
ABSTRACT The current recommended dietary allowance
(RDA) for vitamin C for adult nonsmoking men and women is
60 mg/d, which is based on a mean requirement of 46 mg/d to
prevent the deficiency disease scurvy. However, recent scientific
evidence indicates that an increased intake of vitamin C is
associated with a reduced risk of chronic diseases such as cancer,
cardiovascular disease, and cataract, probably through
antioxidant mechanisms. It is likely that the amount of vitamin C
required to prevent scurvy is not sufficient to optimally protect
against these diseases. Because the RDA is defined as “the
average daily dietary intake level that is sufficient to meet the
nutrient requirement of nearly all healthy individuals in a group,”
it is appropriate to reevaluate the RDA for vitamin C. Therefore,
we reviewed the biochemical, clinical, and epidemiologic
evidence to date for a role of vitamin C in chronic disease
prevention. The totality of the reviewed data suggests that an
intake of 90–100 mg vitamin C/d is required for optimum
reduction of chronic disease risk in nonsmoking men and
women. This amount is about twice the amount on which the
current RDA for vitamin C is based, suggesting a new RDA of
120 mg vitamin C/d. Am J Clin Nutr 1999;69:1086–107.
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INTRODUCTION

Vitamin C (ascorbic acid) is an essential micronutrient
required for normal metabolic functioning of the body (1).
Humans and other primates have lost the ability to synthesize
vitamin C as a result of a mutation in the gene coding for
L-gulonolactone oxidase, an enzyme required for the biosynthe-
sis of vitamin C via the glucuronic acid pathway (2). Thus, vita-
min C must be obtained through the diet. The vitamin is espe-
cially plentiful in fresh fruit, in particular citrus fruit, and
vegetables (3). A lack of vitamin C in the diet causes the defi-
ciency disease scurvy (4). This potentially fatal disease can be
prevented with as little as 10 mg vitamin C/d (5), an amount eas-
ily obtained through consumption of fresh fruit and vegetables.

The current recommended dietary allowance (RDA) for vita-
min C is 60 mg/d for healthy, nonsmoking adults (6). The RDA
is determined by the rate of turnover and rate of depletion of an
initial body pool of 1500 mg vitamin C and an assumed absorp-

tion of <85% of the vitamin at usual intakes (7). This amount
provides an adequate margin of safety: 60 mg/d would prevent
the development of scurvy for <1 mo with a diet lacking vitamin C
(7). The RDAs are determined primarily on the basis of preven-
tion of deficiency; because scurvy is not a major health problem
in the United States, this goal is clearly accomplished by the cur-
rent RDA for vitamin C. Nevertheless, <25% of men and
women in the United States consume < 60 mg vitamin C/d and
<10% of adults consume < 30 mg/d (3).

The molecular mechanisms of the antiscorbutic effect of
vitamin C are largely, although not completely, understood. Vita-
min C is a cofactor for several enzymes involved in the biosyn-
thesis of collagen, carnitine, and neurotransmitters (8, 9). Pro-
collagen-proline dioxygenase (proline hydroxylase) and
procollagen-lysine 5-dioxygenase (lysine hydroxylase), 2
enzymes involved in procollagen biosynthesis, require vitamin C
for maximal activity (10). Posttranslational hydroxylation of
proline and lysine residues by these enzymes is essential for the
formation and secretion of stable collagen helixes. A deficiency of
vitamin C results in a weakening of collagenous structures, caus-
ing tooth loss, joint pains, bone and connective tissue disorders,
and poor wound healing, all of which are characteristics of
scurvy (8). Two dioxygenases involved in the biosynthesis of
carnitine also require vitamin C as a cofactor for maximal activ-
ity (8). Carnitine is essential for the transport of activated long-
chain fatty acids into the mitochondria; as a result, vitamin C defi-
ciency results in fatigue and lethargy, early symptoms of scurvy.
In addition, vitamin C is used as a cofactor for catecholamine
biosynthesis, in particular the conversion of dopamine to norep-
inephrine catalyzed by dopamine b-monooxygenase (8). Depres-
sion, hypochondria, and mood changes frequently occur during
scurvy and could be related to deficient dopamine hydroxylation.

The activities of several other enzymes are known to be depen-
dent on vitamin C, although their connection to scurvy has not yet
been clearly established. These enzymes include the mono- and
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dioxygenases involved in peptide amidation and tyrosine metab-
olism (8, 9). Vitamin C has also been implicated in the metabo-
lism of cholesterol to bile acids via the enzyme cholesterol 
7a-monooxygenase and in steroid metabolism in the adrenals (8,
9). Hydroxylation of aromatic drugs and carcinogens by hepatic
cytochrome P450 is also enhanced by reducing agents such as
vitamin C (9).

The role of vitamin C in the above metabolic pathways is to
reduce the active center metal ion of the various mono- and
dioxygenases (8, 9). Unlike other water-soluble vitamins, vita-
min C acts as a cosubstrate in these reactions, not as a coenzyme.
The ability to maintain metal ions in a reduced state is related to
the redox potential of vitamin C (11). Reduction of iron by vita-
min C has also been implicated in enhanced gastrointestinal
absorption of dietary nonheme iron (8, 12). Other proposed
activities of vitamin C include maintenance of enzyme thiols in
a reduced state and sparing of glutathione, an important intracel-
lular antioxidant and enzyme cofactor (13), and tetrahydrofolate,
a cofactor required for catecholamine biosynthesis (9).

Many biochemical, clinical, and epidemiologic studies have
indicated that vitamin C may be of benefit in chronic diseases
such as cardiovascular disease, cancer, and cataract (5, 14, 15).
The amount of vitamin C required to prevent scurvy may be less
than the amount necessary to maintain optimal health and reduce
the incidence of chronic disease morbidity and mortality. The
Food and Nutrition Board of the US National Academy of Sci-
ences has changed the criteria for establishing RDAs from pre-
vention of deficiency disease to prevention of chronic diseases.
Therefore, in this review we address whether the current RDA of
60 mg vitamin C/d is sufficient for optimally reducing the risk of
chronic diseases such as cardiovascular disease and cancer, as
well as cataract. We also address whether the activity of vitamin C
in these conditions is due to its antioxidant properties or to other
proposed mechanisms.

VITAMIN C AS AN ANTIOXIDANT

Vitamin C is an important water-soluble antioxidant in bio-
logical fluids (16, 17). An antioxidant has been defined as “any
substance that, when present at low concentrations compared to
those of an oxidizable substrate (e.g., proteins, lipids, carbohy-
drates and nucleic acids), significantly delays or prevents oxida-
tion of that substrate” (11). The definition proposed by the Panel
on Dietary Antioxidants and Related Compounds of the Food
and Nutrition Board is that “a dietary antioxidant is a substance
in foods that significantly decreases the adverse effects of reac-
tive oxygen species, reactive nitrogen species, or both on nor-
mal physiological function in humans” (18). Vitamin C readily
scavenges reactive oxygen and nitrogen species, such as super-
oxide and hydroperoxyl radicals, aqueous peroxyl radicals, sin-
glet oxygen, ozone, peroxynitrite, nitrogen dioxide, nitroxide
radicals, and hypochlorous acid (11), thereby effectively protect-
ing other substrates from oxidative damage. Although vitamin C
also reacts rapidly with hydroxyl radicals (rate constant 
>109 L ·mol21 · s21), it is nevertheless unable to preferentially
scavenge this radical over other substrates (19). The reason for
this is that hydroxyl radicals are extremely reactive and will com-
bine indiscriminately with any substrate in their immediate envi-
ronment at a diffusion-limited rate. Vitamin C can also act as a
coantioxidant by regenerating a-tocopherol (vitamin E) from the
a-tocopheroxyl radical, produced via scavenging of lipid-soluble

radicals (20, 21). This is a potentially important function because
in vitro experiments have shown that a-tocopherol can act as a
prooxidant in the absence of coantioxidants such as vitamin C (21,
22). However, the in vivo relevance of the interaction between vita-
min C and vitamin E is unclear. Vitamin C has also been shown to
regenerate urate, glutathione, and b-carotene in vitro from their
respective one-electron oxidation products, ie, urate radicals, glu-
tathiyl radicals, and b-carotene radical cations (11, 23).

Two major properties of vitamin C make it an ideal antioxidant.
First is the low one-electron reduction potentials of both ascorbate
(282 mV) and its one-electron oxidation product, the ascorbyl rad-
ical (2174 mV), which is derived from the ene-diol functional
group in the molecule (11). These low reduction potentials enable
ascorbate and the ascorbyl radical to react with and reduce basi-
cally all physiologically relevant radicals and oxidants. For this
reason, vitamin C has been said to be “at the bottom of the peck-
ing order” and “to act as the terminal water-soluble small mole-
cule antioxidant” in biological systems (24). The second major
property that makes vitamin C such an effective antioxidant is the
stability and low reactivity of the ascorbyl radical formed when
ascorbate scavenges a reactive oxygen or nitrogen species (Eq 1).
The ascorbyl radical readily dismutates to form ascorbate and
dehydroascorbic acid (Eqs 1 and 2), or is reduced back to ascor-
bate by an NADH-dependent semidehydroascorbate reductase (9,
20, 25). The 2-electron oxidation product of ascorbate, dehy-
droascorbic acid, can itself be reduced back to ascorbate by glu-
tathione, the glutathione-dependent enzyme glutathione:dehy-
droascorbate oxidoreductase [glutathione dehydrogenase
(ascorbate), or glutaredoxin], or the NADPH-dependent selenoen-
zyme thioredoxin reductase (9, 20, 25). Alternatively, dehy-
droascorbic acid is rapidly and irreversibly hydrolyzed to 2,3-
diketogulonic acid (DKG) (Eq 3) (11).

AH2 ↔ A•2 ↔ A (1)

A•2 + A•2 → AH2 + A (2)

A → DKG → oxalate, threonate, etc (3)

where equation 1 shows the reversible 1- and 2-electron oxidation
of ascorbate (AH2) to the ascorbyl radical (A•2) and dehy-
droascorbic acid (A), respectively; equation 2 shows the dismuta-
tion of the ascorbyl radical to form ascorbate and dehydroascorbic
acid; and equation 3 shows the hydrolysis of dehydroascorbic acid
to DKG, which then decomposes to oxalate, threonate, and many
other products.

Vitamin C has been recognized and accepted by the US Food
and Drug Administration (FDA) as one of 4 dietary antioxidants,
the other 3 being vitamin E, the vitamin A precursor b-carotene,
and selenium, an essential component of the antioxidant
enzymes glutathione peroxidase and thioredoxin reductase. The
Panel on Dietary Antioxidants and Related Compounds of the
Food and Nutrition Board (26) has, in principle, concurred with
this definition, and in addition will consider other carotenoids.
New regulations were recently published in which the FDA
stated that vitamin C serves as an effective free radical scavenger
to protect cells from damage by reactive oxygen molecules (27).
Statements of the antioxidant properties of vitamin C are also
appearing on food labels and in nutrient content claims through-
out the United States.

Although substantial scientific evidence exists regarding the
antioxidant and health effects of vitamin C in humans, further
investigations of the role of vitamin C both in vitro and in vivo
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are warranted, particularly because vitamin C, being a redox-
active compound, can act not only as an antioxidant, but also as
a prooxidant in the presence of redox-active transition metal ions
(11). Reduction of metal ions such as iron or copper by vitamin C
in vitro (Eq 4) can result in the formation of highly reactive
hydroxyl radicals via reaction of the reduced metal ions with
hydrogen peroxide, a process known as Fenton chemistry (Eq 5).
Lipid hydroperoxides may also be broken down by the reduced
metal ions, resulting in the formation of lipid alkoxyl radicals
(Eq 6) that can initiate and propagate the chain reactions of lipid
peroxidation (28). The mechanism shown in equation 5, how-
ever, requires the availability of free, redox-active metal ions and
a low ratio of vitamin C to metal ion, conditions unlikely to occur
in vivo under normal circumstances (11, 15, 28). Furthermore, it
was shown recently that in biological fluids such as plasma, vita-
min C acts as an antioxidant toward lipids even in the presence
of free, redox-active iron (29).

