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I. PREAMBLE

Dr. Roberts has provided a lucid account of the analytical arguments that underlie the
study of T -violation [1]. His clear presentation makes my task rather easy. I will discuss
T violation in a very general setting that incorporates quantum mechanics and quantum
field theory, but is not tied to them. The focus will be on the conceptual aspects of the two
approaches that have led to experimental proofs of T -violation in weak interactions.

Since Dr. Roberts mentioned the macro-world only in passing, let me begin a brief
discussion of the manifest arrow of time we perceive in our everyday life and, more generally,
in the physics of large or macroscopic systems. For simplicity, let me discuss this issue in
the framework of classical physics because the core of the argument is not sensitive to the
distinction between classical and quantum mechanics. Consider a large box with a partition
that divides it into two parts, say, the right and the left halves. Suppose there is some gas in
the left half and vacuum in the right. Once equilibrium is reached, the macroscopic state of
this gas is described by the volume it occupies, Vi; the pressure it exerts on the wall. Pi and
its temperature Ti, where i stands for ‘initial’. If we open the partition slowly, the gas will
fill the whole box and its macro-state in equilibrium will be described by new parameters,
Vf , Pf , Tf . Thus, there has been a transition from the initial macro-state (Vi, Pi, Ti) to a
final state (Vf , Pf , Tf ). Our common experience tells us that the time reverse of this process
is extremely unlikely.

However, we also know that the microscopic variables for the system are the positions
and momenta of some 1023 molecules in the box. These are subject just to Newton’s laws
which are manifestly invariant under the time reversal operation T ! Therefore, if we were to
reverse the momenta p⃗(α)(t) of each of the molecules (labeled by α) at a late time t, keeping
the final positions x⃗(α)(t) the same, time evolution would indeed move the gas from its final
macroscopic state to the initial one. But it is very difficult to construct this time-reversed
initial state. Thus there is indeed a macroscopic arrow of time but its origin is not in the
failure of the microscopic laws to be invariant under T but rather in the fact that the initial
conditions we normally encounter are very special. This is reflected in the fact that there
are vastly fewer micro-states compatible with the initial macro-state (Vi, Pi, Ti) than there
are compatible with the final macro-state (Vf , Pf , Tf ).

1 Put differently, the entropy of the
initial macro-state is much lower than that in the final macro-state.

∗Electronic address: ashtekar@gravity.psu.edu
1 This is primarily because the volume Vf allowed for each molecule in the final macro-state is twice as

large as Vi, allowed in the initial macro-state.
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To summarize the fact that there is a clear arrow of time in the macro-world does not
imply that the microscopic or fundamental laws have to break T -invariance. Indeed, as Dr.
Roberts emphasized in the beginning of his article [1], it was common to assume that the
fundamental laws are invariant under the time reversal operation T . It was a major surprise
that the weak interaction violates this premise.

II. WEAK INTERACTIONS AND THE CURIE PRINCIPLE

As Dr. Roberts has explained clearly, what the Cronin-Fitch experiment establishes
directly is that the weak interactions are not invariant under CP , i.e., under the simultaneous
operation of charge conjugation and parity. The parity operation, as normally formulated,
is meaningful only if the underlying space-time is flat, i.e., represented by Minkowski space-
time. This means one ignores curvature and therefore gravity. One further assumes that
physics is described by a local quantum field theory on this Minkowski space, for which
individual physical fields transform covariantly under the action of the Lorentz group and
dynamics is generated by a self-adjoint Hamiltonian obtained by integration of a scalar
density constructed locally from the physical fields. Then, one has the CPT theorem that
guarantees that the product CPT of charge conjugation, parity and time reversal is an
exact dynamical symmetry.2 Therefore, as Dr. Roberts explained, if we assume that weak
interactions are described by such a theory, then the observed breakdown of CP invariance
implies that they violate T invariance as well.

Dr. Roberts describes the mathematical underpinning of the ‘Curie Principle’ in his
section 2.4 using a linear transformation R on the Hilbert space of states, which is to play
the role of a symmetry of interest. This formulation can be significantly generalized. The
main point of my ‘response’ is to provide this formulation.

