
Order-Revealing Encryption: New Constructions,

Applications, and Lower Bounds

Kevin Lewi
Stanford University

David J. Wu
Stanford University

Abstract

In the last few years, there has been much interest in developing methods to search over
encrypted data. In the case of range queries, a simple solution is to encrypt the contents of
the database using an order-preserving encryption (OPE) scheme (i.e., an encryption scheme
that supports comparisons over encrypted values). However, Naveed et al. (CCS 2015) recently
showed that OPE-encrypted databases are extremely vulnerable to “inference attacks.”

In this work, we consider a related primitive called order-revealing encryption (ORE), which
is a generalization of OPE that allows for stronger security. We begin by constructing a new ORE
scheme for small message spaces which achieves the “best-possible” notion of security for ORE.
Next, we introduce a “domain-extension” technique and apply it to our small-message-space
ORE. While our domain-extension technique does incur a loss in security, the resulting ORE
scheme we obtain is more secure than all existing (stateless and non-interactive) OPE and ORE
schemes which are practical. All of our constructions rely only on symmetric primitives. As
part of our analysis, we also give a tight lower bound for OPE and show that no efficient OPE
scheme can satisfy best-possible security if the message space contains just three messages. Thus,
achieving strong notions of security for even small message spaces requires moving beyond OPE.

Finally, we examine the properties of our new ORE scheme and show how to use it to construct
an efficient range query protocol that is robust against the inference attacks of Naveed et al. We
also give a full implementation of our new ORE scheme, and show that not only is our scheme
more secure than existing OPE schemes, it is also faster: encrypting a 32-bit integer requires
just 55 microseconds, which is more than 65 times faster than existing OPE schemes.

1 Introduction

Today, large corporations and governments collect and store more personal information about
us than ever before. And as high-profile data breaches on companies and organizations (such as
Anthem [AC15], eBay [Kel14], and the U.S. Voter Database [FV15]) become startlingly common, it
is imperative that we develop practical means for securing our personal data in the cloud.

One way to mitigate the damage caused by a database breach is to encrypt the data before
storing it in the cloud. This, however, comes at the price of functionality: once data is encrypted, it
is more difficult to execute searches over the data without first decrypting the data. As a result,
security researchers have turned to developing methods that both protect the contents of the
database, as well as support efficient operations, such as search, over the encrypted data.

Property-preserving encryption. One way to support searching over an encrypted database is
through property-preserving encryption (PPE) [BCLO09, PR12]. A PPE scheme is an encryption

1

scheme where the ciphertexts reveal a particular property on their underlying plaintexts. Ex-
amples include deterministic encryption, where the ciphertexts reveal equality between messages,
and order-preserving encryption (OPE) [AKSX04, BCLO09], where the ciphertexts reveal the
ordering of messages. Deterministic and order-preserving encryption schemes have been used in
CryptDB [PRZB11], and also commercially by SkyHigh Networks, CipherCloud, Google Encrypted
BigQuery, and others. The main appeals of PPE for encrypting relational databases are that
they are lightweight, and hence, can be deployed with minimal changes to existing databases. For
instance, in an OPE scheme, the ciphertexts themselves are numeric and the order of the ciphertexts
precisely coincides with the order of the plaintexts. Thus, searching over a column encrypted using
OPE is identical to searching over an unencrypted column.

Limitations of PPE and OPE. While PPE, and in particular, OPE, provides a practical solution
for searching on encrypted data, these schemes also leak significant amounts of information about
their underlying plaintexts. For instance, Boldyreva et al. [BCO11] showed that a single OPE
ciphertext leaks half of the most significant bits of its underlying plaintext!

More recently, Naveed et al. [NKW15] described a series of inference attacks on relational
databases encrypted using deterministic and order-preserving encryption schemes. They show that,
given just a data dump of an encrypted database along with auxiliary information from a public
database, an attacker can successfully recover nearly all of the underlying plaintext values from
their respective ciphertexts.

Our goals. Motivated by the limited security of existing OPE schemes and the emerging threat
of inference attacks on databases encrypted using PPE, our goal in this work is to construct a
practical property-preserving encryption for comparisons that achieves stronger security guarantees
compared to existing OPE schemes while at the same time providing robustness against offline
inference attacks, such as those considered by Naveed et al.

Order-revealing encryption. To address the limitations of OPE, we rely on a closely-related,
but more flexible, notion called order-revealing encryption (ORE) [BLR+15, CLWW16]. In this
work, we focus exclusively on non-interactive and stateless schemes—these are the only schemes we
know of that are deployed on a large scale. We survey the work on alternative solutions in Section 8.

In an OPE scheme, both the plaintext and ciphertext spaces must be numeric and well-ordered.
Moreover, the ciphertexts themselves preserve the order of the underlying plaintexts. While this
property makes OPE suitable for performing range queries on encrypted data, it also limits the
achievable security of OPE schemes. In their original work, Boldyreva et al. [BCLO09] introduced
the notion of “best-possible” semantic security for OPE, which states that the ciphertexts do not
leak any information beyond the ordering of the plaintexts. Unfortunately, in the same work and a
follow-up work [BCO11], they show that any OPE scheme with best-possible security must have
ciphertexts whose length grows exponentially in the length of the plaintexts. Popa et al. [PLZ13]
further extended this lower bound to apply to stateful, interactive OPE schemes. These lower
bounds rule out any hope of constructing efficient OPE schemes for large message spaces. As a
compromise, Boldyreva et al. [BCLO09] introduced a weaker notion of security (POPF-CCA) for
OPE schemes, but it is difficult to quantify the leakage of schemes which are POPF-CCA secure.