AH2 + M(n+1) → A•2 + Mn + H+ (4)

H2O2 + Mn → •OH + OH2 + M(n+1) (5)

LOOH + Mn → LO• + OH2 + M(n+1) (6)

where equation 4 shows the reduction of redox-active metal ions
[M(n+1)] by ascorbate to form the ascorbyl radical and the
reduced metal (Mn), equation 5 shows the production of highly
reactive hydroxyl radicals (•OH) from the reaction of hydrogen
peroxide (H2O2) with the reduced metal ions, and equation 6
shows the reaction of lipid hydroperoxides (LOOH) with
reduced metal ions to form alkoxyl radicals (LO•).

Although there is no convincing evidence for a prooxidant
effect of vitamin C in humans, there is substantial evidence for
vitamin C’s antioxidant activity. Interestingly, the antioxidant
activity of vitamin C is not directly related to its antiscorbutic
effect. Therefore, if the antioxidant activity of vitamin C is
accepted as occurring in vivo and considered to be relevant to
human health by the Panel on Dietary Antioxidants and Related
Compounds of the Food and Nutrition Board, then scurvy should
not be used as the sole criterion for nutritional adequacy or to
determine the required or optimal amount of vitamin C. In this
section of the review, therefore, we address the following ques-
tions: 1) Is oxidative damage to biological macromolecules rele-
vant to human chronic diseases? 2) What is the evidence that vita-
min C acts as an antioxidant in humans? 3) Are there other
mechanisms, besides those directly related to the antiscorbutic
and antioxidant activities of vitamin C, by which vitamin C could
affect chronic disease incidence, mortality, or both? and 4) Does
vitamin C lower chronic disease incidence, mortality, or both?

Is oxidative damage to biological macromolecules relevant
to human chronic diseases?

Oxidative damage to biomolecules, such as lipids, DNA, and
proteins, has been implicated in many chronic diseases, in particu-
lar, cardiovascular disease, cancer, and cataract, respectively (30).

LDL oxidation and cardiovascular disease

Oxidative processes have been strongly implicated in athero-
sclerosis, myocardial infarction, and stroke (31). The oxidative
modification hypothesis of atherosclerosis is currently the most
widely accepted model of atherogenesis. LDL, the major carrier
of cholesterol and lipids in the blood (32), infiltrates the intima
of lesion-prone arterial sites, where it is oxidized over time by

oxidants generated by local vascular cells or enzymes (33) to a
form that exhibits atherogenic properties. Minimally oxidized
LDL and cytokines can activate endothelial cells to express sur-
face adhesion molecules, primarily vascular cell adhesion mole-
cule 1 and intercellular adhesion molecule 1 as well as monocyte
chemotactic protein 1, which cause circulating monocytes to
adhere to the endothelium and migrate into the artery wall (31).
The monocytes subsequently differentiate into macrophages in
response to macrophage colony stimulating factor, the expres-
sion of which by vascular cells also is enhanced by modified
LDL. The oxidized LDL further inhibits the egress of macro-
phages from the artery wall, where the cells recognize and read-
ily take up the oxidized LDL through a process mediated by
scavenger receptors (31). Unlike the normal apolipoprotein B/E
LDL receptor recognizing native LDL, the scavenger receptors
on macrophages that recognize modified LDL are not tightly
regulated; as a result, the macrophages are converted into foam
cells, a component of fatty streaks and the hallmark of athero-
sclerosis.

It is still uncertain which factors are responsible for the oxida-
tion of LDL in vivo. LDL can be oxidized into a potentially
atherogenic form in vitro through metal-ion-dependent oxidation
of its lipid component with subsequent modification of apolipopro-
tein B-100 by reactive aldehyde products of lipid peroxidation,
particularly malondialdehyde and 4-hydroxynonenal (34).
Whether catalytic metal ions are available in the early lesion in
vivo remains a matter of debate (28). Several metal-ion-indepen-
dent mechanisms that are primarily enzymatic in nature have been
proposed; these include mechanisms involving 15-lipoxygenase
and myeloperoxidase (33, 35). The problems of comparing LDL
oxidation in vitro with LDL oxidation in vivo were discussed in 2
recent reviews (36, 37).

Several lines of direct evidence point to the formation and
existence of oxidized LDL in vivo. Antibodies to aldehyde-
modified LDL recognize epitopes in human plaques (38) and
LDL extracted from these lesions reacts with antibodies to oxi-
dized LDL and has characteristics identical to those of LDL oxi-
dized in vitro. Aldehyde-modified LDL has also been detected
in plasma, as have autoantibodies to oxidized LDL (31). Anti-
bodies to hypochlorous acid–modified protein have detected
epitopes in lesions, suggesting an alternative or additional
mechanism of LDL oxidation (39). F2-isoprostanes, stable mark-
ers of lipid oxidation, have been detected in lesions (40, 41).
Other oxidized lipids also increase with age and severity of ath-
erosclerosis (42). Indirect evidence for in vivo oxidation has
come from antioxidant supplementation studies in animals that
show reduced lesion formation and reduced LDL oxidation (43,
44). In addition, numerous epidemiologic studies have indicated
that dietary antioxidants reduce the incidence of cardiovascular
disease in humans, as discussed below.

DNA oxidation and mutagenesis and carcinogenesis

Carcinogenesis is a multistage process. Free radicals and oxida-
tive processes have been implicated in both the initiation and the
promotion of carcinogenesis (5, 45). The oxidative hypothesis of
carcinogenesis asserts that many carcinogens can generate free
radicals that damage cells, predisposing these cells to malignant
changes (46). Antioxidants, by neutralizing free radicals and oxi-
dants, can prevent cell damage and subsequent development of
cancer. DNA contains reactive groups in its bases that are highly
susceptible to free radical attack (47) and oxidative DNA damage
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can lead to deleterious mutations (2). It has been proposed that
oxidative damage to DNA occurs continuously in vivo at a rate of
<104 oxidative hits per cell per day (2). Most oxidative lesions are
efficiently repaired by specific DNA glycosylases, but repair is not
100% efficient and the number of lesions accumulates with age.
When the cells divide, the lesions become fixated and mutations
and cancer may result (2). The existence of numerous DNA gly-
cosylases specific for oxidized bases (47) indicates that the latter
are deleterious to human survival and therefore must be repaired.

There are >20 different oxidative DNA lesions, of which 
8-oxoguanine is one of the most abundant and best studied (2). 
8-Oxoguanine is formed by hydroxyl radical, peroxynitrite, or sin-
glet oxygen attack of guanine in the C-8 position and is highly
mutagenic (2). Normally guanine forms a base pair with cytosine,
but 8-oxoguanine tends to pair with adenine. After replication, a
transverse mutation occurs whereby G-C base pairs are replaced 
by A-T base pairs. This may contribute to the formation of cancer
if the lesion occurs at a critical position in an important gene, such
as a tumor suppressor or growth factor gene (2). Smokers, who
have a higher risk of lung cancer than nonsmokers, have elevated
concentrations of 8-oxo-29-deoxyguanosine (8-oxodG) (48–50). 
8-Oxoguanine has also been detected in women with breast cancer
(51, 52). Although direct evidence for the link between DNA oxi-
dation and cancer is still lacking (53), many epidemiologic studies
have suggested that dietary intake of antioxidant vitamins, mainly
from fruit and vegetables, protects against different types of cancer.

Protein oxidation and cataract

Cataract is a dysfunction of the lens resulting from opacifica-
tion, which impedes the transmission of light (54). About 98% of
the solid mass of the lens is protein, predominantly crystallins.
These proteins are long lived and undergo minimal turnover; as a
result, cataract formation is primarily age related. Oxidation of the
lens proteins as a result of chronic exposure to ultraviolet light and
oxygen has been implicated in this process (54, 55). Smoking,
which is known to produce oxidative stress, is also associated with
enhanced cataract risk (56, 57). Evidence of lens protein oxidation
includes loss of sulfhydryl and tryptophan residues with age as
well as formation of disulfides and other covalent cross-linkages.
Deamination and acidification also occur, as well as formation of
advanced glycation end products, particularly in persons with dia-
betes (54, 58). The oxidized proteins accumulate, aggregate, and
eventually precipitate, producing the sequelae of cataract.

The lens contains multiple antioxidant defenses, such as high
concentrations of vitamin C and glutathione, and antioxidant
enzymes such as superoxide dismutase, catalase, and the glu-
tathione peroxidase-reductase system (54, 55). Secondary defenses
include proteolytic enzymes that selectively degrade damaged pro-
teins. With aging, however, antioxidant concentrations in the lens,
including concentrations of vitamin C, may be reduced (54) and the
antioxidant enzymes are prone to inactivation, resulting in
increased protein oxidation in older lenses. Proteolytic activity is
also reduced in older lenses, resulting in accumulation of damaged
proteins (54). Therefore, supplementation with antioxidants such
as vitamin C may reduce the risk of cataract.

What is the evidence that vitamin C acts as an antioxidant
in humans?

The most conclusive evidence that vitamin C acts as an antioxi-
dant in humans has come from supplementation studies using spe-
cific biomarkers of oxidative damage to lipids, DNA, and proteins.

Because these specific oxidative biomarkers have only recently
been developed and continue to be evaluated, only relatively few
studies have investigated the effects on these biomarkers of sup-
plementation with antioxidant micronutrients, including vitamin C.

Lipid oxidation

The most commonly used assay for lipid oxidation, although per-
haps the least specific, measures the aldehyde peroxidation product
malondialdehyde and other aldehydes by reaction with thiobarbi-
turic acid (the so-called thiobarbituric acid–reactive substances, or
TBARS, assay) (59, 60). Other products of lipid peroxidation, such
as conjugated dienes and lipid hydroperoxides, are often measured
(61, 62). TBARS and conjugated dienes are also commonly used to
measure the oxidizability, or susceptibility to oxidation, of LDL
(63). The oxidizability of LDL is determined by measuring the lag
time and propagation rate of lipid peroxidation in LDL exposed in
vitro to copper ions or other oxidants and is dependent on the
antioxidant content and lipid composition of LDL (32, 63). Specific
biomarkers of lipid peroxidation are the F2-isoprostanes [in particu-
lar 8-epi-prostaglandin F2a (8-epi-PGF2a)], which are formed from
nonenzymatic, radical-mediated oxidation of arachidonyl-contain-
ing lipids (59). Increased concentrations of F2-isoprostanes have
been detected in persons with diabetes, in smokers, in persons with
hypercholesterolemia (64, 65), and in LDL exposed in vitro to var-
ious types of oxidative stress (66).

Numerous studies in humans have investigated the effects on
the oxidizability of LDL of vitamin C supplementation in com-
bination with vitamin E or b-carotene or both (67). Studies have
been carried out in smokers (68–70), nonsmokers (71, 72), and
persons with hypercholesterolemia or cardiovascular disease
(73, 74). In all cases, a significant reduction in LDL oxidizabil-
ity was observed. It is, however, difficult to determine the rela-
tive contribution of vitamin C in these studies because of the
presence of the cosupplements, of which vitamin E appears to be
the major contributor to protection of LDL. This is because vita-
min E is the most abundant lipid-soluble antioxidant associated
with LDL (32).

