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Abstract

This article re-examines Schrödinger’s charge density hypothesis, ac-
cording to which the charge of an electron is distributed in the whole
space, and the charge density in each position is proportional to the
modulus squared of the wave function of the electron there. It is
demonstrated that the charge distribution of a quantum system can
be measured by protective measurements as expectation values of cer-
tain observables, and the results as predicted by quantum mechanics
confirm Schrödinger’s original hypothesis. Moreover, the physical ori-
gin of the charge distribution is also investigated. It is argued that
the charge distribution of a quantum system is effective, that is, it is
formed by the ergodic motion of a localized particle with the charge of
the system.

1 Introduction

In quantum mechanics, an electron has an electric charge represented by
−e in the potential term of the Schrödinger equation, −eϕψ(x, t), where
ψ(x, t) is the wave function of the electron, and ϕ is an external electric
scalar potential. An intriguing question is: how is the charge of the electron
distributed in space? Historically, Schrödinger first gave an explicit answer
to this question: the charge of the electron is distributed in the whole space,
and the charge density in position x at instant t is −e|ψ(x, t)|2 (Schrödinger
1926). Schrödinger’s purpose was not to simply answer this question, but
to interpret the wave function of the electron in terms of the charge density
of the electron. It is well known that this semiclassical interpretation of
the wave function was soon rejected and replaced by Born’s probability
interpretation (Born 1926). The rejection seemed to have a well-founded
basis. Unfortunately, however, the above question and Schrödinger’s answer
to it have also been largely ignored since then.
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In this paper, we will re-examine the above question and argue that
Schrödinger’s answer is actually right. In particular, we will show that
protective measurements (Aharonov and Vaidman 1993; Aharonov, Anan-
dan and Vaidman 1993), which are distinct from conventional projective
measurements, can directly measure the charge distribution of an electron
assumed by Schrödinger. Moreover, we will also investigate the physical ori-
gin of the charge distribution. The investigation may not only help unveil
the existent form of the distribution but also provide a possible clue to the
physical meaning of the wave function.

The plan of this paper is as follows. In Section 2, we first give a his-
torical analysis of Schrödinger’s heuristic hypothesis on the existence of the
charge distribution of an electron. It is argued that although Schrödinger’s
semiclassical interpretation of the wave function in terms of charge density
meets serious problems and is unsatisfactory, this does not imply that the
charge distribution of an electron does not exist. Moreover, it is also pointed
out that the charge distribution is an incomplete manifestation of the wave
function for many-body systems, and even for one-body systems it also has
some puzzling features, e.g. the charge distribution of a single electron has
no electrostatic self-interaction. Section 3 then presents a more convincing
argument for the existence of the charge distribution of a quantum system.
It is demonstrated that the charge distribution of a quantum system can be
directly measured by protective measurements as expectation values of cer-
tain observables. The results as predicted by quantum mechanics show that
the charge of a charged quantum system is distributed throughout space, and
the charge density in each position is proportional to the modulus squared
of the wave function of the system there. This confirms Schrödinger’s orig-
inal hypothesis. In Section 4, we further investigate the physical origin of
the charge distribution in order to explain its puzzling features and solve
the incompleteness problem. It is argued that the charge distribution of a
quantum system is effective, that is, it is formed by the ergodic motion of
a localized particle with the charge of the system. This may explain the
non-existence of electrostatic self-interaction for the charge distribution of a
single quantum system. Moreover, the picture of ergodic motion of a single
particle can be extended to many particles, which may further solve the
incompleteness problem. The extension may also provide a possible clue to
the physical meaning of the wave function. Conclusions are given in the last
section.

2 A historical review

The charge of a classical system always localizes in a definite position in
space at each moment. For a quantum system described by the wave func-
tion ψ(x, t), how does its charge distribute in space then? We can measure
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the total charge of the quantum system by electromagnetic interaction and
find it in certain region of space. Thus it seems that the charge of a quan-
tum system must also exist in space with a certain distribution. When
Schrödinger introduced the wave function and founded his wave mechan-
ics, he also suggested a plausible answer to the above question (Schrödinger
1926). Schrödinger assumed that the charge of an electron is distributed
in the whole space, and the charge density in position x at instant t is
−e|ψ(x, t)|2, where −e is the charge of the electron, and ψ(x, t) is the wave
function of the electron. In the following, we will give a more detailed his-
torical analysis of Schrödinger’s charge density hypothesis.

