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Abstract. We introduce and analyse a family of Almost MDS matrices defined over
a ring with zero divisors that allows us to encode rotations in its operation while
maintaining the minimal latency associated to {0, 1}-matrices. We also describe new
S-Box search heuristics aimed at minimising the critical path.
These techniques are used to define some components of QARMA, a new family of
lightweight tweakable block ciphers. QARMA is targeted to a very specific set of use
cases, such as memory encryption, generation of very short tags by truncation, and
the construction of keyed hash functions, in fully unrolled hardware implementations.
The structure of the cipher is inspired by PRINCE. However, it differs from reflector
constructions in that it is a three-round Even-Mansour scheme with a non-involutory
keyed middle permutation designed to thwart various classes of attacks. QARMA aims
a providing conservative security margins while still achieving best-in-class latency.
QARMA exists in 64- and 128-bit block sizes, with 128- and 256-bit keys, respectively.
Implementors are also offered a reduced set of S-Boxes to choose from.
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1 Introduction

During the last few years, considerable research went into lightweight block ciphers,
motivated by the need to provide an acceptable security level for specific applications
at much lower area, latency, or power consumption levels than, say, the AES [1].
In lightweight ciphers, all components must be tightly optimised, often leading to
original solutions, as embodied by designs like CLEFIA [2], KATAN [3], KLEIN [4], LED [5],
PRESENT [6], PRINCE [7], SIMON and SPECK [8], and MIDORI [9], to name just a few.

At the same time, there has been research in tweakable block ciphers [10] (TBC)
that, besides the key and a plaintext or ciphertext, accept a third input called the
tweak. The tweak and key together select the permutation computed by the cipher.
TBCs are used in the design of encryption modes of operation and hash functions, as
well as in disk [11] and memory encryption [12]. In these cases the tweak is a counter
or chaining input, or an absolute storage address. A further application is to software
security: to enforce code flow integrity, very short tags are inserted in pointers in
unused bits of the address space, the tweak being the label of the pointer’s context.
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Hence, changing the tweak must be a very agile operation and a tweakable cipher
is secure if it cannot be broken even assuming the adversary has full tweak control.

The first TBC, the AES submission Hasty Pudding Cipher, was quickly followed
by schemes to create TBCs from ordinary primitives used as black boxes [13,14,15].
There have been only a very few ad-hoc designs since, such as MERCY [16], the cipher
THREEFISH at the core of the SKEIN hash function [17], and the ciphers Deoxys-BC,
Joltik-BC, and Kiasu-BC based on the TWEAKEY framework [18]. More recently, we
have SKINNY and MANTIS [19]. Designing a TBC is a difficult task as care must be
taken in how the user-controlled tweak is included in the design.

Several memory encryption solutions use a counter based mode with memory
overhead, for intance AEGIS [20], [21], and Intel’s SGX [22]. However, if the use case
does not allow any form of memory expansion, the most straightforward solution
seems to be a TBC in ECB mode. Since all generic construction to tweak a block
cipher suffer from increased latency, an ad-hoc approach is necessary.

For applications such as memory encryption and software security, reduction of
total latency is the most important performance parameter, whereas area and energy
come second - for instance, for memory and disk encryption energy consumption is
dominated by that of the memory or mass storage controller and related hardware.

Security Model. We shall assume the attacker does not have control on the key,
but she may have full control on the tweak. A TBC is understood to offer n bits of
(time-data tradeoff) security if no better attacks are possible than time 2n−d−ϵ with
2 d chosen or known {plaintext, ciphertext, tweak} triples, for a small ϵ (e.g. 2).

Contents of the Paper. This paper makes four contributions.
The first is QARMA, a family of hardware-oriented lightweight TBCs which also

serves as a frame for the other three contributions. It is targeted at memory encryp-
tion and design of short hash functions. QARMA’s latency is sufficiently small to allow
usage in tweaked ECB modes that eschew the masking value derivation typical of
higher latency XEX-like constructions. Absolute minimisation of gate count is not
our primary design goal, so we allow some more expensive choices to build better
security margins. QARMA reuses some concepts from PRINCE, MIDORI and MANTIS, but
there are several important differences both in structure and in choice of compo-
nents: the common aspects allow us to concentrate on the design and analysis of the
original ones. The TWEAKEY framework is taken as an inspiration: The bits of key
and tweak are not permuted synchronously, but instead only those of the tweak are
shuffled between rounds; additionally, a LFSR is used to update the tweak.

QARMA supports blocks sizes of n = 64 and n = 128 bits. The tweak is also n
bits long and the key is always 2n bits long. QARMA-128 is suitable for more complex
memory or storage encryption techniques as the tweak has sufficient entropy for an
address, various tags, and a version counter or nonce. We do not consider the fact
that QARMA-128 only supports 256-bit keys a limitation. Note that for storage or
memory encryption the use of larger keys is common: For instance, if AES-128 in
XTS-mode is used, 256 bits of key material are already required to meet NIST FIPS
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compliance requirements [23, Appendix A.9]. Hence, the same key storage structures
can be reused if QARMA-128 replaces or supplements the AES.

The other three contributions are: (i) The first characterisation of Almost MDS
circulant matrices over the ring Rm = F2[ρ] = F2[X]/(Xm+1) that we are aware of,
in order to model circular rotations – these matrices may help hedge against some
types of iterative characteristics, (the involutory ones) can be used to construct better
reflectors for lightweight reflection ciphers, have optimal critical path and we also
determine those with equally efficient inverses; (ii) Adoption of an Even-Mansour
scheme with a keyed pseudo-reflector to avoid certain types of cryptanalysis, and
(iii) Heuristics to efficiently find S-Boxes with short critical path.

Structure of the Paper. As QARMA serves as frame for the other results, we begin
with its specification in Section 2, where only some technical details are missing. The
design decisions, other contributions, and missing details are presented in Section 3.
We discuss security in Section 4. Implementation results are presented in Section 5.

Statements. We did not patent QARMA. To the best of our knowledge, we are not
aware of any third party intellectual property encumbering it. The algorithm is placed
in the public domain. QARMA is pronounced like the sanskrit word Karma.

2 Specification of QARMA

2.1 General Definitions and Notation

The overall scheme of the TBC QARMA is depicted in Figure 1. There, and throughout
the paper, a bar over a function (e.g. F ) denotes its inverse. QARMA is a three-round
Even-Mansour construction where the permutations are parameterized by a core
key, and the key mixings between rounds are derived from a whitening key. The first
and third permutations are functionally the inverse of each other and are further
parameterized by a tweak, and the central permutation is designed to be easily
inverted by means of a simple transformation of the key.

The cipher is depicted in more detail in Figure 2. QARMA is a bricklayer SPN.
It is easily seen that components and ideas have been borrowed from other ciphers
such as PRINCE, MIDORI and MANTIS, but because of the specific keying and central
permutation, this is also a new design with its own security properties.

The keys k0, k1, w0, and w1 are derived from a master key K via a simple key
specialisation. The letters P , C and T denote the plaintext, the ciphertext and the
tweak; S represents a layer of sixteen m-bit S-Boxes, h and τ are permutations, M
and Q are MixColumns-like operations, with Q involutory, and ω is a LFSR.

Write n = 16m. It is m = 4 or 8. All n-bit values are represented as arrays of
sixteen m-bit cells, which are indexed in big endian order, while the bits inside a cell
are ordered in little endian order. Any array of sixteen cells is also viewed as a 4× 4
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Fig. 1. The Overall Scheme
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Fig. 2. The Structure of QARMAr
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matrix, for instance, the internal state admits representations

IS = s0∥s1∥ · · · ∥s14∥s15 =


s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15

 , (1)

so that 4×4 matrices operates column-wise on these values by left multiplication. The
plaintext is given as P = p0∥p1∥ · · · ∥p14∥p15, the tweak as T = t0∥t1∥ · · · ∥t14∥t15.

