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Review: basic idea of methods in
the previous Chapters

= Chapter 2

= Single v

= Chapter 3

~

characteristics of the transformed

= Multi variable
«= Usually, transform to single variable
«= Common characteristics: Optimization along a

line

What are the common

i ?
methods in Chapter 3 /




Characteristics of the problem in
this Chapter

= Chapter 4 Linear Programming 5 VU= 2 E &)
= Constrained optimization
= A special type

== both the objective and the constraint functions are
linear functions of optimization variables

= Classified as linear programming
= Denoted as LP for short
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= The applications of linear programming in civil
engineering :

= (I) A linear programming can be applied to allocate the
amount of procurement on bricks from different

manufacturers at different prices and with different
strengths, minimizing total cost.

= (ii) A linear programming can also be used to determine

the amount of buildings to be tendered for construction with
different profit level and different resource consumption so
as to maximize total construction profit.

Though numerous of applications can be found in civil

' _;g'ineering, this book will only concentrate on basic theory
\Ii-ir programming and present several typical example
1 structural design.
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Linear Programming

= Example of modeling P—
- Building type available

o 1 2

= Labor 1500 2100 23200

* Machine 3200 1600 31500
- TT}’Jnce 5500 8600 92500
= Pro 26000 31400
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GENERAL FORM OF A LINEAR PROGRAMMING PROEP i

= A general form of linear programming
problem can be stated as

= (i) In scalar form.

X,L L x,)=¢cx +c,x,+L +¢,x, (4.2.1)



a,x, +a,x, +L +a,x <b,
a,x, +a,x,+L +a, x <b,
M

a,x, +a,x,+L +a,x <b, |

\
dx +d,x,+L +d, x >e

3

(4.2.2b)

d,x +d,x,+L +d, x >e,
M
dx +d,x,+L +d, x >e, |

puX + ppx, +L +px, = ¢,
DX+ PpX, +L +p,x, =q,
M
fslxl +p,X%,+L +p,x, =g,
'54‘

-------

N

(4.2.2b)

J



GENERAL FORM OF A LINEAR
PROGRAMMING PROBLEM

Wepey, _qj, a;, dyand p; (i=1, 2, ..., n) and known

constants—" What are the common
" X;are the . 5racteristics of the transformed
= general methods in Chapter 3 ?

ZINg Or maximizing
. equalities or inequalities

- * objective func
;-'1 onstraint fun

naracteristics of the general form of LP
the objective and the constraint functions are
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(ii) In summation form. The linear programming
problem in scalar form may also be stated in a compact

M
/

form by using the summation sign as:

min ormax  r(x x L ,xn)=znlcjxj (4.2.3)

s 1. Zayx]—b’ i=12L .k (4.2.4a)
' (4.2.4b)

(4.2.4¢)

Zdvxf 24 1=1,2,L I

r=1,2,L ,s

;jxj R qr



= (iit) In matrix form

min or max C'X
S.t. AX < B
DX > E (4.2.6Db)

PX =0 (4.2.6¢)
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= An example of model of linear programming. /

Given an RC short column earruina an avig| loading N, as shown
4.2.1, derive a mathemati o minimizes the cost
column. N

H

area of the
column

the area of
reinforcement

J ;. the column
| - height

|

|

|

|

|




Total cost of the main materials in the RC column
can be expressed as

Ct — CCACH_I_CSASHGS (4-2-7')

The compression strength requirement of the RC
column should be satisfied

N<fA +f,A (4.2.8)
..-.,‘a”d A>p. A (4.2.9)
A <p A (4.2.10)

e p..is the minimum reinforcement ratio.
LIS the maximum reinforcement ratio.
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= Minimize this transformed cost, the mathematical "
model of the RC column can be derived

yr

MmN z=cd +c,4G, (421750 NN—

N<fA+fA]
s.t Jede 1,4,

A2 pu,A. b (4.2.12)

AS S pmaXA

C




= Substituting all these parameters into Egs.

(4.2.11)~(4.2.12), yields
Find , 4, 4

(4.2.13) }

MIN  z=3.0x1074,+2.418x10°4,  (4.2.14)

A +3.967x107 4 >5.467x10° |

. St 4 00044
| A <0.054,

L (4.2.15)
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Standard Form of a Linear Programming Prqrblem'

= The standard form of linear programming problemﬁ&'nhbe
stated in scalar, summation or matrix form. To save space,
only two forms will be listed as follows:
(i) In scalar form.

min f(xlaxzaL ,xn)=01x1+czx2 +L +cC, X, (431)

N

a,x, +a,x,+L +a,x =b
a,x, +a,,x,+L +a, x =D, (4323)

1x1+a ok, +L +a_x =b

m )
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. (4.3.2b)

x, =0
(i) In matrix form.
min CTx (4.3.3)

(4.3.4b)

-------



= The characteristics of the linear programmin
g problem stated in the standard form are:
= 1. The objective function is of the minimization

type.
= 2. All the constraints are of the equality type.

