorithm 8 Retrieve the block data
procedure DATRET(SP, header, s4, hinfo)

(d, vT , vtot, h, s3)← header
(h′, r1, r2, r3)← hinfo . see CHECKHASH
(d′, data, s5)← ASKBLOCKDATA(SP, d)
if (d 6= d′) ∨ ¬CHECKSIG(SP, s5, (d

′, data)) then
Ask a few trackers to retrieve valid block data
if They did not obtain one then

fail with Bad behavior
end if

end if
if h′ 6= HASH(data) then

p← (DATRET, (header, s4, hinfo, data, s5),∅)
Send (SP, p) to the trackers
fail with Bad behavior

end if
return (data, s5)

end procedure

Algorithm 9 Verify a feedback record
procedure CHECKRECORD(SP, rec, d)

(d′, v, c, t,K, s1, s2)← rec . See Section VI-B2
if d 6= d′ then

return False . Wrong date
end if
if v is out of range then

return False . Incorrect feedback value
end if
if ¬VERIFYTOKEN(t, vSP ,K) then

return False . Wrong token
end if
if ¬CHECKSIG(SP, s1,K) then

return False . Wrong blind signature
end if
if ¬CHECKSIG(K, s2, (d

′, v, c, t,K, s1)) then
return False . Wrong record signature

end if
return True . Valid feedback record

end procedure


	Introduction
	Related Work
	Model
	Objectives
	Efficiency
	User anonymity preservation
	Decentralization
	Robustness

	Tokens – security against Sybil attacks
	Using CAPTCHAs
	Using proofs of work
	Using fees
	Using certificates and NIZKs
	Presentation
	Formalization
	Implementation


	Description of the protocol
	Outline
	Setup
	Trackers
	Feedback records
	SP – Persistence of the records
	Updating the list of trackers

	Primitive operations
	Reputation retrieval
	Transaction
	Sending feedback
	Feedback aggregation

	Handling malicious peers
	Handling malicious trackers
	Handling malicious SPs

	Blind signatures
	Payment server as a TTP
	Fair Exchange Signature Scheme (FESS)
	Simplification for special cases


	Analysis
	Efficiency
	User anonymity preservation
	Assumptions
	Anonymity set

	Decentralization
	Robustness
	Assumptions
	Correctness
	Preventing and detecting malicious behavior


	Conclusion
	References
	Appendix A: Generic Fair Exchange Scheme
	Appendix B: Other algorithms

