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We begin by criticising an elaboration of an argument in this journal due to K. Hawley (2009), who

argued that, when Leibniz’s Principle of the Identity of Indiscernibles (PII) faces counter-examples,

invoking relations to save PII fails. We argue that insufficient attention has been paid to a particu-

lar distinction. We proceed by demonstrating that in most putative counter-examples to PII (due to

Immanuel Kant, Max Black, Alfred Julius Ayer, Peter Frederick Strawson, Hermann Weyl, Christian

Wüthrich), the so-called Discerning Defence trumps the Summing Defence of PII. The general kind

of objects that do the discerning in all cases form a category that has received little if any attention in

metaphysics. This category of objects lies between indiscernibles and individuals and is called rela-

tionals — objects that can be discerned by means of relations only and not by properties. Remarkably,

relationals turn out to populate the universe.
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1 Leibniz’s Principle of the Identity of Indiscernibles

A famous principle of Leibniz “has fallen on hard times”, M. Della Rocca (2005: 48) reports, be-

cause “most philosophers nowadays seem not to accept this principle”; and he continues: “The

primary reason is, of course, the great intuitive plausibility of certain well-known counter-examples.”

This famous principle of Leibniz is the metaphysical

Principle of the Identity of Indiscernibles (PII). Necessarily, for every two objects, if they are

indiscernible then they are identical, i.e. there are not two objects but there is only one object; with

self-evident abbreviations1 :

�
(

∀ a,∀ b : ¬Disc(a, b) −→ a = b
)

;

or contra-posing: necessarily, every two distinct (i.e. not identical) objects are discernible:

�
(

∀ a,∀ b : a 6= b −→ Disc(a, b)
)

;

or in yet another form: distinction without a difference is impossible:

¬♦
(

∃ a,∃ b : a 6= b ∧ ¬Disc(a, b)
)

.

Here is a triumvirate of reasons for caring about PII.

First, PII teaches us an ontological lesson: indiscernibles cannot and do not exist in the uni-

verse we inhabit. Modern physics does not teach us otherwise; modern physics does not refute

PII, in contradiction to what many philosophers of physics have claimed.2 Rather, the ultimate

constituents of physical reality are relationals; that is, entities that are discernible by relations but

not by properties. We teach this lesson in this paper.

Secondly, when one holds, with Lowe (2006, pp. 3–7), that one of the central aims of contempo-

rary metaphysics is to erect a framework of concepts to unify and embed all scientific knowledge

we have gathered, or when one holds, with Cocchiarella (2007, p. 4), that one of the centrail aims

is the study of ontological categories, then the logical-metaphysical category of a relational ought

to figure prominently on the stage of metaphysics. The current paper gives reasons why: physical

reality is full of them and it is relationals that make the metaphysical PII stand its ground. The

current situation in metaphysics is that relationals are wholly absent from all discussions about

objects, entities, metaphysical frameworks, ontological categories and what have you. This situa-

tion should change.

Thirdly, the issue of PII is intimately connected to the venerable Fregean issue of Identity Criteria

(or what comes down to the same thing: difference criteria) for Fs:3

(

F(a) ∧ F(b)
)

−→
(

IdCF(a, b) ←→ a = b
)

. (1)

Frege’s insight was that our use of conceptions of generality and existence, and our meaningful

use of words like ‘all’, ‘most’, ‘several’, ‘some’, ‘one’, ‘two’, etc. presuppose the presence of identity

1Russell (1937, pp. 54–58) collected places in Leibniz’s opera where Leibniz discusses PII. Our default reading of

modalities, e.g. � and ♦ in PII, is nomic.
2Weyl (1928), Cortes (1976), French and Redhead (1988), French (1989), Butterfield (1993), Schrödinger (1996); see

Muller and Saunders (2008) for an analysis of their arguments. Title of French (1989): ‘Why the Principle of the Identity

of Indiscernibles is not contingently True Either’.
3See Lowe (1989, p. 6), Horsten (2010, p. 414); our default presuppositioin is that monadic predicate F is a sortal; see

Westerhoff (2005, pp. 62–63), Wiggins (2012).
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conditions. Then in any field of inquiry about Fs that is rigorous by Fregean standards, IdCF(a, b)

must be found. Leibniz’s Law (a theorem of logic) states the semantic indiscernibility of identicals:

if a = b, then everything that is true of a is also true of b, and vice versa. This implies the converse

of PII. When we take the conjunction of PII and this converse, and relativize the conjunction thus

obtained to Fs, we obtain an identity-criterion for Fs, so that Leibnizian indiscernibility criteria

and Fregean identity-citeria are one and the same thing:

(

F(a) ∧ F(b)
)

−→
(

IdCF(a, b) ←→ ¬Disc(a, b)
)

. (2)

So much for this interlude about why we should care about PII. Let us return to Della Rocca,

whom we quoted above as asserting that the primary reason for rejecting PII is “the great intuitive

plausibility of certain well-known counter-examples.” Now, counter-examples to PII have also

been based on modern-physical theory rather than on philosopher’s imagination, and modern-

physical theory is an onslaught on intuitive plausibility.4 Thus attacks on PII come from meta-

physics as well as from modern physics. Recently some philosophers of physics have however

argued that, on closer inspection, modern-physical theories vindicate rather that violate PII.5

Putative counter-examples to PII, intuitive and unintuitive, include the following well-known

and perhaps less well-known cases, all of which we shall address.6

❧ Kant’s Droplets. Two droplets of water exactly similar in every respect.

❧ Black’s Spheres. Two black iron solid spheres of a 1 mile diameter being 2 miles apart in other-

wise empty space.

❧ Ayer’s Sound-Tokens. An infinite sequence of the same group of four different sound-tokens of

equal duration, each one separated from its neighbours by an equal interval of time:

. . . . . . A B C D A B C D A B C D . . . . . .

❧ Strawson’s Chessboard. Most of the black squares and most of the white squares of a chessboard

universe, whose boundaries are the edges of the board, are indiscernible yet distinct.

❧ Weyl’s Quantum Particles. Composite systems of ‘identical’ yet distinct particles when de-

scribed by quantum mechanics, with its postulate of permutation-symmetry, leading to Pauli’s

exclusion principle in the case of fermions.

❧ Wüthrich’s Space-Time Points. All space-time points in symmetric solutions of the gravitational

field equations of the General Theory of Relativity are indiscernible yet distinct.

In a searching paper, K. Hawley (2009) lays down ground rules for considerations about puta-

tive counter-examples to PII. Hawley submits that the reasoning leading to the judgement that PII

stands refuted in some given “qualitative arrangement”, as in the cases on our list above, is best

broken into two Steps:7

4See for instance: Butterfield (1993), Cortes (1976), French and Redhead (1988), French (1989), Schrödinger (1996),

Wüthrich (2010).
5For elementary particles, see Saunders (2003a), (2003b), (2006), Muller and Saunders (2008), Muller and Seevinck

(2009); for space-time points, see Muller (2011).
6Kant (1787, p. B319), Black (1952, p. 153), Ayer (1954, p. 32), Strawson (1959, p. 122), Weyl (1928, IV.C, Section 9),

Wüthrich (2010).
7Hawley (2009, p. 102): a “qualitative arrangement consists of those facts about the world which do not immedi-

ately settle questions about identity and parthood”, where ‘settle’ here “is an imprecise epistemic notion, not a matter

of metaphysical determination”. Most other philosophers will speak of possible worlds. Qualitative arrangements

include relationships.
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Step 1. A description of a qualitative arrangement.

Step 3. An argument that in this qualitative arrangement we have distinct but indiscernible

objects, in the plural.

But, as will become clear when we proceed, another step must be inserted, which consists in

answering the following three questions:

Step 2a. What does PII meaningfully apply to in this qualitative arrangement (Step 1)?

Step 2b. What sort of features are permitted to discern?

Step 2c. What sort of features are forbidden to discern?

Different answers to questions in Step 2 may lead to different judgements about whether PII holds

or fails in some qualitative arrangement. When one leaves questions in Step 2 implicit, as Hawley

to a certain extent seems to have done when moving from Step 1 to Step 3 without a pause, one

does not explicitly address the issue of the permissibility of the features that may or may not

discern (as Step 2 commands) and thereby runs the danger of drawing unwarranted conclusions

(in Step 3).

Two kinds of defence of PII were typically appealed to when faced with putative counter-

examples; Hawley considers a third, novel one, the ‘Summing Defence’:

1. Identity Defence: there are not two (or more) objects, but there is one object of the same kind as

the alleged two (or more) objects belong to.

2. Discerning Defence: there is, on closer inspection, some qualitative difference between the two

(or more) distinct objects.

3. Summing Defence: there are not two (or more) objects, there is one object of a kind that is different

from the kind the alleged two (or more) objects belong to, and that one object has no parts (so

that the alleged objects also are not parts of it), or in current mereological terminology: it is a

simple.