Recently, Boneh et al. [BLR+15] introduced the notion of ORE, which does not place any
restrictions on the structure of the ciphertext space. An ORE scheme simply requires that
there exists a publicly computable function that compares two ciphertexts. By relaxing the con-
straint on the ciphertext space, the Boneh et al. scheme is the first (non-interactive and stateless)

2

scheme to achieve best-possible semantic security. However, their construction relies on multilinear
maps [BS03, GGH13a, CLT13], and is extremely far from being practically viable. More recently,
Chenette et al. [CLWW16] introduced a new security model for ORE that explicitly models the
information leakage of an ORE scheme. They also give the first efficiently-implementable ORE
scheme. However their scheme also reveals the index of the first bit that differs between two
encrypted values.

1.1 Extending ORE: The Left/Right Framework

Before delving into our main contributions, we first describe the “left/right” framework for order-
revealing encryption that we use in this work. Our notions are adapted from the definitions of
multi-input functional encryption [GGG+14, BLR+15], where the encryption function operates on
different “input slots.” In a multi-input functional encryption scheme (of which ORE is a special
case), information about plaintexts is only revealed when one has a ciphertext for every slot.

We now describe how this notion of encrypting to different input slots applies to order-revealing
encryption. In a vanilla ORE scheme, there is a single encryption algorithm that takes a message
and outputs a ciphertext. The comparison algorithm then takes two ciphertexts and outputs the
comparison relation on the two underlying messages. In the left/right framework, we modify this
interface and decompose the encryption function into two separate functions: a “left” encryption
function and a “right” encryption function. Each of these encryption functions takes a message and
the secret key, and outputs either a “left” or a “right” ciphertext, respectively. Next, instead of
taking two ciphertexts, the comparison function takes a left ciphertext and a right ciphertext, and
outputs the comparison relation between the two underlying messages (encrypted by the left and
right ciphertexts). We note that any ORE scheme in the left/right framework can be converted to
an ORE scheme in the usual sense by simply having the ORE encryption function output both the
left and right ciphertexts for a given message.

This left/right notion is a strict generalization of the usual notion of order-revealing encryption,
and thus, can be used to strengthen the security guarantees provided by an ORE scheme. In
particular, a key advantage of working in this framework is that we can now define additional
security requirements on collections of left or right ciphertexts taken in isolation. For example, in
both of the ORE constructions we introduce in this work (Sections 3 and 4), a collection of right
ciphertexts taken individually is semantically secure—that is, no information about the underlying
plaintexts (including their order relations) is revealed given only a collection of right ciphertexts. In
Section 5, we describe precisely how semantic security of the right ciphertexts can be leveraged to
obtain a range query protocol that is robust against offline inference attacks. We also note that the
schemes presented in this work are the first practical ORE constructions in the left/right framework
where one side (the right ciphertexts) achieves semantic security.

Finally, we also note that the left/right framework extends naturally to property-preserving
encryption schemes, and thus, opens up many new avenues of developing more secure cryptographic
primitives for searching on encrypted data.

1.2 Our Contributions

In this work, we describe a new ORE scheme that achieves stronger security compared to all existing
practical OPE and ORE schemes, as well as a method to leverage our new ORE scheme to efficiently

3

perform range queries while providing robustness against inference attacks. We now highlight our
main contributions.

An efficient small-domain ORE. We begin by giving the first construction of a practical, small-
domain ORE scheme with best-possible semantic security that only relies on pseudorandom functions
(PRFs).1 The restriction to “small” domains is due to the fact that the ciphertext length in our
scheme grows linearly in the size of the plaintext space. All existing constructions of ORE that
achieve best-possible security in the small-domain setting rely on pairings [KLM+16], general-purpose
functional encryption [AJ15, BKS15], or multilinear maps [BLR+15], and thus, are not yet practical.
Our particular construction is inspired by the “brute-force” construction of functional encryption
by Boneh et al. [BSW11, §4.1]. They show that functional encryption with respect to a “small”
(i.e., polynomially-sized) class of functions can be constructed using only symmetric primitives. We
adapt these methods to show how best-possible ORE (and more generally, functional encryption)
can be efficiently constructed from symmetric primitives when the message space is small. Our
construction is described in Section 3.

Domain extension for ORE. Of course, a small-domain ORE by itself is not very useful for
range queries. Our second contribution is a recasting of the Chenette et al. [CLWW16] ORE
construction as a general technique of constructing a large-domain ORE from a small-domain ORE.
The transformation is not perfect and incurs some leakage. Applying this domain-extension technique
to our new small-domain ORE, we obtain an ORE scheme whose leakage profile is significantly
better than that of the Chenette et al. construction. In particular, our new ORE scheme operates
on blocks (where a block is a sequence of bits) and the additional leakage in our scheme is the
position of the first block in which two messages differ. For instance, if blocks are byte-sized (8 bits),
then our ORE scheme only reveals the index of the first byte that differs between the two messages
(and nothing more). In contrast, the Chenette et al. construction always reveals the index of the
first bit that differs.2 Thus, our new ORE construction provides significantly stronger security, at
the cost of somewhat longer ciphertexts.

Encrypted range queries. While our new ORE scheme can almost3 be used as a drop-in
replacement for OPE to enable searching over an encrypted database, the scheme remains susceptible
to an offline inference attack. To carry out their inference attacks, Naveed et al. [NKW15] rely on
the fact that OPE-encrypted ciphertexts enable equality tests and comparisons (by design). In our
setting, we take advantage of the special structure of the ciphertexts in our ORE scheme to obtain a
way of supporting range queries on encrypted data while protecting against offline inference attacks.

