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Abstract

In this paper we attempt to physically interpret the Modal Kochen-
Specker (MKS) theorem. In order to do so, we analyze the features
of the possible properties about quantum systems arising from the
elements in an orthomodular lattice and distinguish the use of “possi-
bility” in the classical and quantum formalisms. Taking into account
the modal and many worlds non-collapse interpretation of the projec-
tion postulate, we discuss how the MKS theorem rules the constrains
to actualization, and thus, the relation between actual and possible
realms.
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Introduction

In classical physics, every physical system may be described exclusively by
means of its actual properties, taking ‘actuality’ as expressing the preexistent
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mode of being of the properties themselves, independently of observation —
the ‘pre’ referring to its existence previous to measurement. The evolution
of the system may be described by the change of its actual properties. Math-
ematically, the state is represented by a point (p, q) in the correspondent
phase space Γ and, given the initial conditions, the equation of motion tells
us how this point moves in Γ.1 Physical magnitudes are represented by real
functions over Γ. These functions commute between each other and can be
all interpreted as possessing definite values at any time, independently of
physical observation. Thus, as mentioned above, each magnitude can be in-
terpreted as being actually preexistent to any possible measurement without
conflicting with the mathematical formulation of the theory. In this scheme,
speaking about potential or possible properties usually refers to functions of
the points in Γ to which the state of the system might arrive to in a future
instant of time; these points, in turn are also completely determined by the
equations of motion and the initial conditions.

In the orthodox formulation of quantum mechanics (QM), the represen-
tation of the state of a system is given by a ray in Hilbert space H. But,
contrary to the classical scheme, physical magnitudes are represented by op-
erators on H that, in general, do not commute. This mathematical fact has
extremely problematic interpretational consequences for it is then difficult
to affirm that these quantum magnitudes are simultaneously preexistent. In
order to restrict the discourse to sets of commuting magnitudes, different
Complete Sets of Commuting Operators (CSCO) have to be chosen. This
choice has not found until today a clear justification and remains problem-
atic. This feature is called in the literature quantum contextuality and will
be discussed in section 1. Another fundamental feature of QM is due to the
linearity of the Schrödinger equation which implies the formal existence of
the well known quantum superpositions. The path from a superposition of
states to the eigenstate corresponding to the measured eigenvalue is given,
formally, by an axiom added to the formalism: the projection postulate. In
section 2 we will discuss the different physical interpretations of this postu-
late which is, either thought in terms of a “collapse” of the wave function
(i.e., as a real physical interaction) or in terms of non-collapse proposals,
such as the modal and many worlds interpretations. After having intro-
duced and discussed these two main features of QM —namely, the formal
existence of contextuality and superpositions— we will present, in section
3, our formal analysis regarding possibility in orthomodular structures. In

1For simplicity, we have in mind a system that is only a material point.
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section 4, we shall discuss and analyze the distinction between mathematical
formalism and physical interpretation, a distinction which can raise many
pseudo-problems if not carefully taken into account. As a consequence of
this distinction we will also put forward the difference between ‘classical
possibility’ and ‘quantum possibility’. In section 5, we are ready to advance
towards a physical interpretation of both of quantum possibility and the
MKS theorem —taking into account the specific formal constraints implied
by it to modality. In section 6 we will discuss the consequences of the MKS
theorem regarding the many worlds interpretation. Finally, in section 7, we
provide the conclusions of our work.

1 Quantum Contextuality and Modality

The idea that a preexistent set of definite properties constitutes or describes
reality is one of the basic ideas which remains the fundament of all clas-
sical physical theories and determines the possibility to discuss about an
independent objective world, a world which does not depend on our choices
or consciousness. Physical reality can be then conceived and analyzed in
terms of a theory —which describes a preexistent world— independently of
actual observation. But, as it is well known, this description of physical
reality faces several inconveniences when presupposed in the interpretation
of the quantum formalism. In formal terms, this is demonstrated by the
Kochen-Specker (KS) theorem, which states that if we consider three phys-
ical magnitudes represented by operators A, B and C, with A commuting
with B and C but B non-commuting with C, the value of A depends on
the choice of the context of inquiry; i.e. whether A is considered together
with B or together with C [30]. From an instrumentalist point of view,
this is bypassed by considering the context (in KS sense) as the experimen-
tal arrangement —in line with the original idea of N. Bohr. However, if
we attempt to go beyond the discourse regarding measurement results and
provide some kind of realist representation of what is going on according
to QM, we need to make sense of the indeterminateness of definite valued
properties. As Chris Isham and Andreas Döring clearly point:

“When dealing with a closed system, what is needed is a realist
interpretation of the theory, not one that is instrumentalist. The exact
meaning of ‘realist’ is infinitely debatable but, when used by physicists,
it typically means the following:
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1. The idea of ‘a property of the system’ (i.e., ‘the value of a physical
quantity’) is meaningful, and representable in the theory.

2. Propositions about the system are handled using Boolean logic.
This requirement is compelling in so far as we humans think in
a Boolean way.

3. There is a space of ‘microstates’ such that specifying a microstate
leads to unequivocal truth values for all propositions about the
system. The existence of such a state space is a natural way of
ensuring that the first two requirements are satisfied.

