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Incompatibility of standard completeness and quantum mechanics[footnoteRef:1] [1:  Extended version of a paper forthcoming in International Journal of Theoretical Physics. Sec.3, not included in the published version, responds at length to a referee’s objection. ] 

Carsten Held (Universität Erfurt)

The completeness of quantum mechanics (QM) is generally interpreted to be or entail the following conditional statement (called standard completeness (SC)): If a QM system S is in a pure non-eigenstate of observable A, then S does not have value ak of A at t (where ak is any eigenvalue of A). QM itself can be assumed to contain two elements: (i) a formula generating probabilities; (ii) Hamiltonians that can be time-dependent due to a time-dependent external potential. It is shown that, given (i) and (ii), QM and SC are incompatible. Hence, SC is not the appropriate interpretation of the completeness of QM.


1. Introduction
In the USA, weather forecasts are sometimes given by means of probability statements like “there is a 25% chance of precipitation on Tuesday” (uttered on the preceding Friday; see e.g. [1]). Obviously, such statements have two time-references: (1) the time for which the prediction is made, i.e. at which the predicted event eventually occurs (“Tuesday”); (2) the time at which the prediction is made (Friday). (1) is often made explicit within the statement, (2) is mostly left implicit but is always clearly understood from the context – as witnessed by the fact that we don’t find it contradictory when Friday’s forecast for Tuesday differs numerically from Saturday’s. It is also implicit but clearly understood that, replacing the ambiguous “Friday” and “Tuesday” by dates (time intervals) Δ a and Δ b, always Δ a ≠ Δ b. Further, if weather forecasts could be made so accurate as to make meaningful a choice of points ta  Δ a and tb  Δ b, then always ta ≠ tb. These facts about probability statements in typical weather forecasts are utterly trivial.
Quantum mechanics (QM) is both a fundamental physical theory and 
a fundamentally probabilistic one and its output first and foremost consists in probability statements. Do such statements have (perhaps implicit) time references? Do they have two (perhaps implicit) time references like the weather forecast? If so what represents them or could represent them in the formalism? These questions are so elementary that they should be both easily answered and explicitly settled in the foundational literature – but on a closer look they are neither. Instead, they lead to a fundamental consistency problem for interpreters of QM. It is easy to sketch the problem in words but much harder to pin it down formally. Consider that in standard QM (using von Neumann representation and Schrödinger picture) we have, for system S, a state W (t0) (the prepared state) that by means of W (t) = U (t) W (t0) U (t)–1 (where U (t) is the time-evolution operator) generates a state W (t), for any t. From W (t), picking an observable Pq, 
(some projection operator) and using a specific probability algorithm (often called the Born Rule), we generate probability statements like “there is a 25% chance of spin up in the z-direction” (for suitable S, W (t0), Pq). This example statement does not carry an explicit time-reference that would specify the time for which the prediction is made ((1), a counterpart of “Tuesday” or “tb”), so we modify: 
“there is a 25% chance of spin up in the z-direction at t”. This prediction can indeed be calculated knowing only W (t0) and U (t), so can be made at t0. We can choose t0 ≠ t and identify t0 with the time at which the prediction is made, 
i.e. time-reference (2) (a counterpart of “Friday” or “ta”). We immediately have a counterpart of the weather-forecast, with two explicit time-references.
However, time-reference (1) in the weather forecast indexes the predicted event. This makes sense because we are clearly interested in predicting (giving the probability for) the event ‘precipitation on Tuesday’ or, if only that were possible, would want to predict ‘precipitation at tb’ (where tb is, say, Tuesday noon). Transferring this idea into QM, we get a time-indexed predicted event ‘spin up in the z-direction at t’ and the probability statement “there is a 25% chance of (spin up in the z-direction at t)” (writing the predicted QM event in round brackets). This interpretation, however, is fundamentally problematic. Namely, it means that state W (t), calculated from W (t0), generates probabilities for events possibly happening (or being the case) at t. This is not how we generally understand QM. Consider the fact that QM is complete in the sense that it cannot be complemented by noncontextual hidden variables. This result is generally interpreted as follows. In typical cases (e.g., when W (t) = Pr, another projection operator, where [Pq, Pr] ≠ 0) observable Pq does not have a value at t but if S is subjected to a Pq -measurement starting at t, then there is a certain chance (here 25%) that it will adopt a value (value 1 of Pq or q (= up) of Q, where Q is spin in the z-direction). This interpretation of QM completeness entails that – in contrast with (2) from the weather forecast – the QM probability statement is 
of the form “there is a 25% chance at t of (spin up in the z-direction)” 
(where again the predicted QM event is in round brackets). Here, the chance (probability) for the QM event, not that event itself, inherits the time-index from W (t). Now, it cannot be the case that the predicted event ‘spin up in the 
z-direction’ additionally has the same time-reference t as the chance. That would contradict both the notion of chance and the idea, derived from completeness, that in typical cases S does not, at time t, have a value of Q (spin in the 
z-direction) – but adopts such a value only at some later time and given special conditions. E.g., S’s state may be W (t) = Pr and the special conditions may be 
that S is subjected to a Q (and therefore also Pq) measurement starting at t, 
where t is measurement onset. In this situation, S’s adopting a value upon measurement is usually assumed to take up a finite amount of time Δt = [t, t’] and some approaches to QM measurement, like the decoherence program [2] or the spontaneous collapse theory [3], try to quantify Δt.