The paper is organised as follows. In Section 3, we present the ‘circularity argument’ against

the Discerning Defence of PII in the context of Black’s spheres, and argue that it proceeds by tac-

itly glossing over he questions in Step 2; we then argue that Hawley’s elaboration of the circularity

charge proceeds on forbidden terrain, which provides a good reason for rejecting it. The Discern-

ing Defence of PII then will stand vindicated. In Section 4, we show that the same Discerning

Defence succeeds in the remaining putative counter-examples to PII listed above. In Section 5,

concerning Weyl’s quantum case, we argue that recent arguments in the philosophy of physics

undermine a ‘uniformity argument’ of Hawley’s in favour of the Summing Defence over the Dis-

cerning Defence of PII in quantum mechanics, and we propound another ‘uniformity argument’

in favour of the Discerning Defence so as to argue for the superiority of the Discerning Defence

here; we shall also briefly address quantum field theory, where things become more complicated.

But first, in the next Section 2, we take care of our terminology.

2 Varieties of Discernibility

Throughout this paper we consider mostly cases of two objects. We take the notion of ‘object’ to

be extremely encompassing (a purely logical notion of object, metaphysically thin): anything we
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can meaningfully quantify over qualifies as an object (iron spheres, elementary particles, planets,

humans, dreams, novels, tree leaves, numbers, sets, structures, space-time points, &c.) — perhaps

entity would have been a better word, but that usually also includes universals, properties, tropes,

and more, which we shall not address and therefore want to exclude here. As we pointed out

above, the formulation of PII for Fs is strongly related to identity criteria for Fs (1): objects are

identical iff they are indiscernible, or in other words, objects are distinct iff they are discernible. Unpack-

ing ‘discernibility’ will depend heavily on what kind of objects we are dealing with — which is

flagged in (1) by writing ‘IdCF(a, b)’. We also could write ‘Disc(F; a, b)’ rather than ‘Disc(a, b)’,

but shall generally not do so. So PII applies to objects as construed above, in every qualitative

arrangement we shall meet (on our list of the previous Section). This parenthetically answers the

question of Step 2a in full generality.

We now rehearse and extend the terminology of Muller and Saunders (2008, pp. 503–505).

Often only properties, expressed by monadic predicates, are permitted to occur in PII, presumably

due to the fact that Leibniz held that relations are reducible to properties and that, therefore,

relations need not be mentioned in PII.8 We call an object absolutely qualitatively discernible from

other objects, or an individual, iff there is at least one permitted property that the object has and

the other objects lack. An object has an individuality iff it is absolutely discernible; its individuality,

then is the property, or properties, it has and does not share with any other object. Thus objects

that are not absolutely discernible do not have an individuality; all and only individuals have

an individuality. Objects are quantitatively discernible (or synonymously numerically discernible) iff

they are distinct, which we define as not being identical:

Dist(a, b) iff a 6= b . (3)

Relations, expressed by polyadic predicates, can and should be considered too in order not to

be tacitly committed to the (untenable) Leibnizian thesis that all relations are reducible to prop-

erties. We restrict ourselves to binary relations, which are expressed by dyadic predicates. Call

an object relationally qualitatively discernible from other objects iff there is some permitted relation

that discerns it from the other objects. Further, call an object not discernible, or indiscernible from

another, iff it is neither absolutely nor relationally discernible:9

¬Disc(a, b) iff
(

¬AbsDisc(a, b) ∧ ¬RelDisc(a, b)
)

. (4)

We call an object that is relationally but not absolutely discernible a relational. Then indiscernibles

are objects that are neither individuals nor relationals. Just like absolute indiscernibles, relationals

do not have an individuality. W.v.O. Quine (1976) was the first to inquire into different kinds of

discernibility; against the background of classical logic, he discovered there are only two differ-

ent categories of relational discernibility (by means of a binary relation): either (i) the relation is

irreflexive and asymmetric, in which case we speak of relative discernibility; or (ii) the relation is

irreflexive and symmetric, in which case we speak of weak discernibility. S.W. Saunders (2003a;

2003b; 2006) brought Quine’s distinctions and results to bear on discussions in the philosophy

of physics, from which they have entered and are entering contemporary metaphysics as well as

the philosophy of mathematics.10 In the current terminology, PII says that necessarily, objects are

8See Russell (1937, pp. 13–15) and Ishiguro (1990, pp. 118–122, 130–142) for Leibniz’s struggle with relations.
9Caulton and Butterfield (2012) then speak of utter indiscernibility, which we shall do only when emphasis is needed.

10See Saunders (2006), Hawley (2008) and references therein; and Ladyman, Pettigrew and Linnebo (2012) and refer-

ences therein.
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identical if they are absolutely and relationally indiscernible:

�
(

∀ a,∀ b : ¬AbsDisc(a, b) ∧ ¬RelDisc(a, b) −→ a = b
)

. (5)

For the sake of clarity, we spell out relational indiscernibility as a schema: ¬RelDisc(a, b) iff

for any dyadic predicate R (expressing a binary relation):

∀ c
(

R(a, c)←→ R(b, c)
)

∧ ∀ d
(

R(d, a)←→ R(d, b)
)

. (6)

We point out that logically speaking, (6) encompasses absolute indiscernibility, which is the an-

tecedent of PII as it traditionally has been conceived, because for every monadic predicate F, there

is a dyadic predicate RF that is logically equivalent to it: F(a) ∧
(

F(b) ∨ ¬F(b)
)

. Then:

⊢ ∀ a
(

F(a) ←→ ∀ b : RF(a, b)
)

. (7)

Ladyman, Pettigrew and Linnebo (2012, Sect. 5) establish the following implications, again with

self-evident abbreviations (RvDisc: relatively discernible):

⊢ AbsDisc(a, b) −→ RvDisc(a, b) −→WkDisc(a, b) −→ Dist(a, b) . (8)

All converse implications of (8) fail. Since ‘ 6=’ is a weakly discerning relation, so is the relevant

discernibility relation Disc(a, b) from PII.

Both being an extrinsic absolute discernible as well as being a relational rely on the presence

of other objects. What is the difference? The difference is that the afore-mentioned belongs to

a subspecies of absolute discernibility, expressed by some monadic predicate that singles out one

particular extrinsically absolutely discernible object, whereas the last-mentioned is an object that

is not absolutely discernible — relationals are discerned by some dyadic predicate that does not

lead to a monadic predicate that singles out one relational. Thus extrinsic absolute discernibles

are relational discernibles too, but they are not relationals: the two categories of extrinsic absolute

discernibility and being a relational are mutually exclusive — but not jointly exhaustive.

All identity talk so far has been and will be talk of synchronic identity; diachronic identity, for

which usually persistence conditions are sought, lies beyond the scope of this paper (but see the last

Section).

R. Barcan Marcus (1993, p. 200) asserted that “individuals must be there before they enter into

any relations, even relations of self-identity”, and did not feel the need to argue for this assertion

because of its self-evident truth. ”No identity without entity”, she declared (ibidem), thereby re-

versing Quine’s celebrated slogan ‘No entity without identity’. S. French and D. Krause (2006,

pp. 167–172) argue more specifically that two objects can only be discerned by some relation on

pain of circularity: one cannot demonstrate in this fashion that there are relationals, in the plu-

ral. This is essentially the same criticism as Russell propounded more than a century ago in The

Principles of Mathematics (1903: 458):

Again, two terms cannot be distinguished in the first instance by difference of relation to other

terms; for difference of relation presupposes two distinct terms, and cannot therefore be the ground

of their distinctness. Thus if there is to be any diversity at all, there must be immediate diversity

(. . .).

Let us get to the bottom of this.
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3 The Circularity Charge

3.1 Epistemic and Metaphysical Questions

The circularity argument against relational discernment is general and applies to all cases listed

in Section 1; for the sake of concreteness, we shall treat it in the context of Black’s spheres, and

then show how a similar treatment applies to the other cases on our list. We remark that Black’s

spheres case is the same case as Kant’s droplets (i.e. two absolutely indiscernible material objects),

which is why we gloss over Kant’s droplets altogether. Before we embark on Black’s case, we call

attention to three questions that need to be distinguished sharply:

Q1. Is there in a given qualitative arrangement one object or there are more objects? Is there

quantitative identity or diversity?

Q2. How can we find out whether in a given qualitative arrangement there is quantitative

identity or diversity?

Q3. Is there, in a given qualitative arrangment where there is quantitative diversity, also quali-

tative diversity?

In order for a putative challenge for PII to arise, question Q1 has to be answered in favour

of quantitative diversity. Only then does it make sense to raise question Q3. If Q3 is answered

in favour of qualitative diversity, then PII is safe (Discerning Defence); if Q3 is answered against

qualitative diversity, then PII is in immanent danger. Question Q2 is an epistemic question, not a

metaphysical one, as Q1 and Q3 are. We ought to find out the answer to Q1 from the description

of the qualitative arrangment; if not, the case is under-described and our inquiry into the case under

consideration stops before it has really begun. The critic of PII then has not done their job properly.

We shall see that questions Q1, Q2 and Q3 are frequently confused.