The standard interpretation of classical physics satisfies these re-

quirements, and provides the paradigmatic example of a realist phi-

losophy in science. On the other hand, the existence of such an inter-

pretation in quantum theory is foiled by the famous Kochen-Specker

theorem.” [22, p. 2]

Contextuality can be directly related to the impossibility to represent a
piece of the world as constituted by a set of definite valued properties inde-
pendently of the choice of the context. This definition makes reference only
to the actual realm. But as we know, QM makes probabilistic assertions
about measurement results. Therefore, it seems natural to assume that QM
does not only deal with actualities but also with possibilities. Then the
question arises whether the space of possibilities is subject to the same re-
strictions as the space of actualities. Formally, on the one hand, the set
of actualities is structured as the orthomodular lattice of subspaces of the
Hilbert space of the states of the system and, as Michael Dickson remarks in
[10], the KS theorem (i.e., the absence of a family of compatible valuations
from subalgebras of the orthomodular lattice to the Boolean algebra of two
elements 2) can be understood as a consequence of the failure of the dis-
tributive law in the lattice. On the other hand, given an adequate definition
of the possibility operator 3 —as the one developed in [18, 20]— the set of
possibilities is the center of the enlarged structure. Since the elements of the
center of a structure are those which commute with all other elements, one
might think that the possible propositions defined in this way escape from
the constrains arising from the non-commutative character of the algebra of
operators. Thus, at first sight one might assume that possibilities behave in
a classical manner.

When predicting measuring results the context has been already fixed.
However, probability is a measure over the whole lattice and, consequently,
the set of events over which the measure is defined is non-distributive, calling
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the attention on the interpretation of possibility and probability. As noticed
by Schrödinger in a letter to Einstein [2, p. 115]: “It seems to me that the
concept of probability is terribly mishandled these days. Probability surely
has as its substance a statement as to whether something is or is not the
case –of an uncertain statement, to be sure. But nevertheless it has meaning
only if one is indeed convinced that the something in question quite definitely
is or is not the case. A probabilistic assertion presupposes the full reality
of its subject.” Also von Neumann was worried about a sound definition of
probability, as it is referred in [37].2 The difficulties with a rigorous definition
of probability made von Neumann abandon the orthodox formalism of QM
in Hilbert space which he himself had too much contributed to develop and
face the classification of the factors and their dimension functions which led
to the subject of von Neumann’s algebras.3

In order to explicitly verify whether modal propositions escape from KS-
type contradictions, in previous works we have developed a mathematical
scheme which allowed us to deal with both actual and possible propositions
in the same structure.4 Within this frame we were able to prove a theorem

2As Rédei [37, p. 157] states: “To see why von Neumann insisted on the modularity
of quantum logic, one has to understand that he wanted quantum logic to be not only
the propositional calculus of a quantum mechanical system but also wanted it to serve
as the event structure in the sense of probability theory. In other words, what von Neu-
mann aimed at was establishing the quantum analogue of the classical situation, where a
Boolean algebra can be interpreted both as the Tarski-Lindenbaum algebra of a classical
propositional logic and as the algebraic structure representing the random events of a
classical probability theory, with probability being an additive normalized measure on the
Boolean algebra.”

3It might be argued that a complete theory of quantum probability is still lacking. On
the one hand, type II1 factor (the one whose projection lattice is a continuous geometry,
and thus an othomodular modular lattice as required by a definition of probability) is
not an adequate structure to represent quantum events. On the other hand, there exist
different candidates for defining conditional probability and there is not a unique criterium
for choosing among them [5]. Moreover, there are situations in which the frequentist
interpretation does not apply and consequently it is required to develop new probability
structures to account for quantum phenomena [23].

4Van Fraassen distinguishes two different isomorphic structures for dealing with possi-
ble and actual properties ([42], chapter 9). The main aspects of van Fraassen’s modal inter-
pretation in terms of quantum logic are as follows. The probabilities are of events, each de-
scribable as ‘an observable having a certain value’, corresponding to value states. If w is a
physical situation in which system X exists, then X has both a dynamic state ϕ and a value
state λ, i.e. w =< ϕ, λ >. A value state λ is a map of observable A into non-empty Borel
sets σ such that it assigns {1} to 1σA. 1σ is the characteristic function of the set σ of values.
So, if the observable 1σA has value 1, then it is impossible that A has a value outside σ.
The proposition < A, σ >= {w : λ(w)(A) ⊆ σ} assigns values to physical magnitudes, it is
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which describes the algebraic relations between both kinds of propositions.
The theorem shows explicitly the formal limits of possible actualizations, in
short, that no enrichment of the orthomodular lattice with modal proposi-
tions allows to circumvent the contextual character of the quantum language.
For obvious reasons, we called it the Modal Kochen-Specker (MKS) theorem
[18]. As in the case regarding actual propositions, the MKS theorem may
be demonstrated with topological tools [19]. It is important to remark that
our formalism also provides a formal meaning in an algebraic frame to the
Born rule, something that has been discussed by Dieks in relation to the
possible derivation of a preferred probability measure [14]. Possible actual-
izations relate to the path between the possible and the actual realms. As
said before, within QM this path remains extremely problematic in itself and
needs to be taken into account, contrary to classical physics, through the
introduction of an axiom, the projection postulate. In the following section
we will analyze its meaning and possible interpretation.

