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Abstract

We discuss the relationship between logic, geometry and probability theory under the light
of a novel approach to quantum probabilities which generalizes the method developed by R.
T. Cox to the quantum logical approach to physical theories.
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1 Introduction

The formalism of quantum mechanics (QM) achieved its rigorous formulation after a series of
papers by von Neumann, Jordan, Hilbert and Nordheim [1]. Its final form was accomplished
in the monumental work of von Neumann [32]. But an interpretation of quantum mechanics is
still lacking, despite the efforts of many researchers during the years.

In the axiomatic approach of von Neumann projection operators play a key role. The spectral
decomposition theorem [33, 10] allows to associate a projection valued measure to any quantum
observable represented by a self adjoint operator [32, 10]. It turns out that the set of projection
operators can be endowed with a lattice structure; more specifically, they form an orthomodular
lattice [25].

The subsequent developments turn the attention of von Neumann to the theory of rings of
operators, better known as von Neumann algebras [10]. It was an attempt of generalizing certain
algebraic properties of Jordan algebras [1]. But it turned out that the theory of von Neumann
algebras was strongly related to lattice theory: in a series of papers, Murray and von Neumann
provided a classification of factors1using orthomodular lattices [17, 18, 19, 20]. Time showed
that all kinds of factors would find physical applications, as is the case of type II factors in
statistical mechanics or type III factors in the rigorous axiomatic approach to Quantum Field
Theory (QFT) [11, 10]. It is important to remark that essentially all the information needed to
develop a physical theory out of these algebras is contained in the logico-algebraic structure of
their lattices of projection operators [11].

1von Neumann algebras whose center is formed by the multiples of the identity operator
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On the other hand, lattice theory is deeply connected to geometry: projective geometry can
be described in terms of lattices and related also to vector spaces [22]. As an example, any vector
space has associated a projective geometry and a lattice of subspaces. In particular, projection
operators of the Hilbert spaces used in QM form a lattice and their sets of pure states form
projective geometries. But von Neumann was not only interested in Hilbertian projection lat-
tices; as the investigation continued, he turned his attention to more general geometries, namely,
continuous geometries [3, 35]. That is, the geometries associated to the type II1 factors found in
the classification theory of Murray-von Neumann. As an example of the exotic characteristics of
the more general factors, type II1 algebras are non-atomic and the type III contain no non-trivial
finite projections. In this way, it could be said that the generalization of algebras studied by
von Neumann points in the direction of a rather radical generalization of geometry. Using the
words of von Neumann:

“I would like to make a confession which may seem immoral: I do not believe
absolutely in Hilbert space any more. After all, Hilbert-space (as far as quantum-
mechanical things are concerned) was obtained by generalizing Euclidean space, foot-
ing on the principle of “conserving the validity of all formal rules”. This is very clear,
if you consider the axiomatic-geometric definition of Hilbert-space, where one sim-
ply takes Weyl’s axioms for a unitary-Euclidean-space, drops the condition on the
existence of a finite linear basis, and replaces it by a minimum of topological as-
sumptions (completeness + separability). Thus Hilbert-space is the straightforward
generalization of Euclidean space, if one considers the vectors as the essential notions.

Now we begin to believe, that it is not the vectors which matter but the lattice
of all linear (closed) subspaces. [...]

But if we wish to generalize the lattice of all linear closed subspaces from a
Euclidean space to in infinitely many dimensions, then one does not obtain Hilbert
space, but that configuration, which Murray and I called “case II1”. (The lattice of
all linear closed subspaces of Hilbert-space is our “case I∞”.) And this is chiefly due
to the presence of the rule

a ≤ c −→ a ∨ (b ∧ c) = (a ∨ b) ∧ c [modularity!]

This “formal rule” would be lost, by passing to Hilbert space!”[7]

In this way, we see how deeply connected is the quantum logical approach to physics developed by
von Neumann to the development of geometry. But what is the meaning of Logic and Geometry
in this context? In this short article, we will explore a possible answer to this question and
relate it to a generalized probability theory [11].

