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Abstract

Jon Williamson’s Objective Bayesian Epistemology relies upon a calibra-
tion norm to constrain credal probability by both quantitative and qualitative
evidence. One role of the calibration norm is to ensure that evidence works
to constrain a convex set of probability functions. This essay brings into fo-
cus a problem for Williamson’s theory when qualitative evidence specifies
non-convex constraints.

Jon Williamson (2010) provides a spirited defense of a version of Objective
Bayesianism which relies upon a calibration norm to constrain credal probability
by evidence. According to this norm, an agent’s degrees of belief should be con-
strained by two types of evidence: quantitative evidence, which directly constrains
admissible values of chance functions, and qualitative evidence, such as logical
or causal constraints on chance variables, which may indirectly constrain chance
functions. Once those constraints are in place, the theory maintains that the agent’s
degrees of belief should be maximally equivocal between the basic outcomes.

I have discussed the calibration norm with sympathy (Wheeler and Williamson
2011), although in that setting our aim was to reconcile the reference class reason-
ing machinery of Evidential Probability (Kyburg and Teng 2001) with Williamson’s
Objective Bayesian Epistemology (OBE), so we naturally played down the differ-
ences between the two theories. Nevertheless, I have reservations about viewing
OBE as a general theory for rational belief. So, in response to Williamson’s call to
go whole hog, I would like to bring into focus a problem for OBE that arises when
qualitative evidence prescribes non-convex constraints on a set of chance functions.

The mechanics of OBE depend on a convex set of probability functions, and
one role the calibration norm plays is to enforce this convexity condition. This can
be a reasonable approach when the endpoints of an interval designate upper and
lower bounds on admissible degrees of belief and the question to answer is what
point within this range represents the most cautious position for an agent to take.
That is the question that OBE is set up to answer, and it does so by advising the
agent to pick the most equivocal point within the convex hull of admissible options
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delineated by the calibration norm. In practice this means that OBE shuns both
high and low probabilities within a given set when a more equivocal alternative is
available. The problem is that not all evidence fits the OBE mold. In particular,
non-convex evidence can reverse the order of what is “extreme” and what is “cau-
tious” to believe, throwing the weight of the theory behind precisely the wrong
candidates for rational belief.

What is more, the calibration postulates only give a definition of calibrated
sets of probability functions rather than an algorithm for how to construct those
sets. As it turns out, applying the calibration norm is a case-by-case exercise, one
that depends crucially on judgments about how to model quantitative and qualita-
tive evidential constraints. The instrumental role that interpretation plays, absent
a general method for calibrating evidence, threatens to render OBE objective in
name only.

As a preview of what is to come, we first recount Williamson’s postulates for
calibration and then demonstrate that the postulates cannot be interpreted as a pro-
cedure for constructing calibrated sets of probability functions. Then we demon-
strate that the calibration norm cannot be interpreted as a general norm for char-
acterizing evidence by showing that calibration fails to correctly constrain degrees
of belief when evidence is non-convex. Finally, in closing, we observe that despite
claims to the contrary, OBE fails to clearly distinguish between known evidence
and belief.

1 Formal Preliminaries

The strength of an agent’s belief is assumed to be representable by a probability
function, P, which is defined in standard form with respect to a probability space
(Ω,F ,P) such that F is a σ -algebra over a set Ω and P : F −→ [0,1] is a proba-
bility measure defined on the space (Ω,F ,P) satisfying

(P1) P(Ω) = 1

(P2) P(
⋃

∞
i=1 Xi) = ∑

∞
i=i P(Xi), when Xi are countable, pairwise disjoint elements

of F .

A probability structure is a tuple M = (Ω,F ,P,V ), where (Ω,F ,P) is a probabil-
ity space and V is an interpretation function associating each element ω ∈ Ω with
a truth assignment on the primitive propositions A,B, . . . in an agent’s language L
such that V (ω)(A) ∈ {1,0} for each ω ∈Ω and for every proposition in L .

For each primitive proposition in L , we define M,ω |= A iff V (ω)(A) = 1 and
proceed by induction on the structure of propositional formulas. Since P is defined
on events in F rather than propositions, let [[A]]M denote the set of outcomes within
Ω in M where A is true, which will correspond to a subset of F . The following
makes explicit the relationship between propositions in L and events within M,
for arbitrary propositional formulas A and B:
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i. [[A∧B]]M = [[A[]M ∩ [[B]]M,

ii. [[A∨B]]M = [[A[]M ∪ [[B]]M,

iii. [[¬A]]M = [[A[]M.

This relationship licenses us to abuse notation by writing P(A) for P([[A]]M). From
here on we assume that L and Ω are finite.

OBE rests on three norms.

