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Abstract—
It is common knowledge that RSA can fail when used with

weak random number generators. In this paper we present two
algorithms that we used to find vulnerable public keys together
with a simple procedure for recovering the private key from
a broken public key. Our study focused on finding RSA keys
with 512 and 1024 bit length, which are not considered safe, and
finding a GCD is relatively fast. One database that we used in
our study is made from 42 million public keys discovered when
scanning TCP port 443 for raw X.509 certificates, between June
6, 2012 and August 4, 2013. Another database used in the study
was made by crawling Github and retrieving the keys used by
users to authenticate themselves when pushing to repositories
they contribute to. We show that the percentage of broken keys
with 512 bits is 3.7%, while the percentage of broken keys with
1024 bits is 0.05%. The smaller value is due to the fact that
factorization of large numbers includes new prime numbers,
unused in the small keys.

Index Terms—RSA, public keys, weakness, vulnerabilities,
GCD, internet

I. INTRODUCTION

Generating proper random numbers is essential in nowa-
days cryptography. Random number generation has been long
studied from both practical and theoretical perspectives [1],
[2] and vulnerabilities were found due to bad implementation
(e.g.: using srand(time(NULL)) in C for seeding). Also
another important fact of the RSA key is it’s length. In history
we can denote the following milestones of RSA factorization:

• In 2000, a 512-bit RSA number, having 155 digits, was
factored using the Number Field Sieve factoring method,
same method that was used in the previous record, from
1999, to factor a 140 digit RSA modulus [3]

• Between 2006 and 2008, Linux distributions Debian and
Ubuntu had a bug in which less than 220 possible keys for
SSH, OpenVPN etc. were possible to generate. Instead
of mixing in random data for the initial seed, the only
”random” value that was used was the current process ID.
On the Linux platform, the default maximum process ID
is 32768, resulting in a very small number of seed values
being used for all pseudo-random number generation
operations. [4]

• On the 12th December 2009 a study reports factorization
of 768-bit RSA and claims that factorization of 1024-bit
RSA key is considered 1000 times harder [5]

Multiple approaches were done in order to find out how
severe and how often can a RSA vulnerability occur. For
instance in [6] there was found only an order of 0.003%
of insecure public keys (which have a common factor) from

data provided by EFF SSL [7] in November 2001 containing
6185372 distinct X.509 certificates having multiple RSA key
lengths. The main goal of the project was testing the validity
of the assumption that different random choices are made each
time keys are generated.

Another approach [8] is a large-scale study of RSA and
DSA keys, focusing on keys which are used in TLS (HTTPS)
and SSH in which 5.57% TLS hosts and 9.60% SSH hosts
shared keys in a vulnerable matter, from a total number of 5.8
million unique TLS certificates from 12.8 million hosts and
6.2 million unique SSH host keys from 10.2 million hosts.

The approach in our paper was focusing on consequences
of RSA issues that someone might find with enough super-
computing power and experiment with various GCD imple-
mentations, using existing databases of RSA keys such as
continuous scan of HTTPS Ecosystem between 2012 and 2013
[9] or dataset done by EFF SSL Observatory [7] in 2010.

The first analysis in our study was a sanity check session
on 512-bit and 1024-bit RSA public keys from amongst
43 million unique certificates dumped from a regular and
continuous scan of HTTPS Ecosystem between 2012 and 2013
Sections 2 and 3 will describe this problems and how a simple
nmap on port 443 can be done to obtain a certificate. This
shows a simple Linux userspace approach to extract X.509
certificates that was used in [9]. These keys are considered the
most vulnerable, that even ransomware viruses choose 2048-
bit RSA length for their keys. Also, the default length used in
OpenSSH for RSA key generation is 2048-bit. Section 5 will
describe more of our results, using multiple common divisor
approaches.