2 Projection Postulate and Quantum Collapse

Classical texts that describe QM axiomatically begin stating that the math-
ematical interpretation of a quantum system is a Hilbert space, that pure

a value-attribution proposition and is read as ‘A (actually) has value in σ’. V is called the
set of value attributions V = {< A, σ >: A an observable and σ a Borel set}. The logic
operations among value-attribution propositions are defined as: < A, σ >⊥=< A,<−σ >,
< A, σ > ∧ < A, θ >=< A, σ ∩ θ >, < A, σ > ∨ < A, θ >=< A, σ ∪ θ > and
∧{< A, σi >: i ∈ N} =< A,∩{σi : i ∈ N} >. With all this, V is the union of a
family of Boolean σ-algebras < A > with common unit and zero equal to < A, S(A) >
and < A,∧ > respectively. The Law of Excluded Middle is satisfied: every situation w
belongs to q ∨ q⊥, but not the Law of Bivalence: situation w may belong neither to q
nor to q⊥. A dynamic state ϕ is a function from V into [0, 1], whose restriction to each
Boolean σ-algebra < A > is a probability measure. The relation between dynamic and
value states is the following: ϕ and λ are a dynamic state and a value state respectively,
only if there exist possible situations w and w′ such that ϕ = ϕ(w), λ = λ(w′). Here,
ϕ is an eigenstate of A, with corresponding eigenvalue a, exactly if ϕ(< A, {a} >) = 1.
The state-attribution proposition [A, σ] is defined as: [A, σ] = {w : ϕ(w)(< A, σ >) = 1}
and means ‘A must have value in σ’. P denotes the set of state-attribution propositions:
P = {[A, σ] : A an observable, σ a Borel set}. Partial order between them is given by

[A, σ] ⊆ [A
′
, σ

′
] only if, for all dynamical states ϕ, ϕ(< A, σ >) ≤ ϕ(< A

′
, σ

′
>) and

the logic operations are (well) defined as: [A, σ]⊥ = [A,<− σ], [A, σ]] [A, θ] = [A, σ ∪ θ]
and [A, σ]∩ [A, θ] = [A, σ∩ θ]. With all this, < P,⊆,⊥> is an orthoposet, the orthoposet
formed by ‘pasting together’ a family of Boolean algebras in which whole operations coin-
cide in areas of overlap. It may be enriched to approach the lattice of subspaces of Hilbert
space.
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states are represented by rays in this space, physical magnitudes by self-
adjoint operators on the state space and that the evolution of the system
is ruled by the Schrödinger equation. Possible results of a given magnitude
are the eigenvalues of the corresponding operator obtained with probabilities
given by the Born rule. In general the state previous to the measurement is
a linear superposition of eigenstates corresponding to different eigenvalues
of the measured observable. In order to give an account of the state of the
system after the appearance of a particular result a new axiom needs to be
added: the projection postulate. In von Neunmann’s [44, p. 214] words:
“Therefore, if the system is initially found in a state in which the values
of R cannot be predicted with certainty, then this state is transformed by
a measurement M of R into another state: namely, into one in which the
value of R is uniquely determined. Moreover, the new state, in which M
places the system, depends not only on the arrangement of M , but also on
the result of M (which could not be predicted causally in the original state)
—because the value of R in the new state must actually be equal to this
M -result”.5 At this point one needs to introduce the so called eigenstate-
eigenvalue link: after the measurement, the state of the system is that (i.e.,
the eigenstate) which corresponds to the measured eigenvalue.

There are different ways to give account of the projection postulate. One
of them is to consider it as a “collapse” which takes place during measure-
ment, i.e. as a real physical stochastic “jump” from the state previous to
the measurement to the eigenstate corresponding to the measured eigenvalue
[4, 40]. This interpretation was strongly debated by the founding fathers,
Schrödinger himself is quoted to have said: “Had I known that we were not
going to get rid of this damned quantum jumping, I never would have in-
volved myself in this business!”.6 Another way of dealing with the postulate
is by adding non-linear terms to the equation of evolution that may conduce

5Or in Dirac’s words: “When we measure a real dynamical variable ξ, the disturbance
involved in the act of measurement causes a jump in the state of the dynamical system.
From physical continuity, if we make a second measurement of the same dynamical variable
ξ immediately after the first, the result of the second measurement must be the same as
that of the first” [16, p. 36].

6As noticed by Dieks [15, p. 120]: “Collapses constitute a process of evolution that
conflicts with the evolution governed by the Schrödinger equation. And this raises the
question of exactly when during the measurement process such a collapse could take place
or, in other words, of when the Schrödinger equation is suspended. This question has
become very urgent in the last couple of decades, during which sophisticated experiments
have clearly demonstrated that in interaction processes on the sub-microscopic, micro-
scopic and mesoscopic scales collapses are never encountered.”
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to the eigenstate in a stochastic manner, as in the case of GRW theory [26].
A different way to approach the problem is to deny the existence of a

collapse during measurement but still use the projection postulate as an
interpretational rule. A well known non-collapse interpretation is the so
called modal interpretation (MI) of QM. This approach states that superpo-
sitions remain in the possible realm always intact, independent of the actual
observation.7 Contrary to the orthodox interpretation, MI keeps the com-
plete superposition in the level of possibility independently of the particular
actualization. One might say that the eigenstate-eigenvalue link is under-
stood only in one direction, implying that given a state that is an eigenstate
there is a definite value of the corresponding magnitude, i.e. its eigenvalue,
but not otherwise. “In modal interpretations the state is not updated if a
certain state of affairs becomes actual. The non-actualized possibilities are
not removed from the description of a system and this state therefor codi-
fies not only what is presently actual but also what was presently possible.
These non-actualized possibilities can, as a consequence, in principle still af-
fect the course of later events.” [43, p. 295] There are thus, within MI, two
independent levels given by the possible and the actual.8 The passage from
the possible realm to the actual realm is given through different interpreta-
tional rules according to the different versions of the MI [43]. However, one
could argue that within this scheme —even though van Fraassen9 and Dieks
have taken a stance in favor of an empiricist position regarding modality
[41, 15]— there is still place to interpret possibility in an ontological fashion
[38].