Probability: The strengths of an agent’s beliefs should be representable by
a probability function;

Calibration: The agent’s degrees of belief should satisfy constraints im-
posed by his evidence;

Equivocation: The agent’s degrees of belief should otherwise be sufficiently
equivocal, i.e., the agent’s credal probability should be sufficiently close to
the equivocator function that assigns atomic states the same probability.

Our concern here is the Calibration norm. The purpose of Calibration is to spell
out how background evidence E should determine the composition of a set E of
probability functions from which the rational agent’s credal probability function
PE is selected. Williamson describes this norm as having two components:

First, if the evidence [E ] implies that the physical chance function
P∗ on L lies in some set P∗ of probability functions on L , then the
agent’s belief function PE should lie in the convex hull 〈P∗〉 of P∗,
the smallest set containing P∗ that is closed under convex combina-
tions. . . .

Second, qualitative evidence of, for example, causal, logical, hier-
archical, or ontological structure imposes certain structural constraints
which force PE to lie in a set S of probability functions on L that sat-
isfy those constraints (Williamson 2010, p. 28).

It turns out that there are different ways to combine qualitative and quantitative
evidence which yield different convex sets of chance functions. So, it is misleading
to refer to the convex hull of P∗. More to the point, insofar as OBE is committed to
first taking the convex closure of a set of chance functions, followed by imposing
qualitative constraints on that convex set, problems can arise. We return to this
point in Section 3.

The following six conditions define the Calibration norm (2010, pp. 39–48, my
notation).

(C1) If A ∈ S(L ) is in the agent’s evidence base E and this evidence E is consis-
tent, then PE (A) = 1.1

1S(L ) denotes the set of sentences of L .
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(C2) Miller’s Principle: If P∗(A) = x is the evidence in E that is most pertinent to
A, and A ∈ S(L ), then PE (A) = x.2

(C3) E 6= /0.

Condition C3 stipulates that E is consistent, and the next two conditions install
convexity as the consistency maintenance mechanism.

(C4) If P∗ is most pertinent to L , then 〈P∗〉 ⊆ E.

(C5) E⊆ 〈P∗〉.

Here P∗ is a set of chance functions, 〈P∗〉 is a convex set of chance functions, and
P∗ is most pertinent to L “if the agent were to grant that P∗ ∈ P∗, then that piece of
evidence would be most pertinent to each A on L ” (2010, p. 45). Finally, “taking
C4 and C5 together, as long as P∗ is most pertinent to L , E = 〈P∗〉” (2010, p. 45).

Postulates C1 to C5 describe the conditions for regulating quantitative evi-
dence, which is the first component to the calibration principle. The second com-
ponent concerns qualitative evidence, which Williamson treats as a constraint on a
convex set of chance functions:

(C6) E⊆ S.3

Then, Williamson argues, if “we suppose that structural and chance constraints ex-
haust the ways in which evidence constrains rational degrees of belief, then [these
six postulates] motivate the following explication of a Calibration norm” (2010, p.
47):

(C) PE ∈ E = 〈P∗〉∩S.

2 A definition without a procedure

While Williamson’s postulates may explicate E, they should not be viewed as spec-
ifying a procedure for how to construct E. For suppose the postulates were inter-
preted as a step-by-step procedure for constructing E, a procedure whereby first
a set of chance functions is closed under convex combinations, then further con-
strained by qualitative evidence. It is possible for this procedure to yield a set E
that either fails to remain convex or fails to remain faithful to the evidence.

To illustrate this point, consider the following example.
2‘Most pertinent’ is defined as follows: “Given A, evidence E ′ in E is the evidence most pertinent

to A if it is a minimal set of evidence that screens off all other evidence from A: that is, if {PE (A) :
PE ∈ E} = {PE ′(A) : PE ′ ∈ E′} and there is no E ′′ ( E ′ such that {PE (A) : PE ∈ E} = {PE ′′(A) :
PE ′′ ∈ E′′}. Here E (respectively E′,E′′) is the set of probability functions compatible with evidence
E (respectively E ′,E ′′)” (2010, p. 39-40).

3I omit the details of Williamson’s definition of non-parametric, qualitative constraints, since our
discussion will not depend on the details of the construction of qualitative constraints but rather on
whether the calibration norm correctly represents qualitative evidence in general.
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Suppose there is a trick coin that is either biased 0.99 heads or bi-
ased 0.99 tails, but you do not know which. How strongly should you
believe that a regular toss of this coin will show heads?

According to OBE, if this is all you know about the experiment, your evidence for
the biased coin landing heads, H, is that either P∗1 (H) = 0.99 or P∗2 (H) = 0.01.
So, by the calibration norm, your credal probability function PE should lie in the
convex hull of your evidence set, E. The question now is how to construct E.