= 3. All the decision variables are nonnegative.

-

ks linear programming problem can be put in the

‘standard form by the use of the transformations.
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N

- — A ——
- AN a
-.H\-“l.-“\.- :

] ; ! | '
F T RN TR TEETRTER IERTTRR. i . L .-
- - — = - ! et e B e - gt —;

Mo B B B Mo R o R



The maximization of a function is equivalent to
the minimization of the negative of the same

function .For example, the objective function.
minimize  f=cx, +c,x, +®+c x,

IS equivalent to

maximize [ =-f=—x —cx,—®—c.x,

~ Consequently, the objective function can be
~stated in the minimization form in any linear




2. In most of the engineering optimization problems,
the decision variables represent some physical
dimensions and hence the variables xj have to be
nonnegative. Thus, if xj is unrestricted In sign, it
can be written as

- where

x'. >0 and x;20

i 0e seen that xj will be negative, zero or
" X i‘u;;, ve dependlng on whether is greater than,
: 'W Iess than .
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o If a constralnt appears Iin the form of a Iess than’

type of inequality as
a, x, +a, x, +® +a, x, <b

it can be converted into the equality form by
adding a nonnegative slack variable as follows:

a, x ta,x,+® +a, x, +x,,=b,
where x,.iS @ nonnegative variable known as the
- surplus variable.

be seen that there are m equations in n
on varlables In a linear programming
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- Example 4 3 1
Consider the problem of maximizing 7
F =2x,—x, +5x, L.y.
the constraints :

—2x, +x; <8
3x, —2x, 2 —18
2x,+x, —2x, <4
x, 20

 linear programming problem in standard



a Solutlon

Since x1 and x2 are not restricted
nonnegative we write then as "




= subject to :

i — oL —
X, —Xx, —2x, +2x, +x; <8
3x; —3x; —2x, +2x, 218
2x, —=2x; +x, —x, —2x, <4
x, 20,x, >20,x; 20,x, 20,x; >0

= This can be stated as a minimization problem by
taking the new objective as - Fand the constraints

. -'.__.--'

N be stated as equalities by introducing a slack
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= Minimize f=-F=-(2x —2x] —x; +x, +5x;) _ | *

subject to F .
X[ —x; —2x, +2x, +x,-8+y, =0 |

3x; —3x;, —2x, +2x, +18—y, =0

2x, =2x, +x, —x, —2x, -4+ y, =0
x, 20,x, 20,x, 20,x, 20,x;, >0,
»z20,y,20,y, 20,




= Example 4.3.2

State the linear programming problem of Egs.
(4.2.13)~(4.2.15) in standard form.

=  Solution

Since the design variables and are nonnegative,
and the objective function are in the minimization
form, one need only transform the constraints into
he ualities by introducing slack or surplus variables.

| 13 transformation will directly result in the standard
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Find , 4, A
min z=3.0x1074, +2.418x107 4,
St 4 +3967x1074 —x =5.467x10°
A,-0.0044, —x, =0
A —-0.054 +x,=0

-..,“ X, and X, are the surplus variables and Xx; is
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Geometry of Linear Programming problem

A linear programming problem with only two
variables presents a simple case for which the
solution can be obtained by using a rather
elementary graphical method. Apart from the
solution, the graphical method gives a physical
”plcture of certain geometrical characteristics of
. linear programming problem. The following
Nej(' mple is considered to illustrate the graphical

h d of solution.
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Example 4.4.1

A construction team tenders for two types of
plastering work

« Sprayed granite-like coating
* Terrazzo

Consumes some material, and requires grinding
machines and high pressure pumping machines

different machining required for each plastering
= profit on each p

astering type given in table

Type of machine

Machining time required
for the machine part
granite coating [ terrazzo II

Maximum time available
per week (minutes)

Material consumption (kg) 10 5 2500
Grinding machines (hour) 4 10 2000
Pressure pump (hour) 1 1.5 450
Profit per unit 50 Yuan 100 Yuan

e e s
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= Determine the number of plastering | and |l
manufactured per week be denoted by x and y
respectively. The constraints due to the maximum
time limitations on the various machines are given

10x+5y <2500 (E))
4x+10y <2000 (E,)
x+1.5y <450 (E5)

'Glnce the variables x and y cannot take negative
. ued, we have ¥>0

by




= The total profit is given by
f(x,y)=50x+100y (Es)

= Thus the problem is to determine the nonnegative
values of x and y which satisfy the constraints
stated in Egs.(E1) to (E3) and maximize the
objective function given by Eq.(ES).
= Solution
.;The set of inequalities given by Eqgs.(E1) to (E3)
_can easily be represented on a graph. By taking
Qordmate axes as x and y, the equality

- 10x +5y =2500 (E)




|s hown bythe Ilne AB nd the rglon
corresponding to the inequality

10x + 5y < 2500 (E))

is shown by the shaded area in Fig. 4.3.1.
‘Y

AC0,5000

B(e50,0>




- i—.