Later on, the quantum logical approach of Birkhoff and von Neumann was developed further
by other researchers, giving rise to monumental foundational works (as examples see [23, 24,
12, 26, 27, 4]). The problem of compound quantum systems in the QL approach was studied
first in [29, 30, 31]. For complete expositions of the QL approach see for example [28, 6, 25].
It is very important to remark that C. Piron showed that any propositional system can be
coordinatized in a generalized Hilbert space [24]. A later result by Solèr asserts that, under
reasonable conditions, it can only be a Hilbert space over the fields of the real numbers, complex
numbers or quaternions [34]. In this way, an operational propositional system with suitably
chosen axioms can be represented in a generalized Hilbert space.

Probability measures can be defined in general von Neumann algebras [4, 11]. A generalized
non-kolmogorovian probability calculus can be developed including Kolmogorovian probabilities
as a particular case (i.e., when the algebra is commutative) [11]. Thus, the approach developed
by von Neumann and others leads to an interesting connection between logic, geometry and
probability theory.
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In Section 2 we discuss a problem posed by von Neumann regarding the foundations of logic
and probability theory. We largely quote von Neumann because, on the one hand, we think
that these unpublished works are not too well known. On the other hand, the content of the
quotation is useful for our purposes: our aim is to outline an interpretation of it. In Section
3 we review and discuss the main features of quantum probabilities (and compare them to the
classical ones). In Section 3.3 we discuss a novel approach to generalized probability theory
[21], and then, in Section 4 we discuss its consequences for the problem posed by von Neumann
providing the general features of an interpretation.

An important final remark is in order before starting. While it is certainly true that there
exist many different interpretations of the quantum formalism, and that there exists the problem
of metaphysical underdetermination (a point of view that we endorse), in this work we will
restrict to what was called the “standard” (or “Copenhaguen”) interpretation. Of course, the
so called “standard” interpretation, is not a consistent interpretation at all: it is a collection of
ideas regarding the quantum formalism and a discussion between its founding fathers. While
there are many points which can be identified clearly (like the absence of determinism, and
the quantum jumps), it is not in general a consistent set of ideas. The content of the present
work goes in the direction of developing a perspective which has the standard interpretation
as a starting point, and tries to provide more consistency to it, and we will not discuss other
interpretations. By no means is an aim of this work to present a definitive point of view on the
problem of the interpretation of the quantum formalism in detriment of other interpretations.

2 A problem posed by von Neumann

As is well known, any boolean algebra can be represented in a set theoretical framework (as
subsets of a given set). With regard to this relationship, von Neumann asserted that

“And one also has the parallelism that logics corresponds to set theory and prob-
ability theory corresponds to measure theory and that a given system of logics, so
given a system of sets, if all is right, you can introduce measures, you can introduce
probability and you can always do it in very many different ways.”(unpublished work
reproduced in [9], pp. 244).

In this way, the connection between Logic, Set Theory, and Probability Theory is clear (see also
Sections 3 and 4 of this work). What does this means? The definition of Cantor of a set reads

“A set is a gathering together into a whole of definite, distinct objects of our per-
ception [Anschauung] or of our thought —which are called elements of the set.”
[5]

A set is a collection of objects, and the internal logic governing them is classical logic. And of
course, this also applies to things in space, because the last is just a particular case of a set
theoretical approach to collections of objects: in the ultimate level the classical organization
of experience in an Euclidean space-time —as well as in the curved background of General
Relativity— is an expression of classical logic.
But the things chance radically in the quantum formalism, as von Neumann pointed out