As Dr. Roberts emphasizes, his analysis has the advantage that it does not assume a
specific Hamiltonian. Let us go a step further and consider a formulation that does not use
even the mathematical structure normally used in quantum (or classical) kinematics. Both
frameworks will be special cases of this general mechanics. What it assumes is:
i) We have a set S of states;
ii) There is a 1-1, onto dynamical mapping S —the ‘S-matrix’— from S to itself. In practice
is it convenient to consider two copies Si and Sf of S, representing initial and final states,
and regard S as a map from Si to Sf ;

S : Si → Sf ; S(σi) = σf ∀σi ∈ Si (2.1)

and,
iii) A 1-1, onto map R from S to itself, to be thought of a potential symmetry. We will first
consider the case in which R maps Si to itself and Sf to itself. This is the case if R is, for
example, the discrete symmetry represented by C, or P or CP .

2 This is a heuristic version one finds in quantum field theory text books (see, e.g. [2]). More rigorous

versions based on Weightmann axioms [3] and the algebraic approach [4] are also available in the literature.

However, one should note that we do not have a single example of a 4-dimensional, interacting quantum

field theory satisfying either the Wightmann axioms or the axioms of the algebraic quantum field theory.



3

Now, in the spirit of the Curie principle, suppose that there exists some σi ∈ S such that

Rσi = σi but Rσf ̸= σf (2.2)

Then,
R (Sσi) = Rσf ̸= sf = S (Rσi) (2.3)

whence SR ̸= RS. Thus, the dynamical map S does not commute with the candidate
symmetry R: It is not a dynamical symmetry. We therefore conclude: If there exists a state
σi such that Rσi = σi and Sσi = σf but Rσf ̸= σf then R is not a dynamical symmetry
of the system. Thus the Curie principle naturally extends to general mechanics. (It is
straightforward to alter the argument to obtain the other desired conclusion of fact 1 in
section 2.4 of [1].)

Since we assumed S to be only a set, we cannot speak of continuous evolution. But one
could achieve this trivially by endowing S with a topology and replacing S with a continuous
evolution map E(t), where t is to be thought of as a time parameter. The argument given
above will then imply that E(t) will not commute with R.

Note that in this more general formulation one does not even assume that the space
of states has a Hilbert space structure, whence, when applied to the quantum mechanical
system, the argument does not require R or S to be linear mappings. In particular, they
need not be unitary. Note also that this general framework enables one to discuss in one go
all symmetries in classical mechanics and linear symmetries in quantum mechanics. More
importantly, it should be useful also in non-linear generalizations of quantum mechanics
(discussed, e.g., in [5]).

However, we did assume that R maps the space Si of initial states to itself and the space
Sf of final states to itself. This assumption is not satisfied by the time reversal operation
T which maps initial states to final states (and vice versa): T is a 1-1 onto map from Si to
Sf . Therefore, in this case, T is a dynamical symmetry if and only if

Sσi = σf =⇒ S−1(Tσi) = T−1(σf ) (2.4)

i.e., the time reverse of σi (which is in Sf ) is mapped by dynamics to the time reverse of
σf .The generalization of the Curie principle discussed above does not have any implication
in this case. In this respect, the situation is the same as in section 2 of [1].

Remark: While R invariance of dynamics is captured by the property RS = SR of the
S-matrix S while the T invariance is captured by S−1T = T−1S. The above argument shows
that the difference arises simply because while R preserves each of Si and Sf , T maps one
to the other. At a fundamental level, then, the difference is not because R is linear while
T is anti-linear although, in standard quantum mechanics, one can use linearity of R and
anti-linearity of T to arrive at the difference.

III. THE KABIR PRINCIPLE

Can we extend the arguments from general mechanics to encompass time reversal in the
spirit of Kabir’s argument discussed in section 3 of [1]? The answer is in the affirmative.
However, to state Kabir’s formulation, one needs to introduce additional structure in general
mechanics which does not have a natural analog in classical mechanics. This is because
Kabir’s formulation refers to probabilities.
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Let us then introduce an overlap map O on the space of states S (and therefore on each
of Si and Sf ): O : S × S → [0, 1] ∈ R, such that

O(σ, σ′) = O(σ′, σ), ∀σ, σ′ ∈ S. (3.1)