According to this interpretation, in QM the predicted event (‘spin up 
in the z-direction’) does not inherit a time-reference from the state W (t). However, it can also not be the case that the event has any other time-reference. Clearly, the formalism has only one time-parameter available. Choosing, e.g., t = t1 we get “there is a 25% chance at t1 of (spin up in the z-direction)”. But there is 
no independent t’ such that we could choose t’ = t2 and produce “there is 
a 25% chance at t1 of (spin up in the z-direction at t2)”. So, in the chosen case: 
W (t) = Pq, where [Pq, Pr] ≠ 0, the predicted event can have no time-reference, at all. Certainly, the Born Rule generating probabilities is general, i.e. does not distinguish our chosen W (t) from any other state. So, no event predicted by means of this rule can have a time-reference, in QM.
This reasoning, if it can be made both general and precise, entails that QM, one of our fundamental physical theories, does not generate probabilities for events that in the formalism receive time-references. It should be emphasized that the consequence is not that QM cannot endow the events for which it produces probabilities with exact time-references; it can give them no time references at all. If weather forecasts were (could be) made with this form of QM we would get, e.g., a probability of a precipitation event, where the precipitation measurement starts at Tuesday noon tb but the predicted precipitation event itself can occupy any Δ t, past, present or future. This in itself seems an unacceptable consequence but it will be shown (in sec. 2) that the mentioned interpretation of QM completeness indeed entails it. Moreover, it will be shown (in sec. 4) that this consequence contradicts another core element of QM such that the mentioned interpretation of QM completeness cannot be correct. 
More precisely, in sec. 2 an exact form of QM completeness, called standard completeness (SC) will be defined. QM will be assumed to contain two elements: (i) a formula generating probabilities from pairs of states and observables; 
(ii) a Hamiltonian that is possibly time-dependent due to a time-dependent external potential. It will then be shown that, given SC, the probability formula (element (i)) leads to QM probabilities for events having no time-references. Crucially, the argument does not require any particular form of the Born Rule and is entirely silent about QM measurement; it applies to any form of QM containing element (i). In sec.3, the significance of this first step of the argument will be briefly discussed. In sec.4, it will be shown that a time-dependent Hamiltonian (element (ii)) leads to probabilities for events having time references – in contradiction with the conclusion of sec.2. The arguments in sec.s 2 and 4 combine mathematical, logical and semantic elements. The two salient semantic elements ((15) and (27), below) are not amenable to formal proof and can, in principle, be denied but it will become clear that doing so would be highly implausible. The overall conclusion (sec.5) will be that SC and QM are incompatible and that another route to understanding QM completeness must be sought. The result is entirely negative but nevertheless important as it can help to redirect our efforts of understanding QM. 

2. Predicted events have no time-references in QM + SC
QM can be shown to be complete in the following sense. Represent properties 
of (i.e. values of observables on) S by eigenvalues of self-adjoint operators on a Hilbert space H, suitable for representing S. Pick S such that dim H > 2. 
Assume: (1) Algebraic relations among the operators have exact algebraic counterparts in the associated values (functional composition). (2) There is a 
one-one correspondence between observables and the operators representing them (noncontextuality) ([4]). Then, relations among operators produce relations among values of observables that cannot simultaneously be satisfied 
(see [5] – [8]).  The total set of operators is such that they cannot all have one eigenstate in common. This motivates interpreting QM completeness as showing that S has a property (value of an observable) only if it is in the corresponding eigenstate. 