“In the quantum mechanical machinery the situation is quite different. Namely
instead of the sets use the linear sub-sets of a suitable space, say of a Hilbert space.
The set theoretical situation of logics is replaced by the machinery of projective
geometry, which is in itself quite simple.
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However, all quantum mechanical probabilities are defined by inner products of
vectors. Essentially if a state of a system is given by one vector, the transition
probability in another state is the inner product of the two which is the square
of the cosine of the angle between them. In other words, probability corresponds
precisely to introducing the angles geometrically. Furthermore, there is only one
way to introduce it. The more so because in the quantum mechanical machinery the
negation of a statement, so the negation of a statement which is represented by a
linear set of vectors, corresponds to the orthogonal complement of this linear space.”
(unpublished work reproduced in [9], pp. 244).

von Neumann continues

“And therefore, as soon as you have introduced into the projective geometry the
ordinary machinery of logics, you must have introduced the concept of orthogonality.
This actually is rigorously true and any axiomatic elaboration of the subject bears
it out. So in order to have logics you need in this set a projective geometry with a
concept of orthogonality in it.

In order to have probability all you need is a concept of all angles, I mean angles
other than 90. Now it is perfectly quite true that in geometry, as soon as you can
define the right angle, you can define all angles. Another way to put it is that if
you take the case of an orthogonal space, those mappings of this space on itself,
which leave orthogonality intact, leave all the angles intact, in other words, in those
systems which can be used as models of the logical background for quantum theory,
it is true that as soon as all the ordinary concepts of logics are fixed under some
isomorphic transformation, all of probability theory is already fixed.” (unpublished
work reproduced in [9], pp. 244).

Now we ask: what is the meaning of the connection between Geometry and Logic in the above
quotations? It is clear that in confronting with the empirical propositions of QM we are facing
essentially a Geometry, which is at the same time a Logic. But this Geometry is not the geometry
of classical space-time. Quite on the contrary, is the geometrical form in which quantum events
are organized. And of course, this geometrical form has an internal logical structuration, which
is the quantum logic.
It is important to remark that this logic does not necessarily denies the classical logic that we
use when we think. The word logic above refers to the organization of experience (phenomena).
But what is the connection of all this with probability theory? von Neumann suggested a clue
as follows

“This means, however, that one has a formal mechanism, in which logics and prob-
ability theory arise simultaneously and are derived simultaneously.” (unpublished
work reproduced in [9], pp. 245).

In the rest of this work we will discuss the implications of a novel derivation of QL using the
algebraic properties of the propositional lattice of QM [21].

3 Generalized probability theory

3.1 Kolmogorov

In this Section we introduce classical probability theory using the axioms of Kolmogorov [13].
Given an outcome set Ω, consider a σ-algebra Σ of subsets of Ω. Then, a probability measure
will be given by a function µ such that
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µ : Σ→ [0, 1] (1a)

which satisfies
µ(∅) = 0 (1b)

µ(Ac) = 1− µ(A), (1c)

where (. . .)c means set-theoretical-complement and for any pairwise disjoint denumerable family
{Ai}i∈I

µ(
⋃
i∈I

Ai) =
∑
i

µ(Ai) (1d)

The triad (Ω,Σ, µ) is called a probability space (to which we refer as a Kolmogorovian probability).
It is possible to show that if (Ω,Σ, µ) is a Kolmogorovian probability space, all usual properties
of classical probability can be derived. Of particular importance for this work is the inclusion-
exclusion principle

µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B) (2)

which can be derived from 1. The logical version of (2) reads

µ(A ∨B) = µ(A) + µ(B)− µ(A ∧B) (3)

due to the direct correspondence between the connectives of classical logic (“∨” and “∧”) and
set theoretical union and intersection. This is a clear expression of what is said in our first
quotation to von Neumann in Section 2.