O(σ, σ′) is to be thought of as the overlap between states σ and σ′, the generalization of
the absolute value of the quantum mechanical inner product between normalized states
|⟨Ψ, Ψ′⟩|. The overlap map is part of kinematics. Therefore, to qualify as symmetry, the
map R we discussed in section II has to satisfy

Oi(Rσi, Rσ′
i) = Oi(σ, σ

′) (3.2)

on Si (and similarly on Sf ). Similarly to qualify as symmetry, the Time reversal map which
maps Si to Sf must satisfy

Of (Tσi, Tσ
′
i) = Oi(σi, σ

′
i) (3.3)

for all σi ∈ Si.
The dynamical map S : Si → Sf should be compatible with this kinematical structure,

i.e., satisfy
Oi(σi, σ

′
i) = Of (Sσi, Sσ

′) ≡ Of (σf , σ
′
f ) . (3.4)

Given a dynamical map S, the transition probability between an initial state σi ∈ Si and
any given final state σ′

f is defined to be

P (σ′
f , σi) := [O(σ′

f , Sσi)]
2 ≡ [O(σ′

f , σf )]
2 . (3.5)

This is the additional kinematical structure we need on our general mechanics to formulate
the Kabir principle.

Recall that T is a dynamical symmetry if and only if S−1T = T−1S. Suppose a dynamical
map S satisfies this condition. Then,

Of (Tσi, S(T
−1σ′

f )) = Of (Tσi, T (S
−1σ′

f )) = Of (Tσi, Tσ
′
i) = Oi(σi, σ

′
i) (3.6)

where in the second step we have set s′i = S−1σ′
f and in the last step we used (3.3). On the

other hand, (3.4) and (3.1) imply

Oi(σi, σ
′
i) = Of (Sσi, Sσ

′
i) = Of (σ

′
f , Sσi). (3.7)

The last two equations and the definition (3.5) of transition probability implies

P (σ′
i, σi) = P (Tσ′

i, T
−1σ′

f ) . (3.8)

Thus, we have shown that if T is a symmetry of the dynamical map S then the transition
probability between the states σi and σ′

f must equal that between the two states obtained
by a time reversal. Therefore if the transition probability between any two states and their
time reversed versions differ observationally, then the time reversal symmetry is broken by
dynamics.3

3 It is worth noting that the actual transition rate is not determined solely by the transition probability. In

the leading order approximation (“Fermi’s golden rule”) the transition probability has to be multiplied

by the density of final states. But in practice one can easily take care of this issue and verify whether or

not the transition probability is symmetric under time reversal.
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As with the discussion of the generalized Curie principle of section II, this generalization
of the Kabir criterion does not refer to the Hilbert space structure of the space of states or
linearity (or anti-linearity) of various maps. In particular, in the case of quantum mechanics,
while it incorporates the standard treatment neatly summarized in section 3 of [1], the results
would hold even if, say, the S-matrix were anti-unitary. As with the Curie principle, this
generalization may be useful to non-linear generalizations of quantum mechanics. However,
in classical mechanics, there are no obvious structures corresponding to the overlap map and
the subsequent notion of transition probability. Therefore, unlike our discussion of section
II, the present discussion has no implications to classical mechanics.

IV. DISCUSSION

Apart from obvious advantages of inherent to a generalization, already in the context
of quantum mechanics, the setting of general mechanics presented here serves to bring out
the elements and structures that are essential in the discussion of CP and T violation.
In particular, neither the linear structure not the details of the Hermitian inner product
of the space of quantum mechanical states is essential. Secondly, the primary distinction
between C, P , CP and T lies in the fact that while C, P and CP leave the space of ‘in’
and ‘out’ states invariant, T maps the incoming states to the outgoing ones. In standard
quantum mechanics, this has the implication that while C, P and CP are represented by
linear, unitary maps, T is represented by an anti-linear, anti-unitary map. However, from
the perspective of general mechanics this difference is not primary to the distinction between
the Curie and Kabir criteria.

Finally, Ref. [1] also provides a succinct summary of ideas for testing T violations through
the measurement of the dipole moment of elementary particles, such as a neutron. I will
just add a phenomenological remark. The electric dipole moment is not invariant also under
the parity operation P . Therefore, even if one were to observe an electric dipole moment,
one cannot directly conclude that there is T violation.
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