We now have three Steps and three Questions. How are they related? Step 1 leads to an answer

to Q1, and Steps 2 and 3 lead to answer to Q3. Since Q2 asks how to find the answer to Q1,

the generic answer to Q2 is: by reading the description of the qualitative arrangement under

consideration.

3.2 Black’s Spheres

[Step 1]. We have two solid black spheres 2 miles apart, for the sake of convenience baptised ‘Cas-

tor’ and ‘Pollux’11; they share all their properties (colour black, mass m, spherical shape, diameter

of 1 mile, constitution of iron, . . .) and are the only material objects in this universe, which we, like

Black, take to be a 3-dimensional Euclidean space (E3).

[Step 2a] We recall here our general answer to the question in Step 2a: PII can be meaningfully

considered for all sorts of objects in our broad logical and thin metaphysical sense, which no-

tably includes water droplets, solid iron spheres, sound-tokens, chessboard squares, elementary

particles and space-time points.

[Step 3]. Let ‘a’, ‘b’ and ‘c’ be sphere-variables ranging over set {Castor, Pollux}; this fixes the

interpretation of the quantifiers. Define this binary Distance-relation:

D(a, b) iff sphere a is 2 miles apart from sphere b, (9)

11Black (1952) lets a space traveller appear in Black’s universe to baptize these spheres and then the traveller disap-

pears.
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which obviously is grounded in the structure of space and therefore is not ungrounded. Clearly

D(a, b) is symmetric and irreflexive. We have:

D(C, P), D(P, C), ¬D(C, C), ¬D(P, P) . (10)

Hence Castor (C) and Pollux (P) are absolute indiscernibles but relational discernibles, hence rela-

tionals, of the weak kind.12

This argument is circular, French and Krause (2006, pp. 169–171) submit; Hawley (2009, pp. 109–

111) follows suit. The question whether Castor and Pollux are identical or distinct is the same as

the question whether there is one sphere or there are two spheres, and also the same as whether

we have quantitative diversity or not. So far so good. The argument above tacitly assumes that

Castor and Pollux are distinct, i.e.

Castor 6= Pollux ; (11)

otherwise, i.e. when leaving it open whether Castor = Pollux (let alone when assuming that

Castor = Pollux, in which case there is one object bearing two different names), one could not

possibly deduce there are two objects, two weak discernibles. Consequently a case against PII

cannot take off. To argue, when (11) is assumed, that one cannot deduce, by means of PII, that

Castor and Pollux are distinct because they are weakly discernible (so that the antecedent of PII is

false) is circular, precisely because of (11). Quantitative diversity (11) is assumed from the outset,

and therefore demonstrations with weakly discerning relations to reach the conclusion that we

have quantitative diversity (11) have become superfluous: the conclusion was a premiss. Petitio

principii.

Clearly questions Q1 and Q2 (p. 7) have been confused. Question Q1 has been answered ab

initio in favour of quantitative diversity. It is definitely not circular to assume that answering a

question (Q1) is the only way for another question to make sense, (Q3, concerning the truth of PII).

Let us continue and focus our attention on the means of discernment (Step 2).

In the circularity criticism, little if any attention has been paid to questions in Steps 2b and 2c

(Section 1). As a consequence, no clear view has been obtained about what is permitted and what

is forbidden to discern. Elaborating on (Muller and Saunders 2008, p. 527), we shall argue that

not every predicate is permitted to discern and some predicates are forbidden to discern. Before

doing so, we report that it has been generally acknowledged that so-called trivialising predicates

have to be forbidden to occur in PII — they make PII hold trivially. The problem of characterizing

what trivialising predicates are has turned out to be far from trivial.13 We can say this much

without entering the realm of controversy: identity (=) trivialises predicates in which it occurs,

for if identity were permitted to occur in the sufficient condition of PII, then the dyadic predicate

‘a 6= b’ would be enough to conclude that a 6= b, and the truth of PII would become as trivial as

any tautology. Thus part of our general answer to the question in Step 2c will be: distinctness (3)

is forbidden to discern.

[Step 2b]. Predicates in the language appropriate to describe the geometrical structure of E3

(the language of Euclidean geometry) that express spatial properties and spatial relations are permit-

12Black (1952, p. 158) knew of spatial relations; he came to reject their discerning power because they cannot be used

to give each sphere individuality. With the wisdom of hindsight, we say: Black was unaware of the distinction between

absolute and relational discernibility, and that lacking individuality does not entail indiscernibility. Read on.
13see Katz (1983), and Rodriguez-Pereyra (2006, p. 29), who ends with the following definition: F expresses a trivial-

izing property iff differing with respect to F is or may be differing quantitatively.
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ted to discern, because they only rely on E3, which is part and parcel of the qualitative arrange-

ment in Black’s case. Relations that employ the intrinsic properties of the spheres (colour, mass,

constitution, volume, . . .) are permitted because these also are part and parcel of the qualitative

arrangement. Let us summarize this by saying that the properties and relations that one can infer

from the description of the qualitative arrangement (Step 1) are all permitted to discern. To find out

whether they do or do not discern is the content of Step 3 (see above: distance discerns).

[Step 2c]. Take this monadic predicate:

N(a) iff a = Castor . (12)

Then N(C) and ¬N(P), because of (11). Should we now conclude that Castor and Pollux are

absolutely discernible after all because discerned absolutely by monadic predicate N (12)? No, we

should not, primarily because ‘=’ occurs in it, and secondarily because predicate N (12) employs

only the fact that the spheres bear names.

Now we consider a familiar Cartesian co-ordinate chart

E
3 → R

3, p 7→
(

x(p), y(p), z(p)
)

, (13)

such that Castor lies in its origin (0, 0, 0) ∈ R3 and Pollux on the Y-axis, in (0, 2, 0) ∈ R3.

Consider these monadic predicates:

O(a) iff sphere a lies in the origin (0, 0, 0).

Z(a) iff sphere a lies on the Z-axis .
(14)

Then again O(C) and ¬O(P), and Z(C) and ¬Z(P). Absolute discernibles after all? This time we

have neither used the names of the spheres — they do not occur in (14), in contradistinction to

(12) — nor identity, but their position, which is something spatial and part of the qualitative ar-

rangement. Still unacceptable. Why? One reason is as before: we, human beings, assign arbitrary

triples of real numbers to spatial points, to members of E3, and exploit these numbers to discern,

in particular the name ‘(0, 0, 0)’ of the location of Castor, and the name ‘Z-axis’ for a set of points.

Another reason for why discernment by predicates O and Z (14) is unacceptable, we advance,

is that spatial relations, or more generally, predicates relying on the presence of E3, that break the

symmetry of the qualitative arrangement, or the symmetry of the theory involved in describing it

(here: Euclidean geometry), should be forbidden. The continuous symmetry group of E3 is gener-

ated by rotations and displacements, the so-called Euclidean group; the structure of E3 is also in-

variant under reflections in an arbitrary point, which form its discrete symmetries. When we take

time to be included in the qualitative arrangement, we obtain Galilean space-time, which has the

Galilei-group as its symmetry group; it consists of the rotations, displacements, time translations

and boosts (rectilinear motions with constant veclocity); spatial and temporal reflections can be

added. Then predicates O and Z (14) are forbidden, because they are not displacement-invariant

and therefore violate the Eulidean and the Galilean symmetry.14

Notice that the names ‘Castor’ and ‘Pollux’, used in the description of Black’s case, cannot be

eliminated in the familiar Quinean-Russellian manner. If each sphere had a definite description,

the spheres would be absolutely discernible. But they aren’t. Predicates C and N (12) do not

14Displace Castor and Pollux 2 miles in the negative direction of the Y-axis, and we have ¬O(Castor), and O(Pollux),

by (14). Or rotate Castor and Pollux 90◦ clockwise in the ZOY-plane around the X-axis, and Pollux lies on the Z-axis,

in (0, 0,−2), rather than on the Y-axis, so that Z(Pollux), by (14).

9



count as definite descriptions. The question which sphere is Castor and which one is Pollux is not

meaningful because it asks for something that is not to be had — namely, definite descriptions.

Let us now return again to the circularity charge. In a nutshell, the circularity charge fails

because questions Q1 and Q3 (p. 7) have been confused. The question Q1 reads whether there

is quantitative diversity, in our case whether Castor 6= Pollux (11) — which is answered in the

affirmative in order to address Q3 meaningfully; and Q3 reads whether there is also qualitative

diversity besides quantitative diversity. We have answered Q3 also in the affirmative, on the basis

of a demonstration relying on the features of the qualitative arrangement, notably the structure of

space, and using a permitted relation: distance relation D (9), which discerns the spheres weakly

and is invariant under the relevant spatial symmetry transformations. (Notice that this is the

Discerning Defence in action.)