Throughout the paper, we use the symbol “+” to denote addition in all algebraic
structures. In particular it denotes the exclusive or in the QARMA ciphers, which do
not use modular addition. The symbol tk denotes a (round) tweakey, i.e. a value
derived only from the key, tweak, and round constants.

2.2 Key Specialisation

The 2n = 32m bit key K is first partitioned as w0∥k0 where w0 and k0, the whitening
and core keys, are 16m bits each.

For encryption, put w1 = o(w0) := (w0 ≫ 1) + (w0 ≫ (16m− 1)) and k1 = k0.
Since the first r rounds of the cipher (ignoring initial whitening) differ from

last r rounds solely by the addition of a non-zero constant α, QARMA possesses a
property very similar to PRINCE’s α-reflection: The encryption circuit can be used
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for decryption when k0 + α is used as the core key, the whitening keys w0 with w1

are swapped, and k1 = Q · k0.

2.3 The Forward Round Function

The Forward Round Function R(IS; tk) is composed by four operations, performed
in the following order:
1. AddRoundTweakey. The round tweakey tk defined in Section 2.7 is XORed to IS.
2. ShuffleCells. (τ(IS))i = sτ(i) for 0 ≤ i ≤ 15, where τ is the MIDORI cell

permutation, i.e. τ = [ 0, 11, 6, 13, 10, 1, 12, 7, 5, 14, 3, 8, 15, 4, 9, 2 ].
3. MixColumns. Each column of the cipher internal state array is multiplied by the

matrix M defined in Section 3.1, i.e. IS = M · IS.
4. SubCells. For the chosen S-Box σ, the S layer acts on the state as follows:

si 7→σ(si) for 0 ≤ i ≤ 15. The S-Boxes are defined in §§ 3.3 and 3.4.
A short version of the forward round function exists which omits the Shuffle-

Cells and MixColumns operations, similarly to the AES final round.
After AddRoundTweakey the tweak T is updated by the function described next.

2.4 The Tweak Update Function

First, the cells of the tweak are permuted as h(T ) = th(0)∥ · · · ∥th(15), where h is the
same permutation h = [ 6, 5, 14, 15, 0, 1, 2, 3, 7, 12, 13, 4, 8, 9, 10, 11 ] used in MANTIS.

Then, a LFSR ω updates the tweak cells with indexes 0, 1, 3, 4, 8, 11, and 13. For
m = 4, ω is a maximal period LFSR that maps cell (b3, b2, b1, b0) to (b0+b1, b3, b2, b1).
For m = 8, it maps cell (b7, b6, . . . , b0) to (b0+ b2, b7, b6, . . . , b1), and its cycles on the
non-zero values have all length 15 or 30.

2.5 The Backward Round Function

The Backward Round Function R(IS; tk) is the inverse of the forward round function
R. Its short form omits ShuffleCells and MixColumns.

The tweak update using the inverse LFSR ω and the inverse permutation h must
be applied before AddRoundTweakey.

2.6 The Central Construction and the Pseudo-Reflector

Two central rounds – a forward and a backward one – that use the whitening key
instead of the core key, bracket the cipher’s Pseudo-Reflector P(IS; tk), which is
essentially just a key addition and a matrix multiplication of the internal state. In
more detail, this central construction is defined as follows:
1. A forward round R.
2. The pseudo-reflector P(IS; tk) i.e.



6 Roberto Avanzi

Fig. 3. The QARMA Encryption Algorithm

Algorithm QARMAr Encryption

1: Write K = w0∥k0

2: w1 7→o(w0), k1 7→k0

3: IS 7→P + w0

4: for i = 0 to r − 1 do
5: IS 7→R(IS, k0 + T + ci) (short round for i = 0)
6: T 7→ω ◦ h(T )
7: IS 7→R(IS, w1 + T )
8: IS 7→P(IS, k1)
9: IS 7→R(IS, w0 + T )

10: for i = r − 1 down to 0 do
11: T 7→h ◦ ω(T )
12: IS 7→R(IS, k0 +T + ci +α) (short round for i = 0)
13: C 7→IS + w1

(a) ShuffleCells.
(b) Multiplication of the state by the involutory matrix Q defined in Section 3.1.
(c) AddRoundTweakey. The round tweakey tk is XORed to the state.
(d) Inverse ShuffleCells.

3. A backward round R.
It is clear that if steps (b) and (c) were swapped, then tk would have to be

replaced with Q · tk = Q · tk to obtain the same function. Because of this, if tk is the
tweakey used during encryption, M · tk must be used instead to decrypt.

2.7 Putting QARMA Together

The encryption algorithm of QARMAr is given in Figure 3. QARMAr has 2 r+2 rounds.
The round constants are derived from the expansion of the constant π. For the

64-bit version of QARMA we replace the first block of sixteen digits of the fractional
part with zeros and select the seventh block as the α constant, as shown in Table 1
– as a hommage to PRINCE. For the 128-bit cipher, instead, we just take the first
block of 128 bits in the fractional part of π as the α constant, set c0 = 0, and then
each ci is a successive block 128 bits of π, as shown in Table 2.

Note that even though the round constants are symmetric, the constant α is
always added to the last r backward rounds. This, together with the pseudo-reflector
design, prevents perfect symmetry in the data processing part.

2.8 Parameters

For the 64-bit version of QARMA we choose r = 7, i.e. 16 rounds, but we believe the
cipher to be safe against practical attacks already for r = 5, i.e. 12 rounds. For the
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Table 1. The Round Constants for the 64-bit Ciphers

α = C0AC29B7C97C50DD c0 = 0000000000000000 c1 = 13198A2E03707344

c2 = A4093822299F31D0 c3 = 082EFA98EC4E6C89 c4 = 452821E638D01377

c5 = BE5466CF34E90C6C c6 = 3F84D5B5B5470917 c7 = 9216D5D98979FB1B · · ·

Table 2. The Round Constants for the 128-bit Ciphers

α = 243F6A8885A308D3 13198A2E03707344 c0 = 0000000000000000 0000000000000000

c1 = A4093822299F31D0 082EFA98EC4E6C89 c2 = 452821E638D01377 BE5466CF34E90C6C

c3 = C0AC29B7C97C50DD 3F84D5B5B5470917 c4 = 9216D5D98979FB1B D1310BA698DFB5AC

c5 = 2FFD72DBD01ADFB7 B8E1AFED6A267E96 c6 = BA7C9045F12C7F99 24A19947B3916CF7

c7 = 0801F2E2858EFC16 636920D871574E69 c8 = A458FEA3F4933D7E 0D95748F728EB658

c9 = 718BCD5882154AEE 7B54A41DC25A59B5 c10 = 9C30D5392AF26013 C5D1B023286085F0 · · ·

128-bit version we choose r = 11, i.e. 24 rounds, and believe the cipher safe against
practical attacks already for r = 8, i.e. 18 rounds. We argue in Section 4 that these
parameters offer sufficient security margins.

3 Main Design Decisions

3.1 The Diffusion Matrices

In this section we describe how we constructed and selected the matrices M = M =
Q = circ(0, ρ, ρ2, ρ) for QARMA-64; and M = circ(0, ρ, ρ2, ρ5) (which admits inverse
M = circ(0, ρ5, ρ6, ρ)) with Q = circ(0, ρ, ρ4, ρ) for QARMA-128.

3.1.1 Construction QARMA’s diffusion layer is composed of a cell permutation and
of a matrix multiplication. Its complexity mostly comes from the matrix.

The usual requirements on a diffusion matrix are:
1. It should guarantee mathematically provable good diffusion.
2. It should be as lightweight as possible.

Regarding the first requirement, diffusion is usually measured by the branch
number [1], i.e. the smallest nonzero joint number of active inputs and outputs of
the matrix. For an invertible s × s matrix M , the branch number BM cannot be
greater than s + 1. The MDS (Maximum-Distance Separable) matrices are those
that attain this maximum: They have long been the preferred choice of block cipher
designers, but they tend to lead to expensive implementations. Hence there has
been a recent flurry of research on lighter diffusion layers, culminating with those of
PRINCE, PRIDE and MIDORI. In particular in MIDORI a {0, 1}-matrix M – namely a
matrix whose entries are in {0, 1} – is used that is Almost MDS, i.e. with BM = s.