Several studies of LDL oxidizability have also been carried out
with vitamin C as the only supplement (Table 1). Although 2 stud-
ies found no effects (80, 81), 2 other studies (76, 84) found a signi-
ficant reduction in the oxidizability of LDL obtained from persons
supplemented with vitamin C. It is difficult to rationalize these
findings, however, because vitamin C, being water soluble, is
removed from the LDL during isolation from plasma. One possible
explanation is the postulated role of vitamin C in either sparing or
recycling vitamin E (15, 84). As mentioned above, this activity is
readily observed in vitro, but evidence for sparing or recycling of
vitamin E by vitamin C in vivo is inconclusive (15, 83, 87).

Several studies investigated the effects of vitamin C supple-
mentation on lipid oxidation markers in smokers (Table 1).
Smokers have higher concentrations of lipid oxidation products
(65, 77) and lower plasma concentrations of vitamin C than do
nonsmokers (88, 89). It has therefore been proposed that supple-
mentation with antioxidant vitamins may inhibit smoking-
related lipid oxidation. Three of 6 studies in smokers reported a
reduction in the markers of lipid oxidation with vitamin C sup-
plementation (75–77). The study by Reilly et al (77) is particu-
larly noteworthy because it measured lipid oxidation with the
specific biomarker 8-epi-PGF2a. Reilly et al found that supple-
mentation of heavy smokers with 2000 mg vitamin C/d for only
5 d significantly reduced the urinary excretion of 8-epi-PGF2a.
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An equal number of studies with vitamin C supplementation
have been carried out in healthy individuals or nonsmokers. A
reduction in lipid oxidation was observed with some markers
(83–85), whereas a nonsignificant decrease (82) or no change
was observed with others (79, 83). Finally, a recent study in
coronary artery disease patients supplemented with 500 mg vita-
min C/d for 1 mo found no change in plasma 8-epi-PGF2a con-
centrations (86). With one exception (80), none of the studies
listed in Table 1 found an increase in lipid oxidation markers
with vitamin C supplementation.

An antioxidant role of vitamin C in vivo is also suggested by ani-
mal studies in guinea pigs or genetically scorbutic (Osteogenic Dis-
order Shionogi, or ODS) rats, which, like humans, are unable to
synthesize vitamin C (90–93). Guinea pigs fed a diet marginally
deficient in vitamin C have significantly higher concentrations of
endogenous malondialdehyde than do animals fed diets supplying
20–40 times the amount of vitamin C required to avoid scurvy (90).
Vitamin C–deficient guinea pigs exhale significantly higher
amounts of breath ethane when exposed to an oxidative stress than
do vitamin C–sufficient animals (92). Note that human smokers
supplemented with 600–1000 mg vitamin C/d in combination with
vitamin E and b-carotene for 3–8 wk exhaled lower amounts of
breath pentane and ethane (68, 94). Genetically scorbutic ODS rats

fed a vitamin C–free diet have higher concentrations of plasma and
liver TBARS and lipid peroxides than do rats fed vitamin C–sup-
plemented diets (91). In a more recent study (93), however, sup-
plementation of ODS rats with vitamin C, in contrast with vitamin E,
did not protect against the endogenous formation of TBARS.

Finally, in vitro experiments with human plasma have shown
that the formation of F2-isoprostanes and lipid hydroperoxides
by aqueous peroxyl radicals, stimulated neutrophils, gas-phase
cigarette smoke, or redox-active iron does not occur until most
or all of the endogenous vitamin C has been depleted (29, 66,
95). Vitamin C has also been shown to protect isolated LDL in
vitro from oxidation by various radicals and oxidants (31). It is
not surprising that vitamin C effectively prevents oxidation of
isolated LDL and lipoproteins in plasma because, as explained
above, vitamin C effectively scavenges most aqueous reactive
oxygen and nitrogen species before they can interact with and
oxidize other substrates, including lipids.

DNA oxidation

Of the >20 known oxidative DNA lesions, the most commonly
measured markers of in vivo DNA oxidation are 8-oxoguanine
and its respective nucleoside 8-oxodG (96). These modified bases
have been detected in cells such as lymphocytes and are also
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TABLE 1
Vitamin C supplementation and biomarkers of lipid oxidation in humans1

Reference Subjects Vitamin C dose Duration Plasma change Findings

Harats et al, 1990 (75) 17 Smokers 1000 mg/d 2 wk 2.0-fold ↓ Plasma and LDL TBARS
1500 mg/d 4 wk 2.3-fold ↓ Plasma and LDL TBARS

Fuller et al, 1996 (76) 19 Smokers (9 Placebo) (<30 mg/d) (2 wk) (Baseline) —
1000 mg/d 4 wk 3.9-fold ↓ LDL oxidizability2 (TBARS, CD)

Reilly et al, 1996 (77) 5 Heavy smokers 2000 mg/d 5 d ND ↓ Urine 8-epi-PFG2a

Mulholland et al, 1996 (78) 16 Female smokers (8 placebo) 1000 mg/d 14 d 3.0-fold Serum TBARS: no change

Cadenas et al, 1996 (79) 21 Healthy males 1000 mg/d 30 d ND Urine TBARS: no change

Nyyssönen et al, 1997 (80) 59 Male smokers (19 placebo) 500 mg/d 2 mo 1.3-fold LDL oxidizability2 (CD), plasma 
TBARS: no change

500 mg/d (SR) 2 mo 1.5-fold LDL oxidizability2 (CD): no 
change; ↑ plasma TBARS 

Samman et al, 1997 (81) 8 Male smokers (40 mg/d) (2 wk) (Baseline) —
1000 mg/d 2 wk 2.0-fold LDL oxidizability2 (CD): no change

Anderson et al, 1997 (82) 48 Nonsmokers 60 mg/d 14 d 1.2-fold ↓ Plasma MDA-HNE (NS)
6000 mg/d 14 d 1.8-fold ↓ Plasma MDA-HNE (NS)

Wen et al, 1997 (83) 20 Nonsmokers (9 placebo) 1000 mg/d 4 wk 2.2-fold LDL oxidizability (TBARS):
no change; ↓ plasma MDA

Harats et al, 1998 (84) 36 Healthy males (50 mg/d) (1 mo) (Baseline) —
500 mg/d 2 mo 3.8-fold ↓ LDL oxidizability2 (CD)

Naidoo and Lux 1998 (85) 15 Volunteers 250–1000 mg/d 8 wk 1.5–2.0-fold ↓ Plasma MDA

Gokce et al, 1999 (86) 46 CAD patients (25 placebo) 500 mg/d 1 mo 2.3-fold Plasma 8-epi-PGF2a: no change
1 TBARS, thiobarbituric acid–reactive substrates; CD, conjugated dienes; 8-epi-PFG2a, 8-epi-prostaglandin F2a; ND, not determined; SR, slow release;

MDA, malondialdehyde; HNE, hydroxynonenal; CAD, coronary artery disease.
2 Measured by the lag time and propagation rate of in vitro lipid peroxidation.
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excreted in urine (96). The tissue pool represents a steady state
between oxidation and cellular repair mechanisms, whereas the
excreted products represent the total net damage and repair. The
2 methods most commonly used to detect 8-oxoguanine and 
8-oxodG are gas chromatography–mass spectroscopy (GC-MS)
and HPLC with electrochemical detection (HPLC-EC) (97).
These methods, however, can generate artificially high amounts
of oxidation products because of lengthy extraction, hydrolysis,
and derivatization procedures, especially with GC-MS (97). Indi-
rect methods for measuring DNA damage by using specific repair
endonucleases in combination with single-cell gel electrophoresis
(the comet assay) have shown baseline concentrations of DNA
oxidation products up to 1000-fold lower than those measured by
GC-MS (96, 97). Antibodies against 8-oxopurines are another
potentially useful method for detecting DNA oxidation (98).

DNA oxidation, as determined by 8-oxodG in cells, is increased
in cases of oxidative stress such as smoking and is correlated with
reduced plasma concentrations of the antioxidant vitamins C and E
(99). It is therefore conceivable that supplementation with vita-
min C may ameliorate oxidative damage to DNA. Six of 7 studies
shown in Table 2 (82, 100–102, 104, 105) represent cell measure-
ments, ie, steady state damage. Five of these studies showed a
significant reduction in ≥1 marker of oxidative DNA damage in
vitamin C–supplemented subjects (100–102, 104, 105).

In one of the more recent studies, a significant decrease in lym-
phocyte 8-oxoguanine concentrations was observed after vitamin C
supplementation with 500 mg/d; in contrast, an increase in the less
established marker 8-oxoadenine was observed (104). These
authors thus suggested that vitamin C supplementation may have
a prooxidant effect. However, lymphocyte 8-oxoguanine concen-
trations in this study were 30 lesions/105 guanine bases, which is
≥30-fold higher than currently accepted values (97), and 8-oxoad-
enine concentrations appeared to be extremely high as well.
Therefore, the data seem to largely reflect ex vivo oxidation of the
DNA before or during GC-MS analysis. In addition, other major
problems with this study have been identified (106, 107).

Another recent study using GC-MS showed a significant reduc-
tion in both 8-oxoguanine and 8-oxoadenine in healthy persons
supplemented for 12 wk with either 60 or 260 mg vitamin C/d in
combination with 14 mg Fe/d, although other modified bases were
increased, including 5-hydroxycytosine and thymine glycol (105).
Once again, however, baseline concentrations of 8-oxoguanine
and 8-oxoadenine were high and comparable with those measured
by Podmore et al (104). Furthermore, there were no control groups
included given iron alone or placebo, and vitamin C supplementa-
tion in the study did not always result in significant changes in
plasma vitamin C concentrations (105). Therefore, the interpreta-
tion of the data from these 2 studies (104, 105) is uncertain.
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TABLE 2
Vitamin C supplementation and biomarkers of oxidative DNA damage in humans1

Reference Subjects Vitamin C dose Duration Plasma change Findings

Fraga et al, 1991 (100) 10 Men (250 mg/d) (7–14 d) (Baseline)2 —
5 mg/d 32 d 0.5-fold2 ↑ Sperm 8-oxodG (HPLC-EC)
10–20 mg/d 28 d 0.5-fold2 ↑ Sperm 8-oxodG (HPLC-EC)
60–250 mg/d 28 d Baseline2 ↓ Sperm 8-oxodG (HPLC-EC)

Green et al, 1994 (101) 6 Subjects 35 mg/kg Single dose ND ↓ Ex vivo3 lymphocyte DNA damage
(comet assay)

Panayiotidis and Collins, 6 Smokers, 1000 mg Single dose ND ↓ Ex vivo4 lymphocyte DNA damage
1997 (102) 6 nonsmokers (comet assay)

Anderson et al, 1997 (82) 48 Nonsmokers 60 mg/d 14 d 1.2-fold Lymphocyte DNA damage, in vivo
6000 mg/d 14 d 1.8-fold and ex vivo4: no change (comet assay)

Prieme et al, 1997 (103) 18 Male smokers 500 mg/d 2 mo ND Urine 8-oxodG: no change (HPLC-EC)
20 Male smokers 500 mg/d (SR) 2 mo ND Urine 8-oxodG: no change (HPLC-EC)

Podmore et al, 1998 (104) 30 Subjects 500 mg/d 6 wk 1.6-fold ↓ Lymphocyte 8-oxogua (GC-MS),
↑ lymphocyte 8-oxoade (GC-MS)

Rehman et al, 1998 (105) 10 Healthy subjects 60 mg/d + 12 wk 1.1-fold ↓ Leukocyte 8-oxogua, 8-oxoade,
14 mg Fe/d 5-methylhydantoin, 5-hydroxyuracil,

and 5-chlorouracil; ↑ leukocyte
thymine glycol, 5-hydroxycytosine,
and 5-methyluracil (GC-MS)