= To obtain the x and y intercepts for the mequallty
(E1), we proceed as follows: .

Put x=0 in Eq. (E6) to get y=500 (point A). &)h nag
Put y=0 in Eq. (E6) to obtain x=250 (point B).
= Similarly ,we can get the following figs:

AC0,500)

B(250,0> D¢300,00 y

X 0,00

Figure 4.3 Feasible region given by Eqs.(E2) and (E4)

2asible region given by Eqgs.(E1) and (E4)
a i
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EC0,3000 E

187.5,1295.07

F¢450,0) | | |
—— X (0,00 B - 7

(0,00

Figu 2 4.4 Feasible region given by Egs.(E3) and (E4) Feasible region given by Egs.(E1) and (E4 )
|

ig. 4.5, the shaded area of which represents the region of
Olutions for the problem. Our objective is to find at least



If a total profit of, say, 10,000 Yuan,

IS to be obtained by producing type |
alone, the value of x will be 200.

Optimum point x*=187.5, y*=125.0




= A linear programming problem may have
(i) a unique and finite optimum solution

i) an infinite number of optimal solutions

i) an unbounded solution

IV) no solution

V) a unique feasible point.

(
(
(
(

= Assuming that the linear programming problem is
properly formulated, the following general
geometrlca characteristics can be noted from the
- graphical solution:

( ,;I'he feasible region is a convex polygon.

N optimum value occurs at an extreme point or vertex
aS|bIe region
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4.5 € N NEH

Definitions and Theorems

= The geometrical characteristics of linear
programming problems stated in the previous
section can be proved mathematically. Some of
the more powerful methods for solving linear
programming problems take advantage of these

pcharacterlstlcs The terminology used in linear

,,,a rogramming and some of the important theorems
Qnmdered In this section.




= Point in n-dimensional space: A point X in an n-
dimensional space is characterized by an ordered set of

n values or coordinates(x,,x,,®,x ).

= Line segment in n-dimensions (L): If the
coordinates of two points A and B are given by x"

and x?(j=12,®,n) ,the line segment (L) joining these
points is the collection of points x(1) whose coordinates
are given by x, = Ax\" +(1-)x'? | where 0<< \ <1.

yperplane In n-dimensional space, the set of points
\: _* ¥se coordinates satisfy a linear equation

ax +a,x,+®+ax =a X=b

lled a hyperplane.




" Convex set : It is a collection of points such shat if X(1)

and X(2) are any two points in the collection, the line
segment joining them is also in the collection. If S.ﬁ
denotes the convex set, it can be defined mathematically
as follows :

f X, X®cSthen XeS°
where
X=X +(1-a) XV 0<a<l




= Vertex (extreme point): This is a point in the convex set
which does not lie on a line segment joining two other

points of the set.

= feasible solution: In a linear programming problem, any
solution which satisfies th. Constraints g X =5 and x>0

is called a feasible solution.

aSIC solution: This a solution in which variables are

ual to zero.




= Basic feasible solution: This is a basic solution which
satisfied the nonnegativity conditions.

= Nondegenerate basic feasible solution: This'is a
basic feasible solution which has got exactly m positive xi.

= Optimal solution: Feasible solution which optimizes the
~ objective function is called an optimal solution.

P—

..1 vtimal basic solution: This is a basic feasible solution
* \\{ the objective function is optimal.
L X

T



= The basic theorems in linear programming

= THEOREM 4.1: The intersection of any number of
convex sets is also convex.

= proof

= THEOREM 4.2: The feasible region of a linear
programming problem is convex.

= proof
' -THEOREM 4.3: Any local minimum solution is global
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= THEOREM 4.5 Let S be a closed, bounded convex
polyhedron with X/i =1 to p as the set of its extremehpoi-nts.

Then any vector x < s can be written as J - -
p L s
X =Y Ax: 420 2 A =1
i=1 =l
= proof

= THROREM 4.6 : Let S be a closed convex polyhedron.
‘--‘h:'_lr'ﬁhen the minimum of a linear function over S is attained at
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4.6 PIVOTAL REDUCTION OF LINEAR ‘
EQUATION SYSTEM

= 4.6.1 Solution of a system of Linear Simulta
Equations £& "B 7 5 R 4H 11

= Review: some of the elementary concepts of linear
~_equations




.......................

ok Vi

= Consider the following system of n-equations |nn
unknowns

a,x, +a,x,+L +a, x =b (E) 4
a,x, +a,x,+L +a, x =D, (E,)

a,x, +a,x, +L +a, x =b, (E,) (4.5.1)
M M

a x +a,x,+L +a x =b (E))




= |tis well known from elementary algebra that the

solution of Eqgs.(4.5.1) will not be altered under the
following elementary operations:

(i) any equation Er is replaced by the equation k Er
where k is a nonzero constant

(i) any equation Er is replaced by the equation Er+kEs
- wWhere Es is any other equation of the system.