The second requirement is often understood as minimising the weight of the
matrix, but for fully unrolled HW implementation a better statement would be min-
imising the maximum of the weights of all the rows, taking into account the weights
of the cells and the underlying algebraic structure.
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{0, 1}-Matrices are clearly optimal from this point of view. They are never MDS,
but they are Almost MDS in dimensions 2, 3, and 4 [24], and only in these dimensions.
However, they may also contribute to the weaknesses of some ciphers. For instance,
in the case of MIDORI, they permit the propagation of iterative characteristics that
are built from the fixed points of the S-Box.

In order to harden against attacks exploiting these properties it is desirable to
have diffusion layers that do not help propagate such high likelihood characteristics.
More in detail, assuming we are using only one S-Box, if the diffusion layer carries
the sum of the outputs of two active S-Boxes unchanged into two different target
cells, these cells will carry over the same characteristic twice into the next S-Box
layer: the second copy of that characteristic will come for free.

The intuition is that if the S-Box outputs are subject to different linear trans-
formations per each target cell before being added, then the two resulting output
characteristics will be different, and at least one will be less likely to propagate
through the next S-Box layer. Hence, we look beyond {0, 1}-matrices.

A problem with MDS matrices over binary extension fields is that any multipli-
cation by an element different from 0 and 1 requires a modular reduction step (for a
polynomial basis) or expansion step (for a normal basis) which adds latency. So the
next logical step is to consider a different underlying algebraic structure, for instance
a quotient ring Rm = F2[X]/(Xm + 1). The multiplication by the image ρ of X in
the ring Rm (an element such that ρm = 1, and thus such that {1, ρ, ρ2, . . . , ρm−1}
is a basis for Rm as a F2-algebra) is just a simple circular rotation of the bits (to
the left), with only signal propagation latency. Matrices over Rm allow us to easily
include rotations in the diffusion layer.

It turns out that, while it seems difficult to construct MDS matrices over generic
rings, we can find Almost MDS matrices over the quotient rings Rm = F2[X]/(Xm+
1). Since Rm contains zero divisors (for m ≥ 2), care is to be taken when constructing
invertible matrices. We thus restrict ourselves to the following circulants:

M = circ(0, ρa, ρb, ρc) =


0 ρa ρb ρc

ρc 0 ρa ρb

ρb ρc 0 ρa

ρa ρb ρc 0

 . (2)

Theorem 1. Let Rm = F2[ρ] be the quotient ring F2[X]/(Xm + 1) where ρ is the
image of X in R, m ≥ 2. The Almost MDS matrices M of the form (2) over the ring
Rm are precisely the invertible ones, i.e. are those for which ρ4a + ρ4b + ρ4c ∈ R ∗

m .

Proof. Since det(M) = ρ4a + ρ4b + ρ4c, the invertible matrices are those for which
this value is invertible, i.e. in R ∗. Since Almost MDS matrices are invertible by
definition, we need only prove that any M of form (2) has branch number four.

Let us consider a column vector V = (v0, v1, v2, v3)
t. We need to verify when the

sum of the weights of V ̸= 0 and U := M · V is always at least four, so we need to
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consider the cases where V has weights one, two, and three. Since M is circulant,
there are only four distinct cases up to circular permutation of the entries of V :
(i) V = (v0, 0, 0, 0)

t with v0 ̸= 0. Then

U = M · V =


0 ρa ρb ρc

ρc 0 ρa ρb

ρb ρc 0 ρa

ρa ρb ρc 0

 ·


v0
0
0
0

 =


0

v0 ρ
c

v0 ρ
b

v0 ρ
a


and since ρ is not a zero divisor in R, the vector U has weight 3.

(ii) V = (v0, v1, 0, 0)
t with v0, v1 ̸= 0. Then

U = M · V =


0 ρa ρb ρc

ρc 0 ρa ρb

ρb ρc 0 ρa

ρa ρb ρc 0

 ·


v0
v1
0
0

 =


v1 ρ

a

v0 ρ
c

v0 ρ
b + v1 ρ

c

v0 ρ
a + v1 ρ

b


and the first two entries of U are nonzero.

(iii) V = (v0, 0, v2, 0)
t with v0, v2 ̸= 0. Then

U = M · V =


0 ρa ρb ρc

ρc 0 ρa ρb

ρb ρc 0 ρa

ρa ρb ρc 0

 ·


v0
0
v2
0

 =


v2 ρ

b

v0 ρ
c + v2 ρ

a

v0 ρ
b

v0 ρ
a + v2 ρ

c


and there is nothing to prove also in this case.

(iv) V = (v0, v1, v2, 0)
t with v0 v1 v2 ̸= 0. Then

U = M · V =


0 ρa ρb ρc

ρc 0 ρa ρb

ρb ρc 0 ρa

ρa ρb ρc 0

 ·


v0
v1
v2
0

 =


v1 ρ

a + v2 ρ
b

v0 ρ
c + v2 ρ

a

v0 ρ
b + v1 ρ

c

v0 ρ
a + v1 ρ

b + v2 ρ
c

 =


u0
u1
u2
u3


and we need to prove that at least one of the ui, 0 ≤ i < 4, must be non-zero.
Assuming the contrary, we obtain v2 = v1 ρ

a−b from u0 = 0 and v0 = v1 ρ
−b+c

from u2 = 0. Substituting in the relation for u3 = 0 we obtain

0 = v1 ρ
a−b+c + v1 ρ

b + v1 ρ
a−b+c = v1 ρ

b

whence v1 = 0, a contradiction.
Note that the branch number is tight. For vectors V of weight between one and three
and entries vi which are either 0 or 1+ρ+ρ2+. . .+ρm−1, it is wt(V )+wt(U) = 4. ⊓⊔

Remark 1. If m = 4 or 8, then all matrices (2) are invertible. In fact, for m = 4 the
determinant ρ4a + ρ4b + ρ4c is always 1 and for m = 8 it is equal to either 1 or ρ4.
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Now let us consider the matrices of type (2) with equally lightweight inverse.

Theorem 2. Let Rm = F2[X]/(Xm + 1) = F2[ρ] be defined as in Theorem 1. The
Almost MDS matrices M = circ(0, ρa, ρb, ρc) that admit an inverse of the same form
M = circ(0, ρd, ρe, ρf ), i.e. with entries of weight at most one, are those that satisfy
a ≡ c + τ where 2 τ ≡ 0 mod m (for odd m this implies τ = 0, for even m it can
be τ = 0 or m/2). In this case, the parameters of the matrix M are: d ≡ a − 2 b,
e ≡ −b, and f ≡ d+ τ mod m.

The involutory matrices M are those for which, additionally, 2 b ≡ 0.

Proof. Since M and M are circulant, M ·M = I is equivalent to
ρa+f + ρb+e + ρc+d

ρb+f + ρc+e

ρa+d + ρc+f

ρa+e + ρb+d

 =


1
0
0
0

 (3)

Ignoring for the moment the first component in (3), we see that

(i) b+ f ≡ c+ e , (ii) a+ d ≡ c+ f , (iii) a+ e ≡ b+ d mod m .

Upon adding relations (i), (ii) and (iii) we get 2 a+(d+e+f) = 2 c+(d+e+f) ≡ 0,
in other words 2 (a − c) ≡ 0 mod m, whence a ≡ c + τ where 2 τ ≡ 0 mod m.
Replacing this into (ii) we obtain at once d ≡ f+τ , which is equivalent to f ≡ d+τ .
In particular, a+ f ≡ c+ d mod 0 holds always, which means that ρa+f and ρc+d

cancel out in the first relation in (3), and it must be ρb+e = 1, i.e. e ≡ −b mod m.
Finally, substituting in relation (iii) we obtain d ≡ a− 2 b mod m.

The last statement is proved by substituting a ≡ d into d ≡ a− 2 b mod m. ⊓⊔

Remark 2. Hence, there are two degrees of freedom to define the matrices M , and
one extra bit in case m is even. If M has to be involutory, there is only one degree
of freedom (and two bits for even m).