Our range query protocol critically relies on the fact that our ORE scheme is a left/right ORE
scheme (Section 1.1). More precisely, a ciphertext ct in our ORE scheme naturally decomposes into a
left component ctL and a right component ctR. To compare two ciphertexts, the comparison function
only requires the left component of one ciphertext and the right component of the other. More
importantly, the right components have the property that they are semantically-secure encryptions
of their messages. To build an encrypted database system with robustness against range queries, the
database server only stores the “right” ciphertexts (in sorted order). To perform a range query, the

1We prove security in the random oracle model, but it is possible to replace the random oracle with a PRF to show
security under a slightly weaker indistinguishability-based notion of security.

2While Chenette et al. also describe a multi-bit generalization of their scheme, the generalized version leaks more
information, namely the difference of the values in the first differing block. In our construction, only the index and
nothing else is revealed.

3We say “almost,” since using ORE in place of OPE would require writing a custom comparator for database elements.

4

client provides the “left” ciphertexts corresponding to its range. The server can respond to the range
query as usual since comparisons are possible between left and right ciphertexts. Robustness against
offline inference attacks is ensured since the database dump only contains the right ciphertexts
stored on the server, which are semantically-secure encryptions of their underlying messages. We
describe our method in greater detail in Section 5.

New lower bounds for OPE. The core building block in our new ORE construction is a
small-domain ORE with best-possible security. This raises the natural question of whether we
could construct a small-domain OPE scheme that also achieves best-possible security. Previously,
Boldyreva et al. [BCLO09, BCO11] and Popa et al. [PLZ13] gave lower bounds that ruled out
schemes where the ciphertext space is subexponential in the size of the plaintext space. But when
the plaintext has size poly(λ) for a security parameter λ, there could conceivably exist an efficient
OPE scheme with best-possible security. In this work, we show that this is in fact impossible. Using
a very different set of techniques compared to [BCLO09, BCO11, PLZ13], we show (Section 6) that
no efficient (stateless and non-interactive) OPE scheme can satisfy best-possible security, even
when the message space contains only 3 elements! Thus, to achieve strong security even in the
small-domain setting, it is necessary to consider relaxations of OPE, such as ORE.

Experimental evaluation. Finally, we implement and compare our new ORE scheme to the ORE
scheme by Chenette et al. [CLWW16] and the OPE scheme by Boldyreva et al. [BCLO09]. For
typical parameters, our new ORE scheme is over 65 times faster than the Boldyreva et al. scheme,
but has longer ciphertexts. For example, when working with byte-size blocks, encrypting a 32-bit
integer requires just 55 µs and produces a ciphertext that is 224 bytes. Typically, range queries
are not performed over extremely long fields, so the extra space overhead of our scheme is not
unreasonable. Given the superior security conferred by our scheme (in both the online and offline
settings), and faster throughputs, our ORE scheme is a very compelling replacement for existing
OPE schemes.

2 Preliminaries

For n ∈ N, we write [n] to denote the set of integers {1, . . . , n}. If P is a predicate on x, we write
1(P(x)) to denote the indicator function for P: that is, 1(P(x)) = 1 if and only if P(x) = 1, and
0 otherwise. For a distribution D, we write x ← D to denote a draw from D. For a finite set S,
we write x

r←− S to denote a uniformly random draw from S. In this work, we write λ to denote a
security parameter. We say a function f(λ) is negligible in λ if f = o(1/λc) for all c ∈ N. We write
negl(λ) to denote a negligible function in λ and poly(λ) to denote a polynomial in λ. We say that
an event occurs with negligible probability if the probability of the event occurring is negl(λ), and
that it occurs with overwhelming probability if the complement of the event occurs with negligible
probability. For two bit strings x, y ∈ {0, 1}∗, we write x‖y to denote the concatenation of x and y.

For two distributions D1,D2, we write D1
c
≈ D2 to denote that D1 and D2 are computationally

indistinguishable (i.e., no efficient adversary can distinguish D1 from D2 except with negligible

probability). We write D1
s
≈ D2 if D1 and D2 are statistically indistinguishable (i.e., the statistical

distance between D1 and D2 is negligible). Finally, we write D1 ≡ D2 to denote that D1 and D2 are
identical distributions.

We also review the standard definition of pseudorandom functions (PRFs) [GGM86]. A function
F : K × X → Y is a secure PRF if no efficient adversary can distinguish (except perhaps with

5

negligible probability) the outputs (on arbitrary points chosen adaptively by the adversary) of F (k, ·)
for a randomly chosen k

r←− K from that of a truly random function f(·) from X to Y. Similarly, a
function F : K ×X → X is a secure pseudorandom permutation (PRP) if for all k ∈ K, F (k, ·) is a

permutation on X and no efficient adversary can distinguish the outputs of F (k, ·) where k
r←− K

from the outputs of π(·) where π is a random permutation on X .

2.1 Order-Revealing Encryption

An order-revealing encryption (ORE) scheme [BLR+15, CLWW16] is a tuple of algorithms Π =
(ORE.Setup,ORE.Encrypt,ORE.Compare) defined over a well-ordered domain D with the following
properties:

• ORE.Setup(1λ)→ sk: On input a security parameter λ, the setup algorithm outputs a secret
key sk.

• ORE.Encrypt(sk,m) → ct: On input a secret key sk and a message m ∈ D, the encryption
algorithm outputs a ciphertext ct.

• ORE.Compare(ct1, ct2)→ b: On input two ciphertexts ct1, ct2, the compare algorithm outputs
a bit b ∈ {0, 1}.

Correctness. We say an ORE scheme over a well-ordered domain D is correct if for sk ←
ORE.Setup(1λ) and all messages m1,m2 ∈ D,

Pr[ORE.Compare(ct1, ct2) = 1(m1 < m2)] = 1− negl(λ).