'3 making use of these elementary operations, the system
e qs (4.5.1) can be reduced to a convenient equivalent
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= The resulting system of equations can be written
as

aznx1 +a12x2 +L +all X, +0-x +all+1x

i+1

+L +a, x, =b J e -
“
ayX% +ayx,+L +a,, % +0-x +a,,,x, +L +a,x, =b,

M

2,i+1

a' 1x1+a 0% +L +a X%, +0- x+a,11+ X L +a]1n‘xn_b 1 (452)

1% T +a]nxn —b

j—1li—

a.x+a.x+L+a. X +1x+a

a X, +a x, +L +a x_ ,+0-x +a,+11+1x1+1+L +a1+1nxn:bf

j+11 j+1,2 Jj+Li-1

X, +L+ax—b

. .-n‘l‘l’xl+a 2x2+L +a, X, +0-x, +an1+1 ol

n,i—1




= A pivot operation: The procedure of eliminating a
particular variable from all but one equations

= we take the system of Egs.(4.5.2) and perform a
new pivot operation by eliminating x,.s #%in all the
equations except in ith equation i = j,he zeroes or

.}_thg 1 in the ith column will not be disturbed . This
, ivotal operations can be repeated by using a

.'I ‘ ’

ifferent variable and equation each tine until the
| _hmof_éEqs.(4.5.1) IS reduced to the form

g i

: i
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1 1-x,+0-x,+0-x,+L +0-x =b,
0-x,+1-x,+0-x,+L +0-x, =b, (4.5.3)

0-x,+0-x,+1-x,+L +0-x =b,

This system of Egs.(4.5.3) is said to be in canonical form
and has been obtained fter carrying out n pivot operations,
From the canonical form, the solution vector can be directly
obtained as

X, :bi i=1,2,L ,n (4.54)
- Since the set of Egs.(4.5.3) has been obtained from
#,ﬁ gs.(4.5.1) onIy through elementary operations, the system
- of Ec (4.5.3) is equwalent to the system of Eqs.(4.5.1).

“*'ﬂ‘g_ e solution given in Egs.(4.5.4) is the desired
’.‘4;;;. ) for Egs.(4.5.1).




: Example 4 6 1 i e

= Solve the following system of equations by using pivot

operations. g, T
(10) 4a+3x+x=13 L.y.
(HO) 3xl +0')C2 +7)C3 =24
(I110) X, +2x, +3x, =14
= Solution:
Slnc:eaz11 = 0in Eq. ( I 0), we can pivot on the element «: =4to
I"\,

R L
MR TR Ty [1=4I0
9 25 57
| :}L_;Q—sz e [I1=10—31 1

0— 11




=  Now pivoting on the element a, =-9/4 in Eq. (11 1) , we
obtain

x1+0+zx3=8 '
3 [2=1 1— —HZ‘ -
045, =2 == 112= -5 111
. = 15
O+O+§x3:§ 2 1 HZ
9 3 4
= Finally by carrying out the pivotal operation on a;, =56/9
X +0+0=1 [3=12— 2112
0+x,+0=2 [[3=1[2+ 2
3= 21112
0+0+x,=3 56

.( 1 3), (I13)and (l1I3) are in canonical form from

e IUtlon can be ready obtained as
"-' x1—1x2 2.X'3—3




4.6.2 Pivotal Reduction of a General System

of Equations

= In stead of a square system, let us consider a system of m
equations in n variables with . This system of equations is
assumed to be consistent so that it will have at least one

solution.
a, x, +a,x,+®+a, x, =b,
a, X, +a,x, +® +a, x =b, (4 6 5)
‘\,—'é

a x +a  x,+®+a, x =b_

tion vector(s) X which satisfy the Egs. (4.6.5) are

lent from the Eqgs. (4.6.5).

3
it
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= |f pivotal operations, with respect to any m variables,
say,x,,x,,®,x,are carried, the resulting set of equations can

be written as follows:

J | -

e

Canonical system with pivotal variables X, %,,8 %,

”
M é

1-x,+0-x, +® +0-x,, +ay,,,x

0-x,+1-x,+®+0-x, +a;, x

+® +a x, =b

m+1

+® +a) x, =b,

(4.6.6)
0-x,+0-x, +®+1-x, +a, .. x,, +® +a, x, =b,
" Pivotal variables | Nonpivotal or Constants

Independent
variables




= One special solution which can always be deduced from
the system of Egs. (4.6.6) is

x, =b" i =120 ,m } (4.6.7)

x, =0, i=m+1,m+2,0,n
= This solution is called a basic solution since the solution
vector contains no more than m nonzero terms.