In his paper on the equivalence between wave mechanics and matrix
mechanics (Schrödinger 1926a), Schrödinger suggested that it might be pos-
sible to give an extraordinarily anschaulich interpretation of the intensity
and polarization of radiation by assuming the wave function, which was
then called mechanical field scalar, is the source of the radiation. In par-
ticular, he assumed that the charge density of an electron as the source of
radiation is given by the real part of −eψ ∂ψ

∗

∂t , where ψ is the wave function
of the electron. In his third paper on wave mechanics (Schrödinger 1926b),
which deals with perturbation theory and its application to the Stark effect,
Schrödinger noted in an addendum in proof that the correct charge density
of an electron was given by −e|ψ|2. Then in his fourth paper on wave me-
chanics and his 1927 Solvey report (Schrödinger 1926, 1928), Schrödinger
further showed how this gives rise to a sensible notion of charge density
for several electrons, each contribution being obtained by integrating over
the other electrons. Concretely speaking, for a many-particle system, se-
lect one particle and keep the coordinates of the particle that describe its
position fixed at a given position and integrate |ψ|2 over all the rest of the
coordinates of the system and multiply the charge of the particle, and do
a similar thing for each particle, in each case fixing the selected particle at
the same given position. Then the sum of all these partial results gives the
charge density at the given position. In other words, the charge density is
ρ(x, t) =

∑
i

∫
...
∫
Qi|ψ(x1, ...xi−1, x, xi+1, ...xN , t)|2dx1...dxi−1dxi+1...dxN .

At the 1927 Solvey conference, Born posed an objection relating to
quadrupole moments for Schrödinger’s heuristic hypothesis about charge
density (Bacciagaluppi and Valentini 2009, p.426). Born considered two
particles with charge e whose wave function is ψ(x1, x2). According to
Schrödinger, the charge density is

ρ(x) = e

∫
|ψ(x, x2)|2dx2 + e

∫
|ψ(x1, x)|2dx1 . (1)

But the quadrupole moment∫ ∫
x1x2|ψ(x1, x2)|2dx1dx2
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cannot be expressed using the function ρ(x). As a result, one cannot reduce
the radiation of the quadrupole to the motion of a charge distribution ρ(x)
in the usual three-dimensional space. Born then concluded that interpreting
the quantity |ψ|2 as a charge density leads to difficulties in the case of
quadrupole moments.

However, it can be seen by a more careful analysis that the above prob-
lem is not really about the charge density itself, but about Schrödinger’s
interpretation of the wave function in terms of the charge density. In fact,
Schrödinger also clearly realized this problem. As early as in his equivalence
paper (Schrödinger 1926a), Schrödinger already noticed the difficulty relat-
ing to the problem of several electrons, which lies in the fact that the wave
function is a function in configuration space, not in real space. Although
the charge density in three-dimensional space can be consistently defined
for an N-particle system, it does not reflect all information encoded in the
wave function of the system which lives in the 3N-dimensional configuration
space. As a result, although the existence of the charge density may provide
an approximate, classical explanation for some phenomena of radiation, it
cannot account for all predictions of quantum mechanics and experimen-
tal observations, e.g., as Born rightly pointed out, the motion of a charge
distribution cannot explain the radiation of the quadrupole.

Besides this incompleteness problem for many-body systems, Schrödinger
also realized that the charge distribution of a single quantum system such as
an electron cannot be purely classical because his equation does not include
the usual Coulomb interaction between the distributions (the interaction
between two systems is described by the potential terms in the equation)
(Schrödinger 1926). In particular, there is no electrostatic self-interaction
of the charge distribution of a single charged quantum system (Schrödinger
1928). Moreover, according to the Schrödinger equation, the interacting
systems should be treated as a whole, and its wave function is defined in the
multi-dimensional configuration space, which cannot be decomposed into a
direct product of the wave functions of all interacting systems. This makes
the interaction between two quantum systems more complex than that be-
tween two classical charges.