It suffices to make this idea precise for a discrete observable A on S with ak one of its eigenvalues. The standard completeness assumption in the foundational literature is the eigenstate-eigenvalue link (see [9], [10], explicating classical sources [11], [12]) stating that the value a of A on S equals ak at t if and only if 
S is in the corresponding eigenstate Pak (t). Writing ‘a = ak ’ for ‘the value of A on S equals ak’ we have:
		a = ak at t if and only if S is in Pak (t).			               (1)
By contraposition, the ‘only if’-direction of (1) becomes:
		If S is not in Pak (t), then  (a = ak at t).				(2)
S’s QM state is unique, i.e. if S is in a state W (t)  Pak, then S is not in Pak (t). Hence, from (2):
		If S is in a state W (t)  Pak, then  (a = ak at t).		      	(3)
Some interpretations of QM assume that S can be in W (t), a reduction mixture, where it is possibly true that a = ak at t, so will reject (3) in general, but will accept it for the special case of a pure state W (t) to make sense of the completeness results. Taking this into account, (3) may be weakened to:
		If S is in a pure state W (t)  Pak, then  (a = ak at t).	               (4)
The conditional (4) is the standard expression of quantum-mechanical completeness (or a weakening thereof), briefly: standard completeness (SC). 
It is plausible to assume that QM contains two elements: (i) a formula generating probabilities from pairs of states and observables; (ii) Hamiltonians that can be time-dependent due to a time-dependent external potential. First, consider element (i). Using the Schrödinger picture, suppose that a QM system S is in 
a state represented by a unique density operator W (t) on H. Let B ([image: \R]) be 
the set of Borel subsets of [image: \R] and L (H) the set of bounded linear operators on H. Then, a generalized observable M on S is represented by a set {M (Δ)} of operators M: B ([image: \R])L (H) satisfying the conditions of a positive operator-valued measure and the probability that S’s value m of M lies within Δ  B ([image: \R]) is given by:
	pW(t), M (Δ) = Tr (W (t) M (Δ)).		      	   	             (5)
(5) may be called the general probability formula, since it is a generalization of all the equations appearing within different forms of the QM probability algorithm (Born Rule). It is most general in these three respects: (a) M is a generalized observable, i.e. the operators M are not, in general, projectors; (b) it does not presuppose whether M can take a sharp or unsharp value, i.e. the argument Δ on the left abbreviates the proposition that, for value m of M, m  Δ, where m may be any Borel subset of Δ; (c) it remains entirely silent about whether or not eventually m  Δ comes about as a result of some M measurement (which is what the whole algorithm, the Born Rule, cannot be silent about). Suppose now 
that Q is a generalized observable such that, for all M (Δ)  Q, M (Δ) = PQ (Δ), where the PQ (Δ) are projectors such that Q is a projection-valued measure. 
In this case, there is a unique self-adjoint operator Q on H with spectrum σ(Q), 
such that Q = , where the P(λ) are projectors. We can define 
PQ (Δ) =  (where  is the characteristic function) and identify the set (of positive operators) Q and the new operator Q, i.e. we recover the familiar (ungeneralized) QM observable Q. Then, from (5), the probability that S’s value q of Q lies within Δ is:
	pW(t), Q (Δ) = Tr (W (t) PQ (Δ)).		 	        	             (6)
Note two special cases of (6): Setting Q = X (the position operator), 
the probability for S’s value x of X being in Δx is:
  	pW(t), X (Δx) = Tr (W (t) PX (Δx)).				             (7)
And setting Q = A, where A is discrete with an eigenvalue ak (as assumed above), the probability for S’s value a of A being ak (i.e a = ak), is: 
pW(t), A (ak) = Tr (W (t) Pak).				              (8)
Note that in all of (5) – (8), the left sides are functions from sets of propositions (each abbreviated as a Borel set or real number) into elements of [0, 1], interpreted as probabilities. (7) and (8) are special cases of (6), which is a special case of (5). Hence, a conceptual conflict established for special case (8), if independent of the specializing assumptions, will affect the general case (5) and hence will also affect special case (7).
This conflict comes about as follows. Is the left side of (8) a function of time? As a matter of mathematical consistency the answer must be yes. Since we have an equation whose right side can take different values for different t the left side cannot be independent of t. Clearly, the subscript W (t) does not constitute 
a time-reference; it is just a reminder that (8) is conditional upon a choice 
of W (t) and is an element of the Schrödinger picture. (The subscripts will be dropped from now on.) So how is p (ak) a function of time? There are only three possibilities: p (ak) may be implicitly or explicitly time-dependent or both:
p (ak) = p (ak (t))					             (9)
p (ak) = p (ak, t)						           (10)
p (ak) = p (ak (t), t) 					            (11)
One of (9) – (11) must be chosen to disambiguate (8). Our choice should be informed by what these three options mean physically. As noted, the expression on the left, p (ak), is a function from a set of propositions into probabilities. 