3.1.2 Selection We now describe the selection process for the diffusion matrices.
1. For QARMA-64 (m = 4) we initially restrict our attention to

M4,1 = Q4,1 = circ(0, ρ, ρ2, ρ3) ,

M4,2 = Q4,2 = circ(0, 1, ρ2, 1)

and
M4,3 = Q4,3 = circ(0, ρ, ρ2, ρ) .

These matrices are all involutory.
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2. For QARMA-128 (m = 8) we consider

M8,1 = Q8,1 = circ(0, ρ2, ρ4, ρ6) ,

M8,2 = Q8,2 = circ(0, ρ1, ρ4, ρ5) ,

and

M8,3 = circ(0, ρ, ρ2, ρ5) admitting inverse M8,3 = circ(0, ρ5, ρ6, ρ) ,

together with Q8,3 = circ(0, ρ, ρ4, ρ) .

We also define the MIDORI circulant M0 := circ(0, 1, 1, 1).
We selected among these matrices according to various criteria.
The first criterion is the number of fixed points of the matrix Q, in order to

improve the cryptographic properties of the central construction (cf. Section 4.2).
From this points of view, optimal involutory matrices over R4 are Q4,2 and Q4,3,
that have the optimal number of 232 fixed points (cf. Lemma 1 in [25]), and Q8,3

that attains the minimum of 264 fixed points. Note that M4,1 has 248 fixed points,
M8,1 has 296 fixed points, and Q8,2 has 272 fixed points, which is close to optimal (a
proof is found in Appendix B).

The second criterion is the number of active S-Boxes in linear and related-key
differential trails. In [26] it is shown how to use mixed integer linear programming
(MILP) to count the number of active S-Boxes in these trails. Since we are working
on a ring with zero divisors and not over a field, Almost MDS matrices with arbi-
trary elements do not necessarily have the same diffusion patterns. Hence, we have
first determined the diffusion patterns for each matrix, which is a simple and fast
exhaustive enumeration over all possible inputs. Our “shortlisted” matrices fall into
two different classes:
1. Class I includes M0, M4,1 and M8,1; and

2. Class II includes M4,2, M4,3, M8,2, M8,3 and Q8,3.
Other matrices belong to these categories but they have excluded because of the
limited amounts of differences in relative rotations or because, if involutory, have
more fixed points than the selected ones.

Class I matrices have 51 possible column-to-column state transitions, of which
the 67 transitions of Class II matrices are a superset. These transitions are depicted
in Figures 4 and 5, for Class I and II matrices, respectively. We modelled these two
different behaviours in MILP1 to compute bounds for the numbers of active S-Boxes
in both the linear (and non-related tweak differential) and related-tweak settings. We
display these results in Table 3, which have been computed using the CBC solver. The
results for the linear setting have been computed on the whole cipher for r ≤ 5 and
1 We are grateful to Christof Beierle for sharing his MILP modelling of the Class I transitions.

The model of the Class II transitions has been derived from it.
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Table 3. Lower bounds on the number of active S-Boxes

Class I Diffusion Matrices

r = 3 4 5 6 7 8 9 10 11

Linear 32 50 64 ≥ 70 ≥ 76 ≥ 82 ≥ 100 ≥ 114 ≥ 124
Rel. Tweak 16 24 34 44 52 60 ≥ 64 ≥ 70 ≥ 78

Class II Diffusion Matrices

r = 3 4 5 6 7 8 9 10 11

Linear 32 50 60 ≥ 68 ≥ 74 ≥ 82 ≥ 98 ≥ 112 ≥ 120
Rel. Tweak 14 24 30 42 48 58 ≥ 62 ≥ 68 ≥ 76

Comparison: MANTIS (Class I Diffusion Matrix with no ShuffleCells in Reflector)

r = 3 4 5 6 7 8
Linear 32 46 60 ≥ 68 ≥ 76 ≥ 82

Rel. Tweak 12 20 34 44 50 56

just half of the cipher (only forward rounds) for r ≥ 6, in which case the objective
value has been doubled. In the related-tweak setting, for r ≥ 9 we either model only
half of the cipher or just use a dual bound for the whole cipher.

Since we are reusing the MIDORI state shuffle and our matrices have identical or
similar state transition patterns to M0, we did not search for a different MANTIS tweak
permutation, so it is possible that, for QARMA, a different tweak permutation could
give improved results. The fact that our bounds are very close to those computer
for MANTIS (often slightly better because of the improved diffusion in the center, cf.
§ 4.2, and sometimes slightly lower for Class II matrices) is a confirmation of our
approach. Since the bounds on the active S-Boxes between the two matrix classes
are very similar, we do not feel that in this situation this criterion must be decisive.

More freedom in the transition space may lead to lower active S-Box counts, as
Table 3 shows, hence we we did not consider matrices with even more transitions.

The third criterion is the overall minimisation of the maximum probability of
non-trivial differentials on two active cells inside a column through the following
operations: an S-Box layer, the diffusion matrix and a second S-Box layer. This
is achieved for M4,3 and M8,3 and for all chosen S-Boxes (see §§ 3.3 and 3.4). We
do not report here full tabulates of the resulting data, but to make one important
example, for m = 4 and with the S-Box σ0, the average occurrence of a differential
goes from 31.6/256 with the MIDORI circulant, to 16.9/256 with M4,1, and finally to
8.5/256 with M4,3. This proves that the desired goal of increased independence of
the outputs, and corresponding disruption of differential characteristics, is achieved.

In light of these observations, we choose the matrix M4,3 = Q4,3 for QARMA-64,2

and the matrices M8,3 and Q8,3 for QARMA-128.

2 Note that there is a further, small improvement to 8.3/256 with the matrix circ(0, 1, ρ, 1) which
is Class II, but the difference is so small that we prefer the involutory M4,3 instead.
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Fig. 4. The Column-wise Active State Transitions for Class I Matrices
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Fig. 5. The Column-wise Active State Transitions for Class II Matrices
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Remark 3. An analogue of Theorem 1 holds over fields F2m as well. A matrix M =
circ(0, A,B,C) = with ABC ̸= 0 is invertible if and only if its determinant A4 +
B4 + C4 ̸= 0, in which case it is Almost MDS. However, the multiplications by A,
B, or C are circuits of non-negligible depth, unless they are equal to 1.

Remark 4. This is not the only work on diffusion matrices on rings other than a finite
field. Dehnavi et al. [27,28,29] study matrices over rings Fm

2 where the ring operations
are the bitwise XOR and AND. They build MDS matrices whose entries are sums
of rotations or shifts. Their research does not consider Almost MDS matrices, and
even though their operations are efficient, they are not concerned with minimising
the depth. In fact, their diffusion layers have a much higher latency than ours.

3.2 On the Central Construction

Reflection attacks are a specific class of cryptanalysis originally developed against
2K-DES [30] but that can be particularly efficient against PRINCE-like ciphers [25]:
If the reflector has too many fixed points, there will be a self-differential with a zero
difference after the round key addition at its sides, that may propagate outwards with
a palindromic structure if a matching self-differential with a difference of α exists.
With respect to MANTIS, by design we took an important step towards resistance
against such attacks. The the matrix we chose for QARMA-64 has 232 fixed points out
of 264 values, which is the minimum for a linear function (cf. Lemma 1 in [25]),
whereas the MIDORI and MANTIS circulant M0 has 248 (the matrix for QARMA-128
has 264 out of 2128, whereas M0 has 296 over R8). But, we decided to take also an
additional countermeasure.

Suitable whitening around the reflector can make these attacks less likely, pro-
vided that the two whitenings always have a non constant difference as a function of
the whitening key. Luckily for us, the PRINCE whitening key expansion was designed
this way: for any value of z, equation w0 +w1 = z has exactly one solution. In fact,
the map w0 7→ o(w0) = w1 is a (linear) orthomorphism, i.e. both o and x 7→ x+ o(x)
are permutations. Thus, an attacker that does not know w0 cannot control the dif-
ference after the whitening. Since the same tweak is added on both sides, it does not
affect the difference.