Schrödinger’s interpretation of the wave function in terms of charge
density was latter investigated and extended by a few authors (see, e.g.
Madelung 1926, 1927; Janossy 1962; Jaynes 1973; Barut 1988). Due to the
above problems, however, this semiclassical interpretation cannot be satis-
factory in the final analysis. Moreover, although this fact does not imply
the non-existence of the charge density, the very limited success of the in-
terpretation does not provide a convincing argument for the existence of
the charge density either. Presumably because of these reasons and because
the charge density cannot be directly measured and its existence also lacks
a consistent physical explanation, Schrödinger’s charge density hypothesis
has been largely ignored after his interpretation of the wave function was
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replaced by Born’s probability interpretation (Born 1926).

3 The existence of charge density

As we have noted above, the failure of Schrödinger’s interpretation of the
wave function in terms of charge density does not imply that the charge
distribution of an electron as assumed by him does not exist. The charge
density hypothesis is not refuted, but only ignored. There is still a great
puzzle about the charge distribution of an electron. Does the charge distri-
bution really exist as Schrödinger suggested? Can it be directly measured?
In this section, we will demonstrate that the charge distribution of a quan-
tum system can indeed be measured by protective measurements (Aharonov
and Vaidman 1993; Aharonov, Anandan and Vaidman 1993), and the results
as predicted by quantum mechanics will also confirm Schrödinger’s charge
density hypothesis.

According to quantum mechanics, a quantum system being in a position
eigenstate has a definite position in space. Moreover, since the system has
properties such as mass and charge, the mass and charge of the system also
exist in the definite position. Then for a position eigenstate of a charged
quantum system, the total charge of the system concentrates in a definite
position. This charge distribution can also be measured by a projective po-
sition measurement, which is realized by electrostatic interaction between
the system and a charged measuring device. The result of the measurement
(which does not disturb the measured system) will indicate that the mea-
sured system, which is in a position eigenstate, has its total charge in its
position.

Then how can we know the charge distribution of a quantum system
being in a position superposition state? It is well known that a projective
position measurement of the superposition state can only tell us that the
system is in one of the positions in superposition (and the charge of the
system concentrates in this position) after the measurement. Since the
projective measurement destroys the measured state through the collapse of
the wave function, its result cannot tell us the actual charge distribution of
the measured system before the measurement. If projective measurements
were the only possible measurements, then it would be quite understandable
that the charge distribution of a quantum system, even if it exists, cannot
be directly measured.

Fortunately, it has been known that projective measurements are only
one kind of measurements, for which the coupling between the measuring
device and the measured system is very strong and almost instantaneous
(and thus the measurement results are the eigenvalues of the measured ob-
servable), and the coupling strength and the measuring time can both be
adjusted for a standard measurement procedure, and thus there also exist
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other kinds of measurements such as weak measurements (Aharonov, Albert
and Vaidman 1988) and protective measurements (Aharonov and Vaidman
1993; Aharonov, Anandan and Vaidman 1993)1. Protective measurement
uses a weak and long duration coupling interaction and an appropriate pro-
cedure to protect the measured system from being disturbed. A general
scheme is to let the measured system be in a nondegenerate eigenstate of
the whole Hamiltonian using a suitable protective interaction (in some sit-
uations the protection is provided by the measured system itself), and then
make the measurement adiabatically so that the state of the system neither
collapses nor becomes entangled with the measuring device appreciably. In
this way, such protective measurements can measure the expectation values
of observables on a single quantum system2, and in particular, the charge
distribution of the system can be measured as expectation values of certain
observables.

Before showing how protective measurements can measure the charge
distribution of a quantum system, we will first give a brief analysis of mea-
surements (which do not disturb the measured system), which may help to
understand the existence and measurability of the charge distribution of a
quantum system. No matter how to define measurement, a measurement
must be realized by certain interaction between the measured system and
the measuring device. Concretely speaking, the measuring device is influ-
enced by the measured system through an interaction that depends on the
measured property, and the change of the measuring system then reflects
the measured property of the measured system. For example, a position

1Note that weak measurements have been implemented in experiments (see, e.g. Lun-
deen et al 2011), and it can be reasonably expected that protective measurements can also
be implemented in the near future with the rapid development of quantum technologies.