Rehman et al, 1998 (105) 10 Healthy subjects 260 mg/d + 12 wk 1.1-fold ↓ Leukocyte 8-oxogua, 5-hydroxyuracil,
14 mg Fe/d and 5-chlorouracil; ↑ leukocyte thymine

glycol and 5-hydroxycytosine (GC-MS)
1 8-oxodG, 8-oxo-2′-deoxyguanosine; EC, electrochemical detection; ND, not determined, SR, slow release; 8-oxogua, 8-oxoguanine; GC-MS, gas chro-

matography–mass spectroscopy; 8-oxoade, 8-oxoadenine.
2 Seminal plasma.
3 Ex vivo challenge by ionizing radiation.
4 Ex vivo challenge by hydrogen peroxide.
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The study by Anderson et al (82) indicated no significant change
in DNA damage as assessed by the comet assay after 2 wk of sup-
plementation with 60 or 6000 mg vitamin C/d, either before or after
an ex vivo challenge by hydrogen peroxide (Table 2). In contrast, 2
other studies in which the comet assay was used showed reduced
susceptibility of lymphocytes to ex vivo oxidation of DNA after sup-
plementation with vitamin C (101, 102). Similar findings were
reported in another study in which vitamin E and b-carotene were
given as cosupplements (108). Using HPLC-EC, Fraga et al (100)
also showed a significant decrease in sperm 8-oxodG after replen-
ishment with vitamin C. A recent animal study of vitamin C (and vita-
min E) supplementation of guinea pigs, however, showed no effect
on 8-oxodG concentrations in the liver as determined by HPLC-EC
(109), despite a 60-fold difference in liver vitamin C concentrations.

The remaining study in Table 2 (103), which represents urinary
measurements (ie, the net rate of damage and repair), showed no
significant effect of vitamin C supplementation on 8-oxodG con-
centrations as determined by HPLC-EC. Two other studies in
which vitamin C was given in the presence of cosupplements also
reported similar findings (49, 110). However, several investiga-
tors have questioned the appropriateness of using urinary con-
centrations of 8-oxoguanosine or 8-oxodG as markers of nucleic
acid damage because these products can be derived from nonspe-
cific degradation of RNA or DNA, respectively, from dead cells
(47), and the major 8-oxoguanine DNA glycosylase repair prod-
uct is 8-oxoguanine, not 8-oxodG.

Protein oxidation

Protein oxidation is most commonly measured by determining
carbonyl groups, oxidized amino acids, and advanced glycation
end products (111, 112). Protein carbonyls can be formed by direct
oxidative cleavage of the peptide chain or by oxidation of specific
amino acid residues, such as lysine, arginine, proline, and threonine
(111). Carbonyls can also be formed indirectly through modifica-
tion of lysine, histidine, and cysteine residues by a,b-unsaturated
aldehydes such as 4-hydroxynonenal in a process called Michael
addition, or via Schiff base formation between lysine residues and
dialdehydes such as malondialdehyde (111, 113). A variety of oxi-
dized amino acids have been identified in proteins exposed to oxi-
dizing conditions, including methionine sulfoxide, o- and m-tyro-
sine, o,o9-dityrosine, 3-chlorotyrosine, and 3-nitrotyrosine (112).
Advanced glycation end products are generated by reaction of
reducing sugars with lysine residues under oxidizing conditions in
the Maillard reaction to form carboxymethyl- and carboxyethyl-
lysine (111). Advanced glycation end products have been impli-
cated in diseases such as diabetes and in aging (58, 111). The
oxidative products of vitamin C may undergo similar reactions,
although whether these occur in vivo is uncertain (114).

Few studies have been carried out to investigate the effects of
vitamin C supplementation on the in vivo products of protein
oxidation. Two animal studies (90, 115) indicated reduced pro-
tein carbonyl formation in guinea pigs supplemented with vita-
min C, either with (115) or without (90) an endotoxin challenge.
Vitamin C supplementation (2000 mg/d for 4–12 mo) of patients
with Helicobacter pylori gastritis led to a significant reduction in
nitrotyrosine concentrations (116). However, another recent
human study found no change in urine o,o9-dityrosine or o-tyro-
sine concentrations in coronary artery disease patients supple-
mented with 500 mg vitamin C/d for 1 mo (86). Further studies
investigating the effect of vitamin C supplementation on the
markers of protein oxidation are clearly required.

Taken together, the evidence reviewed above suggests that vita-
min C acts as an antioxidant in humans. Biomarker studies
showed reduced lipid oxidation after vitamin C supplementation
in both smokers and nonsmokers (Table 1). Several studies also
showed decreased steady state DNA oxidation after vitamin C
supplementation, although other studies showed either no
change or mixed results (Table 2). The latter appears to be pri-
marily due to the technical difficulties of accurately measuring
DNA oxidation products by GC-MS and HPLC-EC and elimi-
nating ex vivo artifacts. In addition, the effects of vitamin C sup-
plementation on oxidative markers also critically depend on
baseline concentrations of the vitamin. In a study by Levine et al
(117) of the pharmacokinetics of vitamin C, it was found that in
healthy adult men tissue saturation occurred at vitamin C intakes
of <100 mg/d, as assessed by vitamin C concentrations in lym-
phocytes, monocytes, and neutrophils. Kallner et al (118) also
reported that the body pool of vitamin C was saturated by an
intake of <100 mg/d in healthy, nonsmoking men. If tissues are
already saturated before vitamin C supplementation because of
an intake ≥100 mg/d, then supplementation with any vitamin C
dose cannot further reduce oxidative damage, a fact that likely
explains some of the discrepant results of the biomarker studies
discussed. More attention to this critical issue and more detailed
biomarker studies on vitamin C intakes near tissue-saturating
concentrations are warranted.

Are there other mechanisms by which vitamin C could
affect chronic disease incidence, mortality, or both?

As discussed above, vitamin C has many functions in the
body, such as acting as a cosubstrate for several biosynthetic
enzymes (8). Therefore, vitamin C may affect chronic disease
incidence, mortality, or both by mechanisms that may not be
directly related to its role as an antioxidant.

Cardiovascular disease

Hypercholesterolemia is a significant risk factor for cardiovas-
cular disease (43, 119). The relation between vitamin C supple-
mentation, or plasma vitamin C concentrations, and total serum
cholesterol has been investigated in several studies (82,
119–123). In one supplementation study, consumption of 1000
mg vitamin C/d for 4 wk resulted in a reduction in total serum
cholesterol (120), whereas in another study, supplementation with
60 or 6000 mg/d for 2 wk had no effect (82). Two observational
studies found an inverse correlation between vitamin C status and
total serum cholesterol concentrations (122, 123). The mecha-
nism for the possible modulating effect of vitamin C on serum
cholesterol concentrations is not entirely certain. One putative
pathway is through vitamin C’s role as a cofactor for cholesterol
7a-monooxygenase, an enzyme involved in the in vivo hydroxy-
lation of cholesterol to form bile acids (8). Vitamin C may also
modulate the activity of hydroxymethylglutaryl-CoA reductase,
the rate-limiting enzyme in the biosynthesis of cholesterol (43).

The plasma lipoprotein profile is also an important considera-
tion for cardiovascular disease, with decreased concentrations of
HDL and increased concentrations of LDL being significant risk
factors (43, 119). Numerous observational studies have found a
significant association between elevated plasma vitamin C con-
centrations and increased concentrations of HDL cholesterol and
reduced concentrations of LDL cholesterol (119, 121–125). Find-
ings indicated that with every 30-mmol/L increase in plasma vita-
min C, HDL was elevated by 4–10% and LDL was reduced by 4%
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(125). Similar modulatory effects were reported after supplemen-
tation with 1000 mg vitamin C/d for 4 wk (120). Ness et al (121)
also found an inverse correlation between vitamin C status and tri-
acylglycerol concentrations. Vitamin C may modulate the activity
of lipoprotein lipase (43), although the mechanism is unknown.

The thrombotic risk of cardiovascular disease is associated
with increased concentrations of the coagulation factor fibrinogen
(126). Two studies found an inverse association between serum
vitamin C concentrations and coagulation factors as well as a pos-
itive association between low serum vitamin C and elevated fib-
rinogen and coagulation activation markers (126, 127). Two early
studies indicated that supplementation of heart disease patients
with 2000–3000 mg vitamin C/d for 1–6 wk increased fibrino-
lytic activity and reduced platelet adhesiveness (128, 129). In a
more recent study (130), healthy volunteers were supplemented
with 250 mg vitamin C/d for 8 wk and a nonsignificant decrease
in platelet aggregation and an increased sensitivity to PGE1 were
reported. In vitro studies showed that physiologic concentrations

of vitamin C may increase PGE1 and PGI1 (prostacyclin) produc-
tion, resulting in a reduction in platelet aggregation and thrombus
formation (31), although whether this mechanism is relevant in
vivo has yet to be established. Low concentrations of vitamin C
are also associated with increased concentrations of plasminogen
activator inhibitor 1, a protein that inhibits fibrinolysis (131).

Adhesion of leukocytes to the endothelium is an important
initiating step in atherogenesis (31). Smokers have lower plasma
vitamin C concentrations than do nonsmokers (88), and mono-
cytes isolated from smokers exhibit increased adhesion to
endothelial cells (132, 133). Supplementation of smokers with
2000 mg vitamin C/d for 10 d elevated plasma vitamin C con-
centrations from 48 to 83 mmol/L and significantly reduced
monocyte adhesion to endothelial cells (132). In another study,
however, supplementation of smokers with 2000 mg vitamin C 2 h
before serum was collected had no significant effect on ex vivo
monocyte or endothelial cell adhesion, despite an increase in vita-
min C concentrations from 34 to 115 mmol/L (133). Interest-
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TABLE 3
Vitamin C supplementation and endothelium-dependent vasodilation in humans1

Reference Subjects Vitamin C dose Findings

Ting et al, 1996 (140) 10 Patients with type 2 diabetes, 24 mg/min (infusion) Forearm blood flow ↑ by 40%
10 control subjects (measured after methacholine infusion)

Levine et al, 1996 (141) 46 CAD patients (20 placebo) 2000 mg (oral), 2.5-fold Brachial artery dilation ↑ by 220%
plasma increase (measured after 2 h)

Heitzer et al, 1996 (142) 10 Chronic smokers, 10 control 18 mg/min (infusion) Forearm blood flow ↑ by 60%   
subjects (measured after acetylcholine infusion)

Motoyama et al, 1997 (143) 20 Smokers, 20 nonsmokers 10 mg/min (infusion) Brachial artery vasodilation ↑ by 70%
(measured after 20 min)

Ting et al, 1977 (144) 11 Hypercholesterolemic patients, 24 mg/min (infusion) Forearm blood flow ↑ by 30%
12 healthy control subjects (measured after methacholine infusion)

Solzbach et al, 1997 (145) 22 Hypertensive patients 3000 mg (infusion) Coronary artery vasoconstriction ↓ 160%
(5 placebo) (measured after acetylcholine infusion)

Hornig et al, 1998 (146) 15 Chronic heart failure patients, 25 mg/min (infusion) Radial artery dilation ↑ by 60%
8 healthy control subjects (measured after 10 min)

2000 mg (oral) Radial artery dilation ↑ by 45%
(after 4 wk supplementation)

Timimi et al, 1998 (147) 10 Patients with type 1 diabetes, 24 mg/min (infusion) Forearm blood flow ↑ by 40%
10 control subjects (measured after methacholine infusion)

Kugiyama et al, 1998 (148) 32 Coronary spastic angina patients, 10 mg/min (infusion) Epicardial artery vasoconstriction ↓ 100%
34 control subjects (measured after acetylcholine infusion)

Taddei et al, 1998 (149) 14 Essential hypertensive patients, 24 mg · L forearm Forearm blood flow ↑ by 26% 
14 healthy control subjects tissue21 · min21 (measured after acetylcholine infusion)

Ito et al, 1998 (150) 12 Chronic heart failure patients 1000 mg (infusion) Brachial artery dilation ↑ by 27% (NS)
10 CAD patients, 10 control 1000 mg (infusion), 10–13-fold Brachial artery dilation ↑ by 128%
subjects plasma increase (measured after 30 min)

Gokce et al, 1999 (86) 46 CAD patients (25 placebo) 2000 mg (oral), 2.8-fold Brachial artery dilation ↑ by 50%
plasma increase (measured after 2 h)

500 mg/d (oral), 2.3-fold Brachial artery dilation ↑ by 40%
plasma increase (after 4 wk supplementation)

1 CAD, coronary artery disease.
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ingly, supplementation with 7000 mg L-arginine, the physiologic
substrate for nitric oxide (NO) synthase, significantly reduced
monocyte and endothelial cell adhesion, suggesting an impor-
tant role for NO. Several in vivo animal studies also suggested
an important role for vitamin C in modulating leukocyte and
endothelial cell interactions in hamsters exposed to cigarette
smoke (134, 135) or injected with oxidized LDL (136).