The charge of the demonstration being a petitio principii is wrong, for the conclusion of our

argument is not merely that Castor 6= Pollux, not merely that there is quantitative diversity, but

that the spheres are weakly discernible by means of a permitted relation. This conclusion certainly goes

beyond stating mere quantitative diversity (11), because it states that there is qualitative diversity

too, a specific kind of qualitative diversity in addition. When the conclusion is not the same as the

premiss, the connecting argument cannot be a petitio principii. We begin with two distinct objects

(11) and we end with their distinctness being grounded by a permitted and weakly discerning

relation: that was not assumed, but rather demonstrated.

3.3 Elaboration of the Circularity Charge

If our analysis of the previous Section is correct, the failure to consider what is forbidden and

what is permitted to discern [Step 2] should show up in Hawley’s elaboration of her vindiction of

the circularity charge. We shall see this is indeed the case.

Hawley (2009, p. 109) starts by raising the following question: “granted the assumption that

some facts ground others, can facts about the weak discernibility of objects ground their distinct-

ness?” Hawley considers the following two properties (adapted to the current context):

H1(a) iff sphere a is 2 miles from Castor ;

H2(a) iff sphere a is 2 miles from Pollux .
(15)

Then

H1(P), ¬H1(C), ¬H2(P), H2(C) . (16)

Recalling (11), if Castor 6= Pollux, then H1 and H2 (15) express different properties.15 She (ibid.)

then goes on to ask: “But what grounds the fact they are distinct properties?” She considers two

options (2009, pp. 109–110; our interjections between square brackets):

The first [A] is that the distinction between the properties [H1 and H2 (15)] is grounded in the

distinction between Castor and Pollux; that is, the monadic property being two miles from Pollux [H2]

depends for its identity upon the two-place relation being two miles from [essentially our D (9)] and

the object Pollux (and similarly for the property being two miles from Castor [H1]). The second option

[B] is that the distinction between the two monadic properties is somehow more fundamental than

the distinction between Castor and Pollux themselves.

15With Hawley, we gloss over the thorny issue of identity-criteria for predicates.
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By considering a third object, Hawley then argues that option [A] is superior to option [B]. We

agree and follow Hawley in further ignoring the somewhat silly option [B]. Then Hawley argues

that option [A] shows that if we use the different properties expressed by H1 and H2 (15) as the

grounds for the distinctness of Castor and Pollux (11), we are trapped in a circle, because [A] says

that the difference between these properties is grounded in (11) and the spatial relation D (9). She

concludes: “French’s concerns on behalf of those who seek to ground identity facts in facts about

the indiscernibility are vindicated.”

We beg to disagree. One reason — which should not come as a surprise at this stage — is that

considering monadic predicates to discern and then fail to do so is a false start, because advocates

of relational discernment have taken precisely this failure as a reason to look beyond absolute

discernment. This has led to relational discernment, and if Hawley wants to attack the Discerning

Defence for PII, then the defending arguments involving relational discernment ought to have

been the target.

Another reason for disagreement is that if monadic predicates H1 and H2 (15) were permitted

to discern Castor and Pollux, the spheres would be extrinsically absolutely discernible, in contra-

diction to the description of the qualitative arrangement of Black’s case, which has set the entire

debate into motion and was intended and taken by all commentators as a challenge to PII. Never

mind this. Yet another and better reason to disagree is that predicates H1 and H2 (15) are forbid-

den because they break the Euclidean symmetry and only exploit the fact that the spheres bear

names. This pre-empts Hawley’s discussion: it proceeds on forbidden terrain. We emphasize

again that the distinctness of the spheres, the numerical diversity, is grounded in a permitted

physico-geometric relation (9) that demonstrably holds between the spheres; this relation makes

the spheres relationals, and the discerning relation, in turn, is grounded in the structure of space:

there is no need to invoke the permitted predicates H1 and H2 (15) in the first place.

3.4 Scattered Systematic Remarks

In this Section, we address several issues and worries concerning PII in Black’s case insofar as our

Discerning Defence by an appeal to relationals bears on these.

A. Redescription. Consider the following re-description of Black’s case in order to avoid a clash

with PII.16 We begin with a solid iron sphere ‘Castor’ and a solid iron sphere ‘Pollux’ of equal

shape and size, in otherwise empty Euclidean space. We neither assume that they are distinct nor

that they are identical. Thus a circularity charge does not even get off the ground.

From this re-description, we can only trivially deduce that the names are distinct:

‘Castor’ 6= ‘Pollux’ . (17)

We now ask whether we have a case of quantitative diversity without qualitative diversity on our

hands. If so, then PII stands refuted.

(i) If Castor is located at some distance from Pollux, then relation D (9) makes a qualitative

difference, so that by contraposing Leibniz’s Law, we deduce there is quantitative diversity based

on qualitative diversity. PII is safe.

(ii) If Castor is at no distance from Pollux, then there is a single object bearing two different

names (17). PII is safe.

16Brought to my attention by S.W. Saunders, private communication by e-mail, 8 June 2010.
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Objection 1. This re-description of Black’s case is an impoverished re-description, an under-

description, one may object, because neither the antecedent of (i) nor the antecedent of (ii) follows

from it. This does not matter, one could respond, because in each of the two cases, (i) and (ii), the

conclusion is that PII is safe; and since the disjunction ‘Castor is located at some distance from

Pollux or is not’ is a theorem of logic, the conclusion that PII is safe holds unconditionally. So

Objection 1 does not endanger the conclusion that PII is safe.

Objection 2. Agreed, PII is safe so far. Yet one may go on to object that in (ii), PII is taken for

granted to reach the conclusion there is a single object: without PII, nothing forbids there being

two spheres located in exactly the same place (see further remark C for collocated objects). Now

recall that Black’s aim was to pose a challenge for PII. Then taking for granted what is challenged

(PII) is refusing to confront the challenge. Holding on to PII in this fashion, come what may, turns

every challenge of PII ab ovo into a failure. So Objection 2 is more serious: without assuming PII,

the conclusion that PII is safe in case (ii) is unavailable. Therefore we do not endorse this re-

description of Black’s case: although no circularity charge is possible against this impoverished

re-description, it also ducks the challenge of PII rather than faces it and meets it.

B. Generalised distance relations. Notice that in all spatially symmetric arrangements of an

appropriate number of absolutely indiscernible spheres, the spheres are weak relationals due to

distance-relation D (9), e.g. 3 spheres at the corners of an equilateral triangle or of a tetrahedron.

The triangle case has come up in recent discussions about the bundle theory of objects. We shall

not delve into this topic, but we do want to address the problem how to discern Black’s Two-Case,

i.e. the case of two spheres, from a case of three spheres on the corners of an equilateral triangle,

which we call the Three-Case.

Demirli (2010, p. 9) points out that binary spatial relations like D (9) do not enable one to

distinguish the Two-Case from the Three-Case, and suggests a primitive n-ary distance relation

to do the job, which is not reducible to a binary one. We think there is no need for that. Iron

spheres have mass; let m2 > 0 be the mass of the whole in the Two-Case and m3 > 0 of the

whole in the Three-Case.17 We consider two possibilities, which are exhaustive. (a) If m2 6=
m3, the two wholes are absolutely discernible. No problem. A single sphere of one whole is

discerned extrinsically and absolutely from any other sphere of the other whole. No problem.

No need in possibility (a) for Demirli’s primitive n-ary distance relation. (b) If m2 = m3, and

the spheres per case have an equal mass (otherwise we are done because then spheres belonging

to different wholes are absolutely discernible from each other), every sphere in the Two-Case

becomes absolutely discernible from every sphere in the Three-Case because their masses differ:

m2/2 is the mass per sphere in the Two-Case and m3/3 in the Three-Case, which masses are

different due to m2 = m3. The wholes then differ because they have different constituents. No

problem. No need in possibility (b) for Dimirli’s primitive n-arby distance relation either.

Thus no need for a primitive n-ary distance relation, but an appeal to other features of the

qualitative arrangement, e.g. mass, which obviously is permitted (Step 2). Demirli’s invocation of

an n-ary distance relation is otiose.

C. Collocated Objects. Della Rocca (2005, p. 485 ff.) has argued that if we were to reject PII

and accept there are two indiscernible spheres as a primitive and unexplained fact, we land in

the predicament of having no principled way to deny that there are 10 indiscernible collocated

17When massless particles are considered, like photons of the same frequency (ν) propagating rectilinearly, one can

consider their energy rather than their mass, by using Einstein’s formula: Eν = hν, where h is Planck’s constant.
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spheres where sphere Castor is located, and similarly for Pollux, so that we have 20 spheres.

Or a zillion spheres. One can judge this as sufficiently absurd and consequently accept PII.18 A

zillion collocated spheres are a logical possibility but arguably a nomic impossibility. Whether they

constitute a metaphysical impossibility is hard to decide.

Della Rocca (2005, p. 484) holds it as circular to discern the spheres by their locations because

these locations can only be discerned by an appeal to the spheres — whether they are occupied by

a sphere or not is the only thing that can discern the locations, Della Rocca holds. Our diagnosis

here is that Della Rocca has skipped Step 2a and has overlooked the possibility of discerning the

spheres relationally.