So either the propositions (9) or the probabilities (10) or both (11) are 
time-dependent. Consider first the argument of p (ak), a proposition. Possibly, 
this proposition is time-dependent. A proposition is time-dependent in the sense that it can be true at one time, false at another. For a proposition ‘F’ expressing that F is the case, we can, to avoid metalanguage in the formulae, replace 
‘‘F’ is true at t’ by ‘F at t’. Consider second the value of p (ak), a probability. Possibly, this probability is time-dependent. To express this clearly, we can write the probability at t of F, p (F, t), as p (t) (F). Using this convention and writing out the propositional arguments, (9) – (11) become:


p (ak) = p (a = ak at t)					            (12)
p (ak) = p (t) (a = ak)					            (13)
p (ak) = p (t) (a = ak at t) 				            (14)
(In contrast with (5) – (8), (9) – (14) are not proper equations of the formalism but mere auxiliaries for explicatory purposes; therefore, they do not carry time-indices on both sides.) It is now easy to show that choosing (12) is impossible in QM & SC.
What is probability? It is universally accepted that probability is quantified possibility. More precisely: If a physical theory assigns an event a non-zero probability, then, given the theory’s truth, this event is possible. The weakest form of possibility is logical possibility. Hence, given a physical theory T and 
a proposition F (describing a certain physical event), when T entails p (F) > 0, then T is logically compatible with F, i.e. T & F does not entail a contradiction. Explicitly: 
If T |– p (F) > 0, then  {T, F} |–  ,			    (15) 
where |– is entailment in first-order logic and  an arbitrary contradiction. Now, suppose that S is in a pure non-eigenstate of A at t1, where t1 is a value of t: 
	S is in pure state W (t1)  Pak, such that 1 > p (ak) > 0. 	  (16)
From (16) and (4) (= SC):
	 (a = ak at t1).						  (17) 
On the other hand, from (16) and (12):
	p (ak) = p (a = ak at t1) > 0.				           (18)
Now, (16) is a trivially allowed state assignment in QM and (17) is a trivial consequence of (16) and SC. Identify theory T with QM & SC, where QM includes (16), and F with a = ak at t1. Then, from (15):
	 {T, a = ak at t1} |– .		           (19) 
But since T = QM & SC and QM includes (16), T entails (17), so {T, a = ak at t1} does entail a contradiction. So, given (15), (16), and (4) (= SC), our choice of (12) cannot be correct ([13], [14]).
Hence, from the three possible explications (12) – (14) for the left side of 
the trace formula (8) we must exclude (12), due to (4) (= SC). It should be clear that the mixed case (14) is no viable alternative. If the predicted event is 
a = ak at t1 we will, as before, have (by (16)) a positive probability for an event at the very same time t1 at which, again by (16), the state is such as, by SC, 
to prohibit that a = ak at t1 is true. Hence, (14) is excluded for the same reason that excluded (12). In other words, (13) is the only appropriate choice where 
the understanding is now that the predicted event a = ak does not inherit 
time-reference t1 from W (t1). However, as one look at the probability formula ((5) – (8)) evidences there is no second time-parameter available that could take another value t ≠ t1. So, in (8), the expression ‘a = ak’ cannot carry a time-index 
at all, i.e. the denoted event does not have a time-reference in the theory. 
But (8) is a special case of (5), the general probability formula. If, on the 
left side of (5) the event m  Δ inherits a time-reference t from W (t) (the right 
side of (5)), then so does the event a = ak in (8). Vice versa, if the latter event does not inherit a time-reference the former does not either. So, given SC, none of the events for which (5) generates probabilities have a time-reference. Call an event that is referred to in a theory T without getting a time-reference in that theory timeless in T. Then, an event of type m  Δ in the general formula (5) is timeless in QM & SC. Making this fully explicit in (5), using option (13), we have:
	p (t) (m  Δ) = Tr (W (t) PM (Δ))	, 
		where m  Δ is timeless in QM & SC.                 	           (20) 
A suggestive interpretation of (20) is that the time-reference t on the left indexes the probability for m  Δ in the sense that, if S in state W (t) is measured for M at t, then p (t) (m  Δ) is the probability at t of finding S in m  Δ. The further suggestion here probably is that S is found in m  Δ, or displays some m  Δ, at some t’ > t. (For a discussion of this suggestion see [15].) But this interpretation is neither employed nor precluded in the present argument – which is entirely tacit about the notion of measurement. It is the word part of (20) that embodies the crucial result of this section; i.e. it has been shown that (independently of any interpretive assumptions) the event m  Δ  in (20) is necessarily timeless in QM & SC – as are its special cases (e.g., x  Δx and a = ak). (6), a special case of (5), now becomes:
	p (t) (x  Δx) = Tr (W (t) PX (Δx)), 
		where x  Δx is timeless in QM & SC,                  	           (21)
i.e. the possible event that S is located within Δx is timeless in QM & SC. Returning to the above suggestive interpretation, we may say that, if S in state 
W (t) is measured for position at t then the probability at t for finding x  Δx 
(at some time t’?) is given by (21). But again this is a gratuitous suggestion having nothing to do with the argument which establishes that QM & SC is necessarily silent about t’, i.e. about when the event x  Δx eventually occurs.           	