The next focus in our study was to find if there are
vulnerable Github public keys or not. Many Github users
usually use OpenSSH in Linux (command ssh-keygen)
or Putty to generate their pair of public/private keys and
upload the public key on Github. By using a simple
HTTP Request to Github API one can extremely easily
retrieve the SSH public keys of an user by using either a
link like https://github.com/torvalds.keys or
https://api.github.com/users/torvalds/keys.
About 97.7% public keys on Github are ssh-rsa, while
the rest of them are ssh-dsa. A similar effort was done
by Cryptosense company. Their focus was on 2048-bit RSA
keys (the most common amongst Github users), as these are
93.3% from all the keys and only 4.2% are 1024-bit length.
In June 2015 from all Github keys there were also public
keys with major vulnerability due to length: 2 keys with 256



bits to them and 7 that have 512 bit [10]. While crawling on
Github, we did not manage to find these keys so the users
might have got the warning and managed to retract them
in time. Section 4 will detail our procedure to scan Github
keys. The study from Cryptosense used an implementation of
GMP-ECM (Elliptic Curve Method for Integer Factorization)
[11] but there is no clear disclosure of their results [12].

In 2013, it was reported that an attacker can efficiently factor
184 distinct RSA keys out of more than two million 1024-bit
RSA keys downloaded from Taiwan’s national Citizen Dig-
ital Certificate database. The Ministry of Interior Certificate
Authority (MOICA) from Taiwan confirmed that these keys
were generated, using a low-quality hardware random number
generator, by Renesas HD65145C1 chips inside Chunghwa
Telecom HICOS PKI Smart Card and also no run-time sanity
check was performed. [13] That is why, in section III we
describe briefly how we took a look at Estonia Electronic ID.

Lastly, another focus in our research was the ransomware
virus. Ransomware represents the mechanism through which
a hacker locks a resource owned by a user and demands a
ransom in return for unlocking that resource. The resource
locking is usually done through encryption. A cryptographic
ransomware is capable of encrypting an entire filesystem using
AES and then encrypt the AES password using RSA. Usually
these viruses do not store the RSA public key on the victim’s
computer due to the known facts about RSA problems that
they might have.

II. BACKGROUND

A. Scanning for X.509 Certificates

A potential methodology for scanning HTTPS TCP port 443
in Linux can be described as follows:

• discover hosts with HTTPS (443) port activated. One can
easily achieve this by using nmap command, similar to
the following execution:

u@linux: ˜ $ nmap --script=ssl-cert.nse -p
443 www.google.com

• completing a TLS handshake with responsive addresses
and collecting the presented certificate chains. This can be
achieved in Linux command line by using the openssl
suite:

u@linux: ˜ $ openssl s_client -crlf -
connect www.example.net:443

• parse and validate certificate. A full C example of how
this can be done using OpenSSL library is described in
[14]

B. RSA background

RSA is one of the most well known and most used asym-
metric cryptographic algorithm which uses two keys for the
encryption and decryption process: a public key and a private
key. The public key is represented by an exponent e and by
a modulus N . The modulus is computed as the product of

two randomly private generated prime numbers p and q. The
private key d can be computed using the following formula:
d = e−1 mod (p− 1)(q − 1)
Since p and q are unknown the best way to calculate the

private key is to factor the modulus N and obtain the two prime
numbers. However, this kind of attack can be unfeasible given
a certain RSA key length.A better approach is to try to find
if the moduli from multiple RSA public keys have a common
factor.

C. GCD Algorithms

For running the initial sanity check session on 512 and 1024
bit length RSA keys we used the C language with the OpenMP
support for easy multi-threading enablement in order to use at
maximum an AMD multi-core architecture we had. Because
C does not have built-in support for big numbers, which was a
requirement for our application, we used an arbitrary precision
(bignum) library.

We decided to use GMP (GNU Multiple Precision Arith-
metic Library) [15], as it has support for integer and rational
numbers, can do computations in finite fields, aiming at speed
and supporting numerical algorithms such as greatest common
divisor, extended euclidean algorithm for inverse modulo n
and other useful cryptographic computations.

The brute-force approach to find the prime factors of a
number n is to check against all the prime numbers in the
interval [2,

√
n]. Because this is not feasible for big numbers

(larger than 2100), another approach has to be chosen, such as
batch GCD

The approach we used was to compute the GCD using
Euclid’s algorithm on all the possible pairs in a set of numbers.
This way, instead of storing a large database of prime numbers,
we only store the set of numbers to be checked.

1 for i = 0 to m− 1
2 for j = i to m
3 t = gcd(A[i], A[j])
4 if t 6= 1 ∧ t 6= A[i]
5 print i : A[i] : t
6 print j : A[j] : t

The idea behind batch GCD is very simple: Given a
sequence X of positive integers, the algorithm computes the
sequence

• gcd(X0, X1 ·X2 ·X3 . . .)
• gcd(X1, X0 ·X2 ·X3 · . . .)
• gcd(X2, X0 ·X1 ·X3 · . . .)
• etc . . .