D. Geometry. Our distance relation relies on the real numbers and thereby on the identity rela-

tion between real numbers. Can we do without them? Yes we can. In his landmark axiomatisation

of geometry, D. Hilbert (1902: 6) employs Pasch’s primitive ternary ordering relation of ‘point p

lying between points q and r’. Let us abbreviate this Betweenness-relation by: B(p, q, r). Then an

identity-criterion for points reads that two points are identical iff there is no point in between:

¬∃ q : B(p, q, r) ←→ p = q . (18)

According to Hilbert’s Axiom I.1 of connexion, two distinct points determine a straight line; and

his Theorem 3 says that between every two distinct points on a straight line, there lies an unlimited

number of points.19 From this, identity-criterion (18) follows. The negation of the left-hand-side

of (18) discerns points weakly:

∃ q : B(p, q, r) ←→ p 6= r . (19)

Again, half of (18) is PII for spatial points. This goes to show that the points in every space meeting

Hilbert’s axioms of connexion and of order, of which E3 is but one example, can be discerned even

without appealing to a distance relation and thereby relying on the real numbers.20

E. Hacking’s cylindrical space. Inspired by Hacking (1975), Adams (1979, p. 15) addresses

the claim that cases like Black’s Spheres and Kant’s Droplets are inconclusive when it comes to PII

because every case that violates PII can be re-described into a case that obeys PII:

The most that God could create of the world imagined by Black is a globe of iron, having internal

qualities Q, which can be reached by traveling two diameters in a straight line from a globe of iron

having qualities Q. This possible reality can be described as two globes in Euclidean space, or as a

single globe in a non-Euclidean space so tightly curved that the globe can be reached by traveling

two diameters in a straight line from itself. But the difference between these descriptions represents

no difference in the way things could really be.

Three issues must be kept apart here.

First, Adams is raising epistemic question Q2 (p. 7): how can an inhabitant of Black’s world

who travels 2 miles from Castor to Pollux find out that he has arrived at Pollux (as he would have

18Then this is a reductio ad absurdum argument for PII, not a reductio ad contradictionem argument — contradictions are

absurd but not every absurdity is a contradiction, although standard terminology in logic and mathematics is to make

these two categories coincide.
19Hilbert (1902, p. 4, 7).
20Euclid’s Axiom of Parallels, Archimedes’ Axiom of Continuity and the Congruence Axioms are all not needed to

prove Theorem 3; see Hilbert (1902: Ch. I).
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if space were Euclidean), and not returned to Castor (as he would have if space were cylindrical

with a circumference of 2 miles)? Clearly the structure of the ambient space is relevant and in the

description of the qualitative arrangment its structure needs to be specified (as Step 1 demands).

As Adams rightly remarks, we have here two different possible worlds with a different spatial

structure and not, contra Hacking, two descriptions of a single possible world.

Secondly, from the point of view of our traveller, things do not look different: he can provide

two descriptons but does not know which one is correct. This is his epistemic predicament. Now,

travelling through some space from location p to q and keeping track of the distance travelled

coincides with the metrical distance between p and q iff one travels along the straightest path in

that space. (Thus our traveller needs to have the capacity to discern straight from curved paths

in every space he finds himself. For if not, he could also have travelled in Euclidean space in

a circle from Castor to Castor rather than in a straight line from Castor to Pollux. This makes

his epistemic predicament even worse.) But the distance between any two points p and q is an

intrinsic feature of the structure of space and does not rely on the presence of travellers, least

of all the epistemically debilitated traveller which Adams advances. The metric in every space

S leads to a distance function d : S × S → R+ that meets the Fréchet axioms, and from these

axioms it follows that d(p, q) > 0 iff p 6= q. Thus also in cylindrical space, with an appropriate

cylindrical distance-function, we have exactly the same four judgements as in Euclidean space,

as displayed in (10). (Adams ponders how a traveller would answer question Q2, whilst we

are interested in answering Q3, and Q3 is answered in favour of PII on the basis of the relevant

distance-relation in every metrical space, Euclidean or not. We have here another instance of

confusing these questions.)

Thirdly, in the background looms Poincaré’s Thesis that the structure of space-time is a conven-

tion rather than a fact: since the formulation of the laws of physics presupposes that space-time

has a certain structure, we can re-formulate these laws when we change the structure of space-

time such that at the level of the behaviour of material bodies nothing changes. Again, this is an

epistemic thesis, which is relevant for question Q2, but irrelevant for metaphysical questions Q1

and Q3.

Hacking (1975, p. 251) considered the bearing of being a substantivalist or a relationist on

Black’s case. Consider the proposition:

Every sphere is 2 miles from some sphere — ∀ a,∃ b : d(a, b) = 2 . (20)

For a substantivalist, (20) is true and implies there are (at least) two spheres, because the spheres

occupy different spatial points, which exist independently of the presence of material objects oc-

cupying or not occupying them; spatial points then are metaphysically prior to (or better: onto-

logically independent from) material objects. (The spheres then are prima facie even absolutely

discernible by the monadic predicate ‘a occupies spatial point p0’, whenever ‘p0’ is the name of

the centre of Castor or Pollux. On closer inspection however, the spatial points themselves are not

absolutely discernible, so that no name like ‘p0’ can ever be introduced by providing a Russellian

definite description of that point. For a substantivalist, points are relationals.) PII is safe. For a

relationist however, Hacking (1975, p. 251–252) submits, the truth of (20) cannot be established,

because now material objects are metaphysically prior to space (or spatial relations depend onto-

logically on material objects), they determine the spatial relations, so that when one uses spatial

relations to determine whether there is quantitative diversity, one is begging the question. Leib-

nizian relationism endangers Leibniz’s principle!
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Wait a minute. Begging which question? Of whether there is quantitative diversity or not?

This is question Q1 and not the question whether PII stands or falls, which is question Q3, and

which presupposes an answer to Q1 in favour of quantitative diversity. We have stumbled on

yet another instance of confusing these two questions, this time by Hacking. Moreover, for a

relationist, matter is not metaphysically prior to space, but material objects come together with

their spatial relations, just as with their masses and shapes. Furthermore, just as material objects

do not ‘determine’ their mass or shape, but have masses and shapes, they do not ‘determine’ their

spatial relations but are spatially related. For a relationist, material objects have spatial relations

and these relations provide the means to discern them qualitatively. Thus like the substantivalist,

the relationist can, contra Hacking, also establish the truth of (20).

F. Tear off and tear up. Van Fraassen and Peschard (2008, p. 19) have recently rejected rela-

tional discernibiliy for Black’s case and for the case of points in space:

The condition of weak discernibility certainly entails distinctness. But first, such a predicate as ‘is

one metre from some other point but not from itself’ also applies to all points, and so does not

express a difference between them. Secondly, the deduction that there are at least two Xs if some

X bears an irreflexive relation to some X does not require the PII. It assumes only its converse,

that is, substitutivity of identity. So although we shall stay with Saunders’ terminology, we find it

thoroughly misleading, for this use of the word ‘discernible’ is misplaced.

Non placet. As to the first reason, the predicate ‘is one metre from some other point but not

from itself’ is:

P(a) iff ∃ b : d(a, b) = 1 ∧ d(a, a) 6= 1 . (21)

Predicate P applies to all points in (Euclidean) space equally and does, indeed, not discern any

point from another absolutely. But we have neither advanced P, nor any other monadic predi-

cate, as a discerning one. When all points are absolutely indiscernible, there is no such permitted

monadic predicate. We have advanced a dyadic predicate expressing a relation, not a property,

not even an extrinsic (or ‘relational’) one.

As to the second reason, to present a counter-example to PII is to present some a and some b

such that:

¬Disc(a, b) ∧ a 6= b . (22)

Logically speaking, we do not have to deduce one conjunct (a 6= b) from the other (¬Disc(a, b)) in

order to defend PII; to reject the putative counter-example to PII (22), it logically suffices to show

that Disc(a, b) granted a 6= b. When we do deduce that a 6= b from Disc(a, b), we rely on Leibniz’s

Law and we do not rely on PII. Correct. But that is a good thing and therefore, contra Van Fraassen

and Peschard, does not constitute an objection against arguing in favour of Disc(a, b) by means of

relations; it is a good thing because if a rejection of (22), which challenges PII, were to rely on PII,

we would have been proposing a visciously circular rejection of (22).

Ultimately, it seems that Van Fraassen and Peschard cling to absolute discernibility as the one

and only kind of discernibility, no-matter-what. This is precisely the traditional straightjacket we

want to tear off and tear up.
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4 Sounds, Chessboard Squares and Space-Time Points

4.1 Ayer’s Sound-Tokens

Ayer’s case can be rendered harmless for PII by also using the Discerning Defence. Ayer (1952,

p. 32) considers the following infinite sequence of sound-tokens,

. . . . . . A B C D A B C D A B C D . . . . . . , (23)

rather than the following finite sequence of sound-tokens of the same type:

A A , (24)

or the following infinite sequence of sound-tokens of the same type:

. . . A A A A A A A A A A A A A A A A . . . (25)

Ayer asserts somewhat puzzlingly that (23) is “a simpler example” than Black’s case — and sim-

pler than case (24) we may safely assume, because the pair of sound-tokens (24) seems the sound

equivalent of Black’s material objects, but not as (25). The reason is that the tokens in (24) seem

absolutely discernible by the predicate ‘being the first sound-token’ (∗), which is not the case for

infinite sequences (23) and (25). In these infinite cases, the relation ‘occurs later than’ discerns the

sound-tokens relatively rather than weakly, because this relation is anti-symmetric.