Remark 2.1 (ORE Decryption). Our schema for ORE does not include a decryption function, but
as noted by Chenette et al. [CLWW16, Remark 2.3], this is without loss of generality. In particular,
we can construct a decryption algorithm ORE.Decrypt using the ORE.Encrypt and ORE.Compare
algorithms (by performing a binary search).

Security. The “best-possible” notion of security for order-revealing encryption is the notion
of indistinguishability under an ordered chosen plaintext attack (IND-OCPA) introduced by
Boldyreva et al. [BCLO09]. The IND-OCPA notion of security is a generalization of semantic
security [GM84], and states that no efficient adversary can distinguish between the encryptions of
any two sequences of messages, provided that the ordering of the messages in the two sequences is
identical. We give the formal definition in Definition 6.1.

Due to the apparent difficulty in constructing efficient schemes that satisfy IND-OCPA security,
Chenette et al. [CLWW16] introduced a weaker simulation-based notion of security for ORE schemes
that allows for some leakage beyond just the ordering of the plaintexts. We recall their definition
here.

Definition 2.2 (ORE with Leakage [CLWW16]). Let Π = (ORE.Setup,ORE.Encrypt,ORE.Compare)
be an ORE scheme, and let A = (A1, . . . ,Aq) be an adversary for some q = poly(λ). Let
S = (S0,S1, . . . ,Sq) be a simulator, and let L(·) be a leakage function. We define the experiments
REALoreA (λ) and SIMore

A,S,L(λ) as follows:

6

REALoreA (λ):

1. sk← ORE.Setup(1λ)
2. (m1, stA)← A1(1λ)
3. c1 ← ORE.Encrypt(sk,m1)
4. for 2 ≤ i ≤ q:

(a) (mi, stA)← Ai(stA, c1, . . . , ci−1)
(b) ci ← ORE.Encrypt(sk,mi)

5. output (c1, . . . , cq) and stA

SIMore
A,S,L(λ):

1. stS ← S0(1λ)
2. (m1, stA)← A1(1λ)
3. (c1, stS)← S1(stS ,L(m1))
4. for 2 ≤ i ≤ q:

(a) (mi, stA)← Ai(stA, c1, . . . , ci−1)
(b) (ci, stS)← Si(stS ,L(m1, . . . ,mi))

5. output (c1, . . . , cq) and stA

We say that Π is a secure ORE scheme with leakage function L(·) if for all polynomial-size adversaries
A = (A1, . . . ,Aq), there exists a polynomial-size simulator S = (S0,S1, . . . ,Sq) such that the outputs
of the two distributions REALoreA (λ) and SIMore

A,S,L(λ) are computationally indistinguishable.

Remark 2.3 (Best-Possible Security). The best-possible notion of simulation-security is security
with respect to the leakage function that only reveals the ordering of the plaintexts. This is the
minimal leakage possible from an order-revealing encryption scheme. In particular, we define Lcmp
as follows:

Lcmp(m1, . . . ,mt) = {(i, j,cmp(mi,mj) | 1 ≤ i < j ≤ t)} ,

where cmp(mi,mj) is the comparison function that outputs −1 if mi < mj , 0 if mi = mj and 1 if
mi > mj .

3 ORE for Small Domains

The order-revealing encryption in [CLWW16] reveals a significant amount of information, namely,
the index of the first bit position that differs between two encrypted plaintexts. In this work, we
show how to construct an ORE scheme that only leaks the first block that differs, where a block is a
collection of one or more bits. For instance, we can construct an ORE scheme that only reveals the
first byte that differs between two encrypted plaintexts, and nothing more.

The starting point for our construction is a “small-domain” ORE scheme with best-possible
simulation security. The limitation is that the length of the ciphertexts in our ORE scheme grows
linearly with the size of the message space, hence the restriction to small (polynomially-sized)
domains. We show in Section 4 how to extend our small-domain ORE to obtain an order-revealing
encryption scheme over large domains (i.e., exponentially-sized) that leaks strictly less information
compared to the scheme by Chenette et al. [CLWW16].

As described in Section 1.1, we give our ORE construction in the left/right framework where we
decompose the ORE.Encrypt function into two separate functions: ORE.EncryptL and ORE.EncryptR.
We refer to them as the “left encryption” and “right encryption” functions, respectively. Our particu-
lar construction has the property that only “left ciphertexts” can be compared with “right ciphertexts.”
Note that this is without loss of generality and we can recover the usual notion of ORE by simply defin-
ing the output of ORE.Encrypt(sk,m) to be the tuple (ORE.EncryptL(sk,m),ORE.EncryptR(sk,m)).

3.1 Small-Domain ORE Construction

We begin with a high-level overview of our construction. Our scheme is defined with respect to a
plaintext space [N] where N = poly(λ). First, we associate each element x ∈ [N] in the domain
with an encryption key kx. A (right) ciphertext for a value y ∈ [N] consists of N encryptions of

7

the comparison output cmp(x, y) between y and every element x ∈ [N] in the domain, where the
value cmp(x, y) is encrypted under kx. The left encryption of a value x is simply the encryption
key kx. Given kx and an encryption of cmp(x, y) under kx, the evaluator can decrypt and learn the
comparison bit cmp(x, y). The values of the other comparison bits are hidden by semantic security
of the encryption scheme. Note, however, that we still need a way for the evaluator to determine
which of the N ciphertexts is encrypted under kx without learning the value of x. To ensure this,
we sample a random permutation π on the domain [N] during setup. The components in the right
ciphertexts are then permuted according to π and the left encryption of x includes the permuted
position π(x). Given π(x), the evaluator learns which component in the right ciphertext to decrypt,
but learns nothing about x. Finally, to show simulation security, we require a “non-committing”
encryption scheme, and for this, we rely on a random oracle [BR93].4

Construction. Let [N] be the message space. Let F : {0, 1}λ × {0, 1}λ → {0, 1}λ be a secure PRF
and H : {0, 1}λ × {0, 1}λ → Z3 be a hash function (modeled as a random oracle in the security

proof). Let cmp be the comparison function from Remark 2.3. Our ORE scheme Π
(s)
ore is defined as

follows:

• ORE.Setup(1λ). The setup algorithm samples a PRF key k
r←− {0, 1}λ for F , and a uniformly

random permutation π : [N]→ [N]. The secret key sk is the pair (k, π).