It shows which integers share primes with other integers in
the sequence. Because one only wants to know if a key is
compromised, not with which key has a common divisor.
The initial development of algorithm was done in [16]. The
algorithm can be described using the following steps

• Input: N1, . . . , Nm RSA public keys

• Compute: P =

m∏
i=1

Ni (use product tree)



• Compute zi = (P mod N2
i ),∀i = 1, . . . ,m (use re-

mainder tree)
• Output: gcd(Ni, zi/Ni),∀i = 1, . . . ,m

The final output is the GCD of each modulus Ni with the
product of all the other N . Interest is in those for which this
GCD is not 1.

D. Ransomware

The ransomware techniques can be classified into two
categories: locker ransomware and crypto ransomware.

Locker ransomware denies access to computing resources
by usually locking the device’s user interface. It then asks
the user for a ransom in order to restore access. In general
the user interface will contain only the ransomware interface
through which he will make the payment. Access to the mouse
is disabled and access is granted only to the numerical keys
on the keyboard. Locker ransomware just locks the access to a
system, it does not modify anything in the system (filesystem
data). This type of ransomware is among the least destructive
types since it can be removed cleanly without affecting the
system, by using various tools provided by security vendors.

Crypto ransomware is the most destructive type of ran-
somware. It is capable of encrypting data on a device through
an encryption process. It usually runs under the radar, it tries
to search and encrypt as much as files as possible notifying the
user and demanding a ransom in return afterwards. The user
can regain access to his data only if he pays the ransom or if
the user is capable of computing the decryption key necessary
to decrypt the ransomed data.

The modern cryptographic ransomware techniques usually
use both symmetric and asymmetric cryptographic algorithms.
A symmetric algorithm uses the same key for the encryption
and the decryption process. This key can be either generated
locally (on the infected device) and sent back to the attacker or
it can be generated by the attacker (C&C server). An important
observation is that after the files were encrypted this key
needs to be erased from the user’s system since it can be
tracked and used to decrypt the files. The advantage in using
a symmetric encryption algorithm is that it is faster than an
asymmetric encryption algorithm. Depending on how many
files the ransomware tool encrypts, the encryption process can
take a significant amount of time. Using a symmetric key can
boost the speed of the encryption process and prevent the user
from detecting on time that files are being encrypted.

An asymmetric algorithm uses a pair of keys: a public one
for data encryption and a private one for data decryption. In
ransomware techniques the public key is used to encrypt the
files whereas the private key is held by the C&C server and
will be used once the ransom is paid by the infected user.
Having the public key stored on the infected device does not
generally affect the security of the key pair used for ransom.
A significant drawback of this algorithm is that it is slow and
it can expose the encryption process to the user.

Depending on where the cryptographic keys are stored there
are multiple ransomware families:

• downloaded public key - the files are encrypted with an
AES symmetric key that is generated on the infected
device. The symmetric key is encrypted with a public key
that is downloaded from the C &C server. The encrypted
symmetric key is stored in each encrypted file and cannot
be decrypted since the private key is held by the server. A
significant drawback for this method is that if the C &C
server cannot be accessed because of a firewall or because
of having no internet connection then this ransomware
attack will fail. An example of a ransomware virus that
behaves this way is Trojan.Cryptodefense.

• embedded public key - the ransomware virus includes an
embedded RSA public key which will be used to encrypt
a locally generated AES symmetric key. The advantage
of this method is that there is no need to contact the C
&C server. The drawback is that the ransomware virus
needs to have a different public key every time it infects
a device. If it is not different then once the private key
has been determined the ransomware virus will become
obsolete. An example of such a virus is CTBlocker.

• embedded symmetric key - the ransomware virus includes
an embedded AES symmetric key which will be used
to directly encrypt the files. There are no asymmetric
keys used in this technique. The advantage is that the
virus does not have to contact the C &C server, but the
weakness is that once the secret key has been determined
all the files can be decrypted. An example of a virus
from this family is represented by Android.Simplelocker,
a virus for Android mobile devices.