But classical as well as relativistic space-times are not time-orientable, so that time is isotropic:

predicate (∗), which contains the phrase ‘first’, fails to pick out a single sound-token. Similary

the relation ‘occurs later than’ fails to discern the sound-tokens in (23) and (25) relatively, be-

cause ‘later’ has no meaning when time is isotropic. The following relation is however temporally

isotropic and suited for classical space-times (‘s’ and ‘r’ are sound-token variables of a single type

of sound):

S(s, r) iff s and r occur Simultaneously . (26)

Relation S (26), and therefore ¬S, is invariant under Galilei transformations. Consider now two

of the same sound-tokens occurring simultaneously far away from each other. These tokens are

not identical. This shows that the simultaneity-relation S (26) is not an identity-criterion, but only

a necessary condition for identity. Then¬S is sufficient for the sound-tokens to be distinct but not

necessary. So we must look further for a relation that discerns sound-tokens in (24) and in (25).

The key is to use the finite spatio-temporal regions of the longitudinal vibrations of the air

molecules of the sound-tokens. Let ‘r(G)’ denote sound-token r having G as its finite space-time

region.21 Then we have the following identity-criterion for sound-tokens:22

I
(

r(G1), s(G2)
)

iff G1 = G2 . (27)

21We take space-time regions to be subsets of the space-time manifold that are bounded and simply-connected.
22Realize that the sound in a region G is what results from the superposition of all longitudinal vibrations in G, so

that there cannot be more than one sound in one space-time region. There can be more than one tone in one region:

every vibration can be written as a superposition of monotones (Fourier analysis). In our purified Ayerian case (24), we

have two tokens of one tone, which is a finite wave train of a single frequency. For those who hold there are no sounds

without ears connected to brains: Ayer’s case becomes a case of vibrations rather than sounds.

16



Relation ¬I (27) is invariant under the space-time transformations of classical and relativistic

space-times, and discerns the sound-tokens weakly. Thus Ayer’s sound-tokens now become weak

relationals.

Due to its reliance on an identity-criterion for space-time regions, relation I (27) seems to pre-

suppose a substantivalist interpretation of space-time in Newtonian tradition. What if one has rela-

tionist sympathies in Leibnizian tradition? Then space is a collection of primitive spatial relations

between material bodies, and, extended to space-time, space-time is a collection of primitive spatio-

temporal relations between events. The nature of this relation will then determine the ontological

category of the sounds, i.e. whether they are relative or weak relationals. But relationals they will

be and that is all we need in order to discern them qualitatively. (See Subsection 4.3 for how to dis-

cern space-time points relationally by a ‘lightcone relation’; this relation can also be used to discern

space-time regions in relativistic space-times generally. A relation to discern space-time regions

in classical space-times is easily constructed by combining the absolute simultaneity-relation (26)

and the Euclidean spatial distance-relation D (9) of Black’s case. We leave it as an exercise to work

out the details.)

With a slight variation on Hacking (1975, pp. 254–255), one may wonder whether the interval

between two sound tokens is exactly equal to one cycle of a temporally cyclic world. Suppose an

inhabitant keeps hearing the same sound token in one and the same space-time region over and

again. But there is only one sound token in this cyclic universe, so that no threat for PII arises. If the

inhabitant in this world can count the sound tokens she hears, as the description above suggests,

and puts a stroke on a piece of paper, then for every cycle there is a different number of strokes

on the piece of paper. But then this world is not really cyclic, because in a truly cyclic world, the

world is identical after every cycle. Hence there cannot be such an inhabitant. Our supposition

was wrong. If an inhabitant hears the token, she hears it ‘every cycle’ for the first and for the last

time in her life: she will affirm the existence of a single sound token and no more. PII stands tall

by the Identity Defence.

4.2 Strawson’s Chessboard

When discussing Leibniz’s monads, Strawson (1959, p. 122) considers a universe consisting of a

chessboard and claims that some white squares (f3 and c6) cannot be differentiated from others;

it holds for all pairs of squares that are each other’s mirror image under rotating the board 180◦.

Strawson (1959, p. 123) — who sees this as a case where one cannot identify without demon-

stratives —, considers these squares to constitute examples of quantitatively distinguishable but

unidentifiable and qualitatively indistinguishable particulars, contra PII.

We disagree. The most simple language to describe Strawson’s chessboard universe presum-

ably proceeds by having 64 names (a1–f8), monadic predicates ‘Black’ and ‘White’ (of which one

can be defined as the negation of the other), and a dyadic predicate expressing an irreflexive, sym-

metric and non-transitive adjacency-relation: Adj(s, q); we then lay down a list of axioms that

entails which square is adjacent to which other squares, so as to obtain a chessboard as we know

it. Consider then the following common-adjacency relation:

A(s, q) iff ∀ r : Adj(r, s) ←→ Adj(r, q) . (28)

The common-adjacency relation A is an identity-criterion, because all and only identical squares
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share all their adjacent squares:

A(s, q) ←→ s = q . (29)

Then its negation, ¬A, discerns squares of the same colour weakly. Relation A (28), and therefore

¬A, is invariant under the geometric symmetry-transformations of the chessboard universe: mir-

roring in the two diagonals, or which comes down to the same: rotating 180◦ around an axis per-

pendicular to the centre of the board. Contra Strawson, we conclude that the chessboard squares

can be discerned qualitatively; by overlooking Step 2, he took it for granted that the only way to

uphold PII is to be able to identify the squares, for to identify is to discern absolutely, and we have

seen that this is not the only way to discern qualitatively. The squares are relationals.

D. Wiggins (2012, p. 7) submits that a relation like ‘is to the left of’ discerns some white squares

relatively. We reject this relation because it breaks the symmetry of the chessboard: right becomes

left after a rotation of 180◦. Wiggins’ relation is forbidden.

4.3 Wüthrich’s Space-Time Points

Wüthrich (2010) argued, in the context of the General Theory of Relativity (GTR), that in symmet-

ric space-times such as the one of our physical universe (globally speaking), all space-time points

that belong to one 3-dimensional spatial hypersurface share all their physico-geometrical proper-

ties, because these properties all derive from the metrical tensor gab and gab is the same at every

point in such a hypersurface. Therefore adherents of PII must conclude, absurdly, that in such

3-dimensional hypersurfaces, interpreted as ‘global snapshots’ of the universe, all points are iden-

tical and thus there is only a single point. In the case of the most symmetric and flat space-time

of the Special Theory of Relativity (STR), the metrical tensor is the same at every point in space-

time, so that adherents of PII must conclude, ridiculously, that Minkowski space-time consists of

a single point. PII refuted?

Quod non. Saunders (2003b) had already proposed to discern the space-time points by means

of the following relation, which relates points iff they belong to disjoint open sets:

H(p, q) iff ∃O, O′ ∈ T(M) : p ∈ O ∧ q ∈ O′
∧ O ∩ O′ = ∅ , (30)

where T(M) is a topological subset-family of the space-time manifold M, and p, q ∈ M. Only

with the requirement that M is ‘Hausdorff’ do we have a guarantee that relation H (30) is a

criterion for distinctness, so that ¬H becomes an identity-criterion.23 Relation H (30) discerns the

points weakly and is homeomorphic, which is to say that it is topologically invariant; this implies

that it is also invariant under all physically significant space-time transformations, which codify

the symmetries of space-time.

One may plausibly object that the physical significance of relation H (30) is moot: no physical

grounding of discerning relation H has been provided at all, only a mathematical one. The physi-

cal significance of the following relation is however glaringly obvious. Muller (2011) discerns the

space-time points relationally by a so-called lightcone-relation L. Let LC(p) ⊂ M be the lightcone

23Definition: space-time manifold M is Hausdorff iff for every two distinct points in M, there are two disjoint open

sets such that each open set contains one of these points and not the other, that is, relation H (30) holds for every pair

of distinct points.
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of p, the set of points that can be reached from p ∈ M by travelling not faster than light.24 Then

L(p, q) iff
(

∃ r ∈ M : r ∈ LC(p)\LC(q)
)

∨
(

∃ t ∈ M : t ∈ LC(q)\LC(p)
)

, (31)

where one disjunct would be enough because they imply each other. Lightcone-relation L (31) dis-

cerns every two space-time points weakly. Relation L is demonstrably invariant under all phys-

ically significant space-time symmetries of GTR and STR. Wüthrich (2010) has overlooked Step 2,

jumped to identity from absolute indiscernibility, and thereby has ignored relational discernibility.