Suppose that E is constructed by taking the smallest set containing P∗= {P∗1 ,P∗2 }
plus all convex combinations λP∗1 +(1−λ )P∗2 , for λ ∈ [0,1]. Within E is the dis-
tribution P1/2, defined by λ = 1/2. It follows that P1/2(H) = 1/2 and, according to the
equivocation norm, your degree of belief that a single regular toss of this coin will
land heads should be 1/2.

However, to borrow an example of Richard Jeffrey’s (1987),4 notice what hap-
pens if we consider two regular tosses of the coin rather than a single toss. Al-
though P∗1 (H1) = P∗1 (H2) = 0.99 and P∗2 (H1) = P∗2 (H2) = 0.01, the measure P1/2

fails to preserve independence for the event of seeing both tosses land heads:

P1/2(H1,H2) =
P∗1 (H1)P∗1 (H2)

2
+

P∗2 (H1)P∗2 (H2)
2

= 0.4901, but

6= 0.5 = P∗1/2(H1)P∗1/2(H2).

Since P∗1/2
in E fails to preserve independence, then E does not accurately represent

the ways in which evidence constrains rational degrees of belief in the event of the
coin landing heads on two tosses.

The problem of reconciling stochastic independence with convex closure con-
ditions for sets of probabilities is not a new one (Levi 1980, Jeffrey 1987, Kyburg
and Pittarelli 1996, Schervish et al. 2003, Haenni et al. 2011, Cozman 2011). The
problem is that moving from a single distribution to a convex set of distributions
introduces a plurality of independence concepts, and this splintering of probabilis-
tic independence has ramifications for rational choice (Levi 1980, Seidenfeld and
Wasserman 1993, Kyburg and Pittarelli 1996), statistical inference (Walley 1991),
and probabilistic logic (Haenni et al. 2011), mainly because some inferences from
independence conditions which are perfectly sound in the context of a single prob-
ability distribution are fallacious in the context of a set of distributions.

Even so, there is a way around Jeffrey’s example, and Williamson is well aware
of this (Haenni et al. 2011, Chapter 8). Call two random variables, X and Y , com-
pletely stochastically independent5 if for all P ∈ P,

P(X ∈ {0,1}∩Y ∈ {0,1}) = P(X ∈ {0,1})P(Y ∈ {0,1}),
4 Thanks here to an anonymous referee.
5 This term is due to Teddy Seidenfeld.
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which guarantees that

P(X ∈ {0,1} | Y ∈ {0,1}) = P(X ∈ {0,1}), when P(Y ∈ {0,1}) > 0.

Then, to characterize a convex mixture E from P∗1 and P∗2 which treats the two coin
tosses as completely stochastically independent, define P = λP∗1 +(1−λ )P∗2 such
that

α = P(H1) = 1−P(T1),
β1 = P(H2 | H1) = 1−P(T2 | H1)
β2 = P(H2) | T1) = 1−P(T2 | T1)

and β1 = β2 (Haenni et al. 2011, p. 89).6 The coordinates α,β1, and β2 give a
parameterization of the convex set of join probability distributions for two inde-
pendent coin tosses, where α is simply the probability that the first toss will land
heads, and β1 and β2 are the probability that the second toss will land heads given
that the first toss landed heads and the probability that the second toss will land
heads given that the first toss landed tails, respectively.

While these equational constraints ensure that E treats the two tosses as inde-
pendent, thus allowing us to steer around Jeffrey’s example, the price paid is that
the OBE postulates for calibration cannot be viewed as a procedure for how to
constrain degrees of belief by evidence. Because there are different ways to pa-
rameterize a set of chance functions, and these different parameterizations yield
different closed convex hulls, it is misleading to refer to the convex hull of P∗; yet,
OBE is silent on how to construct the correct one.

3 Independence and epistemic relevance

The question of how to construct a calibrated set might be a secondary concern if
OBE were to provide the correct characterization of how evidence should constrain
degrees of belief. After all, the problem raised in the last section is that some closed
convex set of chance functions fail to satisfy all the evidential constraints, not that
there are two different ways to satisfy all the calibration postulates. However, in
this section we argue that OBE cannot be relied on to give the correct specifica-
tion of calibrated evidence. The problem is that OBE does not correctly handle
nonconvex evidential constraints.

To illustrate the problem, consider once again the biased coin example from
before. In addition to the pair of tosses being stochastically independent, another
feature of the example is that the evidence about the experiment is not convex:
the coin is either strongly biased heads or strongly biased tails. This constraint is
useful information that the calibration norm nevertheless throws out by design.