• ORE.EncryptL(sk, x). Write sk as (k, π). The left encryption algorithm computes and returns
the tuple ctL = (F (k, π(x)), π(x)).

• ORE.EncryptR(sk, y). Write sk as (k, π). First, the right encryption algorithm samples a

random nonce r
r←− {0, 1}λ. Then, for each i ∈ [N], it computes the value

vi = cmp(π−1(i), y) +H(F (k, i), r) (mod 3).

Finally, it outputs the ciphertext ctR = (r, v1, v2 . . . , vN).

• ORE.Compare(ctL, ctR). The compare algorithm first parses

ctL = (k′, h) and ctR = (r, v1, v2, . . . , vN),

and then outputs the result vh −H(k′, r) (mod 3).

Correctness. Let sk = (k, π) ← ORE.Setup(1λ), and take any x, y ∈ [N]. Define ciphertexts

ct
(x)
L = (k′, h) ← ORE.EncryptL(sk, x) and ct

(y)
R = (r, v1, . . . , vN) ← ORE.EncryptR(sk, y), Then, we

have

ORE.Compare(ct
(x)
L , ct

(y)
R) = vh −H(k′, r)

= cmp(π−1(h), y) +H(F (k, h), r)−H(k′, r)

= cmp(π−1(π(x)), y) +H(F (k, π(x)), r)−H(F (k, π(x)), r)

= cmp(x, y) ∈ Z3,

4We believe we can replace the random oracle with a PRF if we aim to prove an indistinguishability notion of security
for our construction. For simplicity of presentation in this paper, we work with a simulation-based definition and
prove security in the random oracle model.

8

Note that cmp(x, y) provides the same amount of information as 1(x < y) and 1(y < x), so
correctness follows.

Space usage. Before we give our formal security analysis (Section 3.2), we first characterize the
length of the ciphertexts in our ORE scheme for a message space of size N . The left ciphertexts
ctL in our scheme consists of a PRF key and an index, which are λ+ dlogNe bits long. The right
ciphertexts ctR consists of a nonce, together with N elements in Z3, which can be represented
using λ + dN log2 3e bits. Thus, a complete ciphertext consists of 2λ + dlogNe+ dN log2 3e bits.
However, as we note in the following remark, it is possible to obtain shorter ciphertexts if we allow
the comparison algorithm to take the full ciphertext (ctL, ctR) as opposed to only the left half of the
first ciphertext and the right half of the second ciphertext. Thus, when using the construction as a
pure ORE scheme, we can obtain shorter ciphertexts. When leveraging our ORE scheme to build a
range query system (Section 5), we will exploit the fact that comparisons can be performed given
just the left component of one ciphertext and the right component of the other.

Remark 3.1 (Shorter Ciphertexts). For a domain of size N , the right ciphertexts in our ORE
construction contain N elements of Z3. Suppose instead we replaced the comparison function cmp

with a function cmp′ where cmp′(x, y) = 1 if x ≤ y and 0 otherwise. Then, a left encryption ct
(x)
L

of x and a right encryption ct
(y)
R of y can be used to compute cmp′(x, y), or equivalently, whether

x ≤ y. If the comparison algorithm takes as input ct(x) =
(
ct

(x)
L , ct

(x)
R

)
and ct(y) =

(
ct

(y)
L , ct

(y)
R

)
,

then it can compute both cmp′(x, y) and cmp′(y, x). This means that given ct(x) and ct(y), the
comparison algorithm can still determine if x < y, x = y, or x > y. With this modification, the
right ciphertexts in our scheme have length N rather than dN log2 3e.

Remark 3.2 (Beyond Comparisons). By substituting an arbitrary bivariate function f(x, y) for
the comparison function cmp in our construction, we obtain an encryption scheme where any two
ciphertexts ct(x) and ct(y) encrypting messages x and y, respectively, reveal f(x, y). Moreover,
by the security argument given in the proof of Theorem 3.3, we have that ct(x) and ct(y) reveal

nothing more than the function value f(x, y) and the equality predicate x
?
= y. Note that equality is

revealed in our construction since the left ciphertexts are deterministic. Our construction can thus
be viewed as a general-purpose property-preserving encryption for two-input functionalities [PR12]
or a two-input functional encryption scheme [GGG+14, BLR+15] that leaks equality. Because the
length of the ciphertexts in our construction grow linearly in the size of the domain, our construction
is limited to functions over a polynomially-sized domain. However, in contrast to other schemes that
rely on primitives such as indistinguishability obfuscation [GGG+14], multilinear maps [BLR+15],
or pairings [KLM+16], our construction has the appealing property that it relies only on symmetric
primitives, namely, PRFs.

3.2 Proof of Security

We now prove our main security theorem for this section.

Theorem 3.3. The ORE scheme Π
(s)
ore is secure with the best-possible leakage function Lcmp from

Remark 2.3 assuming that F is a secure PRF and H is modeled as a random oracle.

Proof. Let A = (A1, . . . ,Aq) where q = poly(λ) be an efficient adversary for the ORE security game
(Definition 2.2). To show security, we construct an efficient simulator S = (S0, . . . ,Sq) such that the
two distributions REALoreA (λ) and SIMore

A,S,Lcmp(λ) are computationally indistinguishable.