A circularity worry about relations H (30) and L (31) arises as follows. Both relations rely on

sets of space-time points (open sets and lightcones); their identity relies on the identity between

their members, which are space-time points. But relations H and L were supposed to provide us

with a qualitative distinctness relation between space-time points. Vicious circle? Do relations

H (30) and L (31) ultimately rely on the identity-relation and are they therefore forbidden?

The error in this worry is that the identity between sets relies on the identity-relation between

their members. This is incorrect. The Axiom of Extensionality in set-theory is PII for sets, and

provides, in conjunction with its converse, an identity-criterion for sets that relies only on the

primitive membership-relation. For the lightcones, it becomes:

LC(q) = LC(p) iff ∀ r ∈ M : r ∈ LC(q) ←→ r ∈ LC(p) , (32)

and the same for the open sets in (30) and the regions in Ayer’s sound-tokens (27). No circularity

is involved.

4.4 Permissibility Conditions

Are there general conditions for what in a qualitative arrangement is permitted and what is for-

bidden to discern? Perhaps. We give it a try and thereby address Steps 2b and 2c in full generality

(Section 1). Forbidden to discern are:

(F0) predicates expressing trivialising properties (like containing ‘=’; see footnote 13);

(F1) predicates in which names occur;

(F2) predicates expressing properties or relations that break a symmetry of the

qualitative arrangement (as described in Step 1).

Permitted to discern are properties and relations that are not forbidden. Thus the conjunction of the

negations of (F0)–(F2) is a criterion for permissibility. We want to emphasize that banning names

(F1) is old hat, and presumably can be subsumed under trivialising (F0). We endorse (F1) some-

what reluctantly, because it is not the mere presence of names that is forbidden, but rather the

way in which names are employed in putatively discerning predicates. The symmetry require-

ment (F2) can be dug up from Saunders (2003b); it is comparatively novel and the focus of our

attention.

Summing up, in Black’s case the two spheres are absolute indiscernibles, they have no identity,

but they are relational discernibles, i.e. relationals; their distinctness comes from a spatial relation

D (9), which is permitted by our conditions (F0)–(F2), and is grounded in the structure of space,

and is therefore not ungrounded. And mutatis mutandis for Kant’s droplets, Ayer’s sound-tokens,

24Despite appearances, this relation does not rely on the presence of travellers.
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Strawson’s chessboard squares and Wüthrich’s space-time points, where the relational discernibi-

lity of the objects is grounded in the relevant structures; and the discerning relations respect the

relevant symmetries (F2). The circularity charge misfires, because it quantitative diversity as what

is to be demonstrated (question Q1), whereas what is to be demonstrated is that there is qualitative

diversity (by means of permitted properties or relations, or both) in a given situation of quantitative

diversity, so as to save PII (question Q2). For again, without being given quantitative diversity,

no threat against PII can materialize: if there is no quantitative diversity, i.e. if there is a single

object, there is not and cannot be a challenge for PII. In all threats against PII we have analysed,

where we have accepted the quantitative diversity involved of the challengers, we have found

qualitative diversity too. The Discerning Defence has been victorious; it thus seems to provide a

uniform defence of PII against all putative counter-examples we have treated.

We finally turn to the remaining case on our list, Weyl’s case of elementary particles.

5 The Quantum-Physical Universe

5.1 Quantum Mechanics

Consider two fermions of spin-1/2, 1 and 2, in their quantum-mechanical spin-state:

|Ψ〉 =
(

|1 : ↑〉 ⊗ |2 : ↓〉 − |1 : ↓〉 ⊗ |2 : ↑〉
/
√

2 ∈ C
2 ⊗ C

2 . (33)

Saunders (2006) argues that since two similar fermions are weakly discernible in state (33) by the

relation ‘has opposite spin to’, they still can be considered as material objects of sorts. Muller

and Saunders (2008) define this relation rigorously (in a way that allays the suspicion that that

the particles posses spin properties in an entangled state like |Ψ〉) and generalize this case of two

spin-1/2 fermions to composite physical systems composed of an arbitrary number of absolutely

indiscernible fermions of arbitrary spin. PII stands in the face of fermions. Although elementary

bosons may not be discerned in this fashion in all their quantum-mechanically permitted states

(e.g. in |Φ〉 (34) below), Saunders does not conclude that PII goes down after all, but that ele-

mentary bosons are not material objects of the same general kind that the fermions belong to

(‘quantum-mechanical particles’, say). There is only a single object in this case, Saunders (2006,

p. 60) concludes, a quantum field, and the alleged bosons are excitations of this field; in some

energy regimes the modes of the field can be considered as objects. The integer numbers that ap-

pear in the description of the quantum field (Fock-space) are not cardinal numbers of bosons, but

excitation levels of quantum field modes; the excitations, then, are features of the modes of the

quantum field regarded as a single physical system. In brief, Saunders answers the question in

Step 2a for bosons in the negative and therefore mounts the Summing Defence. (In Black’s case,

the Summing Defence of PII would deny there are two black spheres: there is a single poly-located

and partless object with two sphere-like features.)

Hawley (2009, p. 114) now charges Saunders with ad hoc discrimination: when it comes to

fermions, Saunders chooses the Discerning Defence for PII, and when it comes to elementary

bosons, he chooses the Summing Defence for PII. Hawley favours a uniform approach: the Sum-

ming Defence for PII in both cases. If uniformity of defence were the only virtue, Hawley would

win the day.

Another advantage of the Summing Defence, Hawley (2009, p. 114) submits — and says she

reached for in Hawley (2006) — is there is nothing about the qualitative arrangement of Weyl’s
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case that presses us to acknowledge that there are parts. Ontological Parsimony (Occam’s razor)

thus favours the Summing Defence, because this Defence needs to posit only one object, whereas

the Discerning Defence posits three objects (in both cases, let us not forget, to explain certain phe-

nomena): the two particles and their composite system.25 But then, as Hawley presumably knows

all too well (but does not raise here), there are other virtues to consider besides Uniformity and On-

tological Parsimony, and these other virtues ought to be considered because when we realize that

the afore-mentioned virtues may derive from the metaphysical prejudice that the world is uniform

and parsimonious, they lose their virtuous character, or else must live on in the borrowed robes

of pragmatism. Other if not preferable virtues are Coherence and Conservativeness, i.e. continuity

with gathered knowledge. Let us take a look at how Hawley’s Summing Defence in QM fares on

closer inspection.

First, talk of composite physical systems (wholes) and subsystems (parts) is mathematically in-

grained into the standard language of QM, by means of direct-product-spaces and subspaces of

Hilbert-spaces, and by means of state-operators and partial traces. Hawley now needs to propose

a different interpretation of that part of the language of QM, in line with her Summing Defence, or

else re-formulate QM in such a manner that direct-product-spaces and subspaces, state-operators

and partial traces disappear from QM. This is a nasty dilemma, which does not arise for pro-

ponents of the Discerning Defence. Since there is nothing about the qualitative arrangement of

Weyl’s case that presses us to engage in revisionary activities with regard to the theory of QM, the

Discerning Defence has the upper hand when it comes to Quine’s virtue of Conservativeness.

Secondly, measurements with spatially separated pieces of measurement apparatus can be per-

formed. When spin is simultaneously measured on the two particles in an entangled state like

|Ψ〉 (33) at spatially distant locations, then each measurement on a particle is a joint measurement

of spin and position, and then, just after the moment of measurement, one particle is located (with

quantum-mechanical certainty) in the volume of one piece of measurement apparatus (µ1), and

the other particle in that of the other piece (µ2).26 At that moment we have a situation very similar

to Black’s case: two disjoint, spatial regions occupied by two objects, µ1 and µ2. In our world, µ1

and µ2 will always be absolutely discernible, and hence intrinsically discernible, or extrinsically

discernible by relations to other objects in the world. But let us assume, for the sake of argument,

we are in a world where µ1 and µ2 are absolutely indiscernible and we have two bosons having

spin-1, such as two photons, call them again 1 and 2, in a pure symmetric entangled spin-state:

|Φ〉 =
(

|1 : ↑〉 ⊗ |2 : ↑〉 + |1 : ↓〉 ⊗ |2 : ↓〉
)

/
√

2 ∈ C
3 ⊗ C

3 = C
9 . (34)

Then both µ1 and µ2 register the same measurement outcome for spin when jointly measured

(perfect correlation): both spin up (↑) or both spin down (↓). When it is odd not to conclude in

Black’s case that we have two objects, Coherence demands that we should also not conclude it

in this elementary-particle case: µ1 and µ2 are weakly discerned by the distance-relation D (9)

and so are the measured bosons.27 For the Discerning Defence there is no problem here, because

25We gloss over the dubious token-interpretation of Occam’s razor at work here, rather than a type-interpretation,

which arguably is the proper interpretation.
26To the best of my knowledge, this was first expounded by Muller (1997, p. 244). Without or before measurement,

there is no certainty, so that the celebrated argument of Einstein, Podolsky and Rosen against the completeness of QM

falters (Muller 1997, pp. 244–245).
27Hawley (2009, p. 113): “But the problem with scattered simples is that it is hard to see what more could be required

for the existence of an object than existence of a maximally connected portion of matter; that is, it is hard to see what

prevents each of the spherical regions from exactly containing one object.” Hear hear.
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according to it there were two particles all along. But the Summing Defence is in trouble, for

it has to bite the bullet of oddity or else admit there are genuine parts just after the moment of

measurement, but not before. Also, after the measurement process has ended, the parts pop out

of existence again, because their position probability distribution unavoidably diverges all over

space, so that the ‘particle-like’ features of the wave-function have disappeared and there are no

spatial facts any longer that ground their distinctness in the structure of the ambient space; yet

the quantum-mechanical description, however, remains one of two particles. More revisionary

labour in store for the Summing Defence. The virtues of Coherence and Conservativeness speak

uno tenore in favour of the Discerning Defence.