	
3. Discussion
We began with an analogy of weather and QM predictions. Do the latter, as the former, provide time-references for the predicted events? The argument in sec.2 showed that, if QM is complete in the sense of SC, the answer must be no. One may wonder whether this is really problematic. Why should QM have to produce predictions in which the predicted event has a time-reference? The question is academic because the argument below (sec.4) will demonstrate that QM does produce such predictions but it is instructive to try and answer it at this point.
Why should QM, or indeed any probabilistic physical theory, necessarily produce predictions carrying time-references for the predicted events? After all, we often seem to meet predictions without such references, e.g. when we say that a fair coin has probability ½ for landing heads without being able or willing to specify when it will land heads up. In the case of the coin toss, we are typically not interested in specifying the time of the predicted outcome but we can always add a specification because in a classical context no assumption comparable to SC precludes it. We tacitly understand that the event of the coin landing heads eventually happens some time after it being tossed and, if we toss repeatedly, before being tossed again. This is a minimal temporal specification of the outcome. Accordingly, a naive theory of the toss in principle warrants function expressions like p (t0) (heads at t), where t0 is the time of the toss, t1 the time of the next toss, and t  [t0, t1] – even if t is not known exactly. Here, t0 and t are the explicit and implicit time-dependences of the probability function (in the sense of eq.s (9), (10) above). It is these expressions that are desirable for the weather forecast but, as we saw in sec.2, cannot be an output of 
QM & SC. 
In a serious dynamical theory of the coin toss ([16]) the situation is even clearer. Here, the outcome is determined by the initial conditions and its uncertainty rests fully in our ignorance of these conditions. In particular, it is possible to derive Newtonian equations of motion that take account of all relevant initial conditions plus the air resistance during the motion but ignore external random influences; these equations match experimental data very well. Initial conditions  (t0) (position, configuration, momentum and angular momentum at t0, the onset of the free fall motion) can be mapped into the outcomes ‘heads’ and ‘tails’ (ignoring ‘edge’, which is a possible outcome for a finitely thick coin). Hence  (t0) is the starting point of a trajectory, in the coin’s phase space, that ends in a region associated with either outcome ‘heads’ or ‘tails’. Given that  (t0) starts a trajectory leading to ‘heads’, we nevertheless have that p (heads) is 0 or 1 for different t. Assume that ‘heads at t’ is true when the coin is at rest on the floor showing heads at t and assume that t1, the stop time, is the first such time for a given toss. Then: 
p (heads at t | (t0)) = 1 	if t ≥ t1 and 0 otherwise			            (22)
So, an expression with a time-reference for the predicted event can be extracted from the theory and is physically meaningful. 
The exact mechanical theory that yields (22) produces no testable predictions. If, however, we make the realistic assumption that initial conditions can be set only with an uncertainty ε, then the point in phase space representing the true initial conditions is an element of a ball B = B (ε, t0) centring about our assumed conditions  (t0). Then, if H  B is the set of points leading to outcome ‘heads’ the probability of ‘heads’ is given by: 
p (heads) = μ (H) / μ (B)							            (23)
where μ is a measure on the sets H and B ([17]). For suitable ε, (23) is empirically testable and for large ε we recover the familiar p (heads) = ½ if the coin is fair ([18]). Obviously, not all trajectories from H  B ending in outcome ‘heads’ will have the same stop time t and the predicted ‘heads’ in (23) is an arbitrary element of H. So, time-indexing the ‘heads’-event is not meaningful here without further assumptions. We can, however, make such assumptions.  We might be interested in the probability of the coin landing heads at t ± δ (for a small δ) if tossed with initial conditions from B = B (ε, t0). The appropriate set would be H’  H, with H’ = H’ (δ, t). (Note that H’ (δ, t)  B (ε, t0).) Making all dependences explicit, this gives: 
p (heads at t ± δ| B (ε, t0)) = μ (H’ (δ, t) / μ (B (ε, t0)) 			            (24)
(24) is an exact counterpart of the weather forecast with t0 the time to which the initial conditions refer and t the time of the predicted event. (Moreover (24), like (23), is empirically testable for a suitable δ.) So, also the serious theory of the coin toss allows expressions as physically meaningful that are illegitimate in QM & SC. If we reasonably assume that (elaborated versions of) the weather forecast and the coin toss are representative of probabilistic physical theories then QM & SC forbids in principle a possibility all other theories allow.