9

Description of the simulator. We begin by describing the simulator S. In the security proof,
we model H as a random oracle. Thus, in the ideal experiment, the simulator is also responsible for
answering queries to the random oracle. First, on input the security parameter 1λ, the simulator
algorithm S0 initializes the following tables which will be used to ensure consistency throughout the
simulation:

• The table Tro : {0, 1}λ × {0, 1}λ → Z3 used to maintain the input-output mappings for the
random oracle.

• The table Tkeys : {0, 1}λ → [q] × [N] used to maintain the mapping between keys to the
corresponding message index and the permuted index of the message.

Both tables are initially empty at the beginning of the simulation. The simulator’s initial state stS
consists of the tuple (Tkeys, Tro). Then, for each t ∈ [q], after the adversary outputs a query mt,
the simulation algorithm St is invoked on input stS and the leakage function Lcmp(m1, . . . ,mt). In

the following, we write ct(i) =
(
ct

(i)
L , ct

(i)
R

)
to denote the simulator’s response in the ith query. We

also assume that the simulator’s state includes the ciphertexts ct(i) for all previous queries i < t.
We now describe how St responds to the tth query.

Simulating the left ciphertexts. We first show how St constructs the ciphertext components

ct
(t)
L . There are two cases:

• Suppose for some i < t, cmp(mi,mt) = 0. Then, the simulator sets ct
(t)
L = ct

(i)
L .

• Suppose for all i < t, cmp(mi,mt) 6= 0. Define S ⊂ [N] to be the set of indices β ∈ [N]
for which there exists a mapping k 7→ (α, β) in Tkeys for some key k ∈ {0, 1}λ and message

index α ∈ [q]. Then the simulator chooses a random key k
r←− {0, 1}λ and a random index

j
r←− [N] \ S. It then checks to see if there is a mapping (k, r) 7→ ρ for some r ∈ {0, 1}λ and

ρ ∈ Z3 in Tro. If so, St aborts the simulation and outputs ⊥1. Otherwise, it sets ct
(t)
L = (k, j),

and adds the mapping k 7→ (t, j) to Tkeys.

Finally, if the simulator does not abort, it outputs the left ciphertext ct
(t)
L and an updated state.

Simulating the right ciphertexts. For the right ciphertexts, the simulator St first samples a
nonce r̄t

r←− {0, 1}λ. It then checks to see if there is already a mapping of the form (k, r̄t) 7→ ρ in
Tro for some k ∈ {0, 1}λ and ρ ∈ Z3. If so, St aborts the simulation and outputs ⊥2. Otherwise,

for i ∈ [N], it samples v̄
(t)
i

r←− Z3, sets ct
(t)
R = (r̄t, v̄

(t)
1 , . . . , v̄

(t)
N), and outputs the ciphertext

ct(t) = (ct
(t)
L , ct

(t)
R) as well as an updated state.

Simulating the random oracle queries. To conclude the description of S, we describe how it
simulates the random oracle queries. Let t ≤ q be the number of encryption queries the adversary
has made so far. Then, on an input (k, r), the simulator responds as follows:

• If there is a mapping (k, r) 7→ ρ̄ in Tro, then the simulator replies with ρ̄.

• If there is a mapping k 7→ (α, β) in Tkeys for some α ∈ [q] and β ∈ [N] and r = r̄j for some

j ∈ [t], then the simulator sets ρ̄ = v̄
(j)
β − cmp(mα,mj), adds the mapping (k, r) 7→ ρ̄ to Tro,

and replies with ρ̄.

10

• If there is no mapping k 7→ (α, β) in Tkeys for any α ∈ [q] and β ∈ [N], or r 6= r̄j for all j ∈ [t],

then the simulator chooses ρ̄
r←− Z3, adds the mapping (k, r) 7→ ρ̄ to Tro, and replies with ρ̄.

Correctness of the simulation. To conclude the proof, we now show that the real and ideal
experiments REALoreA (λ) and SIMore

A,S,Lcmp(λ) are computationally indistinguishable. We begin by
defining a series of hybrid experiments:

• Hybrid H0: This is the real experiment REALoreA (λ) (Definition 2.2).

• Hybrid H1: Same as H0, except the PRF F (k, ·) is replaced by a truly random function f
from {0, 1}λ → {0, 1}λ.

• Hybrid H2: Same as H1, except the experiment aborts (with output ⊥1 or ⊥2) if one of the
following events occur:

– The adversary queries H on an input of the form (f(π(m)), ·) before it issues an encryption
query for the message m. In this case, the experiment outputs ⊥1.

– The adversary queries H on an input of the form (·, rj) before it makes its jth encryption
query. Here, rj is the randomness the challenger samples when responding to the jth

encryption query. In this case, the experiment outputs ⊥2.

• Hybrid H3: This is the ideal experiment SIMore
A,S,Lcmp(λ). (Definition 2.2).

We now argue that each consecutive pair of hybrid experiments are computationally indistinguishable.

Lemma 3.4. Hybrid H0 and H1 are computationally indistinguishable if F is a secure PRF.

Proof. Follows immediately from PRF security.

Lemma 3.5. Hybrids H1 and H2 are statistically indistinguishable if H is modeled as a random
oracle.

Proof. For each of the two abort events in H2, we argue that the probability of the event occurring
is negligible.

• Case 1: The experiment outputs ⊥1. Suppose the adversary has not issued an encryption
query for a message m ∈ [N]. We argue that in this case, the adversary’s view in the experiment
is independent of f(π(m)). Consider the ciphertext ct′ = (ct′L, ct

′
R) the adversary obtains when

it requests an encryption of some message m′ 6= m. Then, ct′L = (f(π(m′)), π(m′)). Since π
is a permutation, π(m′) 6= π(m). Next, because f is a truly random function, f(π(m′)) is
independent of f(π(m)). We conclude that the components of ct′L are distributed independently
of f(π(m)).