Impaired vascular function and relaxation are highly relevant to
the clinical expression of atherosclerosis, ie, angina pectoris,
myocardial infarction, and stroke. Hypertension is a recognized
risk factor for cardiovascular disease (43) and low concentrations
of plasma vitamin C have been associated with hypertension (122,
125, 137–139). Several studies reported positive effects of high
doses of vitamin C, administered either orally or by intraarterial
infusion, on vasodilation (Table 3). Four studies (86, 141, 146,
150) investigated vasodilation in patients with cardiovascular dis-
ease and found increases of 45–220% in vasodilation after admin-
istration of vitamin C (1000–2000 mg oral or 25 mg/min infusion).
One of these studies found a 128% increase in brachial artery dila-
tion in coronary artery disease patients, but a nonsignificant 27%
increase in chronic heart failure patients (150). Kugiyama et al
(148) observed a 100% reversal of epicardial artery vasoconstric-
tion in coronary spastic angina patients infused with 10 mg 
vitamin C/min. Other studies investigated patients with hypercho-
lesterolemia (144) or hypertension (145, 149), both of which are
important risk factors for cardiovascular disease. Infusion of 3000 mg
(145) or 24 mg/min (144, 149) vitamin C in these patients resulted
in increased blood flow and decreased vasoconstriction. Heitzer et
al (142) and Motoyama et al (143) observed increased vasodilation
in smokers given infusions of 10–18 mg vitamin C/min. Motoyama
et al showed a significant positive correlation (r = 0.597,
P = 0.0001) between serum concentrations of vitamin C and the
percentage increase in the brachial arterial diameter of smokers and
nonsmokers. Similarly, patients with type 2 and type 1 diabetes had
increased blood flow after infusion of 24 mg vitamin C/min (140,
147). Finally, healthy individuals given an oral dose of 1000 mg
vitamin C in combination with 800 IU vitamin E had increased
vasodilation several hours after a single high-fat meal (151).

Several mechanisms are possible for these positive effects of
vitamin C on vasodilation and are most likely related to vitamin C’s
antioxidant activity. Endothelium-derived relaxing factor, or NO,
plays an important role in vasodilation and also inhibits platelet
aggregation and leukocyte adhesion (31). NO is rapidly inacti-
vated by reaction with superoxide radicals and release of NO
from endothelial cells can be inhibited by oxidized LDL (141).
Therefore, vitamin C may spare NO by scavenging superoxide
radicals or preventing the formation of oxidized LDL. The latter
mechanism is unlikely, however, because of the short time spans
involved in the studies listed in Table 3. Furthermore, high con-
centrations of vitamin C are required to scavenge superoxide
radicals in competition with NO because of the large difference
in rate constants (<105 L · mol21 · s21 at pH 7.4 for superoxide
radicals with ascorbate compared with <109 L · mol21 · s21 for
superoxide radicals with NO). Nevertheless, millimolar concen-
trations of vitamin C can be achieved with infusion (117) and
superoxide scavenging may, at least in part, explain the benefi-
cial effects of vitamin C on vasodilation in those studies using
infusion (140, 142–150). Vitamin C can also maintain intracellu-
lar concentrations of glutathione by a sparing effect or regenera-
tion of thiols from thiyl radicals, which may enhance the synthe-
sis of NO or increase the stabilization of NO through formation

of S-nitrosothiol species (141). Like vitamin C, administration of
a cysteine delivery agent known to increase intracellular glu-
tathione concentrations enhances vasodilation in patients with
coronary artery disease (152).

Cancer

Vitamin C may protect against cancer through several mecha-
nisms in addition to inhibition of DNA oxidation. One potential
mechanism is chemoprotection against mutagenic compounds such
as nitrosamines (153, 154). N-Nitroso compounds are formed by
reaction of nitrite or nitrate (common in cured food and cigarette
smoke) with amines and amides (153). Nitrosating compounds can
also be formed from NO generated by inflammatory cells express-
ing inducible NO synthase (116, 153, 155, 156). N-Nitroso com-
pounds undergo activation by cytochrome P450–dependent
enzymes and have been implicated in gastric and lung cancer (153).
Epidemiologic studies have shown an inverse association between
vitamin C intake, mainly from fruit and vegetables, and cancers at
these sites (157, 158); additionally, vitamin C reduces in vivo nitro-
sation by scavenging nitrite and hence preventing its reaction with
amines to form nitrosamines (153, 154). Concentrations of
fecapentaenes, fecal mutagens that have been implicated in colon
cancer (155), are also reduced by vitamin C (159).

In addition, vitamin C may reduce carcinogenesis through
stimulation of the immune system. Two of the major functions of
the immune system are to fight off infections and to prevent can-
cer (3). It is hypothesized that the immune system recognizes
tumor-forming cells as nonself. Cytotoxic T lymphocytes,
macrophages, and natural killer cells can lyse tumor cells (3).
Free radicals and oxidative products secreted by immune cells
can also lyse tumor cells. Vitamin C can protect host cells
against harmful oxidants released into the extracellular medium.
Therefore, an optimal immune response requires a balance
between free radical generation and antioxidant protection.

Vitamin C is taken up by phagocytes and lymphocytes to con-
centrations up to 100-fold greater than in plasma, and intracellular
concentrations of vitamin C are reduced when phagocytes are acti-
vated (3). Many studies have investigated the effects of vitamin C
on leukocyte function; however, the data are inconsistent and con-
flicting (160). Vitamin C may modulate the functions of phago-
cytes, such as chemotaxis (161–164), as well as the activity of nat-
ural killer cells and the functions and proliferation of lymphocytes
(160, 165, 166). Vitamin C may also affect the production of
immune proteins such as cytokines and antibodies as well as com-
plement components (160, 167, 168). An important measure of
overall immune function is the delayed-type hypersensitivity
response, which may be modulated by antioxidant micronutrients
such as vitamin C (3, 169). Jacob et al (159) showed that vitamin C
deficiency in men ingesting 5–20 mg vitamin C/d for 32 d signifi-
cantly reduced delayed-type hypersensitivity responses, but
resulted in no significant change in lymphocyte proliferation.
Delayed-type hypersensitivity responses did not return to baseline,
even after supplementation with 250 mg vitamin C/d for 4 wk.

Does vitamin C lower chronic disease incidence, mortality,
or both?

Many epidemiologic studies and a limited number of clinical
trials have indicated that dietary intake of, or supplementation
with, antioxidant vitamins is associated with a reduction in the
incidence of chronic disease morbidity and mortality (5, 14, 15).
Because vitamin C acts as an antioxidant and can ameliorate
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oxidative damage to lipids, DNA, and proteins, the association of
vitamin C with cardiovascular disease, cancer, and cataract,
respectively, is of substantial interest. Much of the evidence dis-
cussed in the subsequent sections is derived from epidemiologic
studies. As such, observed associations between vitamin C
intake or plasma concentrations and disease risk are not proof of
cause-effect relations; the observed differences may in part
reflect differences in dietary behavior or lifestyle patterns. There
also may be confounding of interpretations by unmeasured risk
factors or imperfect statistical corrections. Furthermore, most of
the epidemiologic data are based on dietary vitamin C intake,
mainly from fruit and vegetables, and it is difficult to discern
whether an observed inverse association with disease incidence
is due to vitamin C itself, vitamin C together with other sub-
stances in fruit and vegetables, or these other substances them-
selves, with vitamin C as a surrogate marker. Finally, estimation
of vitamin C intake from food-frequency questionnaires has lim-
ited accuracy and measurement of vitamin C plasma concentra-
tions, although more accurate than estimation of dietary intake,
also has pitfalls and is dependent on proper handling and storage
of the samples. These limitations of epidemiologic studies based

on dietary intake and plasma concentrations of vitamin C have
been discussed previously (158, 170).

Cardiovascular disease

Coronary artery disease and stroke are the leading causes of
morbidity and mortality in the United States and other westernized
populations. Cardiovascular disease is responsible for nearly one
million deaths every year in the United States alone, at the cost of
>$15 billion in health care and lost productivity (34). Major risk
factors associated with cardiovascular disease are age, male sex,
smoking, hypercholesterolemia, hypertension, family history, obe-
sity, and physical inactivity (43, 119). Many epidemiologic studies
have shown inverse associations between antioxidant intake, par-
ticularly vitamin E, and cardiovascular disease (171). Over the past
15 y, several prospective cohort studies have been published on the
association between vitamin C intake and the risk of cardiovascu-
lar disease (Table 4). Some of these were reviewed previously by
Enstrom (14) and Gey (15), as well as by others (5, 43, 171).
Because the purpose of this review is to propose an RDA for vita-
min C based on chronic disease incidence, only studies that stated
actual amounts of vitamin C intake are considered further here.
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TABLE 4
Vitamin C intake associated with reduced cardiovascular disease risk (prospective cohort studies)1

Reference Population (duration) Endpoint (events) Risk and associated dietary intake of vitamin C

Enstrom et al, 1986 (172) 3119 Men and women (10 y) CVD (127 deaths) > 250 compared with < 250 mg/d: no ↓ risk

Enstrom et al, 1992 (173) 4479 Men (10 y) CVD (558 deaths) > 50 mg/d + regular supplement: ↓ risk by 42%
and Enstrom, 1993 (174) 6809 Women (10 y) CVD (371 deaths) > 50 mg/d + regular supplement: ↓ risk by 25%

Manson et al, 1992 (175) and 87245 Female nurses (8 y) CAD (552 cases) >359 compared with <93 mg/d: ↓ risk by 20% (NS)
Manson et al, 1993 (176) Stroke (183 cases) >359 compared with <93 mg/d: ↓ risk by 24%

Rimm et al, 1993 (177) 39910 Male health professionals (4 y) CAD (667 cases) 392 compared with 92 mg/d median: no ↓ risk

Fehily et al, 1993 (178) 2512 Men (5 y) CVD (148 cases) > 67 compared with < 35 mg/d: ↓ risk 37% (NS)

Knekt et al, 1994 (179) 2748 Finnish men (14 y) CAD (186 deaths) > 85 compared with < 60 mg/d: no ↓ risk
2385 Finnish women (14 y) CAD (58 deaths) > 91 compared with < 61 mg/d: ↓ risk by 51%