Suppose we represent that the tosses are stochastically independent as above,
replacing the two element set P by a convex hull 〈P〉 on which the pair of tosses

6 This example is due to Jan-Willem Romeijn.
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are completely stochastically independent. Then, this parameterization effectively
replaces an informative constraint on degrees of belief for a second toss, given the
outcome of the first, by no constraint at all. Because even though the tosses are
stochastically independent, observing the outcome of the first toss is nevertheless
epistemically relevant to your estimate of seeing heads on the second toss: given
the outcome of the first toss, the probability that the second toss will match is 0.99.
But if the convex hull 〈P〉 models the tosses as completely stochastically indepen-
dent, then there is no way for the agent to learn about the bias from observing the
outcome of the first toss.

Williamson, discussing a slightly different biased-coin example presented in
(Kyburg and Pittarelli 1996), where either P∗1 (H) = 1 or P∗2 (H) = 0, appears to bite
this bullet:

Clearly, if H has chance 0 or 1, then betting at rate 1/2 on H over
and again may lead to loss (though not sure loss: . . . there is no scope
for a Dutch book argument here). But that is no reason to preclude
initially believing H to degree 1/2 (Williamson 2010, p. 45, my nota-
tion).

We will return to this avoidance of sure loss argument in a moment. For now, notice
that even if the objective Bayesian manages to avoid certain loss in the long-run,
he does so by stubbornly suffering a loss every step of the way.

Worse still, suppose we set out to moderate the objective Bayesian’s stubborn-
ness by allowing him to learn from tosses of the biased coin. A first step would be
to view the events as dependent after all. Never mind that this would run counter
to the view that E is a set of chance functions, since we are now considering the
structure of the agent’s credal state rather than the evidence from the experiment.
Set aside that the calibration postulates are not sufficient to characterize a unique
E, since they pertain to chance functions rather than epistemic states. Ignore for a
moment what principles OBE would use for learning in place of conditionalization.
Notice that this learning procedure would still have to reckon with a non-zero prob-
ability that the second outcome will not match the first. This means that the calibra-
tion norm will still yield a working interval of [0.01,0.99]. Since OBE scores the
two original probabilities, P∗1 (H2 |H1) = 0.99 and P∗s (H2 |H1) = 0.01, as the most
extreme candidates within E, even if OBE were to restore learning by discounting
the bias towards one side as evidence mounted from observing outcomes of the
other, the equivocation norm would nevertheless pull against converging to either
PE (H) = 0.99 or PE (H) = 0.01 for any finite sequence of tosses. This misalign-
ment only disappears asymptotically, which means that OBE will have it exactly
backwards every step of the way, mistaking the most reasonable answer for the
least reasonable option available.

Turn now to Williamson’s avoidance of sure loss argument. Williamson con-
cedes that equivocal degrees of belief may open an agent to loss, but he argues that
this OBE policy is justifiable on the grounds of minimizing worst-case expected
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loss on average (Williamson 2010, p. 66ff.). However, his argument for minimiz-
ing average expected loss is made assuming a sample of convex evidence sets, by
hypothesis, where the extremal points of each convex set of chance functions are
interpreted as defining a polytope within which the true chance function lies. But
this is precisely the assumption which non-convex evidence rules out. Thus, the
avoidance of sure loss argument does not apply. So, by ignoring non-convex evi-
dential constraints and replacing them by closed convex sets, OBE gets it right in
at most two cases: initially, when the agent has no information about which way
the coin is biased, and here only if the biases are symmetric,7 and asymptotically,
when there is no other option left standing. For all points in between these two lim-
its, which is precisely where we should expect the theory to explain how evidence
constraints rational belief, Objective Bayesian Epistemology will recommend the
least prudential belief possible.

4 Conclusion

The normative force of an OBE inference hinges on evidence correctly constraining
the agent’s admissible degrees of belief, since this will define the options over
which the agent is expected to equivocate. Nevertheless, applying the calibration
norm is a subtle affair, with judgment playing an instrumental role in deciding how
to model quantitative and qualitative evidential constraints. Yet, even with this
leeway, the theory cannot correctly model non-convex evidence.

In closing, there is another point that falls out from this discussion. Despite
claims to the contrary (Williamson 2007, pp. 176–7), OBE does not clearly sep-
arate the task of modeling an agent’s rational epistemic state from modeling the
evidence which justifies that state. As we observed, the non-convex evidence about
the biased coin experiment is informative, allowing an agent to learn from previous
tosses to quickly make an accurate estimate of the probability of seeing heads on
subsequent tosses. But, OBE cannot exploit this information in its modeling of the
evidence, and it cannot do so because the structure of the evidence clashes with the
machinery for representing the agent’s epistemic state.
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7Consider: an initial credence of 1/2 would not be reasonable if we were told instead that the coin
was either biased heads 0.01 or 0.51.
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