2An immediate implication of protective measurements is that the result of a protective
measurement, namely the expectation value of the measured observable in the measured
state, reflects the actual physical state of the measured system (see also Aharonov and
Vaidman 1993; Anandan 1993; Dickson 1995), as the system is not disturbed after this
result has been obtained. This is in accordance with the fundamental assumption that
the result of a measurement that does not disturb the measured system reflects the actual
property or state of the system. Moreover, since the wave function can be reconstructed
from the expectation values of a sufficient number of observables, the wave function of a
quantum system is a representation of the physical state of the system. Note that for a
realistic protective measurement whose measuring interval T is finite, there is always a
tiny probability proportional to 1/T 2 to obtain a different result, and after obtaining the
result the measured state also collapses to the state corresponding to the result. However,
the key point is that when the measurement obtains the expectation value of the measured
observable, the state of the measured system is not disturbed. Moreover, the above
probability can be made arbitrarily small in principle when T approaches infinity, as well
as negligibly small in practice by making T sufficiently large. It might be also worth noting
that there appeared numerous objections to the validity of protective measurements (see,
e.g. Unruh 1994; Rovelli 1994; Ghose and Home 1995; Uffink 1999), and these objections
have been answered (Aharonov, Anandan and Vaidman 1996; Dass and Qureshi 1999;
Vaidman 2009; Gao 2012). For a detailed introduction of protective measurement and its
possible implications see Gao (2013a).
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measurement must depend on the existence of certain position-dependent
interaction between the system and the device such as electrostatic inter-
action between two electric charges. The existence of an electrostatic in-
teraction between a charged measuring device and a measured system then
tells us that the measured system has electric charge. Moreover, since the
strength of the interaction relates to the distance between the two interact-
ing systems, the measurement result may also reflect the charge distribution
of the measured system in space. For example, as noted above, for a pro-
jective position measurement of a position eigenstate of an electron, which
does not disturb the measured electron, if the measurement interaction is
electrostatic interaction between the electron and a charged measuring de-
vice, then the result of the measurement will indicate that the electron,
which is in a position eigenstate, has charge −e in its position. Similarly,
as we will demonstrate below, when a protective measurement (which does
not disturb the measured system) is realized by electromagnetic interaction
between the measured system and the measuring device, the measurement
can also measure the charge distribution of the system, which may be in a
general position superposition state.

Consider a protective measurement of the charge of a quantum system
with charge Q in a small spatial region V having volume v. This is equivalent
to measuring the following observable:

A =

{
Q, if x ∈ V ,

0, if x 6∈ V .
(2)

A protective measurement of A in a general superposition state ψ(x, t) yields

〈A〉 = Q

∫
V
|ψ(x, t)|2dx, (3)

which gives the charge of the system in the region V . When v → 0 and
after performing measurements in sufficiently many regions V , we can find
the charge density everywhere in space, which is ρQ(x, t) = Q|ψ(x, t)|23.

This result can be illustrated by a specific example. Consider a quantum
system with charge Q whose wave function is

ψ(x, t) = aψ1(x, t) + bψ2(x, t), (4)

3Similarly, we can protectively measure another observable B = ~
2mi

(A∇+∇A). The

measurements will give the electric flux density jQ(x, t) = ~Q
2mi

(ψ∗∇ψ − ψ∇ψ∗) every-
where in space. Moreover, we can also protectively measure the charge density (and
electric flux density) of a many-body system, and the density turns out to be the same
as that given by Schrödinger. For example, a protective measurement of A1 + A2 in
a two-particle state ψ(x1, x2, t) yields 〈A1 + A2〉 = Q1

∫
V

∫ +∞
−∞ |ψ(x1, x2, t)|2dx2dx1 +

Q2

∫
V

∫ +∞
−∞ |ψ(x1, x2, t)|2dx1dx2. When v → 0 we can find the charge density is ρQ(x, t) =