Consider now ct′R = (r′, v′1, . . . , v
′
N). Since r′ is sampled uniformly at random from {0, 1}λ, it is

distributed independently of f(π(m)). Next, for all i ∈ [N], vi = cmp(π−1(i),m′)+H(f(i), r′).
The value of cmp(π−1(i),m′) is independent of the function f . Similarly, the output of the
random oracle on (f(i), r′) is independent of its input, and thus, independent of f(π(m)).
Thus, the components of ct′R are distributed independently of f(π(m)).

Finally, the responses from the random oracle are distributed independently of f . We thus
conclude that unless the adversary requests for an encryption of m, its view in hybrid H1 is

11

distributed independently of f(π(m)). Now, let z1, . . . , z` for ` = poly(λ) be the adversary’s
queries to the random oracle before it requests for an encryption of m. By our argument above,
each zi must be chosen independently of f(π(m)). Since f is a truly random function, the
probability that there is some i such that zi = (f(π(m)), y) for any y is at most `/2λ = negl(λ).
We conclude that H2 outputs ⊥1 with negligible probability.

• Case 2: The experiment outputs ⊥2. Let z1, . . . , z` for ` = poly(λ) be the random oracle
queries the adversary makes before making its jth encryption query. When responding to
the jth encryption query, the challenger in H2 samples rj

r←− {0, 1}λ. In particular, rj is
independent of z1, . . . , z`, and so the probability that there is some i such that zi = (x, rj) for
any x is at most `/2λ = negl(λ). We conclude that H2 outputs ⊥2 with negligible probability,
and the claim follows.

Lemma 3.6. Hybrid H2 and H3 are statistically indistinguishable if H is modeled as a random
oracle.

Proof. Let (ct1, . . . , ctq) be the joint distribution of the ciphertexts output in H2 and let (ct1, . . . , ctq)
be the joint distribution of the ciphertexts output in H3. We show that these two distributions are
statistically indistinguishable, and moreover, that the outputs of the random oracle are properly
simulated in H3. Let m1, . . . ,mq be the messages chosen by the adversary in H2 and H3. In the
simulation, the table Tkeys is used to maintain the mapping between keys to the message indices
and the permuted positions of the messages. The proof proceeds via induction on the number of
queries q. In the inductive step, we assume that the following conditions hold for some t < q:

• (ct1, . . . , ctt)
s
≈ (ct1, . . . , ctt).

• The outputs of the random oracle prior to the (t+ 1)th query are statistically indistinguishable
in H2 and H3.

Consider the base case where t = 0. It suffices to argue that all of the random oracle queries are
simulated properly in H3. Suppose the adversary queries the random oracle H on an input (k, r).
Without loss of generality, we can assume that each of the adversary’s queries to the random oracle
is unique (the random oracle responds consistently if an input is queried multiple times). Since the
table Tkeys is initially empty, the simulator in H3 always replies with a uniform random element of
Z3 in this case. In H2, the outputs of the random oracle are distributed uniformly and independently
in Z3, assuming that k 6= f(i) for any i ∈ [N] (otherwise, the experiment aborts with output ⊥1).
However, as shown in the proof of Lemma 3.5, the probability (taken over the randomness used to
sample f) that k = f(i) for i ∈ [N] is negligible, and so we conclude that the outputs of the random
oracle in H2 and H3 are statistically indistinguishable.

For the inductive step, suppose that both conditions outlined above hold for some t < q. We
show that both conditions continue to hold for t+ 1. We begin with some notation. For all j ∈ [t],

we write ctj =
(
ct

(j)
L , ct

(j)
R

)
and similarly, ctj =

(
ct

(j)
L , ct

(j)
R

)
, where ct

(j)
L = (kj , hj), ct

(j)
L = (k̄j , h̄j),

ct
(j)
R =

(
rj , v

(j)
1 , . . . , v

(j)
N

)
, and ct

(j)
R =

(
r̄j , v̄

(j)
1 , . . . , v̄

(j)
N

)
. We now argue that the responses to the

random oracle queries the adversary makes between its tth and (t+ 1)th encryption query are
statistically indistinguishable in H2 and H3. Let (k, r) be the adversary’s query to the random oracle.
We consider several possibilities:

12

• Suppose k = ki and r = rj for some i, j ∈ [t]. If there are multiple indices i where k = ki,
consider the smallest such i. In hybrid H2, we have that H(k, r) satisfies the relation

v
(j)
hi

= cmp(mi,mj) +H(k, r).

By construction in H3, if k = k̄i, the simulator must have added the mapping k̄i 7→ (i, h̄i) to
Tkeys in response to the ith encryption query (here, we rely on the fact that i is the smallest
such i such that k = k̄i). In this case then, the simulator responds with ρ̄ as follows:

ρ̄ = v̄
(j)

h̄i
− cmp(mi,mj).

By the inductive hypothesis, ct
(i)
L ≡ ct

(i)
L , so the simulator’s response is identically distributed

as the outputs of the random oracle in H2.