= The pivotal variables «,, ;=1L .» are called basic variables,
and other variables *:. i=m+1,m+2,®,n are called nonbasic

'varlables

"’* allp! i =1,2,6 ,min the solution given by Egs.(4.6.7) are
_nonnegative, it satisfies Egs. (4.1.3) in addition to

NGB ‘u% 2) and hence it can be called a basic feasible
||- tion.

-
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= |tis possible to obtain the other basic solutions from the

canonical system of Egs. (4.6.6). We can perform an

additional pivotal operation on the system afteritis in
canonical form, using «,, (which is nonzero) as the pivot

term as the pivot term,q > m, and using any row p (among
1,2, ...m).
= The new system will x_still be in canonical form, but with as
_ the pivotal variable in place of x,. The variable x, , which
* was a basic variable in the original canonical form, will no

-+ longer be a basic variable in the new canonical form.

P oy s




= This new canonical system yields a new basic solution
(which may or may not be feasible) similar to that of

Eqgs.(4.6.7) ]

" |tis to be noted that the values of all the basic variables
change, in general, as we go from one basic solution to
another, but only one zero variable (which is nonbasic in
the original canonical form) becomes nonzero (which is

* basic in the new canonical system) and vice versa.




= Example 4.6.2

= Reduce the system of equations
2x, +3x, —2x, = Tx, =1 (10)
X, +x, +x,+3x, =6 (110)

X, —Xx,+x, +5x, =4 (110)




e .-I-L.---a. -ﬂL—-.-- e

o

1
121 ‘o
O0——x, +2x, +—x, = — 11 = 110-I1 _
2 2 2 L.P.
5 17 7 "1 =1o-1
+—X 5

and then if we pivot on =—% we get
X, +0+5x, +16x, =17 |2—|1-_||2
0+x, —4x, —13x, =11 12 = -1I1
040—3x, — 24x, =24 112 = 1111+ —II2
ﬂ"‘ ‘we pivot one;;to obtain the required canonlcal form as
% +x, =2 13 = 12-51113
y = 113 = 112+41113

|
1113 = —§III2



= From this canonical form, we can readily write the solution
of x, x, and x, in terms of the other variable x, as

X, =2-Xx,
x, =1+ x,
x, =3-3x,

= |f Egs. (10), (110) and (1110) are the constraints of a linear

programming problem, the solution obtained by setting the
~ Independent variable equal to zero is called a basic solution.
n the present case, the basic solution is given by

f --*‘”‘.-
y “- B
. ..h‘& .'..I, . [l -
- dNd x, = 0(nonbasic or independent varlable).
LL |

-,.f
]

=2 x,=1 x, =3 (basic variables)

~
&
Since this basic solution has all x, 20, (/=1234) it is a basic

‘ " .
JT10)T)
< S



= |f we want to move to a neighbouring basic solution, we
can proceed from the canonical form given by Egs. (13), (113)
and (1113). Thus, if a canonical form in terms of the

variables X, , X, and X, is required, we have to bring X, into
the basis in place of the original basic variable x,. Hence we
pivot on auin Eq. (113). This gives the desired canonical form
as

ML, | 14 = 13-1114

1 , 14 = [13+113
4 = §|||3




terms of as X;




= If we want to move to the next basic solution withx,,x,andx,
as basic variables, we have to bring into the current basis
in place of . Thus we have to pivot of in Eq. (I14). This
leads to the following canonical system:

I
A 15=14 +5 115
X, +3%, =6 15 = 3114

X, —x, =1 115 = |||4-%||5

x1 =3 x; =6 x, =—1(basic variables)
x, =0 (nonbasic variable)

. Since all the X ; are not nonnegative,

this basic solution is not feasible.

- The solution forx, , x; an

X =3—x,




= Finally, to obtain the canonical form in terms of the basic

variables x, , x,andx, we pivot on a;,in Eq.(15), thereby
bringing x, into the current basis in place of x; . This;gives

X, +x, =3 16=I5
x, —3x, =3 116 = [15-316
X, +x =2 1116 = 115 + 16

This canonical form gives the solution forx,, x,and x,in
terms of y as

g x, =3-1x,
X, =-3+3x,
Xy =2—Xx,

rresponding basic solution is

3 x, =—3 (hasi2 variables)
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MOTIVATION TO THE SIMPLEX METHOD

.....

= Given a system in canonical form corresponding to basic
solution, we have seen how to move to a neighbouring
basic solution by a pivot opera’ﬁs can be done because the

optimal solution, always occurs
at an extreme point or vertex of
the feasible domain.
7
One way to find the optimal soluy’ the given linear

-"gramming problem——>g<nerate all the basic
sdu lons————>pick the one which is feasible and
‘Ccorre onds to the optimal value of the objective function.



= |f there are m equality constraints in n variables with , a
basic solution can be obtained by setting any of the
variables equal to zero. The number of basic solutions to
be inspected is thus equal to the number of ways in which
m variables can be selected from a group of n variables,

l.e.,

n! n

Usually, we do not have to
inspect all these basic

(I’Z — m) 'm! m solutions since many of them

will be infeasible.