Many worlds interpretation (MWI) of QM is another well known non-
collapse interpretation which has become an important line of investigation
within the foundations of quantum theory domain. It is considered to be
a direct conclusion from Everett’s first proposal in terms of ‘relative states’

7Van Fraassen discusses the problems of the collapse of the quantum wave function in
[42], section 7.3. See also [11]. Dieks [12, p. 182] argues that: “[...] there is no need for
the projection postulate. On the theoretical level the full superposition of states is always
maintained, and the time evolution is unitary. One could say that the ‘projection’ has
been shifted from the level of the theoretical formalism to the semantics: it is only the
empirical interpretation of the superposition that the component terms sometimes, and
to some extent, receive an independent status.”

8These levels are explicitly formally accounted for in both van Fraasen and Dieks MI.
While van Fraassen distinguishes between the ‘dynamical states’ and the ‘value states’,
Dieks and Vermaas consider a distinction between ‘physical states’ and ‘mathematical
states’.

9According to van Fraassen: modalities are in our theories, not in the world.
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[24]. Everett’s idea was to let QM find its own interpretation, making justice
to the symmetries inherent in the Hilbert space formalism in a simple and
convincing way [8]. The solution proposed to the measurement problem
is provided by assuming that each one of the terms in the superposition
is actual in its own correspondent world. Thus, it is not only the single
value which we see in ‘our world’ which gets actualized but rather, that
a branching of worlds takes place in every measurement, giving rise to a
multiplicity of worlds with their corresponding actual values. The possible
splits of the worlds are determined by the laws of QM.

“The whole issue of the transition from ‘possible’ to ‘actual’ is

taken care of in the theory in a very simple way —there is no such

transition, nor is such a transition necessary for the theory to be in

accord with our experience. From the viewpoint of the theory all ele-

ments of a superposition (all ‘branches’) are ‘actual’, none any more

‘real’ than the rest. It is unnecessary to suppose that all but one are

somehow destroyed, since all the separate elements of a superposition

individually obey the wave equation with complete indifference to the

presence or absence (‘actuality’ or not) of any other elements. This to-

tal lack of effect of one branch on another also implies that no observer

will ever be aware of any ‘splitting’ process.” [25, pp. 146-147]

In this case, there is no need to conceptually distinguish between possi-
ble and actual because each state is actual inside its own branch and the
eigenstate-eigenvalue link is maintained in each world.

3 On the Formal Limits of Possibility

After having discussed some interpretational aspects of both modality and
actualization we now shortly review our own development and analysis of
the notion of possibility inside the formalism. First we recall from [29, 34]
some notions about orthomodular lattices. A lattice with involution [28] is an
algebra 〈L,∨,∧,¬〉 such that 〈L,∨,∧〉 is a lattice and ¬ is a unary operation
on L that fulfills the following conditions: ¬¬x = x and ¬(x∨y) = ¬x∧¬y.
An orthomodular lattice is an algebra 〈L,∧,∨,¬, 0, 1〉 ← of type 〈2, 2, 1, 0, 0〉
that satisfies the following conditions:

1. 〈L,∧,∨,¬, 0, 1〉 is a bounded lattice with involution,

2. x ∧ ¬x = 0.
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3. x ∨ (¬x ∧ (x ∨ y)) = x ∨ y

We denote by OML the variety of orthomodular lattices. Let L be an
orthomodular lattice. Boolean algebras are orthomodular lattices satisfying
the distributive law x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). We denote by 2 the
Boolean algebra of two elements. Let L be an orthomodular lattice. An
element c ∈ L is said to be a complement of a iff a ∧ c = 0 and a ∨ c = 1.
Given a, b, c in L, we write: (a, b, c)D iff (a∨b)∧c = (a∧c)∨(b∧c); (a, b, c)D∗

iff (a ∧ b) ∨ c = (a ∨ c) ∧ (b ∨ c) and (a, b, c)T iff (a, b, c)D, (a,b,c)D∗ hold
for all permutations of a, b, c. An element z of L is called central iff for all
elements a, b ∈ L we have (a, b, z)T . We denote by Z(L) the set of all central
elements of L and it is called the center of L.

Proposition 3.1 Let L be an orthomodular lattice. Then we have:

1. Z(L) is a Boolean sublattice of L [34, Theorem 4.15].

2. z ∈ Z(L) iff for each a ∈ L, a = (a ∧ z) ∨ (a ∧ ¬z) [34, Lemma 29.9].

2

In the tradition of the quantum logical research, a property of (or a
proposition about) a quantum system is related to a closed subspace of
the Hilbert space H of its (pure) states or, analogously, to the projector
operator onto that subspace. Moreover, each projector is associated to a
dichotomic question about the actuality of the property [44, p. 247]. A
physical magnitudeM is represented by an operator M acting over the state
space. For bounded self-adjoint operators, conditions for the existence of the
spectral decomposition M =

∑
i aiPi =

∑
i ai|ai〉〈ai| are satisfied. The real

numbers ai are related to the outcomes of measurements of the magnitudeM
and projectors |ai〉〈ai| to the mentioned properties. The physical properties
of the system are organized in the lattice of closed subspaces L(H) that,
for the finite dimensional case, is a modular lattice, and an orthomodular
one in the infinite case [34]. Moreover, each self-adjoint operator M has
associated a Boolean sublattice WM of L(H) which we will refer to as the
spectral algebra of the operator M. Assigning values to a physical quantity
M is equivalent to establishing a Boolean homomorphism v : WM → 2. As
it is well known, the KS theorem rules out the non-contextual assignment
of definite values to the physical properties of a quantum system. This may
be expressed in terms of valuations over L(H) in the following manner. We
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first introduce the concept of global valuation. Let (Wi)i∈I be the family
of Boolean sublattices of L(H). Then a global valuation of the physical
magnitudes over L(H) is a family of Boolean homomorphisms (vi : Wi →
2)i∈I such that vi | Wi ∩ Wj = vj | Wi ∩ Wj for each i, j ∈ I. If this
global valuation existed, it would allow to give values to all magnitudes
at the same time maintaining a compatibility condition in the sense that
whenever two magnitudes shear one or more projectors, the values assigned
to those projectors are the same from every context. The KS theorem,
in the algebraic terms, rules out the existence of global valuations when
dim(H) > 2:

Theorem 3.2 [17, Theorem 3.2] If H is a Hilbert space such that dim(H) >
2, then a global valuation, i.e. a family of Boolean homomorphisms over
the spectral algebras satisfying the compatibility condition, over L(H) is not
possible. 2

In what follows we delineate a modal extension for orthomodular lat-
tices that allows to formally represent, within the same algebraic structure,
actual and possible properties of the system. This allows us to discuss the
restrictions posed by the theory itself to the actualization of possible proper-
ties. Given a proposition about the system, it is possible to define a context
from which one can predicate with certainty about it together with a set of
propositions that are compatible with it and, at the same time, predicate
probabilities about the other ones (Born rule). In other words, one may
predicate truth or falsity of all possibilities at the same time, i.e., possibil-
ities allow an interpretation in a Boolean algebra. In rigorous terms, let
P be a proposition about a system and consider it as an element of an or-
thomodular lattice L. If we refer with 3P to the possibility of P then, by
Proposition 3.1, we assume that 3P ∈ Z(L).

This interpretation of possibility in terms of the Boolean algebra of
central elements of L reflects the fact that one can simultaneously pred-
icate about all possibilities because Boolean homomorphisms of the form
v : Z(L) → 2 can be always established. If P is a proposition about the
system and P occurs, then it is trivially possible that P occurs. This is
expressed as P ≤ 3P . Classical consequences that are compatible with
a given property, for example probability assignments to the actuality of
other propositions, shear the classical frame. These consequences are the
same ones as those which would be obtained by considering the original ac-
tual property as a possible property. This is interpreted as, if P is a property
of the system, 3P is the smallest central element greater than P .
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This enriched orthomodular structure can be axiomatized by equations
conforming a variety denoted by OML3 [18, Theorem 4.5]. More pre-
cisely, each element of OML3 is an algebra 〈L,∧,∨,¬,3, 0, 1〉 of type
〈2, 2, 1, 1, 0, 0〉 such that 〈L,∧,∨,¬, 0, 1〉 is an orthomodular lattice and 3

satisfies the following equations:

S1 x ≤ 3x S5 y = (y ∧3x) ∨ (y ∧ ¬3x)

S2 30 = 0 S6 3(x ∧3y) = 3x ∧3y

S3 33x = 3x S7 ¬3x ∧3y ≤ 3(¬x ∧ (y ∨ x))

S4 3(x ∨ y) = 3x ∨3y

Each algebra of OML3 is called Boolean saturated orthomodular lattice.
Orthomodular complete lattices are examples of Boolean saturated ortho-
modular lattices. If L is a Boolean saturated orthomodular lattice, it is not
very hard to see that for each x ∈ L,

3x = Min{z ∈ Z(L) : x ≤ z}

We can embed each orthomodular lattice L in an element L3 ∈ OML3
(see [18, Theorem 10]). In general, L3 is referred as a modal extension of
L. This modal extension represents the fact that each orthomodular system
can be modally enriched in such a way as to obtain a new propositional
system that includes the original propositions in addition to their possibil-
ities. These possibilities are formulated as classical propositions. Let L be
an orthomodular lattice and L3 a modal extension of L. We define the
possibility space of L in L3 as as the subalgebra of L3 generated by the set
{3(P ) : P ∈ L}. This algebra is denoted by 3L and we can prove that it is
a Boolean subalgebra of the modal extension.

The possibility space represents the modal content added to the dis-
course about properties of the system. Within this frame, the actualization
of a possible property acquires a rigorous meaning. Let L be an orthomod-
ular lattice, (Wi)i∈I the family of Boolean sublattices of L and L3 a modal
extension of L. If f : 3L → 2 is a Boolean homomorphism, an actual-
ization compatible with f is a global valuation (vi : Wi → 2)i∈I such that
vi | Wi ∩3L = f | Wi ∩3L for each i ∈ I. A kind of converse of this pos-
sibility of actualizing properties may be read as an algebraic representation
of the Born rule, something that has no place in the orthomodular lattice
alone. Compatible actualizations represent the passage from possibility to
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actuality, they may be regarded as formal constrains when applying the in-
terpretational rules proposed in the different modal versions. When taking
into account compatible actualizations from different contexts, an analogous
of the KS theorem holds for possible properties.

Theorem 3.3 [18, Theorem 6.2] Let L be an orthomodular lattice. Then L
admits a global valuation iff for each possibility space there exists a Boolean
homomorphism f : 3L → 2 that admits a compatible actualization. 2

The MKS theorem shows that no enrichment of the orthomodular lattice
with modal propositions allows to circumvent the contextual character of
the quantum language. Thus, from a formal perspective, one is forced to
conclude that quantum possibility is something different from classical pos-
sibility.

4 Distinguishing the Mathematical Formalism from
its Physical Interpretation

The almost direct relation between classical logic and natural language is
not respected within QM. We argue that this fact must be carefully taken
into account and might be responsible of many pseudo problems when con-
sidering the question “what is QM talking about?” In the following section,
we attempt to provide a clear distinction between the algebraic structure, its
correspondent formal language and the meta-language used in the theory.