Q1

∫ +∞
−∞ |ψ(x, x2, t)|2dx2 +Q2

∫ +∞
−∞ |ψ(x1, x, t)|2dx1.
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where ψ1(x, t) and ψ2(x, t) are two normalized wave functions respectively
localized in their ground states in two small boxes 1 and 2, and |a|2+|b|2 = 1.
A measuring electron, whose initial state is a Gaussian wave packet narrow
in both position and momentum, is shot along a straight line near box 1
and perpendicular to the line of separation between the boxes. The electron
is detected on a screen after passing by box 1. Suppose the separation
between the boxes is large enough so that a charge Q in box 2 has no
observable influence on the electron. Then if the system is in box 2, namely
|a|2 = 0, the trajectory of the electron wave packet will be a straight line
as indicated by position “0” in Fig.1, indicating that there is no charge in
box 1. If the system is in box 1, namely |a|2 = 1, the trajectory of the
electron wave packet will be deviated by the electric field of the system by
a maximum amount as indicated by position “1” in Fig.1, indicating that
there is a charge Q in box 1. These two measurements are conventional
measurements of the eigenstates of the system’s charge in box 1, and their
results can reveal the actual charge distribution in box 1. However, when
0 < |a|2 < 1, i.e. when the measured system is in a superposition of two
eigenstates of its charge in box 1, it is well known that such conventional
measurements cannot detect the actual charge distribution in box 1.

Fig.1 Scheme of a protective measurement of the charge distribution of
a quantum system

Now let’s make a protective measurement of the charge of the system
in box 1 for the general superposition state ψ(x, t). Since the state ψ(x, t)
is degenerate with its orthogonal state ψ

′
(x, t) = b∗ψ1(x, t) − a∗ψ2(x, t),

we need an artificial protection procedure to remove the degeneracy, e.g.
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joining the two boxes with a long tube whose diameter is small compared
to the size of the box4. By this protection ψ(x, t) will be a nondegenerate
energy eigenstate. The adiabaticity condition and the weakly interacting
condition, which are required for a protective measurement, can be further
satisfied when assuming that (1) the measuring time of the electron is long
compared to ~/∆E, where ∆E is the smallest of the energy differences
between ψ(x, t) and the other energy eigenstates, and (2) at all times the
potential energy of interaction between the electron and the system is small
compared to ∆E. Then the measurement by means of the electron trajectory
is a protective measurement, and the trajectory of the electron wave packet
is only influenced by the expectation value of the charge of the system in
box 1. As a result, the electron wave packet will reach the position “|a|2”
between “0” and “1” on the screen as denoted in Fig.1, indicating that there
is a charge |a|2Q in box 1.

Here it may be necessary to further clarify the meaning of charge distri-
bution as a property of a quantum system. As noted before, any physical
measurement is necessarily based on some interaction between the measured
system and the measuring system. One basic form of interaction is the elec-
trostatic interaction between two electric charges as in the above example,
and the existence of this interaction during a measurement, which is indi-
cated by the deviation of the trajectory of the charged measuring system
such as an electron, means that the measured system also has the charge
responsible for the interaction. Then at least in the sense that any part of
a physical entity has electrostatic interaction with another charged system,
we can say that the physical entity has charge distribution in space5. In the
above example, the definite deviation of the trajectory of the electron will
reflect that there exists a definite amount of charge in box 1, and the extent
of the deviation will further indicate how much charge there is there.

4It is worth stressing that the added protection procedure depends on the measured
state, and different states need different protection procedures in general. This means
that a protective measurement with an artificial protection procedure requires that the
wave function of the measured system is known beforehand.

5This is consistent with the anti-Humean position about laws of nature in contemporary
philosophy. According to this view, laws are grounded in the ontology, and the theoretical
terms (expressed in the language of mathematics) connect to the entities existing in the
physical world. It is essential for a property to induce a certain behaviour of the objects
that instantiate the property in question, while the law expresses that behaviour. For
example, the parameter we call “charge” in the Schrödinger equation refers to a property
of quantum systems. This property is not a pure quality, but a disposition whose manifes-
tation is the electromagnetic interaction between the systems as expressed qualitatively
and quantitatively by the Schrödinger equation. In this way, laws are suitable to figure in
explanations answering why-questions, and they reveal the real connections that there are
in nature. By contrast, according to Humeanism, the laws are mere means of economical
description, and they do not have any explanatory function. They sum up what has hap-
pened in the world; but they do not answer the question why what has happened did in
fact happen, given certain initial conditions. Note that there are a number of substantial
philosophical objections against Humeanism (see e.g. Mumford 2004).
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Lastly, we will clarify some possible misunderstandings regarding the
above argument. One might doubt the existence of charge density because
it can only be measured under the special conditions of a protective mea-
surement. This doubt is unfounded. The reason is that the conditions of
a protective measurement are exactly those needed to measure the proper-
ties of a quantum system including its charge density without disturbing
the system. A general measurement such as a conventional impulsive mea-
surement, which does not satisfy the conditions required for a protective
measurement, will destroy the measured state by the collapse of the wave
function, and the measurement result cannot reflect the actual properties
of the measured system such as the charge density of the system. In other
words, the wavefunction collapse during a general measurement prevents the
charge density from manifesting itself explicitly.