User devices usually end up being infected with ransomware
viruses through unscanned downloads from spam e-mails,
from exploit kits, bot infections and even from social engi-
neering attacks. [17]

III. MINING AFTER PUBLIC KEYS

A. Extracting Github Keys

Previous attempts, such as the one performed by Cryp-
tosense company [12] used OCaml to implement batch GCD,
but no disclosure of how Github API was used to extract the
public keys. It is important to note that Github API only shows
information of users that exist and does not include the users
whose accounts have been deleted or IDs of private organiza-
tions. Listed users obtained after a HTTP request to Github
API can be of type User or type Organization. Organizations
are also regular Github users with some particularities.

In our approach, we developed a method to extract keys
using Python and HTTP requests to Github API. The first issue
we ran into was that Github has rate limiting for API queries,
allowing only 60 HTTP requests per hour for unregistered
scripts. We have generated a token so that we were able to
make 5000 calls per hour.

Another lesson learned while crawling the keys
was that instead of using Github API to extract
a user’s public keys, using a HTTP request to
https://api.github.com/users/torvalds/keys



we found that we could do a simple HTTP request to
https://github.com/torvalds.keys which did not
cost us any API calls, and in one hour we were able to
process more users and make timeouts smaller.

For extracting the public keys we just estimated the total
number of Github users (a statistic done by Prajan Mittal
determined 10492402 valid accounts in 11 January 2015 [18])
and at each iteration retained the last valid ID of user and
get the next 30 registered users, as there is no way to list
all the Github users using only one HTTP request. The only
accepted method is listing a chunk of users by querying
https://api.github.com/users?since=111. Us-
ing this method we can list all the users, in the order that they
signed up on Github and pagination is powered exclusively
by the since parameter - this parameter expects a valid ID
number.

Because of the timeouts after 5000 hits due to Github
API rate limiting and because of the low computing powers
required (all we needed was a hard drive and a computer
connected to Internet), we did this key mining on a Raspberry
PI platform connected via USB to a hard- drive with external
5.1 V DC input voltage.

B. Extracting Estonia Certificates

Estonia uses a nation-wide database to store the citizen’s
identification data and cryptographic certificates, which can
be queried using LDAP. The certificates store 1024-bit long
RSA public keys. To protect against crawlers, they limit the
number of queries a host can do in a certain time-frame, and
limit the possible LDAP queries to two types: general queries
(returning a maximum of 50 identities at a time) and targeted
queries (assuming the personal ID number is known).

To crawl this database beyond the 50 initial identities, we
had to generate queries with valid ID numbers. The Estonian
ID numbers can be easily brute-forced, as they contain seven
digits for the date of birth and gender information, three
digits as serial numbers and one checksum digit. To get the
certificates of every citizen born in the same day, only 2000
queries are needed.

To do such a query, the following command is used:
ldapsearch -x -h ldap.sk.ee -b c=EE

"(serialNumber=$ID_NUMBER)"
Unfortunately, after the first hundred of requests, time-based

restrictions kick in, blocking further requests until a timeout
expires. Among the gathered certificates, no weak keys were
found.

C. Ransomware

In early 2015 a ransomware virus named SleeperLocker has
silently infected the workstations of thousands of employees,
but it hadn’t triggered at all until the midnight of 25th of May
2015. According to [19] a possible source for the ransomware
spread was a corrupted installer of the game Minecraft.

The locker uses Windows services to encrypt using an RSA
key files with different extensions (.doc, .docx, .jpg, etc).
It does not change the file extensions since the operating

system would notify the user of the appearance of corrupted
files. Apparently, the locker will terminate if it detects that
the system it was installed on is a virtual machine. Also, it
deletes the volume copies from C:\shadow which contains
snapshots of the C drive at certain moments of time. In order
to have its files decrypted, the user had to pay 0.1 bitcoins.

The unthinkable happened on 30 May 2015. Apparently
the author of the locker ransomware apologized for what his
tool has caused and uploaded a database containing bitcoin
addresses, public keys and private keys. Afterwards, on the
2nd of June the author issued a command to have the locker
ransomware decrypt all files.

We managed to find the database dump on [20]. This dump
was written in an XML format used in .NET applications. As
a matter of fact, according to a post belonging to the author of
the ransomware all the RSA key-pairs were generated using
the RSACryptoServiceProvider class from the .NET
framework and all the AES keys were generated using the
RijndaelManaged class.