At this point, regarding the question of interpretation, we need to be
explicit about the stance we shall take regarding the possibility of going
beyond the concepts of classical physics. Following Dieks we argue that one
should not demand that classical physics should determine the conceptual
tools of new theories, for this “would deny the possibility of really new
fundamental theories, conceptually independent of classical physics.” [13,
p. 1417] Thus, we do not take for granted there is a self evident and univocal
interpretation of a mathematical formalism —i.e., a pre-established set of
concepts which have to be necessarily applied to interpret mathematical
structures. For as Heisenberg [27, p. 264] remarked: “The history of physics
is not only a sequence of experimental discoveries and observations, followed
by their mathematical description; it is also a history of concepts. For an
understanding of the phenomena the first condition is the introduction of
adequate concepts. Only with the help of correct concepts can we really
know what has been observed.”

13



In mathematical terms, a context is a Boolean subalgebra of the com-
plete lattice. Thus, it may seem that the natural language we use to refer to
the compatible magnitudes represented by these commuting operators poses
no problem. However, this is not the case, due to the fact it is also necessary
to take into account the state of the system (usually a superposition) when
interpreting this algebra as the algebra of a set of magnitudes of a physical
system. Indeed, we have to consider two very different cases: may be the
state is an eigenstate of the CSCO —a trivial case in which the values of all
magnitudes represented by the operators in the CSCO are determined, even
when not measured— or it may be the case that the state of the system
is not an eigenstate —the general case in which the election of the CSCO
does not determine anything; in fact it only establishes which magnitudes
we are interested in. In this case, when we refer to possible properties we
have to keep in mind that the meaning of “posssible” is not the same in
the Boolean structure of classical logic and in the Boolean subalgebra of the
orthomodular structure of QM. Let us make this point clear. Note that if L
is a Boolean saturated orthomodular lattice in which L is a Boolean algebra,
3 is the identity operator. This can be seen from the fact that, if L is a
Boolean structure, L = Z(L) and then 3x = Min{z ∈ Z(L) : x ≤ z} = x
since x ≤ x and x ∈ Z(L). In other words, the concept of possibility that
corresponds to the definition of the previous section becomes a “trivial pos-
sibility” in a classical structure. We have indicated with 3 the possibility
operator related to the Boolean structure and we add a subindex Q for the
quantum case. Thus, 3Q is the 3 related to the orthomodular structure.
Summing up,

Algebraic Structure Language Meta-Language
Classical Boolean lattice, 3 means possibility (classical) possibility

Mechanics 3 within a Boolean structure
Quantum orthomodular lattice, 3Q means possibility quantum possibility
Mechanics 3Q within an orthomodular structure

In the classical case, the elements A ∈ ℘(Γ) interpreted as the properties
of the system are part of a Boolean algebra (with Γ the classical phase space
and ℘(Γ) its power set). The elements of the corresponding modal structure
are constructed by applying the possibility operator 3 to the elements A.
These new elements 3A, that belong to the modal structure, correspond
to possible properties as spoken in the natural language. However, in this
case, the seemingly larger structure that includes both actual and modal
propositions does not enlarge the expressive power of the language. This is
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due to the fact that there exists a trivial correspondence between any pair
of classical valuations vc and wc of the actual and the possible structures to
truth-falsity. This relation can be written as follows: let Ak ∈ ℘(Γ), k a fix
index, then:

wc(3Ak) = 1⇔ vc(Ak) = 1

wc(3Ak) = 0⇔ vc(Ak) = 0

Thus, given the state of a classical system, possible properties at a certain
time coincide with (simultaneous) actual ones, they may be identified. And
the distinction between the two sets of properties is never made. In fact,
when referring to possible properties of a classical system in a given state,
one is always making reference to future possible values of the magnitudes,
values that are determined because they are the evaluation of functions at
points (p, q) in Γ at future times. These points are determined in turn by
the equation of motion. Thus, not even future possibilities are classically
indeterminate and they coincide with future actual properties.

On the contrary, in the quantum case, the projectors Pa = |a〉〈a| on
H, which are interpreted as the properties of a system, belong to an ortho-
modular structure. As we have mentioned above, the orthomodular lattice is
enlarged with its modal content by adding the elements 3Q|a〉〈a|. Due to the
fact that there is no trivial relation between the valuations of subsets of the
possible and actual elements to truth-falsity, this new structure genuinely
enlarges the expressive power of the language. Formally, if wq(3QPk) = 1,
with Pk ∈ Wi, then there exists a valuation vq such that vq(Pk) = 1 and
another v′q such that v′q(Pk) = 0. Thus, contrary to the classical case, even
at the same instant of time, we may consider two different kind of properties,
two different realms, possible and actual, that do not coincide. In order not
to misinterpret the 3Q operator, it is of great importance to clearly distin-
guish between the formal language and the metalanguage. As a matter of
fact, both 3A and 3Q|a〉〈a| are called possible within their own structures
even though, at least formally, the meaning of “possible” in each case is
extremely different.

5 Quantum Possibility and the Physical Interpre-
tation of the MKS Theorem

In the literature regarding QM many times the classical notion of possibility
is self evidently assumed —without any criticism nor analysis— as a tool
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to interpret the formalism. As we have argued above, there is however
no reason why such interpretation of the formalism should be necessarily
applied, rather, this is part of an interpretational choice. In this section, we
are mainly interested in the physical interpretation of the MKS theorem and
the consequences and constraints it might determine, within the formalism,
for applying a coherent interpretation to 3Q|a〉〈a|. For this purpose we
shall explicitly distinguish between these two notions of possibility, both
formally and linguistically. To avoid any misunderstanding we shall use
“possibility” in relation to the operator appearing in any Boolean structure
(3) and “quantum possibility” when the operator relates to an orthomodular
structure (3Q).