To conclude, the Discerning Defence trumps the Summing Defence. Recent arguments in the

philosophy of physics conclude that in the context of QM, fermions and bosons alike are weakly

discernible by physically significant relations that are invariant under the relevant symmetry-

transformations of QM.28 This means that the Discerning Defence is available in both cases, fermions

and bosons. The Summing Defence now loses not only its edge over the Discerning Defence with

respect to being the only uniform defence of PII in Weyl’s case (in QM), but it furthermore evokes

problems that the Discerning Defence does not evoke.

5.2 Quantum Field Theory

When we consider Quantum Field Theory (QFT), rather than QM, the plot thickens. The proper QFT-

description of what is called in the language of QM ‘composite systems of similar fermions’ and

‘composite systems of similar bosons’ proceeds by means of a fermionic and a bosonic quantum

field, respectively. This quantum field on space-time is a single object.29

If we, with Saunders, consider PII applicable to modes of this field, which modes we take as the

putative ‘objects’ for PII to apply to, we are answering the question in Step 2a in the affirmative.

The Discerning Defence enters again.

If we, against Saunders, reject his particle view of the quantum field, and strengthen this move

by an appeal to Malament’s Theorem (1996) concerning the impossibility of a relativistic quantum

theory of localisable particles, and to Halvorson and Clifton’s Corollary (2002) that a particle-

interpretation of QFT is impossible, then, in this qualitative arrangement, PII is only applicable to

(the space-time points and to) the single quantum field. There is, then, in QFT not even an apparent

conflict with PII (as there is in QM); here the Summing Defence wards off the putative conflict. In

QFT, PII thus is manifestly safe, and both fermionic and bosonic fields are treated uniformly.

In spite of these impossibility results, working physicists keep on talking about particles, in QM

as well as in QFT. Then either working physicists have a different concept in mind than the one

that is proved impossible to maintain in QFT, or there are lots of cases, notably in the universe we

inhabit, where the concept of a particle, notably as a probabilistically localised object with mass-energy,

remains applicable, as Saunders (1994) maintains. In those cases, the Discerning Defence is apt; in

cases where the particle-concept does not apply, the Summing Defence will keep PII safe. Thus a

non-uniform defence of PII transpires.

28Muller and Seevinck (2009). There are pockets of resistance: Dieks and Lubberding (2011) operate with a different

‘particle conception’. They believe that particles are features of particular wave-functions, in which case the Summing

Defence applies. PII is not in danger in such an interpretation and we therefore gloss over it.
29In the logical, metaphysically thin sense of ‘object’ to be sure: it is not a material object in any familiar sense of this

word. For philosophical struggles with the quantum field, see Kuhlman et al. (2002, pp. 127–132, 145–161, 181–206).
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6 Exitum — Relationals

Let us recapitulate the quantum case. When we compare the Discerning Defence with the Sum-

ming Defence of PII, uniformity of response seemed to favour the Summing Defence, according to

Hawley. The ground for one opponent of the Discerning Defence and proponent of the Summing

Defence (Saunders) was the difference between fermions and bosons: in the case of two fermions,

the Discerning Defence was appropriate because the two fermions turned out to be weakly discer-

nible; and in the case of bosons, it was denied that there are objects to begin with, because there

was only a single quantum field with excitations. Saunders (2008) smoothly slides here from QM

to QFT, which are two quantum theories having quite different prima facie ontologies. We have ar-

gued that as long as we remain in QM, fermions as well as bosons are weakly discernible objects,

so that, contra Hawley, the Discerning Defence is a uniform defence of PII. We have further argued

that the Summing Defence in QM is, in fact, severely problematic, in spite of its uniformity. Co-

herence and Conservatism speak in favour of the Discerning Defence, which thus has the upper

hand in QM. Yet as soon as we leave QM and move to QFT, either (i) the Summing Defence is the

uniform defence of PII, because then there is a single object in every case, namely a quantum field;

or (ii) a mixed defence transpires: Discerning Defence whenever the concept of a particle applies

and Summing Defence whenever it does not apply (Step 2a), where the application condition in-

volves energy regimes. In the other cases on our list of challenges to PII, notably Kant’s droplets,

Black’s iron spheres, Ayer’s sound-tokens, Strawson’s chessboard squares and Wüthrich’s space-

time points, the Discerning Defence turns out to be triumphant across the board. All advocates of

these alleged counter-examples to PII have leaped from Step 1 to Step 3 and have paid insufficient

attention to Step 2, as a result of which they overlooked the discerning power of relations. And

nearly all propounders of the circularity objection against relational discernment have confused

questions Q1 and Q3 (p. 7).

We have attempted to establish that PII stands tall without exception as far as the physical

universe is concerned. In all cases we have advanced relations to mount a Dicerning Defence of

PII. Whence the title of this paper. We end with a few reflexions.

Does being a relational belong to the essence of elementary particles? If so, then they should be

relationals in at least all quantum-mechanically possible worlds, rather than be indiscernibles or

individuals in other worlds, for that is what it means to be a relational essentially. Well, elementary

particles can be individuals. Think of a world with a single Hydrogen atom as its only material

inhabitant: the proton (fermion) and the electron (fermion) are absolutely discernible by their

different mass and therefore are individuals. In a world with only a single Helium atom, its two

electrons are relationals again; the proton remains an individual. Are elementary particles, then,

always either relationals or individuals per world? Perhaps. All we can then claim to have shown

is that elementary particles necessarily are discernibles. If we assign a quantum state to an entire

world, then due the permutation-symmetry of QM, all electrons in a world, say, are in the same

physical state (partial trace), so that they share all their properties and their state, and thefore are

not individuals but relationals, with the exception of worlds like the one with the lonely Hydrogen

atom.

The second reflexion we alluded to at the end of Section 2: diachronic identity and persis-

tence conditions (Wiggins 2010). Can relationals meet them? When we have a physical system

composed of N absolutely indiscernible particles at time t, then not a single particle can be re-

identified at a later time t′ > t because it cannot be identified at all: they are not individuals but

23



relationals. Elementary particles have no genidentity, as Reichenbach (1956, p. 226) put it. The

relations we have employed to discern particles weakly use the quantum-mechanical state at a

time and thefore discern them synchronically. Relations to discern particles diachronically are not

forthcoming in QM. There are no persistence conditions for single particles. But there are such

conditions when we consider the physical system they compose. When we still have N parti-

cles at time t > t′, for example by determining the mass of the composite system at time t and

t′ and comparing those masses, and these masses turn out to be equal, we may safely conclude

that all N particles have persisted. Their persistence is guaranteed by their existence. As soon as

we move to QFT, we loose this guaranatee, due the possibility of pair annihilation (one electron

being wiped from the face of the cosmos by a positron) and pair creation (two photons creating

an electron-positron pair) — bracketing the issue of wether we can speak about particles at all in

QFT. Existence then no longer guarantees persistence.

The third and final reflexion concerns metaphysics generally. Prominent metaphysicians like

Lowe (1998, p. 206; 2006, pp. 3–5) and Cocchiarella (2007, pp. xiii–xv) hold that one of the central

aims of metaphysics is to erect a framework of metaphysical concepts — ontological categories

included —, to deduce conceptual truths, and to classify the entities of experience and the posits of

science. Concerning ontology, then metaphysics tells us what there can be, not what there is — which

seems up to our experience and up to science. If this is correct, then all metaphysical knowledge

is conceptual. We advance another possible aim of contemporary metaphysics besides the purely

conceptual ones mentioned above: to find non-conceptual truths of utter generality about the

nature of the universe. This paper presents an example of this: we have excellent reasons to believe

that PII (5) is such a general truth about the universe, and those reasons are that PII emerges

as a theorem in all fundamental theories of physics. This provides the basis for proclaiming PII

to be a nomic necessity.30 Thus PII is not some metaphysical principle we must assume in or

presuppose by physical theories for some metaphysical reason or other; it is a piece metaphysical

knowledge, justified deductively by modern physical theories. PII is a metaphysical crown on our

most fundamental knowledge of the universe.31
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