The central addition of a core key derived round key serves to continue the
regular key mixing in the cipher and also to make the pseudo-reflector in general
not involutory, with an unpredictable difference at its sides. Since there are values
of the core key for which the central rounds are involutory, We intentionally do not
add also the tweak in the middle to prevent attacks that could exploit this.

Finally, in light of the cryptanalysis in [31], even though it does not (yet?) lead to
practical attacks, we wish to attempt here a departure from pure FX constructions,
especially since the used permutations are not ideal: The design of QARMA takes
precisely this road. An analysis of the security implications of our central construction
can be found in § 4.2.
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3.3 Choice of the 4 Bit S-Boxes

Despite the existence of excellent classifications of 4-bit S-Boxes [32,33], choosing the
right S-Box for a given application is still a non-trivial task. The cipher’s designer
must balance on one side desirable cryptographic properties and on the other one
performance and cost aspects, such as, in our case, critical path length, then area.

In the case of PRINCE the S-Box was chosen to be 4-bit to reduce total complexity
and critical path, but once this decision had been made, the choice seems to have been
driven essentially by cryptographic properties. At the opposite side of the spectrum,
the MIDORI designers did not hesitate to choose an S-Box with several fixed points,
and suboptimal algebraic degree. Indeed, because of the presence of fixed points and
minimal round key mixing a vast class of weak keys was found [34].

QARMA can use three S-Boxes: a very small involutory S-Box with complexity simi-
lar to that of MIDORI, but with fewer fixed points; an S-Box which is affine equivalent
to the S-Box S6 defined in the PRINCE paper; and a “homogeneous” involutory S-Box
whose complexity and critical path fall in between.

A key instrument in choosing these S-Boxes is an automated approach for deter-
mining S-Boxes with bounded path delay. The designers of MIDORI observe that the
path delay is highly related to the dependency of the computation. The path delay is
estimated using a metric called the depth of a circuit, defined as the sum of sequential
path delays of basic operations such as AND, OR, NAND, NOR, XOR, XNOR and
NOT (we also consider ternary operators).

To find the MIDORI S-Boxes, all involutory S-Boxes have been examined in order
of increasing depth. This method can be slow and memory intensive, for instance, if
all S-Boxes have to be generated first, synthetised and then sorted. We replace these
expensive search methodologies by slightly less precise heuristics.

3.3.1 Identifying S-Boxes with Almost Optimal Path Delay Let us con-
sider the MIDORI S-Box Sb0 as a example. The SOP of the least significant bit
of the output corresponds to the boolean function wyz + wyz + xz + xy on the
variables {w, x, y, z} (x := NOT(x)). Applying de Morgan’s theorem, it is straight-
forward to see that this can be evaluated as the NAND4 of the four expressions
NAND3(w, y, z), NAND3(w, y, z), NAND2(x, z), and NAND2(x, y). A NAND4 gate
can be implemented (with some complication because of wiring) with a depth of 2,
and thus by using a layer of NOT’s of depth 0.5, a layer with two NAND3’s and two
NAND2’s with a depth of 1.5, and the NAND4 gate, this output bit can be imple-
mented with a depth of 4. However, the SOP of the negation of the same output
bit is xyz + wx + yz which can be implemented as the NAND3 of NAND3(x, y, z),
NAND2(w, x), and NAND2(y, z) – with a total depth of 3.5. Negating it and applying
de Morgan’s theorem again, the original function can be represented as the NOR3 of
NOR3(x, y, z), NOR2(w, x), NOR2(y, z), which, upon closer inspection, has a depth
of 3. Similar considerations can be made for the other output bits.
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In general, considering the SOP and the NOT-SOP of each output bit we can
always match the claimed minimal depth of all the S-Boxes from the literature that
we have sampled, or exceed this depth by at most 0.5.

Therefore we sieve the S-Boxes by computing the SOP and NOT-SOP of each
output bit by the Quine-McCluskey algorithm, and keep, for instance, first those
S-Boxes whose output bits can be all expressed as sums of at most three products,
each one having at most weight 3 (or as not-products at most three sums of at
most three monomials) and satisfying additional cryptographic constraints – and
then gradually increasing the complexity of the allowed expressions if no matching
S-Boxes are found. By allowing generalised NAND and NOR gates, we get tighter
upper bounds for the depth. Gradually, we restrict the cryptographic properties until
we get a manageable set of S-Boxes that can be further analysed.

3.3.2 Desirable Cryptographic Properties For various ciphers, there are sev-
eral interesting cryptographic properties that have been required of S-Boxes, depend-
ing on the requirements of the cipher and the structure of other cipher components.

S1 The maximal probability of a differential is 1/4.
S2 The maximal absolute bias of a linear approximation is 1/4.
S3 Each of the 15 non-zero component functions has algebraic degree 3.

Sometimes the first two properties are strengthened, as in the PRINCE S-Boxes,
to having exactly 15 differentials with probability 1/4 and exactly 30 linear approx-
imations with absolute bias 1/4.

Finally, another important property is the full diffusion property:

S4 Each input bit of the S-Box shall influence each output bit non-linearly.

This property is easily verified from the SOP of each output bit: each input bit
should be present in each output bit in at least one product of weight at least two.

Property S4 is very important in the design of the second MIDORI S-Box, to
ensure that each input bit will influence non-linearly all 128 bits of the state after
three rounds - but it is easy to verify that with our design of the diffusion layer and
of the 8-bit S-Box, Property S4 can be relaxed while still achieving the same result:

S4’ There is at most one input bit that only influences three output bits non-linearly.

3.3.3 A Lightweight S-Box With Fewer Fixed Points The MIDORI S-Box
has 4 fixed points and 3 non-zero component functions of algebraic degree just 2.
The bit-flipping pattern is given in Table 4 which implies that in half of the cases a
single bit input differential will produce a single bit output differential. The S-Box
satisfies Properties S1, S2, and S4’. We aim at improving some of these parameters.

We use the candidate sieving technique described at the end of § 3.3.1 to search
the involutory S-Boxes with no more than 4 fixed points. In order to search them
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Table 4. The Bit-Flipping Pattern of the
MIDORI S-Box and (up to bit ordering) of σ0

Times b bits are flipped
Flipping bit one two three four

0 5 2 1 0
1 4 4 0 0
2 5 2 1 0
3 2 4 2 0

Table 5. The Bit-Flipping Pattern of the σ1

S-Box

Times b bits are flipped
Flipping bit one two three four

0 3 4 1 0
1 3 4 1 0
2 3 4 1 0
3 3 4 1 0

Table 6. The Bit-Flipping Patterns of the σ2 S-Box and its Inverse

σ2 Times b bits are flipped
Flipping bit one two three four

0 2 1 4 1
1 2 4 2 0
2 2 3 2 1
3 6 2 0 0

σ2 Times b bits are flipped
Flipping bit one two three four

0 5 1 1 1
1 2 3 2 1
2 2 5 0 1
3 3 2 3 0

all, we modify Prissette’s algorithm [35] to enumerate all fixed-point free involutions
over a specific set to generate all involutions with a specific subset of fixed points.

We found an alternative with the same depth but only two fixed points, and only
one non-zero component function of algebraic degree 2 instead of three. The search
lasted only a few seconds on a single core of a 2,4 GHz Intel Core i7 laptop.

Interestingly, we found no S-Box where the values of the two fixed points differ
on more than one bit, which implies that in this situation it is important that the
diffusion layer does not always map the bits to the same places and the round con-
stants also influence other bits, to prevent characteristics that map a small subset of
possible states onto itself. This observation is one of the motivations in the design of
the linear layer that we described in Section 3.1.

The S-Box we propose for the lightest versions of QARMA, is

σ0 := [ 0, 14, 2, 10, 9, 15, 8, 11, 6, 4, 3, 7, 13, 12, 1, 5 ]

with fixed points 0 and 2. Its single bit input differential weight distribution is
equivalent to that of the MIDORI S-Box, the critical path is the same (depth of 3.5)
and it has an area of 14 GE.