We can also specify physical circumstances such that even in the exact coin toss theory (22) a non-trivial probability for a time-indexed event arises. Assume a situation where whether the coin lands heads depends not only on initial conditions (and eventually random influences during the motion) but also on the surface on which it falls. Assume that surface to have time-dependent dynamical properties interacting with the coin’s orientation. Assume also that, though we can unambiguously identify the eventual ‘heads’-event, for some reason the coin’s orientation immediately after landing heads gets changed again (say, it is swallowed by the surface). The second assumption forces that the ‘heads’-event is a point-like event ‘heads at t’ and the first assumption forces that the probability for that event depends on the physical circumstances prevailing at the coin’s landing spot at time t when it lands. We get an expression of the following structure:  
p (heads at t | (t0)) = F ( (t0), G (t))					            (25)
where G (t) is some function encoding the time-dependent dynamical properties of the whole landing surface and F is some function of initial conditions ( (t0) and G (t). 
It is the QM counterpart of this example that will drive the argument in sec.4. In QM, the system S’s state and hence the probabilities (calculated from (5) or (7), above) can depend on a Hamiltonian incorporating a time-dependent external potential. This forces time-dependences for the predicted events, in parallel with (25). Notice that for a given coin and environment  (t0) and  (t) are in a one-one correspondence (like, for a given Hamiltonian, QM states W (t0) and W (t)), so in (25) express the same condition and functional dependence. Therefore, suppressing for a moment the time reference in the predicted event, from (25) we get:
p (t) (heads) = F ( (t), G (t))					      	            (26)
(26) is the coin theory’s ambiguous counterpart of QM’s ambiguous (8). The received way to think about QM can be mimicked for the coin example as follows. If a coin is in state  (t) (where  (t) ≠  (t0)), then p (heads) = p (t) (heads) (cf. (13) above), i.e. (26) gives the probability for outcome heads in a measurement of the coin starting at t. For an outcome of this measurement at t’ with t’ ≠ t, the time t’ cannot be an element of the coin toss theory because evidently (26) does not contain a second time-parameter. However, (25) and (26) embody the special situation where the probability of the eventual outcome ‘heads’ does not only depend on  (t) (containing initial conditions  (t0) and the whole history of influences on the coin since t0) but also on the time-dependent external factor G (t). For the coin, this factor is the (time-dependent) physical situation prevailing at the coin’s landing spot at time t, the time of the outcome. This forces that p (heads) = p (heads at t) (cf. (12) above) the probability for outcome ‘heads at t’. So, if in QM there is a counterpart of the dynamical external influence G (t) then QM cannot yield (21), i.e. is not consistent with SC.

4. Predicted events have time-references in QM
It will now be shown that (21) contradicts QM itself. The idea of such an argument is the observation that some QM observables are direct functions of possibly time-dependent external influences. Values of such observables will inherit the time-dependence just as, via the Hamiltonian H (t), the state W (t) does. This will prove that the QM events predicted in (5) – (8) do inherit a time-reference t from the state W (t).
Consider a continuous observable Q on S, possibly time-dependent, with spectrum σ(Q)  Δ and a value q  Δ. While σ(Q) is the set of possible values 
of Q simpliciter, Δ is the set of possible values of Q in the following sense: 
If q  Δ, then S’s value q of Q must be some subset, but can be any subset (including any singleton set), of Δ. Clearly, if Q = Q (t), then also σ(Q) = σ(Q (t)) and hence Δ = Δ (t). Consider now the event that q  Δ (t). Since Δ (t) is the range of possible values of Q (t) every value (subset) q of Δ (t) is S’s possible value of Q at t. Explicitly: 
q  Δ (t) if and only if q (t)  Δ (t), 			    (27)
where q (t) is S’s (possibly unsharp) value of Q at t. It will now be shown that events of type q  Δ (t) can appear in the general probability formula (5).