The database has 62703 rows and each row of the database
contains its data encoded in the base64 format. The data
contains the following information:

• the public key - represented by the moduli N and the
public exponent e

• the private key - represented by the prime numbers p
and q whose product gives N . It also contains the values
of dP , dQ and Q−1. These keys contain the necessary
elements that can be used in Chinese Remainder’s The-
orem for decrypting the private key. Lastly the row also
contains the private exponent d.

All the generated keys have a 2048 length. An interesting
observation is that all the keys have the same public exponent
AQAB in BASE64 format or 65537 in decimal format. This
exponent is the standard one used because it is a compromise
between being a high enough number in order for the key
to be secure and the computational cost of performing an
exponentiation. Another reason is due to it being a Fermat
prime number which makes exponentiation a lot faster.

IV. SCENARIOS AND RESULTS

Table II shows the results extracted from database provided
by [9] which contained a total number of 44474713 keys.
The results from the 512-bit length keys was done using the
naive approach (to demonstrate how weak 512-bit RSA is) by
computing all-pairs GCD using Euclid’s algorithm. Using an
AMD quad-core x86 64 CPU, running at 3.9GHz, with 6 GB
RAM we were able to perform 720k GCD computations per
second for 512-bit length RSA. We also used this approach for
some of the 1024-bit length RSA keys using two approaches:
exhaustive search for matches on a set of 100k keys (phase
I) and trying to match the 2 divisors from the previous set
against the full dataset (phase II). The two phases from naive
approach took 48 hours for 1024-bit RSA and about 8 hours
for 512-bit RSA.

The third approach (phase III) on 1024-bit RSA was to
use the fast GCD implementation done by [8]. Because of



Len/Ph Total keys Pairs GCDs Broken
512-bit 323338 52273246116 4717 12209 (3.7%)

1024 (ph I) 100000 4999850001 2 6 (0.0006%)
1024 (ph II) 26177420 53738048 6806 13617 (0.05%)

Table I
RESULTS OF RSA KEYS FROM 2012-2013 SCAN OF X.509 CERTIFICATES

the limited amount of RAM of our systems we broke the
26177420 (which is 60%) total number of 1024-bit keys from
the dataset in chunks of 800000, thus comparing a key with the
product of the other 799999 keys, and used 8 threads. Using
this approach computation took only 18944.7 seconds. In this
third approach there was no pairs approach. Out of 26177420
keys tested, about 0.25% (meaning 63502) keys were found
to be broken.

During two weeks of Github crawling between 22 December
2015 and 7 January 2016 we managed to discover that only
26% of the users we processed (approximatively 3 million
Github users) had public SSH-RSA keys configured. 1 key
was 512-bit length and only 12 keys were 16384-bit length.
0.51% were 1024-bit length,

Len Percent keys
512 1 key

1024 0.51%
2048 55,5%
4096 3%
8192 0.01%
other 41%

Table II
RESULTS OF GITHUB SCANNED KEYS

The single 512-bit RSA key discovered through Github
crawling was ran against our set of databases and was found
to be broken. For the other lengths, by comparing keys
between them, no vulnerability was found. It is needed now
a smarter method to compare the 1024 and 2048 bit lengths
with databases available.

Regarding Estonia LDAP with RSA IDs a big limitation was
the restrictions on the number of queries. Thus we were not
able to extract a relevant number of keys to find vulnerabilities.

Overall, the generated public keys for ransomware virus
from [20] seemed to be secure due to their length (2048-bit).
Comparing the keys between them, the entropy did not raise
any concern, as no vulnerability was discovered by any of our
GCD approaches.

V. CONCLUSION AND FURTHER WORK

The results and facts presented in this paper should discour-
age the use of RSA keys having lengths less or equal to 1024
bits and force readers to use at least 2048-bit long keys, pay
more attention to random number generators in their system
(if they used Debian or derivates in 2008-2009 to generate
RSA keys, they should re-generate a new pair and revocate
the keys that might be compromised). Multiple online tools
such as the ones by [12] have been developed for fast, local

sanity checks, of freshly-generated RSA keys, but this is not
enough. Users should be aware that, when using RSA, there is
always a hacker with enough computing power and patience
crawling for public keys and searching for vulnerabilities.
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