The distance between quantum and classical possibilities is also related
to the formal difference between classical and quantum probabilities. As it is
well known, the possibility of actualization of a physical property in classical
statistical mechanics is given by the probability weights. In this case the
probability is Kolmogorovian and can be interpreted as epistemic; i. e. as
providing information of an unknown —but existent— state of affairs. In the
quantum case, the wave function is a linear combination of vectors (each one
in correspondence with a projector in the orthomodular lattice, associated
to a physical property) with complex coefficients interpreted as probability
amplitudes. Contrary to the classical case, the probability implied by this
structure is a non-Kolmogorovian one, and thus, cannot be interpreted in
terms of ignorance. Furthermore, when evaluating quantum probabilities
there is an interference term which does not appear within the classical
probability scheme. So, at least formally, probabilities in QM interfere. The
meaning of this interference of possibilities deserves careful attention.10

It is important to distinguish here between the interference among the

10As noticed by Dieks [15, p. 124-125]: “In classical physics the most fundamental
description of a physical system (a point in phase space) reflects only the actual, and
nothing that is merely possible. It is true that sometimes states involving probabilities
occur in classical physics: think of the probability distributions ρ in statistical mechanics.
But the occurrence of possibilities in such cases merely reflects our ignorance about what
is actual. The statistical states do not correspond to features of the actual system (unlike
the case of the quantum mechanical superpositions), but quantify our lack of knowledge
of those actual features. This relates to the essential point of difference between quantum
mechanics and classical mechanics [...]: in quantum mechanics the possibilities contained
in the superposition state may interfere with each other. There is nothing comparable in
classical physics. In statistical mechanics the possibilities contained in ρ evolve separately
from each other and do not have any mutual influence. Only one of these possibilities
corresponds to the actual situation.”
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coefficients of the wave function, i.e. a vector in H, and the interference
of waves in three-dimensional coordinate space. Both waves belong to and
evolve in quite different domains. While the Schrödinger wave function be-
longs to Hilbert space, a space which like configuration space shifts its dimen-
sions with the considered situation —being in general an infinite dimensional
space—, the classical or electromagnetic wave evolves in a three-dimensional
coordinate space which, in turn, can be interpreted as physical space. This
makes problematic to interpret the wave function, a probability measure
over the orthomodular lattice that changes unitarily in H, as ‘something
existing within physical space-time’. Many times in the literature these two
situations are thought as equivalent, leading to inconsistencies. Moreover,
as we have already mentioned, while in the classical case at each instant
of time there is an isomorphism between the valuations to truth of possi-
ble and actual properties, in the Boolean saturated orthomodular lattice
this isomorphism disappears, leaving actuality and possibility as two differ-
ent and separated realms. Finally, it is also important to remark that the
fact quantum possibilities interact —through entangled and superposition
states— is used today within the latest technical developments in quantum
information processing [36, 9, 46, 3, 39, 45, 32, 35, 1]. Finally, we call the
attention to the welcher-weg type experiments which seem to break down
the classical understanding of causal possibility [33, 6].

In order to physically interpret our MKS theorem what we need is an
explicit map between the formal language and the meta-language. Instead
of presupposing a set of metaphysical principles from which the formalism
needs to be developed, our proposal attempts to provide a coherent inter-
pretation starting from what we know about the formalism itself, and the
structures it determines. In order to do so, we construct a dictionary relating
names to the elements of the different structures:

1. 3Ai with Ai in the Boolean lattice ℘(Γ) is called “possibility of Ai”.

2. 3QPi with Pi in the orthomodular lattice L is called “quantum pos-
sibility of Pi”.

3. The set of all the 3QPi with Pi in the orthomodular lattice L is called
the “set of quantum possibilities”.

4. A Boolean sub-algebra of the orthomodular lattice L is called a “con-
text”.
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5. The set of quantum possibilities valuated to 1 ∈ 2 is called the “set of
existent quantum possibilities”.

6. The subset of quantum possibilities in direct relation to a context
valuated to 1 ∈ 2 is called the “set of existent quantum possibilities in
a situation”.

7. The subset of projectors of the context valuated to 1 ∈ 2 is called the
“actual state of affairs”.

Physically, it follows from the given definitions that:

1. An “actual state of affairs” provides a physical description in terms of
definite valued properties.

2. A “situation” provides a physical description in terms of the quantum
possibilities that relate to an actual state of affairs.

3. Formally, to go from the “set of existent quantum possibilities” to one
of its subsets (each of which relates to a “context”) is to define an
application; physically, this path relates to the choice of a particular
measurement set up, restricting the expressiveness of the total set of
existent possibilities to a specific subset.

4. Formally, to give values to the projectors Pi in a context is to valuate;
physically, the valuation determines the set of properties (in correspon-
dence with the projectors Pi valuated to 1 ∈ 2) which are considered
as preexistent.

5. The “situation” expresses an existent set of quantum possibilities (which
must not be considered in terms of actuality) while the valuated con-
text expresses an actual state of affairs. This leaves open the opportu-
nity to consider quantum possibility as determining a different mode
of existence (independent to that of actuality).