However, one may further point out that when a quantum system in-
teracts with another quantum system under general conditions (e.g. the
interaction is not adiabatic), the charge density of each system does not
manifest itself explicitly either. For example, the interaction between two
charged quantum systems are not described by charge density terms but
by the potential terms in the Schrödinger equation. Since during the inter-
action no wavefunction collapse happens, the above reason does not apply.
This is indeed true. The key to understand this fact is to realize that, as
we have noted in the last section, the charge density (and electric flux den-
sity) are not a complete manifestation of the physical state of a many-body
system, e.g. they do not contain the entanglement between its sub-systems.
Therefore, although the charge density also has its efficiency under general
circumstances6, the efficiency is always combined with the efficiencies of
other elements of the complete physical state, and thus the manifestation of
the charge density is not so obvious. Moreover, even for a one-body system
the charge density (and electric flux density) may also have a deeper physical
origin and only be an appearance of the underlying physical state (see be-
low). Therefore, it is understandable that only under special circumstances
such as an adiabatic interaction can the charge density manifest itself more
directly and explicitly.

It should be stressed again that the charge distribution of a quantum
system is not necessarily classical, and its existence does not imply that two
quantum systems interact directly by way of their charge distributions as

6It seems that the existence of the charge density and its efficiency can also be seen from
the potential terms in the Schrödinger equation. For instance, the electrostatic interaction
term Qϕψ(x, t) in the Schrödinger equation for a charged quantum system suggests that
the electrostatic interaction exists in all regions where ψ(x, t) is nonzero, where Q is
the charge of the system, ψ(x, t) is the wave function of the system, and ϕ is an external
electric scalar potential. Thus it seems that the charge of the system should also distribute
throughout these regions. If the charge did not distribute and have efficiency in regions
where the wave function is nonzero, then there would not exist electrostatic interaction
there.
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in classical mechanics either. In other words, the existence of the charge
distribution can be consistent with quantum mechanics, in which the inter-
action between two quantum systems is described by the potential terms in
the Schrödinger equation. As we will see in the next section, however, the
consistency will restrict and even determine the existing form of the charge
distribution of a quantum system.

4 The origin of charge density

We have demonstrated that the charge of a quantum system is distributed
throughout space, and the charge density in each position is equal to the
modulus squared of the wave function of the system there multiplied by the
charge of the system. This confirms Schrödinger’s original charge density
hypothesis. In this section, we will further investigate the physical origin
of the charge distribution. As we have pointed out earlier, there are at
least two good motivations for our further investigation. First, although the
charge distribution can be consistently defined for a many-body system, the
distribution contains no information about the entanglement between the
sub-systems of the many-body system. This indicates that the charge dis-
tribution is an incomplete manifestation of the underlying physical state and
has a deeper physical origin. Second, even for one-body systems the charge
distribution also has some puzzling features, e.g. the charge distribution of
a single electron has no electrostatic self-interaction. These puzzling aspects
are in want of a reasonable physical explanation, which may be provided by
the origin of the charge distribution. In addition, the charge distribution
has two possible forms, and we need to determine which possible form is
the actual one. Again, this is closely related to the physical origin of the
distribution.

As we have argued in the last section, protective measurements show
that the expectation values of observables are the properties of a quantum
system. These properties are defined either at a precise instant or during
an infinitesimal time interval. Correspondingly, the charge distribution of
a quantum system, which can be protectively measured as the expectation
values of certain observables, has two possible existent forms: it is either
real or effective. The distribution is real means that it exists throughout
space at the same time. The distribution is effective means that at every
instant there is only a localized, point-like particle with the total charge
of the system, and its motion during an infinitesimal time interval forms
the effective distribution. Concretely speaking, at a particular instant the
charge density of the particle in each position is either zero (if the particle
is not there) or singular (if the particle is there), while the time average of
the density during an infinitesimal time interval gives the effective charge
density. Moreover, the motion of the particle is ergodic in the sense that the
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integral of the formed charge density in any region is required to be equal
to the expectation value of the total charge in the region.