'F -example, ifn=10and m =5, we have ns

~and if 2=20and »=10, we have approXimately 184700 basic

N

- W .3
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= However, for large n and m. this is still a very large number

for inspecting one by one. Hence, what we really need is a

computational scheme that examines a sequence of basic
feasible solutions, each of which corresponds to a lower

value of funtil a minimum is reach( The process is repeated until, in a

finite number of steps, an optimum is
found

| scheme for
solution is not

g a neighbouring
lower or equal value of

= The simplex method of Dantzigis a p

obtaining a basic feasible solution; if
* optimal, the method provides for fi
.~ basic feasible solution which has

-
7L
x F AT
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= |n practice, the first step involved in the simplex method is
to construct an auxiliary problem by introducing certain
variables known as artificial variables into the standard

form of the linear programming problem.

U

The primary aim of adding the artificial variables is to bring

the resulting auxiliary problem into a canonical form from
which its basic feasible solution can be immediately

pobtained.

S %‘ from this canonical form, the optimal solution of
~ the- _nal Ilnear programming problem is sought in two
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( 1) The first phase is intended to find a basic feasible
solution to the original linear programming problem.

.“ | -

e

It consists of a sequence of

pivot operations which This also enables us to find
produces a succession of a basic feasible solution, if
| dlfferent canonical forms from one exists, of the original

v + lCh the optimal solution of the linear programming problem.




(11 )The second phase is intended to find the optimal solution

of the original linear programming problem.

@ J

/"It consists of a second sequence of pivot N
operations which enables us to move from one
basic feasible solution to the next of the original
linear programming problem. In this process, the
optimal solution of the problem, if one exists, will

\be identified. W

|

In this process, the optimal solution of
| the problem, if one exists, will be

il |

| identified.

o




= The sequence of different canonical forms thatis
necessary in both the phases of the simplex metho
generated according to the simplex algorithm described In
the next section. That is, the simplex algorithm forms the
main subroutine of the simplex method.




SIMPLEX ALGORITHM

= The starting point of the simplex algorithm is alwaye‘al set
of equations, which includes the objective function along
with the equality constraints of the problem in canonical

form.




il
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) "o K is treated as a basic
0-+aj ., +® +a;, =b,

variable in the

canonical form

0-+® +1-+a, ., +8

m,m+1

The basic solution which can be readily deduced from
Eqgs.(4.8.1) is

. x, =bi=1,2,L ,m |

1A f :]((‘)ﬂ ¢

x,=0,i=m+1,m+2,L ,n




In phase | of the simplex method,
the basic solution corresponding
to the canonical form obtained
after the introduction of the
artificial variables will be feasible

for the auxiliary problem.

As has been stated earlier,
the phase Il of the simp‘ex
method starts with a basic
feasible solution of the
original linear programming

problem.

U

U

~ \_solution.

the initial canonical form at the
start of the simplex algorithm
will always be a basic feasible

i TEEE DN O e o e e
T £ i ie b o - .

T
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Let S be a closed convex polyhedron. Then the L L
minimum of a linear function over S is attained at an

extreme point of S.

= We know from Theore: o that the optimal solution of a
linear programming problem lies at one of the basic
feasible solutions. Since the simplex algorithm is intended
to move form one basic feasible solution to the other

through pivotal operations

= \We have to make sure that the present basic feasible
solution is not the optimal solution before moving to the
~ next basic feasible solution. By merely glancing at the
.ﬁnumbers i, ;=12,8,nwe can tell whether the present basic

-

__,; asible solution is optimal or not. The following theorem
P\\ \ﬁs a means of identifying the optimal point.
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= Identifying an Optimal Point

= Theorem 4.8.1 A basic feasible solution is an optimal
solution with a minimum objective function value of fo
if all the cost coeff:c:entsc ,J=m+lm+28,n in Eqs. (4.8.1)
are nonnegative.

If, after testing for optimality, the current basic feasible
~ solution is found to be nonoptimal, an improved basic
-8 ' ution is obtained from the present canonical form
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= Improving a nonoptimal basic feasible solution.

From the last row of Eqs.(4.8.1), we can write the
objective function as

m
" 2 // 2 "
i=1

— fo” for the solution given by Eqs.(4.8.2) )

. (4.8.5)

f at least one ¢’ is negative, the value of / can be reduced

fﬁl ing the corresponding x, >0, In other words, the
ic b6 variable , for which the cost coefficient c’is
a e | :to be made a basic variable in order to reduce

% e objective function.
A t

n
the
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= At the same time, due to the pivotal operation, one of the
current basic variables will become nonbasic and hence
the values of the new basic variables are to be adjusted in
order to bring the value of f less than f; .