3.2 Quantum probabilities

Let P(H) be the orthomodular lattice of projection operators in a separable Hilbert space. In
order to define quantum probabilities, the following axioms on a function s must be postulated
[10]

s : P(H)→ [0; 1] (4a)

such that:
s(0) = 0 (0 is the null subspace). (4b)

s(P⊥) = 1− s(P ), (4c)

and, for a denumerable and pairwise orthogonal family of projections Pj

s(
∑
j

Pj) =
∑
j

s(Pj). (4d)

How do we know that these axioms capture all the desired features of quantum probabilities?
Gleason’s theorem [37] gives us the answer: if dim(H) ≥ 3, for any measure s satisfying (4)
there exists a positive Hermitian trace class operator (of trace one) ρs, such that

s(P ) := tr(ρsP ) (5)
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And also the converse is true; using Eqn. (5), any positive trace class Hermitian operator of
trace one defines a measure satisfying (4).
A generalized probability calculus can be extended to all orthomodular lattices [11] and even
to σ-orthocomplemented orthomodular posets [4] in an analogous way (as in Eqns. (4)). Clas-
sical probabilities are a particular case when the algebra is commutative [11, 4]. In this way,
observables can be defined in theories more general than Hilbertian QM.
One of the main differences between the axioms 1 and 4 is that the σ-algebra in (1) is boolean,
while P(H) is not. In this sense, the measures defined by Eqns. 4 are called non-kolmogorovian
(or non-boolean) probability measures.
One of the expressions of the fact that quantum and classical probabilities are different, is that
Eq. (2) is no longer valid in QM. Indeed, in QM it may happen that

s(A) + s(B) ≤ s(A ∨B) (6)

von Neumann considered that Eq. (2) was crucial for the interpretation of µ(A) and µ(B) as
relative frequencies [35] in a frequentistic interpretation. But as explained in [35, 8] one of the
main dissatisfactions of von Neumann was that Eq. (2) was not generally valid in the quantum
case, making the frequentistic interpretation untenable. This was one of the reasons that led
him to search for generalizations of the algebra of projections in Hilbert space, and type II1
factors were good candidates for this objective [8].

3.3 A new approach to quantum probabilities

In a recent work [21] it was shown that the approach to probability theory of R. T. Cox [15,
14] can be applied to lattices more general than Boolean. And in particular, that quantum
probabilities and the generalized probability theory can be obtained by applying a variant of
this method. In the rest of this work we explore possible interpretations of this fact under the
light of the problem posed by von Neumann (Section 2 of this work)2. We don’t have place here
to introduce all the details (for which we refer to [21]) and just limit ourselves to describe the
general method:

• Our starting point is an orthomodular lattice L.

• Next, we assume that L represents the propositional structure of a given system.

• It is reasonable to assume3 that there is a definite state of affairs determined by the
preparation of the system. This preparation could be natural or artificial, this is not
relevant. But the system has its own definite history as a constitutive feature of its own
actuality.

• Define a function s : L −→ R such that s(a) ≥ 0 ∀a ∈ L and it is order preserving (a ≤
b −→ s(a) ≤ s(b)). This function is intended to represent the degree of likelihood about
what would happen in the different (contextual) future situations. But it is important
to remark that this measure is a manifestation of a structured actual state of affairs: its
origin is ontological and there are no hidden variables.

2See also [16] for a very interesting but different perspective of the R. T. Cox approach and quantum proba-
bilities.

3As a precondition of physical science, something which is not necessarily true in any field of experience. A
similar remark holds for the existence of —at least— statistical regularities: if such regularities are not present,
mathematical description of phenomena is untenable. We are not asserting that any phenomena could be subsumed
into this condition, but that it is a precondition of mathematical physics.
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It can be shown that under the above rather general assumptions, a probability theory can be
developed [21] following a variant of R. T. Cox approach [15, 14]. In other words, it is possible
to show that:

s(
∨
{ai}i∈N) =

∞∑
i=1

s(ai) (7a)

s(¬a) = 1− s(a) (7b)

s(0) = 0 (7c)