In the following, we will determine the existent form of the charge distri-
bution of a quantum system. If the charge distribution is real, then any two
parts of the distribution (e.g. the two wavepackets in box 1 and box 2 in the
example given in the last section), like two electrons, will have electrostatic
interaction described by the potential terms in the Schrödinger equation7.
The existence of such electrostatic self-interaction for individual quantum
systems contradicts the superposition principle of quantum mechanics (at
least for microscopic systems such as electrons). Moreover, the existence of
the electrostatic self-interaction for the charge distribution of an electron is
incompatible with experimental observations either. For example, for the
electron in the hydrogen atom, since the potential of the electrostatic self-
interaction is of the same order as the Coulomb potential produced by the
nucleus, the energy levels of hydrogen atoms would be remarkably different
from those predicted by quantum mechanics and confirmed by experiments
if there existed such electrostatic self-interaction. By contrast, if the charge
distribution is effective, there will exist no electrostatic self-interaction of the
effective distribution, as there is only a localized particle at every instant.
This is consistent with the superposition principle of quantum mechanics
and the Schrödinger equation.

Here is a further clarification of the above analysis. It can be seen that,
as noted before, the non-existence of electrostatic self-interaction for the
charge distribution of a single quantum system poses a puzzle. According
to quantum mechanics, two charge distributions such as two electrons, which
exist in space at the same time, have electrostatic interaction described by
the potential term in the Schrödinger equation, but in the example given in
the last section, the two charges in box 1 and box 2 have no such electro-
static interaction. This puzzle is not so much dependent on the existence
of the charge distribution as a property of a quantum system. It is essen-
tially that according to quantum mechanics, the wavepacket ψ1 in box 1
has interaction with any test electron (e.g. deviating the trajectory of the
electron wavepacket), so does the wavepacket ψ2 in box 2, but these two
wavepackets, unlike two electrons, have no electrostatic interaction.

Facing this puzzle one may have two choices. The first one is simply
admitting that the non-existence of the self-interaction of the charge distri-
bution is a distinct feature of the laws of quantum mechanics, but insisting
that the laws are what they are and no further explanation is needed. How-
ever, this choice seems to beg the question and is unsatisfactory in the final
analysis. A more reasonable choice is to try to explain this puzzling fea-
ture, e.g. by analyzing its relationship with the existent form of the charge

7Moreover, these two parts will be also entangled and their wave function be defined
in a six-dimensional configuration space.
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distribution. The charge distribution has two possible forms after all. On
the one hand, the non-existence of the self-interaction of the distribution
may help determine which possible form is the actual one. For example,
one possible form is inconsistent with this distinct feature, while the other
possible form is consistent with it. On the other hand, the actual existent
form of the charge distribution may also help explain the non-existence of
the self-interaction of the distribution.

This is just what the previous analysis has done. The analysis establishes
a connection between the non-existence of the self-interaction of the charge
distribution and the actual existent form of the distribution. The reason
why two wavepackets of an electron, each of which has part of the electron’s
charge, have no electrostatic interaction is that these two wavepackets do
not exist at the same time, and their charges are formed by the motion
of a localized particle with the total charge of the electron. Since there is
only a localized particle at every instant, there exists no electrostatic self-
interaction of the charge distribution formed by the motion of the particle.
By contrast, if the two wavepackets with charges, like two electrons, existed
at the same time, then they would also have the same form of electrostatic
interaction as that between two electrons8.

Let’s give a further analysis of the ergodic motion of a particle. In order
that the ergodic motion of a particle forms the right charge distribution, for
which the charge density in each position is proportional to the modulus
squared of its wave function there, the probability density for the particle to
appear in each position must be proportional to the modulus squared of its
wave function there too (and for normalized wave functions they should be
equal)9. This is understandable. As noted above, at a particular instant the
charge density of the particle in each position is either zero (if the particle
is not there) or singular (if the particle is there), and during an infinitesimal
time interval the time average of the density generates the effective charge
density. Therefore, that the (effective) charge density is larger in a position
requires that the spending time of the particle near the position is longer
or the frequency of the particle appearing there is higher. Loosely speak-
ing, the ergodic motion of a particle will form a particle “cloud” extending
throughout space (during an infinitesimal time interval), and the density of
the cloud is |ψ(x, t)|2, representing the probability density for the particle
to appear in position x at instant t, where ψ(x, t) is the wave function of
the particle. For a charged particle such as an electron, the cloud will be an
electric cloud, and the density |ψ(x, t)|2, when multiplied by the charge of