In the second step, recall the following facts about time-dependence and functional dependence in QM observables. Defining a time-dependent operator as: Q (t) = U (t) –1 Q U (t) (and similarly PQ (t) (Δ) (t) = U (t)–1 PQ (Δ) U (t)) and setting W (t0) = W we can, from the probabilities in the Schrödinger picture, e.g. (6), define those in the Heisenberg picture:
pW(t), Q (Δ) = Tr (W (t) PQ (Δ)) = Tr (W PQ (t) (Δ) (t)) = pW, Q (t) (Δ).   (28)
It is immediately clear from the Heisenberg equation:
		 Q (t) = [Q (t), H (t)] + Q (t)				            (29)
that the total time-dependence of Q (t) is due partly to the choice of the Heisenberg picture ([Q (t), H (t)] ≠ 0), partly to an explicit time-dependence 
(Q (t) ≠ 0). If Q is explicitly time-dependent (Q = Q (t)), then so is its spectrum σ(Q (t)) and the set of possible values Δ = Δ (t). This time-dependence 
necessarily carries over into the Schrödinger picture, i.e. from Δ = Δ (t) and (28) 
it follows that:
pW, Q (t) (Δ (t)) = pW(t), Q (Δ (t))				            (30)
Hence, because of (Q = Q (t)) the value of Q is time-dependent even 
in the Schrödinger picture. As a reminder of this fact, we can write:
pW(t), Q (Δ (t)) = pW(t), Q (t) (Δ (t))				            (31)
For a concrete example, consider the following Hamiltonian for a one-particle system S, written in the Heisenberg picture:
H (t) = P (t) ² / 2m + V (x (t), t),				            (32)
where 
V (x (t), t) =  m Φ (x (t), t),				            (33)
with V (x (t), t) and Φ (x (t), t) real-valued functions and m a real constant. 
If S’s potential energy V can be conceived as an observable V, then V = V (t) if and only if V (t) ≠ 0 and we have: 
pW, V (t) (Δ V (t)) = pW(t), V (t) (Δ V (t)), 			            (34)
where σ(V (t))  Δ V (t) is the spectrum of the operator associated with V. Now, the function V in (32) can indeed be conceived as an observable using the following definition ([19], [20]): A self-adjoint operator R is defined to be a function, f (Q), of operator Q if there is a function f: [image: \R]  [image: \R] such that 
R =  dPQ (r),					            (35)
where PQ (r)  P, the spectral measure given by projectors PQ (r) = PQ (– ∞, r]. Assume that for every function R = f (Q), if Q is a QM observable, then so is R. Now, Q is an observable because it can be assigned probabilities via (6). Hence, 
R is also an observable and it follows ([21]) that:
pW, Q (f –1 (Δ)) = pW,  f (Q) (Δ) = pW,  R (Δ).		            	            (36)
This purely mathematical result is independent of the choice of Heisenberg 
or Schrödinger picture. Likewise it is independent of the generalization introduced at (5) that values of observables can be subsets of (rather than only single numbers within) their spectra. Hence, the left of (36) explicitly is:
pW, Q (f –1 (Δ)) = pW, Q (q  f –1 (Δ)),		 	            (37)
where q is the value of observable Q and f –1 (Δ) a subset of its spectrum. Likewise, the right of (36) is:
pW,  f (Q) (Δ) = pW, Q (r  Δ),				            (38)
where r is the value of observable f (Q) = R and Δ a subset of its spectrum. 
Now, setting Q = X (t) and R = V (X (t) in (35), we can define:

V (X (t)) =  dPX (x)				            (39)
and, from (36), get the probability:
pW, X (t) (Δx)  = pW, V (X (t)) (ΔV).	                          		            (40)
As in (38), the right of (40) is explicitly: 
pW, V (X (t)) (ΔV) =	pW, V (X (t)) (v  ΔV),                    		            (41)
where v is a (possibly unsharp) value of observable V and ΔV is that subset of values of the function V (x), for which x  Δx.
Now, finally, assume that S’s physical situation is such that V (t) ≠ 0, 
i.e. V (X (t) = V (X (t), t), due to a time-dependent external potential Φ (x (t), t).  This is a standard perturbation problem treated in many textbooks (e.g. [22], [23]) and it instantiates our assumption (ii) about QM. Setting Q = X (t) and 
R = V (X (t), t), we now have from (35) and (36):
V (X (t), t) =  dPX (x),				            (42)
pW, X (t) (Δx)  = pW, V (X (t), t) (ΔV)	               		            (43)
By construction and in exact parallel with (38) and (41), the argument on the 
right of (43), ΔV, abbreviates v  ΔV, where v is a (possibly unsharp) value of operator V and ΔV is that subset of values of function V (x, t), for which x  Δx. Now, if V (x, t) is time-dependent then so is, for any x = x1, its value V (x1, t). 