We suggest this S-Box also as a possible replacement for the MIDORI S-Box, since
the two fixed points do not differ in the bit influenced by the round constants.

3.3.4 A Homogeneous S-Box We found also the following involutory S-Box
with no fixed points:

σ1 := [ 10, 13, 14, 6, 15, 7, 3, 5, 9, 8, 0, 12, 11, 1, 2, 4 ] .

The output weight distribution for single bit input differentials is given in Table 5.
For each b, each input bits has the same number of one bit to b bit differentials. This
may make individual bits less distinguishable from each other.
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Fig. 6. The Construction of the 8-bit S-Box Σ of QARMA-128
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σ1 satisfies Properties S1, S2, S3 and S4, its depth is 4 and the area is 16 GE.

3.3.5 The Lightweight S-Box from the PRINCE family It may be requested
that the S-Box be non-involutory. For this purpose, we have filtered all the S-Boxes
allowed for PRINCE, which fall into eight affine equivalence classes. These S-Boxes all
satisfy the strengthened version of Properties S1 and S2, and Properties S3 and S4.

In fact, we selected an S-Box which is affine equivalent to the S-Box S6 as defined
in the PRINCE paper, because it and its inverse can be implemented with depths of 4.5
and 4 respectively, which seem to be optimal among all PRINCE S-Boxes according
to the bounds provided by our search tools. These depths are smaller than those
required by the default PRINCE S-Box, but the area is slightly larger (approximately
20GE). This S-Box and its inverse are:

σ2 = [ 11, 6, 8, 15, 12, 0, 9, 14, 3, 7, 4, 5, 13, 2, 1, 10 ]

σ2 = [ 5, 14, 13, 8, 10, 11, 1, 9, 2, 6, 15, 0, 4, 12, 7, 3 ] .

All the non trivial component functions have algebraic degree 3. The S-Box has
no fixed points and the output weight distribution for single bit input differentials
for both σ2 and σ2 is given in Table 6.

3.4 The 8-bit S-Box

As in MIDORI-128 we construct an 8-bit S-Box Σ by placing two instances of a
single 4-bit S-Box in parallel. However, we wire the input and output bits in a
single and simpler way, as shown in Figure 6, which is asymmetric. The S-Box σ
is one of the S-Boxes σi described in § 3.3. If we write a 8-bit cell of the state as
(x7, x6, x5, x4, x3, x2, x1, x0), σ is applied to (x7, x6, x5, x4) producing the output bits
(x′7, x

′
5, x

′
3, x

′
1), and to (x3, x2, x1, x0) producing the output bits (x′6, x

′
4, x

′
2, x

′
0), and

the output of the combined 8-bit S-Box is (x′7, x
′
6, x

′
5, x

′
4, x

′
3, x

′
2, x

′
1, x

′
0). Since the

construction is not symmetric, the opposite wiring must be implemented for Σ.
The rationale behind this is that in combination with the chosen matrices M ,

if the output of Σ is cyclically rotated by any amount of bits and then fed into
another instance of Σ, exactly 2 bits of the output of one of the two 4-bit S-Boxes
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Fig. 7. Alignment of Output and Input Bits of Consecutive Instances of the 8-bit Composite S-Box
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in the first Σ are wired into each of the two 4-bit S-Boxes of the second instance
of Σ. This is clear because all the outputs of one instance of σ will be wired into
the even numbered bits of the output of Σ, and the outputs of the other instance of
σ into the bits in the odd numbered positions of the output of Σ, so any group of
four cyclically adjacent output bits of Σ will be equally partitioned among the two
sources. This is also graphically depicted in Figure 7.

If the 4-bit S-Box σ satisfies Property S4, a three-round full diffusion property as
in MIDORI-128 (Theorem 1 in [9]) still holds, namely any input bit nonlinearly affects
all 128 bits of the state after 3-rounds The 3-round full diffusion property holds even
under weaker Property S4’. The proof is entirely similar, one only needs to add and
track a cell state where only three bits are non-linearly influenced.

3.5 On the Round Constants

We did not consider sparse constants: since they are hardwired, and XOR and XNOR
have the same costs, XORing together the key, generating the round tweakey has the
same cost regardless of the Hamming weight of the constants.

3.6 The ω Function

The indexes of the tweak register modified by ω have been chosen along the length
14 cycle of the tweak cell permutation - and one along the length 2 cycle (1, 5)
- in order to minimise the number of cell values with the same difference to the
corresponding cells of the round constants (and so make partial slide attacks less
likely) and maximise the spread of different values if one starts with a non-zero
tweak with all equal cells.
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4 Security Analysis

4.1 Generic Attacks on Block Ciphers

One of the main goals in our design was to be able to carry over the security analysis
of MIDORI as verbatim as possible while at the same time improving both diffusion
characteristics and the bounds deriving from the cryptanalysis of Even-Mansour
schemes. For this reason, the forward rounds have a very similar structure to the
MIDORI rounds, the minor differences allowing us to achieve the desired diffusion
goals through the pseudo-reflector (cf. § 4.2). For instance, as already mentioned,
MIDORI-128’s three-round full diffusion property can be proved also for QARMA-128.

Looking at Table 3, we see that no related tweak linear or differential distinguisher
based on a characteristic is possible for QARMA-64 already when r = 5, and note that
not only the bounds are not tight (bounds would be only tight if the S-Boxes could
be chosen freely for each cell and round), but they also express a security level before
taking whitening into account. QARMA7-64 has four more rounds, which should provide
a sufficient security margin.

QARMA-128’s state can be viewed as thirty-two 4-bit cells, but we did not find
this partition useful for a security analysis. The main reason is that the 8-bit S-Box
construction Σ (cf. Figure 6), has branch number 2 viewed as a map from two 4-bit
cells (x7, x6, x5, x4) and (x3, x2, x1, x0) to two 4-bit cells (x′i+7, x

′
i+6, x

′
i+5, x

′
i+4) and

(x′i+3, x
′
i+2, x

′
i+1, x

′
i+0) for any value of i with the indexes taken mod8. also when

combined with the circular rotations. Hence, if the input is active, only one of the
two 4-bit outputs is guaranteed to be active. Heuristically, after the first round we
can estimate that if one of the two 4-bit outputs in a 8-bit cell is active, then the
other output is active with a likelihood of 75%. This tells us that the actual active S-
Box counts are most likely much larger than the counts given in Table 3, and for this
reason we did not require r = 12 to assume security against linear and differential
attacks for QARMA-128. However, a bound along these lines can probably only be
proved by converting the cell-wise MILP model into a bit-wise one, which would be
computationally infeasible, except for a very small number of rounds.

Against boomerang attacks, impossible differential attacks, and meet-in-the-
middle attacks, the arguments for MIDORI apply essentially unchanged.

Resistance agains invariant subspace attacks similar to the attack against MIDORI-
64 is ensured by the fact that the round constants affect all bits.

We believe that the use of essentially random constants and the heterogeneity of
round types break any self similarities that could be exploited in slide attacks.

4.2 Security Implications of the Central Construction

It is tempting to dismiss the possibility of reflection attacks or attacks on Even-
Mansour schemes with involutions simply on the basis that the central rounds do
not constitute an involution. However, the central rounds still shows high likelihood
self-differentials that depend on k1, warranting a closer analysis.



The QARMA Block Cipher Family 21

Fig. 8. Reflection Self-Differentials
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Note that, besides the whitening and the central key addition, a further crucial
difference with respect to MANTIS is the use of two additional ShuffleCells layers.
Without ShuffleCells the central group of state transformations formed by M , S,
M , addition of k1, S and M layers would only act independently on four partitions of
the state, each consisting of four cells. Indeed, with ShuffleCells, better diffusion
is achieved: any single bit of the state on one side of the central construction affects
non-linearly at least four bits in each of twelve cells on the opposite side, as opposed
to just four cells without ShuffleCells – and it affects non-linearly all bits of the
state after just one more round, as opposed to all bits in just twelve of sixteen cells.