8Note that this argument does not assume that real charges which exist at the same
time are classical charges and they have classical interaction. By contrast, the Schrödinger-
Newton equation, which was proposed by Diósi (1984) and Penrose (1998), treats the mass
distribution of a quantum system as classical.

9Besides, for normalized wave functions, the probability current density must also equal
to the formed charge flux density divided by the charge of the particle.
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the particle, will be the charge density of the cloud.
This picture of ergodic motion of a single particle can be extended to

many particles. The extension may help explain the multi-dimensionality of
the wave function and solve the incompleteness problem for charge density.
At a given instant, a quantum system of N particles can be represented
by a point in a 3N -dimensional configuration space. During an infinites-
imal time interval near the instant, the representative point performs the
ergodic motion in the configuration space and forms a cloud there. Then,
similar to the single particle case, the representative point is required to
spend in each volume element in the configuration space a time that is
proportional to the modulus squared of the wave function of the system
there. In other words, the density of the cloud in the configuration space is
ρ(x1, x2, ...xN , t) = |ψ(x1, x2, ...xN , t)|2, where ψ(x1, x2, ...xN , t) is the wave
function of the system. The density represents the probability density of
particle 1 appearing in position x1 and particle 2 appearing in position x2,
..., and particle N appearing in position xN . When these N particles are
independent, the density can be reduced to the direct product of the density
for each particle, namely ρ(x1, x2, ...xN , t) =

∏N
i=1 |ψ(xi, t)|2.

5 Conclusions

Historically, it is Schrödinger who first assumed the existence of the charge
distribution of an electron and gave the mathematical formulation of the
distribution. Schrödinger clearly realized that the charge distribution can-
not be of classical nature because his equation does not include the usual
classical interaction between the distributions. A more puzzling behavior
is that the charge distribution of a quantum system has no electrostatic
self-interaction. Moreover, although the charge distribution can be consis-
tently defined for a many-body system, it is an incomplete manifestation
of the wave function of the system. Presumably since people thought that
the charge distribution could not be measured and also lacked a consistent
physical picture, Schrödinger’s charge density hypothesis has been largely
ignored, though not refuted.

In this paper, we have re-examined Schrödinger’s original hypothesis
and argued that it is actually in accordance with quantum mechanics. It is
demonstrated that the charge distribution of a quantum system can be di-
rectly measured by protective measurements as expectation values of certain
observables, and the results as predicted by quantum mechanics show that
the charge of a charged quantum system is distributed throughout space, and
the charge density in each position is proportional to the modulus squared
of the wave function of the system there. This confirms Schrödinger’s charge
density hypothesis. Moreover, we have argued that the charge distribution
may also have a consistent physical picture. It is demonstrated that the
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superposition principle of quantum mechanics requires that the charge dis-
tribution of a quantum system is effective, that is, it is formed by the ergodic
motion of a localized particle with the total charge of the system. This pic-
ture may explain the puzzling behavior of the charge distribution such as
the non-existence of electrostatic self-interaction for the distribution. Be-
sides, the ergodic motion of a particle can be extended to many particles,
which may further solve the incompleteness problem. The extension may
also provide a possible clue to the physical meaning of the wave function. It
has been suggested that the wave function represents the state of the ergodic
motion of particles, which is arguably random and discontinuous in nature
(Gao 2013b).

In his 1927 Solvey report, Schrödinger said:

The classical system of material points does not really exist,
instead there exists something that continuously fills the entire
space and of which one would obtain a ‘snapshot’ if one dragged
the classical system, with the camera shutter open, through all
its configurations, the representative point in q-space spending
in each volume element dτ a time that is proportional to the
instantaneous value of ψψ∗ (Schrödinger 1928).

It will be interesting to see if Schrödinger already envisaged the picture of
ergodic motion of particles suggested here. We will leave this intriguing
question for future research.
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