We have distinguished between a ‘situation’ which makes reference to a
definite set of existent possibilities and an ‘actual state of affairs’ which can
be interpreted as a specific measurement set up. The ‘context’ is the limit
in between the actual and the possible and makes reference to the non-
commutative formal structure. As we have argued above it is important
to notice this distinction is given within a single instant of time. It is the
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MKS theorem, understood within this specific scheme, which exposes the
fact that the actualization of possible properties cannot be understood in
terms of a classical path. Forcing the classical notion of possibility within the
quantum structure is a move that contradicts the mathematical formalism,
which contemplates the interaction of possibilities (in the possible realm) in
the same way as classical physics contemplates the interaction of actualities
(in the actual realm). From this standpoint there is no need of invoking the
eigenstate-eigenvalue link for both realms are independent. Thus, on the one
hand, like in MI, only one way of the if and only if is required. The particular
actualization (i.e., the measurement result) is a singular expression of the
relation between the possible and actual realms, and is not considered as a
physical interaction. We could say that, like in MI, the projection postulate
is accepted but the collapse is denied. On the other hand, like in the MWI,
every term in the superposition is interpreted as physically existent, however,
there are no multiple (actual) worlds but rather a set of existent possibilities
interacting in one single world.

6 The MKS Theorem and Many Worlds

The notion of possibility has been also investigated in relation to the idea
of possible worlds [31]. Regarding QM, this logical analysis has found an
expression in the many worlds interpretation [7]. In order to discuss this
notion of possibility within our own scheme, we have developed an algebraic
framework which allows us to analyze the modal aspects of the Many Worlds
Interpretation (MWI) from a logical perspective [21].

According to the MWI all possibilities encoded in the wave function
take place, but in different worlds. When a measurement of a physical
magnitude M is performed and one of its possible outcomes a1 occurs, then
in another world a2 occurs, and in some other world a3 occurs, etc. In
modal wording, suppose that M has associated a Boolean sublattice WM of
L(H). The projectors of the family (Pi) are identified as elements of WM.
If a measurement is performed and its result is ai, this means that we can
establish a Boolean homomorphism

v : WM → 2 s.t. v(Pi) = 1

In a possible world where v(Pi) = 1 we will have classical consequences.
Let us make precise the notion of classical consequence taking into account
modal extensions built from Boolean saturated orthomodular lattices.
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Definition 6.1 Let L3 be an arbitrary modal extension of L(H) and P ∈
L(H). Then x ∈ 3L is said to be a classical consequence of P iff for each
Boolean sublattice W in L3 (with Pi ∈ W ) and each Boolean valuation
v : W → 2, v(x) = 1 whenever v(Pi) = 1.

We denote by ConsL3(P) the set of classical consequences of L. By Propo-
sition [21, 3.5] we have that ConsL3(Pi) = {x ∈ 3L(H) : 3Pi ≤ x}. The
modal extension does not depend on the valuation over the family (Pi).
Thus, it is clear that the modal extension is independent of any possible
world. Modal extensions are simple algebraic extensions of an orthomod-
ular structure. Thus, when referring to a property Pi, it is equivalent to
consider the classical consequences in the possible world where v(Pi) = 1 or
to study the classical consequences of 3Pi before the splitting.

Formally, MWI maintains that in each respective i-world, vi(Pi) = 1 for
each i. Thus, a family of valuations (vi(Pi) = 1)i may be simultaneously
considered, each member being realized in each different i-world. From an
algebraic perspective, this would be equivalent to have a family of pairs
〈L(H), vi(Pi) = 1〉i, each pair being the orthomodular structure L(H) with
a distinguished Boolean valuation vi over a spectral sub-algebra containing
Pi such that vi(Pi) = 1. In [21], we have shown that the OML3 structure
is able to capture this fact in terms of classical consequences. While MWI
considers a family of pairs 〈L(H), vi(Pi) = 1〉i for each possible i-world and
the classical consequences of vi(Pi) = 1 in the i-world, the OML3 struc-
ture, by Proposition [21, prop. 3.5], considers classical consequences of each
vi(Pi) = 1 coexisting simultaneously in one and the same structure. In fact,
as a valuation v : 3L → 2 exists such that v(3Pi) = 1 for each i, each
element x ∈ 3L such that Pi ≤ x necessarily satisfies v(x) = 1. In phys-
ical terms, this analysis shows that MWI talks about possible propositions
based on an orthomodular lattice without taking into account the intrinsic
features of the structure itself. This has the consequence that, like in clas-
sical physics, in spite of the wording about possibility that is present in the
MWI, only actuality plays a role. Rather than discussing about quantum
possibilities, MWI restricts their physical discourse to (classical) possibil-
ities. One could say that all possibilities have become all actual in each
correspondent world. Thus, the MKS theorem does not restrict the MWI
scheme. Furthermore, there is no need of the projection postulate. MWI
could be then considered as extending the MI proposed by Dieks to all terms
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of the multiple superpositions.11

7 Conclusions

In this paper we have discussed the characteristics of possible propositions
based on the orthomodular lattice to physically interpret the meaning and
scope of our MKS theorem. In order to do so, we have distinguished the use
of “possibility” in the classical and quantum formalisms. To escape from
the improper relation between formalism and language, we have built a dic-
tionary that clearly expresses the link between formal elements and physical
concepts. The construction of the dictionary has also led us to the recog-
nition of the independence between the realms of quantum possibility and
actuality, in contradistinction to the classical case in which both possibil-
ity and actuality collapse. Furthermore, we have understood how the MKS
theorem rules, through the constrains to actualization, the relation between
both realms. Finally, we have analyzed the use of modality within the MWI,
concluding that —due to the fact they are not directly confronted with the
interpretation of quantum possibility— they escape both the KS and MKS
theorems.
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