Gale et al, 1995 (180) 730 UK elderly men and women (20 y) Stroke (125 deaths) >45 compared with <28 mg/d: ↓ risk by 50%
CAD (182 deaths) >45 compared with <28 mg/d: ↓ risk by 20% (NS)

Kritchevsky et al, 1995 (181) 4989 Men (3 y) Carotid atherosclerosis > 982 compared with < 56 mg/d: ↓ intima thickness
6318 Women (3 y) Carotid atherosclerosis > 728 compared with < 64 mg/d: ↓ intima thickness

Pandey et al, 1995 (182) 1556 Men (24 y) CAD (231 deaths) > 113 compared with < 82 mg/d: ↓ risk by 25%

Kushi et al, 1996 (183) 34486 Women (7 y) CAD (242 deaths) >391 compared with <112 mg/d (total)2: no ↓ risk;
> 196 compared with < 87 mg/d (dietary): no 
↓ risk; regular supplement compared with no
supplement: no ↓ risk

Losconczy et al, 1996 (184) 11178 Elderly men and women (6 y) CAD (1101 deaths) Regular supplement compared with no supplement:
no ↓ risk

Sahyoun et al, 1996 (185) 725 Eldery men and women (10 y) CVD (101 deaths) >388 compared with <90 mg/d: ↓ risk by 62% (NS)

Mark et al, 1998 (186)3 29584 Chinese men (5 y) Stroke 180 mg/d supplement: no ↓ risk (+ 30 µg Mo/d 
cosupplement)

1 CVD, cardiovascular disease; CAD, coronary artery disease.
2 Intake from diet plus supplements.
3 Trial (not prospective cohort study).
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Seven of the 12 prospective cohort studies listed in Table 4
showed a significant inverse association between vitamin C intake
and cardiovascular or cerebrovascular disease risk (173–176,
179–182, 185). Several studies observed a reduced risk with mod-
erate intakes of vitamin C between 45 and 113 mg/d (178–180,
182). Knekt et al (179) reported a 51% lower risk of coronary
artery disease in women consuming >91 mg vitamin C/d than in
those consuming <61 mg/d, although no association was observed
in men consuming similar amounts. Daily intakes >91 mg had no
additional protective effect in this study. In a population of elderly
men and women, Gale et al (180) found that daily intakes of >45 mg
vitamin C were associated with a 50% lower risk of stroke than
were intakes <28 mg/d, although there was only a nonsignificant
20% reduction in coronary artery disease in this study. Pandey et
al (182) observed a moderate but significant 25% lower risk of
coronary artery disease in men consuming > 113 mg vitamin C/d
than in those consuming < 82 mg/d. Finally, Fehily et al (178)
observed a nonsignificant 37% lower risk of cardiovascular dis-
ease in men or women consuming moderate amounts of > 67 mg
vitamin C/d than in those consuming < 35 mg/d.

Numerous studies reported a reduced risk of cardiovascular dis-
ease with vitamin C intakes considerably higher than those in the
above-mentioned studies (173–176, 181, 185, 187). Enstrom et al
(173) showed a risk reduction in cardiovascular disease of 42% in
men and 25% in women consuming >50 mg vitamin C/d from the
diet plus regular supplements, corresponding to <300 mg total vita-
min C/d (174). An earlier study by Enstrom et al (172) indicated
that intakes of vitamin C >250 mg/d were not associated with an
additional risk reduction for cardiovascular disease, although sub-
sequent reanalysis of the data indicated that intakes >750 mg/d
were associated with a reduction in overall mortality (173). Sahy-
oun et al (185) reported a significant 62% lower risk of cardiovas-
cular disease in a population of elderly men and women consum-
ing >388 mg vitamin C/d than in those consuming <90 mg/d.
Similar intakes were reported by Manson et al (175, 176, 187) in a
cohort of female nurses, although only a moderate risk reduction of
24% was observed for stroke, whereas the risk reduction for coro-
nary artery disease was nonsignificant. Finally, Kritchevsky et al
(181) measured carotid artery wall thickness as a measure of ath-
erosclerosis and found significantly decreased intima thickness in
men and women aged >55 y consuming, respectively, >982 or
>728 mg vitamin C/d than in those consuming <56 or <64 mg/d.

Interestingly, several epidemiologic studies indicated no asso-
ciation between vitamin C intake or supplementation and risk of
cardiovascular disease (177, 183, 184, 186). Losconczy et al
(184) and Kushi et al (183) observed no effect on coronary artery
disease risk with regular vitamin C supplementation. Kushi et al
(183) and Rimm et al (177), in 2 large epidemiologic studies,
also reported no additional reduction in risk of coronary artery
disease with vitamin C intakes of <200 and 400 mg/d, respec-
tively, compared with intakes of <90 mg/d. One intervention
trial found no reduction in risk of stroke or hypertension in a
population of Chinese men and women supplemented with 180 mg
vitamin C/d and 30 mg Mo/d for 5 years (186).

The study by Levine et al (117), which found that tissue satu-
ration in healthy men occurred at vitamin C intakes of <100 mg/d,
may explain why several of the above-mentioned studies showed
no protective effect of dietary vitamin C intakes >90 mg/d (177,
179, 183) or vitamin C supplementation (183, 184, 186). Because
an intake of 90 mg vitamin C/d results in near tissue saturation,
increasing vitamin C intake over this amount may have only a

small or no additional effect on tissue concentrations and hence
disease risk. Thus, the totality of evidence from prospective
cohort studies to date suggests that there is only a minimal intake
requirement for vitamin C to optimally reduce the risk of car-
diovascular disease, and that there is little or no additional ben-
efit from vitamin C intakes > 90–100 mg/d, likely because of tis-
sue saturation at this level (117).

Several investigators studying cardiovascular disease have
measured plasma concentrations of vitamin C (Table 5), which is
a considerably more accurate and reliable measure of body vita-
min C status than dietary intake estimated from questionnaires.
One prospective cohort study indicated that plasma vitamin C con-
centrations >23 mmol/L are associated with moderate, statistically
nonsignificant reductions of 20% and 22%, respectively, in the
risk of coronary artery disease and stroke (189, 190). Similarly,
Gale et al (180) observed a statistically significant 30% lower risk
of death from stroke in subjects with plasma vitamin C concentra-
tions >28 mmol/L than in those with concentrations <12 mmol/L;
however, no association was observed with coronary artery dis-
ease risk. Larger risk reductions of 39–60% were observed for
coronary artery disease, myocardial infarction, and angina pec-
toris with vitamin C concentrations >11–57 mmol/L (188, 191,
193). Furthermore, patients with these conditions were found to
have significantly lower plasma vitamin C concentrations than
control subjects or survivors (188, 191, 192, 194). Interestingly, in
the studies reporting an inverse association between plasma vita-
min C concentrations and angina pectoris (188) and coronary
artery disease (191), the association was substantially reduced
after adjustment for smoking. This finding is to be expected given
the known effect of smoking on plasma vitamin C concentrations
(196) and suggests that smoking may increase cardiovascular dis-
ease risk in part by lowering vitamin C concentrations.

Another study observed a risk reduction of 47% for cardiovascu-
lar disease mortality with plasma concentrations >89 mmol/L com-
pared with <52 mmol/L (185). A large study by Simon et al (195),
comprising 6624 men and women enrolled in the second National
Health and Nutrition Examination Survey, showed 26% and 27%
risk reductions for stroke and coronary artery disease, respectively,
with saturating serum vitamin C concentrations of 63–153 mmol/L
compared with low to marginal concentrations of 6–23 mmol/L. In
a comprehensive recent review article, Gey (15) proposed that
plasma vitamin C concentrations ≥50 mmol/L provide optimal ben-
efit with regard to cardiovascular disease, and this number seems to
be in good agreement with most of the studies listed in Table 5.
Most interestingly, a plasma vitamin C concentration of 50 mmol/L
is achieved by a dietary intake of <100 mg vitamin C/d (117), in
good agreement with the suggested protective intake of 90–100 mg/d
derived from diet-based prospective cohort studies (Table 4) and the
amount required for tissue saturation (117).

Cancer

More than half a million deaths occur annually from cancer in the
United States (197). Lung cancer resulting from smoking causes
30% of all US cancer deaths; colon-rectum, breast, and prostate can-
cers account for another 25% of deaths (197). The major risk factors
for cancer are smoking, chronic inflammation, and an unbalanced
diet. A multitude of epidemiologic studies have shown that increased
consumption of fresh fruit and vegetables is associated with a
reduced risk of most types of cancer (157, 158). Fruit and vegetables
contain many constituents that may contribute to protection against
cancer, including antioxidant vitamins. Over the years, numerous
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case-control studies have been carried out to investigate the role of
vitamin C in cancer prevention; these have been reviewed by Block
(157) and Fontham (158). Most case-control studies showed a con-
sistent inverse association between vitamin C intake and cancers of
the oral cavity, larynx-pharynx, and esophagus, as well as of the
lung, stomach, and colon-rectum. Of the hormone-dependent can-
cers, only breast cancer was inversely associated with vitamin C
intake, in contrast with ovary and prostate cancers. Although inter-
esting and consistent in their results, these case-control studies may
be intrinsically biased because of their retrospective design (158).
Therefore, only prospective cohort studies, some of which were
reviewed by Enstrom (14) and Gey (15), that also stated actual
dietary intakes are considered further in this section (Table 6).

Several studies investigated the association of moderate
intakes of vitamin C with cancer risk. Kromhout et al (199)
reported a significant 64% risk reduction of lung cancer with vita-
min C intakes >83 mg/d. Similarly, 3 studies found that individ-
uals who developed lung cancer had lower dietary intakes of vita-
min C than healthy individuals, who in all 3 studies consumed
>82 mg vitamin C/d (198, 200, 207). However, the differences in
vitamin C intake between cases and controls was statistically

significant in only 1 of the 3 studies (207). Pandey et al (182)
observed a significant 39% lower risk of all cancers in men con-
suming >113 mg vitamin C/d than in those consuming <82 mg/d.
A vitamin C intake >50 mg/d from the diet plus regular supple-
ments, totaling <300 mg/d (174), was found to be associated
with a moderate 21% risk reduction of all cancers in men com-
pared with a dietary intake of <49 mg/d, although no significant
effect was observed in women (173). In a large epidemiologic
study, Graham et al (202) observed no significant reduction in
breast cancer risk in women consuming >79 mg vitamin C/d.