A tangible effect is that the active S-Box counts in Table 3 for both Class I and
II matrices are often larger by a count of 2 or 4 than if we evaluate them without
modelling the two ShuffleCells operations.3

However, the most important security improvement is regarding (analogues of)
reflection attacks. We use Figure 8 as a reference in the following.

The pseudo-reflector is an involution if and only if the key k1 is a fixed point of M
(so there are 232 such values for QARMA-64. resp. 264 for QARMA-128), and if ∆ = 0 then
also ∆′′ = 0, but at this point the formation of reflection characteristics is thwarted
by the use of the whitening keys in the central rounds, unless w0 + w1 = α or 0,
which happens for exactly two values of w0. We conclude that in this setting for only
one key K in 295 (for QARMA-64, resp. 2191 for QARMA-128) a reflection attack could
be attempted: In the case of iterative characteristics, if the palindromic structure
begins with a ∆′′′ = α, the successive differences are 0, then α again, and so on;
if the structure begins with a ∆′′′ = 0, the differences are α, 0, and so on. At the
last round the attacker can only try to guess whether the difference has propagated,
because of the whitening. Then, the considerations in [25] would apply, for which, in

3 Also, if we use MILP to count the number of linearly or non-related-tweak differentially active
S-Boxes through the two rounds before and the two rounds after the pseudo-reflector we verify
that we have at least sixteen active S-Boxes with the ShuffleCells and only eight without. This
result holds for both Class I and Class II matrices. This means that the two sub-ciphers of QARMA
are better “coupled” by the central rounds with ShuffleCells.
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the case of QARMA7-64, we believe similar attack complexities as in PRINCE to hold
(and correspondigly higher complexities would hold for QARMA11-128).

If k1 is not a fixed point of M , i.e. k1 ∈ ker(M + I), then the pseudo-reflector
cannot have fixed points, since every such fixed point z would satisfy both z =
M · z + k1 and z = M · z + M · k1, which is a contradiction. So attacks based on
∆ = 0 cannot be mounted. But this cannot exclude other types of characteristics.

In fact, for any fixed k1, the self-differential ∆ can take only 232 (resp. 264)
equiprobable values, which depend only on the class k1 + Im(M + I) of k1 in
R16/ Im(M+I). In fact, if x+Mx+k1 = ∆, then (x+ℓ)+M(x+ℓ)+(k1+(M+I)ℓ) =
∆, and there is a 1-1 correspondence x ↔ x+ ℓ between the sets of values for which
this difference holds for the two keys.

These values ∆ can then propagate to values ∆′′ with some probability, and
for each such ∆′′ there are two value of w0 for which ∆′′′ = ∆′′ + (w0 + w1) = α
or 0. This leads to analogues of attacks based on the second type of middle-round
characteristic in [25]. Now, we see that for each core key, text and tweak, there are two
whitening keys in 264 (resp. 2128) that allow a reflection attack to be bootstrapped.
So an attacker would attempt to change texts and tweaks hoping that the correct
differential ∆′′ is hit that leads to ∆′′′ = α or 0, and each time verifying whether the
differential holds. Unless k1 is unknown, no assumption on ∆ can be done.

The improvement with respect to the attacks on reflection ciphers is that the
likelihood of a useful differential ∆′′′ decreases from 2−32 (resp. 2−64) to 2−63 (resp.
2−127) and so we get correspondingly reduced success likelihoods - the final proba-
bilities are not as small as our estimates above regarding the ∆ = 0 case (in fact,
we obtain 2−107 and 2−189, respectively), but most likely with data requirements
(upwards of 260 for QARMA-64, for instance) that will not compromise the desired
level of tradeoff security. Deriving more precise complexity estimations is definitely
an important area of research.

Also, the impossibility to control the self-differentials when k1 and/or w0 are
unknown should prevent analysis based on impossible reflection characteristics.

4.3 Attacks on Even-Mansour Schemes

Recall that the whitening key derivation function o(·) is an orthomorphism. Many
of the attacks described below apply to single-key Even-Mansour schemes. If ortho-
morphisms are used to create a key schedule, the complexity of the attacks usually
increases and approaches that of schemes with independent keys or using indepen-
dent permutations (see [36] for the two-round case). We are not claiming that QARMA’s
structure offers the security of an EM scheme with independent keys and permuta-
tions, but as the attack complexity estimates in the following are made under a single
key assumption, the results are likely not tight.

An analogue of the cryptanalysis described in [37] seems unlikely: The single-key
three-round with an involution attack is the one that seems closer to our design. It
can be adapted at once observing that, for each fixed core key, the mapping x 7→ ∆
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assumes only 2n/2 values which occur 2n/2 times each (w.r.t. the notation in [37], this
is in-degree t). This leads to a time/data/memory (T/D/M) tradeoff of TD = 23n/2,
where the data consists of known texts and memory is online storage. The attack
has to be repeated for each candidate core key in order to determine the whitening
key as well, so we obtain T = 27n/4, D = 23n/4 and M = D. Since evaluations of
the sub-ciphers can be done for pairs of core keys (k0, k0 + α), the memory usage
can be halved. For QARMA-64 this turns into an attack with 2112 time and 247 data.

The single-key two-round attack can be applied, under the assumption that for,
a known core key, a certain ∆ will occur with likelihood 2−n/2 (but choosing the
plaintext does not seem to give control on this event). In this case the cipher collapses
into a single-key two-round EM construction, not a single round EM, because o(·)
is an orthomorphism. For each core key, time complexity is slightly smaller than 2n,
data (known texts) is slightly smaller than 23n/4, and memory is around 2n/4. The
time complexity must be multiplied by 2n to cover all core keys, and the data by
2n/2 because of the usable proportion, whereas online memory usage stay the same.
We do get an attack with T slightly better than brute force, but TD ∼ 214n/4.

These estimates are all better than the corresponding complexities for attacks on
the simpler FX construction used, say, in PRINCE.

Similarly, for the attacks in [38], with the same likelihoods for a known central
difference ∆ for a certain core key (resp. class), the equations to solve for the whiten-
ing key (and possibly the remaining bits of the core key) would still correspond to the
whole cipher minus the central construction, so we do not expect it to be significantly
easier than attempting to exploit reflection characteristics.

Finally, we also observe that a three-round, two-key EM scheme, according to [39]
is attacked with a time data tradeoff of TD = 22n where M = D (for unkeyed
permutations). It is an open question whether our scheme, with a second key derived
from the first by means of an orthomorphism offers the same security bound.

4.4 Security Claims

Similarly to MANTIS and PRINCE, for QARMA7-64 and QARMA11-128, we claim that they
attain n bits of tradeoff security. In fact, we claim security against practical at-
tacks already for QARMA5-64, resp. QARMA8-128: more precisely, no related-tweak at-
tack should be applicable with less than 230 (resp. 260) chosen or 240 (resp. 280)
known text pairs.

Regarding QARMA-128, if a 192-bit security level is required, we believe that
QARMA9-128 offers it with a substantial security margin. For a 128-bit security level,
QARMA8-128 is a good choice because of the better performance.

5 Implementation Considerations

The most important parameter in implementations of QARMA is the latency, which is
strictly correlated to the length of the critical path, usually measured in NAND/NOR
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Table 7. Area and Critical Path Counts for QARMA-64 and QARMA-128

Depth Area
Cipher (GE) (GE)

QARMA-645-σ0 100 8971
QARMA-646-σ0 117 10451
QARMA-647-σ0 134 11929
QARMA-645-σ2 107 9484
QARMA-646-σ2 125 11048
QARMA-647-σ2 143 12616

MANTIS5 100 8703
MANTIS6 117 10155
MANTIS7 134 11605
PRINCE 114 7424

Depth Area
Cipher (GE) (GE)

QARMA-1288-σ0 152 26592
QARMA-1289-σ0 168 29521
QARMA-12810-σ0 185 32450
QARMA-12811-σ0 201 35379
QARMA-1288-σ2 164 28127
QARMA-1289-σ2 183 31228
QARMA-12810-σ2 201 34328
QARMA-12811-σ2 219 37429

AES-128 554 63234
(Encryption only) 294 143888

gate equivalents (GE). We report the latter for QARMA and for some other ciphers,
together with the area estimates, also given in GEs, in Table 7.