(where the {ai} in Eqn. (7a) form a denumerable and orthogonal family). Let us see an
example of how the Cox’s machinery works. If a, b ∈ L and a⊥b, we have that a ∧ b = 0.
Next, it is reasonable to assume that s(a ∨ b) can only be a function of s(a) and s(b). In this
way, s(a ∨ b) = f(s(a), s(b)), with f an unknown function to determine. Due to associativity
of “∨”, s((a ∨ b) ∨ c) = s(a ∨ (b ∨ c)) for any a, b, c ∈ L. If a, b and c are orthogonal, we will
have s((a ∨ b) ∨ c) = f(f(s(a), s(b)), s(c)) and s(a ∨ (b ∨ c)) = f(s(a), f(s(b), s(c))). But then
f(f(s(a), s(b)), s(c)) = f(s(a), f(s(b), s(c))). Or put in a more simple form, we are looking for a
function f such that

f(f(x, y), z) = f(x, f(y, z)) (8)

But Eqn. (8) is a functional equation [36] whose solution —up to rescaling4— is f(x, y) = x+y.
In this way we arrive at s(a ∨ b) = s(a) + s(b). Eqns. (7) follow in a similar way [21].
As explained above, it is possible to show that the probability theory defined by Eqns. 7 is non
classical in the general case. If L is not Boolean, it may happen that s((a ∧ ¬b) ∨ (a ∧ b)) =
s(a∧¬b)+s(a∧b) ≤ s(a), but any Kolmogorovian probability satisfies s(a) = s(a∧b)+s(a∧¬b)
[21].

4 Probability theory as arising as the logical and geometrical
structuration of phenomena

Maybe it is not just a coincidence that the discussion posed by von Neumann on Logic, Prob-
ability and Geometry appeared in the axiomatization of quantum theory. QM seems to pose a
problem in the interpretation of space-time, as is expressed, for example, in the impossibility of
defining trajectories for the particles. In this way, a new kind of structure of experience underlies
the quantum mechanical description.

Space-time —as considered by modern physics— is not a naturally given structure: it was a
great achieving to develop geometry up to the point to which it is possible to give the mathemat-
ical description of reality provided for example, by classical mechanics (CM) or general relativity
(GR). The continuous description of experience provided by Euclidean geometry, has as a pre-
condition to have definite logical objects: mathematical objects such as numbers, geometrical
figures, and all of this related to things of our experience. Our experience in not a complete
chaos and can be structured in such a way. But we must never forget that the fact that we can
organize our experience in a space-time description is just an assumption whose consistency is
to be tested empirically. General relativity, shows us that one can use a more elegant and more
powerfully predictive description of experience than the one provided by the flat space-time of
the Euclidean geometry of classical physics. But the limits and success of these descriptions are

4For a discussion about the rescaling we refer to [15]
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not granted in advance: they must be confronted with their capability of defining a consistent
experience.

But we are committed to the space time description in the following sense: we need definite
things and objective things to happen in order to even speak about an experiment. An example
of this is a pointer of an instrument yielding a value in a given outcome set (which could be,
for example, the set of real numbers, but could also be more general, like the set formed by
{+,−}). The fact that an outcome set always forms a set and the events will be represented by
its subsets (forming a σ-algebra), ties us to a very specific kind of logic (classical) and a very
specific form of spaciality (example, Euclidean geometry, or a curved space-time). This is the
real content of the observations of N. Bohr: the very possibility of exerting experiments ties us
to classical logic and a set theoretical organization of experience. Space-time description is just
a particular case of this more general regulative logical machinery.