If there are more than one c;f < 0,the index s of the

nonbasic variable X; which is to be made basic is chosen
such that (4.8.6).

c. =minc" <0
J

e is a tie in applying Eq.(4.8.6), i.e., if more than oneC‘;f
> Same minimum value, we select one of them asc;’



- _t,_.r.
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= Having decided on the variable to become basic, we
increase it from zero holding all other nonbasic variables
zero, and observe the effect on the current basic variables

By Egs. (4.8.1), thes However, in the process of increasing the
% _ b value of X;, some of the variablesx,(i =1,2,®,m)
1= %1

in Egs.(4.8.7) may become negative.
_qnm

‘\/
brr

(4 & 7)

Since ¢ <0, suggests that the value of
should be made as large as possible in
order to reduce the value of f as much

as possible.

ms s’

'— f f +Cs'xs9c

e seen that if all the coefficients «’ <0 ,i=128.m ; then

i.\\ made infinitely large without making anyx; <0@=12,®,n)

. In s IC .* ca : he minimum value of fis minus infinity and the linear

(4.8.8)

Do :';. i " 1|.&;_- is said to have an unbounded solution. :
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On the other hand, if at least one 4] is positive, the
maximum value that x,can take without making x; negative

is ®’/a’) . If there are more than oneq’ >0,the largest value x;
that can x, take is given by the minimum of the ratios ?//a;)
for which a! >0 .Thus

= b” =min(b//a;) (4.8.9)

s
a; >0

rs

. The choice of rin the case of a tie, assuming that all , is 5"> 0
~ arbitrary.

any for which «” >ois zero in Egs. (4.8.7), then X, cannot

e increased by any amount. Such a solution is called a

ate solution.
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= |n the case of a nondegenerate basic feasible solution, a
new basic feasible solution can be constructed with a lower
value of the objective function as follows. By substituting -
the value of given by Eq.(4.8.9)into Eqgs.(4.8.7) and (4.8.8),

we obtain
X, =X,
x.=b"—a"x. >0,i=12,®,m and
SRR o - (4.8.10)
N i¢ r X, =0
x;,=0,j=m+1,m+2,®,nand
J#S

=Nl < fF (4.8.11)



= which can readily be seen to be a feasible solution different
from the previous one . Sinceaq, >0in Eq.(4.8.9), a single
pivot operation on the element a’ in the system of
Eqgs.( 4.8.10) can easily be deduced. Also, Eq.(4.8.11)
shows that this basic feasible solution corresponds to a
lower objective function value compared to that of
Eqgs.(4.8.2). This basic feasible solution can again be

tested for optimality by seeing whether all ¢/ > 0in the new
canonical form.

.1If the solution is not optimal, the whole procedure of

moving to another basic feasible solution from the present
g

Wi Tl S to be repeated.
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= |n the simplex algorithm, this procedure is repeated in an

iterative manner until the algorithm finds either

(i) a class of feasible solutions for which f —» - oOr
(ii) an optimal basic feasible solution with all¢/=0,i=1,2,8 ,n.

= Since there are only a finite number of ways to choose a
set of m basic variables out of n variables, the iterative
process of the simplex algorithm will terminate in finite
umber of cycles. The iterative process of the simplex

" algorithm is shown as a flow chart in Fig.4.16




= Example 4.8.1
= Maximize F =x, +2x,+x; subjectto
2x,+x, —x; <2
—2x,+x, —5x;, 26
4x,+x,+x, <6
x, 20,i=12,3
Solution :




= By introducing the slack variables x, >0 ,x, >0and x

2%, + X, —x; +x,
2%, —x, +5x; +x,
4x, +x, +x;,+x, =6
—X, —2x,—x,— f =0

= The basic solution

20 the
system of equations can be stated in canonical form as

where*: | x,,x,and —fcan
be taken as basic variables.

(E1)

L

Since the cost coefficients corresponding
to nonbasic variables in Egs.(E1) are
negative (¢/=-lc;=-2,c;=-1) the present

y

solution (E2) is not optimum.



= To improve the present basic feasible solution, we first
decide the variable (x,) to be brought into the basic as

¢, =min(c’ <0)=c; =-2
= Thus x, enters the next basic set. To obtain the new
canonical form, we select the pivot elementa;, such that

" min "
br — bi

s | —a, >0 ”
a rs a is

= In the present case, y—2 and 4;, and asyare >0 .
] |nce(b”/a;'2)2/1 and (b}/a},)=6/1, x, =x,.By pivoting on qa/, the

w system of equations can be obtalned as
2x, +1-x) —x; +x, =2
e, +0-x, +4x, +x, +x, =8
= - (E3)

X+ 0-x, +2x, —x, +x, =4
L3 —3x,+2x,— f =4
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form is :
Since ¢; =-3, the present

X, =2,X5 =| solution is not optimum. "
.xl = .x3 = .x4 — IC variables) (E4)
and f =-4

= Asc;=min(c/<0)=c] | X, =X; Enters the next basis. To find the
_ pivot element a;, we find the ratios ®//a)for a} > 0. In
Egs.(E3), only af, and 4!, are >0, and hence

bl/al,=8/4 and b!/al,=4/2

_;ese ratios are same,we arbitrarily select a3; as



= Pivoting on a;; gives the following canonical system of
equations:

5 1
3x,+1-x, +0-x, +Zx4 +Zx5 =4

1-+0-+1-+l-+1-:2
4 4

0-+0-+0-—§—1+:0
2 2

6+0-+0-+E+§—f:10
4 4

x,=4,x,=2,x, =0 ( basic variables)

X =X, =X, =0 (nonbasic variables) & (EG)

and f=-10

'{Q In the present canonical form, the solution

) will be optimum.
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= Usually, starting with Egs.(E1),all the computations are

‘ | -

done in a tableau form as shown below:

Variables -

v v}1a}) for
Varia iy b.. "
bles |X{| Xy [|%3 |Xa|Xs|Xg i a, >0
2 | @ -1|/1](0]0|0 |2 | 2-smallerone
Pivot ( X4 drops from nest
X4 eleme basic)

-1




= Result of pivoting

211 1-1 1 0O (0 |0 |2
y *2
:s) 410 @ 1 |1 [0 [0 |8 |[(selectthis arbitrarily
Xs le)li:rztent X s drops from nest

basis)







Example 4.8.2

Find the minimum solution of the axially compresse
column expressed by Egs. (4.2.13)-(4.2.15). p

Solution:
The standard form was formulated in Example 4.3.2 given




T - =
k

= And then introduce artificial variables ¢,,¢,.¢, . Then
constraints are given by:

E+A +0.039674 —x, =5466.7 .'g,. J - N
& +A4,-0.0044, —x, =0

E+A —0.054 +x,=0
Then objective function can be given by

%50><10-5§1 +50x107°E, +50x107°E, +2.418x10°4 +3x1074 =z




e - =
o e I

1r

e

i ii iii iv v vi
Basic variables Nonbasic variables b EsIe g
dispels ixl by lay 9y
S1 |62 | o3 | A A X1 | X2 | *3
1 0 0 1 3.967¢-2 -1 0 0 5-42676 £25.4667¢3 5.4267(3
0 1 0 1 -4e-3 0 -1 0 0 & =0 0
0 0 1 [1] =Se=2 0 0 1 0 & =0 0 53
(;)q-j el 50e-5 | 50e-5 2.42e-5 3e-7 0 0 0 z
£ ;ffS.Oe-S 50e-5 -47.58e-5 -1.954e-5 50e-5 0 0 z-2.7334
"""-; 0 50e-5 -97.58e-5 -1.754e-5 50e-5 50e-5 0 z-2.7334
L ¥
0 | CHI5 | 07a6ses | s0es | s0eS | S0e-S | 227334 | 227334 |4,
i = __:_




A X1 X3 b, lay X,
1{o]o0 il 8.967¢-2 -1 0 -1 5.4667¢3 | =5.4667¢3 6096431
0[1]0 -1 [4.6e-2] 0 -1 -1 0 =9 0
0/0]|1 1 5e-2 0 0 1 0 =0 2
0/0]0]|147.58¢-5 | (-6.6e-5) | 50e-5 | 50e-5 | 97.58e-5 | 2-2.7334 | Z=2.7334 |4,

_! & Ac|A, 53 &) X1 X9 X3
0| 094935 | -1.94935 -1 | [1.94935] | 0.94935 | 5.4667¢3 | =5.4667¢3 280435 |
4 o174 21.74 0 21.74 21.74 0 =0
8.696e-2 | 1.08696 0 | -1.08696 | 8.696¢-2 0 =0
01‘ | 3.473¢-5 | 50e-5 | (-93.478) | -45.898 | z-2.7334 | Z=2.7334 |x,




z-0.1335

Bl |4, | & s | ox e | x» o |b X, [bk / aix
5.778
110 0.487 -1 -0.513 0.513 [0.487] 2.804e3 =2.804e3 | e
. 2
011 -11.152 0 -11.152 11.152 -11.152 6.964¢3 =6.964¢4 --
00 0.4424 0 -0.5576 0.5576 0.4424 3.048¢3 =3.048e3 6'8963
010 49.63e-5 50e-5 2.064e-5 47.95e-5 (0.3736) z-0.1120
X314 |4 S3 2 X1 & X5
1 -2.092 -1.053 1.053 2.092 5.758¢€3
0 -22.9 -22.9 -22.9 22.9 22.9
0 0.908 -0.0916 0.0916 -0.908 5.01e3 7=0.1335
50e-
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1 2 3 4 5 6 7 8 9) 10 11 12 13 14

A 41 52 81 26 24 36 45 55 5 89 26 23 18 93

B 55 40 18 66 64 30 40 30 19 9) 62 63 28 6

C 2 6 1 7 12 34 15 15 60 1 12 20 40 1

2 2 0 1 0 0 0 0 16 1 0 4 14 0
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