Striving for a fair comparison with the results in the literature on lightweight
block ciphers, we have done pure gate counts for fully unrolled designs, instead of
using a very specific process. From the values we report it is easy to extrapolate a
good approximation of area and latency on a target platform if a similar (i.e. fully
unrolled) implementation of PRINCE or MANTIS is available.

We applied various implementation tricks to fuse or parallelise various steps.
For instance, the critical path for MANTIS and QARMA-64 (with the S-Box σ0) is the
same, since the key addition in the pseudo-reflector can be fused with the previous
multiplication of the state by M , which thus maintains a critical path of 2 XOR
gates. The same optimisation applies to the backward rounds of both ciphers.

The increased area of QARMA-64 with respect to MANTIS mostly comes from the
LFSR on the tweak, the heavier S-Boxes, and the additional middle key mixing. The
largest difference between these two ciphers on one side and PRINCE on the other
comes from the mixing of key and tweak. This amounts to 256 GE per round.

To model the AES, we use the parameter of a Canright type [40] S-Box imple-
mentation with a depth of 23 GE and a total area of 285 GE (this is a unified
S-Box for encryption and decryption, which is a fair comparison since all other ci-
phers accomodate both operations). It is possible to further reduce the latency but
at large price in area. For instance, using a hybrid LUT approach [41] the S-Box can
be implemented with a critical path of about ∼10 GE for an area of ∼700 GE: we
used these parameters to model the AES and provide different estimates. Even more
extreme AES implementations exist: for instance in [7] implementations that require
more than 400K gates are reported.

6 Conclusions and Open Questions

We have introduced QARMA, a new lightweight TBC family that comes in 64 and 128
bit block and tweak sizes, aimed at 128 and 256 bit levels of security, respectively.
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QARMA’s diffusion layers are based on a new class of Almost MDS matrices de-
signed to embed input and output dependent rotations while keeping the optimal
critical path of {0, 1}-matrices. The confusion layer has been selected using new
heuristics for sieving low-latency S-Boxes. The structure is three-round EM scheme
using two keys related by an orthomorphism, designed to collapse to a two-round
EM (instead of a single round EM) when one of the permutations can be erased with
some probability because of high likelihood self-differentials (including fixed points):
This leads to higher attack complexity estimates than for FX constructions.

The cipher’s security has been analysed and we believe it offers reasonable secu-
rity margins with the recommended numbers of rounds.

We believe that QARMA can spur research into the analysis of reflection-like dif-
ferentials in ciphers that are symmetric around a non-involutory structure. Another
interesting open question is how to modify current MILP models for counting ac-
tive S-Boxes in order to attain better bounds on the number of the active halves in
QARMA-128’s (and MIDORI-128’s) 8-bit S-Boxes – without having to resort to bit-wise
models which quickly become impractical.
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A Test Vectors

A.1 Test Vectors for QARMA-64 with M = M4,1

P = fb623599da6e8127 T = 477d469dec0b8762

w0 = 84be85ce9804e94b k0 = ec2802d4e0a488e9

Using the S-Box σ0.

QARMA64_5

C = de5b629abbfcde27

QARMA64_6

C = dd117a6e8a55b338

QARMA64_7

C = 6faabc460bc8a784

Using the S-Box σ1.

QARMA64_5

C = eb464d057108eb0e

QARMA64_6

C = 18c7547b7af08e42

QARMA64_7

C = 376f170678c80c7c

Using the S-Box σ2.

QARMA64_5

C = d9f84b6d6b06c7c1

QARMA64_6

C = b6fbe247dd031812

QARMA64_7

C = bac6be9ee3d9e519

A.2 Test Vectors for QARMA-64 with M = M4,3

P = fb623599da6e8127 T = 477d469dec0b8762

w0 = 84be85ce9804e94b k0 = ec2802d4e0a488e9

Using the S-Box σ0.

QARMA64_5

C = 3ee99a6c82af0c38

QARMA64_6

C = 9f5c41ec525603c9

QARMA64_7

C = bcaf6c89de930765

Using the S-Box σ1.

QARMA64_5

C = 544b0ab95bda7c3a

QARMA64_6

C = a512dd1e4e3ec582

QARMA64_7

C = edf67ff370a483f2

Using the S-Box σ2.

QARMA64_5

C = c003b93999b33765

QARMA64_6

C = 270a787275c48d10

QARMA64_7

C = 5c06a7501b63b2fd

A.3 Test Vectors for QARMA-128

P = 2fdbb6a2c395e959 fdfa964e98c1a2e7 T = 242767fd3486a96d fe9c904be82756a2

w0 = 58948b7ef8e5ec7e f9f8f014de0924eb k0 = 4e7ce2081002eda4 fe20aaa4d868be09



The QARMA Block Cipher Family 29

Using the S-Box σ0.

QARMA128_8

C = 950e8c0cbfa6a71f dc002c334f66e1f2

QARMA128_9

C = 4f9945f78bc95fdf 2b7ef9eb85faa032

QARMA128_10

C = be8343304ec23a37 7c73e199b0e37cf8

Using the S-Box σ1.

QARMA128_8

C = 4d20b727c1e13be2 e2eea20e4c5a40fd

QARMA128_9

C = c68d7fb1e329830c d29b626efa4015f0

QARMA128_10

C = c155ffbbac8505e8 790f72a36088dec5

Using the S-Box σ2.

QARMA128_8

C = 9bd498332f494d78 b39db929426ddb44

QARMA128_9

C = 7564cddcf60ecc04 bae52c17e31140ca

QARMA128_10

C = b52d6eac88dc5c76 bea485559b7d20d5

B Proof that M8,2 has 272 fixed points

Proposition 1. The matrix M = circ(0, ρ, ρ4, ρ5) over R8 = F2[ρ] = F2[X]/(X8 + 1) used in
QARMA128 has 272 fixed points.

Proof. Since M acts on the four columns of the state independently, it will suffice to establish that
the number of fixed points of M acting on R4, i.e. on columns, is 218. A vector V = (v0, v1, v2, v3)

t

is a fixed point of M if and only if

(M + I) · V =


v0 + v1 ρ+ v2 ρ

4 + v3 ρ
5

v0 ρ
5 + v1 + v2 ρ+ v3 ρ

4

v0 ρ
4 + v1 ρ

5 + v2 + v3 ρ
v0 ρ+ v1 ρ

4 + v2 ρ
5 + v3

 =


u0

u1

u2

u3


is zero. Now, 0 = u0 + v1 ρ, we get v0(1 + ρ6) + v2(ρ

2 + ρ4) = 0 or, in other words

(1 + ρ2)(v0 + v2 ρ
4) = 0

which means that v0 is equal to v2 ρ
4 up to an element annihilated by 1 + ρ2, i.e.

v0 = v2 ρ
4 + (1 + ρ2 + ρ4 + ρ6) ζ .

Similarly,
v1 = v3 ρ

4 + (1 + ρ2 + ρ4 + ρ6) ζ′ .

Note that ζ and ζ′ are effectively defined modulo 1 + ρ2, and they can only define four distinct
values of v0 (resp. v1) for each fixed value of v2 (resp. v3). Substituting these expressions for v0 and
v1 in u0 = 0 (or u2 = 0) we get

(1 + ρ2 + ρ4 + ρ6)(ζ + ρ ζ′) = 0 .

We see that for each value of ζ there is a unique ζ′ (modulo 1 + ρ2) such that the last equation is
satisfied. Using u1 (or u3) in place of u0 or u2 leads to the same result. The elements in ker(M+I) ⊆
R4 are thus uniquely determined by two components and a by a single two bit value, resulting in
a cardinality of 218. ⊓⊔
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