But there is absolutely nothing granting us that this Boolean description (thought necessary
to exert experiments) will exhaust the scenario in which phenomena appear. And this lies at the
heart of the existence of complementary (and incompatible) contexts in quantum mechanics: in
order to determine the state of the system, a quantum tomography must be exerted, and thus,
we are obliged to study the system in different incompatible contexts. While the structuration of
experience in CM can be reduced to a boolean algebra (and thus, to a set theoretical description
provided by an outcome set), in QM this is no longer possible. In classical mechanics, the de-
scription of an object can be equated with its space-time representation: form the point of view
of classical mechanics, the main goal is to describe continuous motion of material bodies inside
space. That is why motion (and change) can be described as the solutions of deterministic differ-
ential equations. And this feature is much more general than the usual description of a particle
moving through space under the action of forces. Any quantity of interest taking continuous
values, if it is classical, will have associated a time derivative, and thus the description reduces
to the motion of a system in a phase space obeying deterministic differential equations. Quite
contrarily, quantum mechanics is characterized by jumps, by discontinuous and unpredictable
behavior. That is why the organization of experience in QM comes endowed with a probabilistic
description: it is impossible to predict the future events with complete certainty, and thus, the
actual state of affairs is just a probability distribution.

In this way, QM fails to give a spatio-temporal description of phenomena. In other words,
QM shows us that the spatio-temporal description is just a part (or perspective) of the whole
scenario of the organization of phenomena; one of the most important consequences of quantum
mechanics is that space-time can no longer considered as an exhaustive scenario in which physical
events take place. Quite on the contrary, experience can be structured as a logic, and at the
same time as a specific kind of geometry, as von Neumann explained. Different models of event
structures represent different organizations of phenomena.

The results of [21] show that once the logic-algebraic properties of the structured experience
are determined, to great extent, the whole probability theory is determined. In this way, we
have a concrete step in the solution of the problem posed by von Neumann. Experience is not
complete chaos, but on the contrary, it can be structured. This organization of phenomena may
have a definite logical form (as is the case in the CM or the QM descriptions), and this form is
expressed as a geometry.

But in QM this geometry must not be confused with the geometrical background of space-
time (Euclidean space or the curved background of general relativity); space-time description
is just an aspect or perspective of a more general state of affairs. In the general case, physical
events can be organized as lattices5 much more general than the boolean case and a similar
assertion holds.

Thus, once that the structure of experience is determined as a Logic-Geometry, a probability

5Or even more generally, σ-orthocomplemented orthomodular posets [4], which are not lattices in the general
case.
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calculus follows. If the description is boolean, then probabilities will be Kolmogorovian, and
deterministic equations of motion can be used (in principle) to govern the laws of motion. But if
the logic is (ontologically speaking) non-boolean, then the description will fail to be deterministic
because an ignorance interpretation of probabilities will be untenable. Thus, deterministic
equations of motion (as the Schrödinger equation) must be complemented with “jumps” (as the
quantum jumps) and the concomitant processes that they trigger.

Now, a crucial question is in order: which kind of objects fit with this notion of structured
experience? In other words, which kind of objects are compatible with the organization of
events provided by QM (or more general non-boolean lattices)? Our answer is that in the QM
description, objects appear as a partial aspect of a particular description 6. As an example, think
about a room full of objects. Each object (the door, the walls, the chairs, a source, a photon
counter, etc) has a definite position and is situated in a definite relationship with respect to
the others. But which is the nature of the room itself? The room itself, as it presents to us,
comes into being as an organized structure of objects: everything is correlated in some way. To
presuppose that the description of the room can be reduced to the relative positions of objects
in Euclidean space (or in a more general spatio-temporal setting), is a metaphysical assumption
which is not necessarily valid for the description of all phenomena7. A quantum system is just
as real as the place in which objects are situated and structured, but it is not an object: it
is the organization of phenomena itself. There is an actual state of affairs in the room, which
has its own history (state), and the set-theoretical-spatio-temporal description as a collection of
objects in space is just an aspect of it. And this structure is logical form expressed as a particular
geometry. A quantum setup in a laboratory cannot be reduced to the classical description: this
is at the heart of the complementarity principle. In this way the QM description manifests
itself as the study of probability distributions, which are of course, objective and (at least in
principle), experimentally controllable.
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