Interestingly, virtually all of the studies in which vitamin C
intakes were >87 mg/d in the lowest intake group (quantile)
found no or nonsignificant effects on cancer risk reduction with
higher intakes of vitamin C (172, 185, 203, 204, 206). Only one
study found a significant protective effect: Shibata et al (201)
observed a moderate 24% lower risk of all cancers in women con-
suming >225 mg vitamin C/d than in those consuming <155 mg/d,
although no effect was observed in men. In good agreement with
these studies, vitamin C supplementation was not associated or
nonsignificantly associated with reduced cancer risk in several
prospective cohort studies (184, 201, 203, 206), although Bostick
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TABLE 5
Plasma concentration of vitamin C associated with reduced cardiovascular disease risk1

Risk and associated plasma
Reference and type of study Population (duration) Endpoint (events) concentration of vitamin C Estimated intake2

Riemersma et al, 1991 (188): 110 Men, 394 control Angina pectoris >57.4 compared with <13.1 mmol/L: 100 compared with 35 mg/d
case-control subjects ↓ risk by 39%

35.3 mmol/L in controls compared 75 compared with 65 mg/d
with 28.1 mmol/L in cases

Eichholzer et al, 1992 (189) 2974 Swiss men (12 y) CAD (132 deaths) >22.7 mmol/L: ↓ risk by 20% (NS) 55 mg/d
and Gey et al, 1993 (190): Stroke (31 deaths) >22.7 mmol/L: ↓ risk by 22% (NS) 55 mg/d
prospective cohort

Gale et al, 1995 (180): 730 UK elderly men Stroke (117 deaths) >27.8 compared with <11.9 mmol/L: 65 compared with 35 mg/d
prospective cohort and women (20 y) ↓ risk by 30%

CAD (170 deaths) >27.8 compared with <11.9 mmol/L: 65 compared with 35 mg/d
no ↓ risk

Singh et al, 1995 (191): 595 Indian men and CAD (72 cases) >42.6 compared with <15.2 mmol/L: 80 compared with 40 mg/d
cross-sectional women ↓ risk by 55%

37.8 mmol/L in controls compared 75 compared with 50 mg/d
with <20.3 mmol/L in cases

Sahyoun et al, 1996 (185): 725 Elderly men and CVD (75 deaths) >88.6 compared with < 51.7 mmol/L: >400 compared with 95 mg/d
prospective cohort women (10 y) ↓ risk by 47%

Halevy et al, 1997 (192): 137 Cases, 70 controls CAD 35.9 mmol/L in controls compared 75 compared with 70 mg/d
case-control with 31.3 mmol/L in cases

Nyyssönen et al, 1997 (193): 1605 Finnish men (8 y) MI (70 cases) >11.4 µmol: ↓ risk by 60% 35 mg/d
prospective cohort

Vita et al, 1998 (194): 149 CAD patients Unstable angina, MI 42.5 mmol/L in controls compared 80 compared with 70 mg/d
case-control with 33.6 mmol/L in cases

Simon et al, 1998 (195): 6624 Men and women CAD 63–153 compared with 125 to >400 compared
prospective cohort 5.7–23 mmol/L: ↓ risk 27% with <30 to 55 mg/d

Stroke 63–153 compared with 125 to >400 compared
5.7–23 mmol/L: ↓ risk 26% with <30 to 55 mg/d

1 CVD, cardiovascular disease; CAD, coronary artery disease; MI, myocardial infarction.
2 According to data from Levine et al (117).
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et al (204) observed a 33% reduction in colon cancer risk in a
large population of women consuming >60 mg supplemental vita-
min C/d. No association was apparent when supplements were
taken for >10 y by patients with breast cancer (203). The Linxian
trial found no significant effect of supplementing a population of
Chinese men and women with 120 mg vitamin C/d and 30 mg Mo/d
for 5 y on the risk of cancers of the esophagus or stomach (205).
The results of clinical trials, however, depend on the use of suffi-
cient doses, sufficient durations, and low baseline concentrations
of vitamin C.

In summary, in most of the studies in Table 6 that reported no
significant reduction in cancer risk, intakes of vitamin C in the
lowest quantile were > 86 mg/d; those studies that reported signi-
ficant risk reductions (173, 182, 199, 207) found this effect in

individuals with vitamin C intakes ≥80–110 mg/d. As discussed
above, this intake range of 80–110 mg/d is associated with vita-
min C tissue saturation in healthy men (117). With one exception
(204), studies investigating consumption of supplemental vita-
min C, including the Linxian trial (205), did not show a protec-
tive effect against cancer, possibly because the dietary intake of
vitamin C was already sufficient for tissue saturation. Therefore,
the consensus protective intake emerging from the studies in
Table 6 appears to be <80–110 mg vitamin C/d. More studies
investigating cancer risk in persons with low vitamin C intakes
are warranted.

Several case-control and prospective cohort studies have
investigated the association between plasma concentrations of
vitamin C and cancer risk (Table 7). Four studies found signifi-
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TABLE 6
Vitamin C intake associated with reduced cancer risk (prospective cohort studies)

Reference Population (duration) Cancer site (events) Risk and associated dietary intake of vitamin C

Shekelle et al, 1981 (198) 1954 Men (19 y) Lung (33 cases) 101 mg/d in noncases compared with 92 mg/d in cases (NS)

Enstrom et al, 1986 (172) 3119 Men and women (10 y) All cancers (68 deaths) >250 compared with <250 mg/d: no ↓ risk

Kromhout, 1987 (199) 870 Dutch men (25 y) Lung (63 deaths) 83–103 compared with <63 mg/d: ↓ risk by 64%

Knekt et al, 1991 (200) 4538 Finnish men (20 y) Lung (117 cases) 83 mg/d in noncases compared with 81 mg/d in cases (NS)

Enstrom et al, 1992 (173) 4479 Men (10 y) All cancers (228 deaths) >50 mg/d + regular supplement: ↓ risk by 21%
6869 Women (10 y) All cancers (169 deaths) >50 mg/d + regular supplement: no ↓ risk

Shibata et al, 1992 (201) 4277 Men (7 y) All cancers (645 cases) >210 compared with <145 mg/d: no ↓ risk; 500 mg/d
supplement compared with no supplement: no ↓ risk

7300 Women (7 y) All cancers (690 cases) >225 compared with <155 mg/d: ↓ risk by 24%; 500 mg/d
supplement compared with no supplement: no ↓ risk 

Graham et al, 1992 (202) 18586 Women (7 y) Breast (344 cases) >79 compared with <34 mg/d: no ↓ risk 

Hunter et al, 1993 (203) 89494 US female nurses (8 y) Breast (1439 cases) >359 compared with <93 mg/d (total)1: no ↓ risk; regular
supplement compared with no supplement: no ↓ risk;
supplement ≥10 y compared with no supplement: no ↓ risk

Bostick et al, 1993 (204) 35215 Women (5 y) Colon (212 cases) >392 compared with <112 mg/d (total)1: ↓ risk (NS); >201
compared with <91 mg/d (diet): no ↓ risk; >60 mg/d 
supplement compared with no supplement: ↓ risk by 33%

Blot et al, 1993 (205)2 29584 Chinese men and Esophageal-stomach 120 mg/d supplement: no ↓ risk (+ 30 µg Mo/d cosupplement)
women (5 y)

Pandey et al, 1995 (182) 1556 Men (24 y) All cancers (155 deaths) >113 compared with <82 mg/d: ↓ risk by 39%

Losconczy et al, 1996 (184) 11178 Elderly men and All cancers (761 deaths) Regular supplement compared with no supplement: no ↓ risk
women (6 y)

Sahyoun et al, 1996 (185) <725 Elderly men and All cancers (57 deaths) >388 compared with <90 mg/d: no ↓ risk
women (10 y)

Kushi et al, 1996 (206) 34387 Women (5 y) Breast (879 cases) >392 compared with <112 mg/d (total)1: no ↓ risk; >198 
compared with <87 mg/d (diet): no ↓ risk; regular 
supplement compared with no supplement: no ↓ risk

Yong et al, 1997 (207) 3968 Men and 6100 Lung (248) 82 mg/d in noncases compared with 64 mg/d in cases
women (19 y)

1Intake from diet plus supplements.
2Trial (not prospective cohort study).
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cantly higher concentrations of vitamin C in control subjects or
survivors than in patients with cancer (208, 209, 211, 212), who
in all 4 studies had plasma vitamin C concentrations <45 mmol/L.
Two recent studies also found lower plasma vitamin C concen-
trations in cancer patients than in control subjects, but the dif-
ferences were nonsignificant (46, 213). Because of the retro-
spective nature of case-control studies, it is not clear whether
decreased plasma vitamin C concentrations in cancer patients are
a cause or a consequence of the disease. In a prospective cohort
study, Sahyoun et al (185) found a 32% lower risk of cancer in
elderly persons with concentrations of vitamin C > 89 mmol/L
than in those with concentrations < 52 mmol/L. The Basel study
investigated cancers at several sites over 7–17 y of follow-up in
a population of 2974 Swiss men (210, 214, 215). Vitamin C con-
centrations > 23 mmol/L were associated with a nonsignificant
reduction in risk of cancer at all sites after 17 y (210). Non-
significant reductions of 42% and 45% in colon cancer and lung
cancer risk, respectively, were observed. No associations were
observed for risk of stomach cancer or prostate cancer, the latter
being a hormone-dependent cancer and hence less likely to be
affected by diet, including vitamin C (157). In a comprehensive
review article, Gey (15) suggested that plasma vitamin C con-
centrations > 50 mmol/L are associated with protection against

cancer, which is consistent with the findings of the studies listed
in Table 7 and an intake of <100 mg/d (117).

Cataract

Cataract is the leading cause of blindness in the world (216),
accounting for 50% of significant visual impairment among
adults in developed countries (54). In the United States alone,
more than one million cataract extractions are performed annu-
ally at a cost of >$5 billion. Cataract extraction is the most fre-
quently performed surgery in elderly Americans and is the largest
single item of Medicare expenditure, accounting for 12% of the
budget (54, 216). The population at greatest risk of cataract is
persons aged ≥55 y, with 5% of persons aged ≥65 y and 50% of
persons aged ≥75 y having visually significant cataract.

Several epidemiologic studies have investigated the associa-
tion of vitamin C intake with the incidence of cataract (Table 8).
Two case-control studies indicated a strong inverse association
between high intakes of vitamin C and cataract (217, 218).
Robertson et al (217) found that intakes of > 300 mg vitamin C/d
were associated with a 70% reduced risk of cataract. Similarly,
Jacques and Chylack (218) found that daily intakes of > 490 mg
were associated with a 75% lower risk of cataract than intakes
< 125 mg/d. These investigators also measured plasma concen-

TABLE 7
Plasma concentration of vitamin C associated with reduced cancer risk

Risk and associated 
Reference and type of study Population (duration) Cancer site concentration of vitamin C Estimated intake1

Stahelin et al, 1984 (208): 129 Cases, 258 controls All sites 51.5 µmol/L in controls compared 95 compared 
case-control with 44.9 µmol/L in cases with 85 mg/d

Romney et al, 1985 (209): 46 Cases, 34 controls Cervix 42.6 µmol/L in controls compared 80 compared 
case-control with 20.5 µmol/L in cases with 50 mg/d

Eichholzer et al, 1996 (210): 2974 Swiss men (17 y) All sites (290 deaths) >22.7 compared with <22.7 µmol/L: 55 mg/d
prospective cohort ↓ risk by 19% (NS)

Colon (22 deaths) >22.7 compared with <22.7 µmol/L: 55 mg/d
↓ risk by 42% (NS)

Stomach (28 deaths) >22.7 compared with <22.7 µmol/L: 55 mg/d
no ↓ risk

Lung (87 deaths) >22.7 compared with <22.7 µmol/L: 55 mg/d
↓ risk by 45% (NS)

Prostate (30 deaths) >22.7 compared with <22.7 µmol/L: 55 mg/d
no ↓ risk

Sahyoun et al, 1996 (185): <725 Elderly men All sites (57 deaths) >88.6 compared with <51.7 µmol/L: >400 compared 
prospective cohort and women (10 y) ↓ risk by 32% with 95 mg/d

Ramaswamy and Krishnamoorthy, 100 Cases, 50 controls Breast 112.5 µmol/L in controls compared  >400 compared 
1996 (211): case-control with 35.8 µmol/L in cases with 75 mg/d

100 Cases, 50 controls Cervix 112.5 µmol/L in controls compared  >400 compared 
with 27.6 µmol/L in cases with 65 mg/d

Erhola et al, 1997 (212): 57 Cases, 76 controls Lung 46.5 µmol/L in controls compared  85 compared 
case-control with 34.0 µmol/L in cases with 75 mg/d

Comstock et al, 1997 (46): 258 Cases, 515 controls Lung 69.8 µmol/L in controls compared  400 compared 
case-control with 59.0 µmol/L in cases (NS) with 150 mg/d

Webb et al, 1997 (213): 1400 Men and women Stomach (29 cases) 47.6 µmol/L in controls compared  90 compared 
cross-sectional with 40.6 µmol/L in cases (NS) with 80 mg/d

1According to data from Levine et al (117).
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trations of vitamin C: concentrations > 90 mmol/L were associ-
ated with a 71% lower risk than concentrations < 40 mmol/L. In
contrast, Vitale et al (220) found no protective effect of 260 mg
vitamin C/d over that of 115 mg/d and no association with
plasma concentrations > 80 mmol/L compared with < 60 mmol/L.