So, the argument on the right of (43) explicitly is v  ΔV (t) such that:
pW, V (X (t), t) (ΔV) = pW, V (X (t), t) (v  ΔV (t))			            (44)
(44) can, using (28), (34) and (43), be expressed in the Schrödinger picture as:
pW (t), X (x  Δx) = pW (t), V (t) (v  ΔV (t))                   		            (45)
Finally from (45), by (21):
pW, X (t) (x  Δx)  = pW, V (X (t), t) (v (t)  ΔV (t))               	            (46)
We have, on the right of (46) constructed the probability for an explicitly time-dependent event. If this probability is indeed one pertaining to a QM observable, then we have a direct contradiction with (20). But there can be no doubt that this is the case. By construction, the probability on the right side is identical with the one on the left – which manifestly is the one pertaining to QM observable X (position). Accordingly, we have a contradiction with (20) such that it cannot be the correct reading of (5). Since QM & SC imply (20), SC cannot be correct. 
This argument is abstract in the sense that it uses an observable (V) that is 
a function of both an external time-dependent influence and another observable (X), which is time-dependent in only one of the two pictures. The only physical assumption is that there is such an observable in QM, vide the potential energy V. A more physical reasoning would use the concept of potential energy as follows. By definition, a classical system’s potential energy V is a function of the external potential Φ (x) in some area x and the system being located in that area x. If Φ (x) = Φ (x, t), then V is a function of Φ (x, t), the external potential in some area x at t, and S’s location within x at t. To assume that S’s potential energy could be a function of Φ (x, t), the external potential in some area x at t, and 
S’s location within x at t’, where t ≠ t’ would be to destroy the very concept of potential energy. If potential energy is assumed to be the physical magnitude for which t = t’ and V is the QM observable measuring this magnitude, then in (45) the left side necessarily is pW(t), X (x  Δ x (t))  and, by (27), pW(t), X (x (t)  Δ x (t)) – in direct contradiction with (21).  


5. Conclusion 
It was shown that SC cannot be the appropriate interpretation of QM completeness. As emphasized, the argument makes reference to the trace formula, but not the different forms of the Born Rule containing it, hence can entirely avoid the concept of measurement. Accordingly, it can be shown that the problem is more fundamental than the infamous QM measurement problem in the following sense. Endorsing SC, despite the hidden inconsistency of SC and QM uncovered here, leads to the measurement problem in QM ([24]). 
The result is purely negative but, if sound, clearly important for our understanding of QM. It then rules out a sizeable number of interpretations, i.e. all that, in the tradition of von Neumann and Dirac ([10], [11]), understand completeness as (being identical with or entailing) SC. But is the result sound? Assuming the reasoning is valid throughout, the question is whether all its premises are true. In sec.2, the only obvious candidate is (15) but it seems hopeless to deny it with any plausibility. In sec.4, one might think of rejecting (27) or its use on the argument on the right of (46) but again this seems implausible. Moreover, (20) is an already disastrous consequence. As the comparison with the coin toss theory made obvious, it is unacceptable that a fundamental physical theory should not be able to endow the events it predicts with time-references.
The inconsistency of SC with QM must lead us to reject SC and search for a better understanding of the completeness of QM. The direction of research is clearly predetermined. If, given QM, SC is false, then its negation, again given QM, is true, i.e. it must be possible to assume that S is in a pure state W (t)  Pak, and yet 
a = ak at t. This is to say that a full-fledged hidden variables interpretation of QM must be sought, which – as we know from the completeness proofs – must be contextual. Some reflection clarifies that such contextuality cannot be measurement-induced (see [25]). The only alternative mentioned in the literature is called ontological contextuality (see [26]). It rests on the distinction of maximal and submaximal observables. (An observable is called maximal if its 
representing operator is nondegenerate, otherwise submaximal; a submaximal 
observable A can be a function of different, incompatible observables B and C, 
i.e. A = f(B) = g(C), where [B, C] ≠ 0.) As is well-known, the completeness proofs make essential use of submaximal observables ([27]) and – as pointed out above (see the first paragraph of sec.2) – assume them to be in a one-one correspondence with the representing operators. Ontological contextuality is the denial of this one-one correspondence. Three decades ago, attempts have been made to spell out what this could mean physically ([28] – [32]), but without tangible results. The present result should redirect our attention toward this possibility.
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