Two studies, one of them involving >50000 women (219), indi-
cated that vitamin C has a positive effect on cataract risk when sup-
plements are taken for ≥10 y; risk reductions of 45% (219) and
77–83% (222) were reported. To date, one intervention trial has been
carried out to determine the effect of vitamin C intake on cataract for-
mation, among other diseases (221). In this trial, a large population of
Chinese adults was supplemented with 120 mg vitamin C/d in con-
junction with 30 mg Mo/d for 5 y, resulting in a nonsignificant reduc-
tion in cataract risk of 22%. A significant 36% risk reduction was
observed in the same trial when a multivitamin and mineral supple-
ment was consumed (221). Several other investigators reported reduc-
tions in cataract risk of <30–60% when multivitamin supplements or
antioxidant combinations were consumed (216, 223–226). In the
largest study, which included 17744 men (216), it was noted that
although vitamin C supplements alone did not show an association
with cataract, the numbers of that particular subpopulation were small.

As mentioned earlier, epidemiologic studies can provide only
a semiquantitative estimation of vitamin C intake depending on
the accuracy of dietary recall questionnaires; additionally, in
many of the above-mentioned studies, intake at only one time
point was assessed. Determination of plasma concentrations of
vitamin C may more accurately reflect body stores of the vita-
min. The protective concentrations of vitamin C in most of the
diet-based cataract studies were relatively high (217–219, 222).
Why amounts of vitamin C well above those resulting in tissue
saturation (117) should reduce cataract is uncertain. Elderly per-
sons may require higher intakes of vitamin C because of reduced
bioavailability (54). Lens concentrations of vitamin C are related

to dietary intake and can be significantly increased with supple-
mentation (54). Eye tissues may become saturated with vitamin C
at intakes between 150 and 250 mg/d (54).

At this stage it is difficult to propose a protective vitamin C
intake with respect to cataract because of the limited number of
prospective cohort studies and the wide range of protective con-
centrations reported. The only intervention trial conducted showed
nonsignificant reductions in cataract risk with 120 mg vitamin C/d
(221). Providing for additional vitamin C intake in this study
from the diet, and considering the intake required for eye tissue
saturation (54), it is plausible that <150–200 mg vitamin C/d pro-
vides optimal protection against cataract. This estimate is con-
sistent with the higher intakes in the epidemiologic studies.
Long-term supplementation for ≥10 y may be of benefit in
reducing the incidence of age-related cataract (219, 222).

SPECIAL POPULATIONS

Several populations warrant special attention with respect to
vitamin C requirements. These include smokers, pregnant and
lactating women, and the elderly. Persons with iron-overload
conditions, such as homozygous hemochromatosis, and requir-
ing treatment of b-thalassemia may also have different require-
ments (11, 227). Vitamin C requirements in severely iron-over-
loaded persons are complicated by safety issues, however, and
it is beyond the scope of this review to discuss the tolerable
upper intake level of vitamin C.

Smokers

A significant amount of research has indicated that smokers
have a higher requirement for vitamin C than do nonsmokers (5,
8). Vitamin C concentrations are lower in smokers than in non-
smokers and are inversely related to cigarette consumption (88,
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TABLE 8
Vitamin C intake or plasma concentration with reduced cataract risk

Risk and associated intake or plasma 
Reference and type of study Population (duration) Endpoint concentration of vitamin C

Dietary intake
Robertson et al, 1989 (217): case-control 175 Cases, 175 controls Cataract >300 mg/d supplement: ↓ risk by 70%

Jacques and Chylack, 1991 (218): case-control 77 Cases, 35 controls Cataract >490 compared with <125 mg/d:
↓ risk by 75%

Hankinson et al, 1992 (219): prospective cohort 50828 Women (8 y) Cataract (493 705 compared with 70 mg/d: no ↓ risk;
extractions) supplements for >10 y: ↓ risk by 45 %

Vitale et al, 1993 (220): longitudinal 660 Men and women (6 y) Cataract >261 compared with <115 mg/d: no ↓ risk

Sperduto et al, 1993 (221): trial 3249 Chinese men Cataract 120 mg/d supplement: ↓ risk by 22% (NS) 
and women (5 y) (+ 30 µg Mo/d cosupplement)

Jacques et al, 1997 (222): cross-sectional 247 Women (10 y) Cataract >359 compared with <93 mg/d: no ↓ risk; 
supplements for >10 y: ↓ risk by 77–83%

Plasma concentration
Jacques and Chylack, 1991 (218): case-control 77 Cases, 35 controls Cataract >90 compared with <40 µmol/L: ↓ risk by 

71% (>400 compared with 80 mg/d)1

Vitale et al, 1993 (220): longitudinal 660 Men and women (6 y) Cataract >80 compared with <60 µmol/L: no ↓ risk 
(>400 compared with 150 mg/d)1

1Corresponding estimated dietary intake according to data from Levine et al (117).
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89, 228, 229). The lower vitamin C status of smokers is most
likely due to increased turnover of the vitamin as a result of
increased oxidative stress (88, 89, 196, 230). In one study, vita-
min C supplementation (2000 mg/d for 5 d) significantly reduced
the amount of urinary F2-isoprostanes, an indicator of oxidative
stress that is elevated in smokers, whereas vitamin E had no
effect (77). The RDA for smokers is 100 mg vitamin C/d (6),
although it has been proposed that smokers require ≥2–3-fold
the current RDA of 60 mg/d to maintain plasma vitamin C con-
centrations comparable with those in nonsmokers (2, 5, 89, 231).

Pregnant and lactating women

Women who are pregnant or lactating also require a higher
intake of vitamin C to maintain their plasma vitamin C concen-
trations near those of other women (8, 232). The higher require-
ment is probably due to active placental vitamin C transport,
whereby vitamin C concentrations are significantly higher in
cord blood and in newborn infants than in the mothers, and to
additional loss of vitamin C through milk (8, 233). The current
RDAs for women during pregnancy and lactation are 80 and 100 mg/d,
respectively (6). If a new RDA for healthy, nonsmoking persons
is adopted, then recommended intakes for pregnant and lactating
women may also need to be adjusted accordingly.

The elderly

The elderly are prone to vitamin C deficiency, probably
because of dietary habits (5, 8, 227). The elderly also appear to
have a higher requirement for vitamin C (232), although the evi-
dence is inconsistent, suggesting that further study is required.
Oxidative processes have been implicated in aging (30) and it
has been proposed that antioxidants may have beneficial effects
on cognitive functions in the elderly. In one cross-sectional study
there was no association between cognitive function and intakes
of vitamin C ≥160 mg/d compared with intakes < 70 mg/d (234).
However, in another cross-sectional and longitudinal study, high
plasma vitamin C concentrations were associated with better
memory performance (235). A recent cohort study also showed
that consumption of vitamin C supplements was associated with
a lower prevalence of severe cognitive impairment (236). Finally,
2 other recent studies found that patients with Alzheimer disease
have low plasma vitamin C concentrations despite an adequate
diet and that supplementation with vitamin C may lower the risk
of Alzheimer disease (237, 238).

SUMMARY AND CONCLUSIONS

Vitamin C is required for the optimal activity of several impor-
tant biosynthetic enzymes and is therefore essential for various
metabolic pathways in the body. A deficiency of this vitamin
results in the symptoms of scurvy and death. Vitamin C acts as a
cosubstrate for several mono- and dioxygenases and oxidases and
maintains the active-site metal ions of these enzymes in the reduced
state. Vitamin C also acts as an efficient scavenger of aqueous rad-
icals and oxidants, thus protecting other biomolecules from oxida-
tive damage. In addition, vitamin C can spare or recycle glu-
tathione and vitamin E, 2 other important physiologic antioxidants.

Oxidative biomarker studies indicate that vitamin C protects
against in vivo oxidation of lipids and DNA in humans, particularly
in persons exposed to enhanced oxidative stress, such as smokers
(Tables 1 and 2). Numerous epidemiologic studies strongly suggest
that vitamin C lowers the incidence of and mortality from 2 of the

most prevalent human diseases: cardiovascular disease (Tables 4
and 5) and cancer (Tables 6 and 7). This role of vitamin C in low-
ering disease incidence is most likely derived from its antioxidant
activity, although other mechanisms may also contribute. In addi-
tion, vitamin C seems to have a substantial effect on cataract for-
mation (Table 8), again most likely through an antioxidant mecha-
nism. As such, the potential of adequate vitamin C nutriture to
benefit public health and reduce the economic and medical costs
associated with these chronic diseases is enormous.

If the antioxidant function of vitamin C is accepted as relevant
to and important for human health, then morbidity and mortality
from cancer, cardiovascular disease, and cataract in addition to
scurvy must be used as criteria for determining vitamin C require-
ments. Therefore, the current RDA of 60 mg/d must be reevaluated
and adjusted if justified by the available data. The totality of evi-
dence from the human studies presented in Tables 4–7 strongly
suggests that a dietary intake of 90–100 mg vitamin C/d is associ-
ated with reduced risk of cardiovascular disease and cancer; there
is no indication that 46 mg/d is adequate, ie, the amount on which
the current RDA of 60 mg/d is based (7). Therefore, we suggest that
the RDA for vitamin C be doubled to 120 mg/d. Even higher intakes
of vitamin C, and possibly supplementation, may be required to
reduce cataract risk (Table 8), although the evidence is less secure
because of the limited number of studies. Furthermore, chronic
500-mg/d doses or acute 1–3-g doses of vitamin C significantly
improve vasoreactivity (Table 3), an important consideration for
the clinical expression of cardiovascular and cerebrovascular dis-
ease (eg, angina pectoris, myocardial infarction, and stroke).

One might argue that the suggested RDA of 120 mg vitamin C/d
for optimal risk reduction of cardiovascular disease and cancer is
derived solely from epidemiologic studies and not clinical trials,
and epidemiologic studies cannot establish causality, but merely
show associations. However, these data are the best available for
estimating vitamin C adequacy in humans. Clinical trials will not
provide this information for several reasons: 1) it is neither practi-
cal nor economically feasible to examine a range of vitamin C sup-
plemental doses, ie, to perform detailed dose-response studies; 2)
the beneficial effects of vitamin C with respect to cardiovascular
disease and cancer appear to be derived from intakes well within
the dietary range, ie, supplementation has little or no effect; and 3)
without knowledge of exact baseline concentrations or intakes of
vitamin C, total intakes cannot be determined. Thus, although clin-
ical trials provide valuable information regarding the usefulness of
supplements, they are unlikely to provide the data necessary to
determine the RDA for vitamin C, because it appears to be well
within the dietary range. Nevertheless, properly designed clinical
trials, ie, double-blind, placebo-controlled, randomized trials of
vitamin C supplementation in populations with low to very low vita-
min C status, would be useful to provide the “proof of concept” that
vitamin C can lower morbidity or mortality from cardiovascular
disease, cancer, and cataract. Whether such trials are economically
and logistically feasible and will be conducted in the foreseeable
future is uncertain.
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