• Suppose k 6= ki for all i ∈ [t]. In H3, the simulator always responds with a uniformly random
value in Z3. In H2, there are two possibilities. If k = f(j) for some j ∈ [N], then the
experiment aborts (with output ⊥1) because the adversary must not have issued an encryption
query for π−1(j). However, as argued in the proof of Lemma 3.5, the probability that k 6= ki
for all i ∈ [t], but k = f(j) for some j ∈ [N] is negligible. Thus, with overwhelming probability,
in hybrid H2, k 6= f(j) for all j ∈ [N]. Then, the value H(k, r) is distributed uniformly and
independently of all other components of the adversary’s view. Specifically, because k 6= ki
for all i ∈ [t], the value H(k, r) is distributed independently of the ciphertexts ct1, . . . , ctt.
Moreover, the outputs of the random oracle are all distributed uniformly and independently,
so we conclude that the distribution of H(k, r) given the adversary’s view in H2 is uniform
over Z3. This is precisely the distribution from which the simulator samples the value of
H(k, r) in H3. We conclude that the random oracle outputs are statistically indistinguishable
in H2 and H3.

• Finally, suppose that k = ki for some i ∈ [t], but r 6= rj for all j ∈ [t]. Similar to the previous
case, in hybrid H2, the value H(k, r) is distributed uniformly and independently of all other
components of the adversary’s view. Thus, conditioned on the adversary’s view, the value
H(k, r) is uniform over Z3. This is precisely how S samples the random oracle output in H3,
so in this case, the responses in H2 and H3 are identically distributed.

Next, we show that the conditional distribution of ctt+1 given ct1, . . . , ctt is statistically indistinguish-
able from the conditional distribution of ctt+1 given ct1, . . . , ctt. Let mt+1 be the adversary’s (t+ 1)th

encryption query. First, we show that the conditional distribution of the left ciphertexts ct
(t+1)
L and

ct
(t+1)
L is statistically indistinguishable. In hybrid H2, ct

(t+1)
L = (kt+1, ht+1) = (f(π(mt+1)), π(mt+1)).

We consider two possibilities:

• If mt+1 = m` for some ` ∈ [t], then ct
(t+1)
L = ct

(`)
L in H2. Since mt+1 = m`, then

cmp(mt+1,m`) = 0, so ct
(t+1)
L = ct

(`)
L . The claim then follows by the induction hypothe-

sis.

• If mt+1 6= m` for some ` ∈ [t], then conditioned on the adversary’s view after its first t
queries, we argue that ht+1 = π(mt+1) is uniform over the set [N] \ {h1, . . . , ht}, where by

definition, hi = π(mi) for all i ∈ [t]. To see this, we first note that ct
(1)
L , . . . , ct

(t)
L can be

13

written entirely as a function that only depends on π(m1), . . . , π(mt). Certainly, the outputs
of the random oracle are completely independent of π. Consider then the right ciphertext

ct
(i)
R = (ri, v

(i)
1 , . . . , v

(i)
n) for some i ∈ [t]. For all j /∈ {π(m1), . . . , π(mt)}, v(i)

j is blinded by
H(f(j), ri). Moreover, in H2, the adversary will never have queried H on (f(j), ri) prior
to making its (t+ 1)th query (otherwise, the experiment aborts with output ⊥1). Thus,

v
(i)
j is uniformly distributed for all j /∈ {π(m1), . . . , π(mt)}. In particular, this means that

conditioned on the view of the adversary, the values of the right ciphertexts ct
(i)
R for i ∈ [t]

only depend on π(m1), . . . , π(mt). Since the permutation π is sampled uniformly, we conclude
that given the output of the first t encryption queries, the value of π(mt+1) is still distributed
uniformly in [N] \ {π(m1), . . . , π(mt)}. Similarly, by the same argument as that given in the
proof of Lemma 3.5, the value of f(π(mt+1)) is independent of the adversary’s view prior
to its (t+ 1)th encryption query. Thus, in H2, given the adversary’s view up to the (t+ 1)th

query, the left ciphertext ct
(t+1)
L = (kt+1, ht+1) is uniform over {0, 1}λ× ([N]\{h1, . . . , ht}). In

H3, the simulator St+1 samples k̄t+1 uniformly at random from {0, 1}λ and h̄t+1 uniformly at
random from the set [N] \

{
h̄1, . . . , h̄t

}
. Invoking the inductive hypothesis, we conclude that

the conditional distributions of ct
(t+1)
L and ct

(t+1)
L given the adversary’s view in the respective

experiments are statistically indistinguishable.

Finally, we show that the conditional distributions of the right ciphertext components ct
(t+1)
R and

ct
(t+1)
R are statistically indistinguishable. Certainly, rt+1 and r̄t+1 are identically distributed. Next, in

H2, if the adversary has already queried the random oracle on the input (x, rt+1) for any x ∈ {0, 1}λ,
then the experiment aborts with output ⊥2. Equivalently, if the adversary queries the random oracle
on an input (x, r̄t+1) in H3, the experiment also aborts (with the same output ⊥2). In H2, each vi is
blinded by the value H(f(i), rt+1), and since the adversary has not queried H(f(i), rt+1) before seeing

ct(t+1), the components v
(i)
1 , . . . , v

(i)
N are distributed uniformly and independently over Z3 to the

adversary in H2. This is precisely the distribution from which the simulator samples v̄
(t+1)
1 , . . . , v̄

(t+1)
N

in H3. Thus, conditioned on the adversary’s view in the experiment, the distributions of the right
ciphertexts in Hybrids H2 and H3 are statistically indistinguishable. Lemma 3.6 then follows by
induction on t.

Combining Lemmas 3.4 through 3.6, we conclude that Π
(s)
ore is secure with the best-possible leakage

function Lcmp.

4 Domain Extension: A Large-Domain ORE

Although our small-domain ORE construction from Section 3 achieves the strongest possible notion
of security for ORE, it is limited to polynomially-sized message spaces. In this section, we show how
to construct an efficient ORE scheme for large domains which achieves provably stronger security
guarantees than all existing efficient ORE constructions for large domains. Our construction can be
viewed as a composition of our small-domain ORE construction together with the ORE scheme by
Chenette et al. [CLWW16].

Intuitively, we can view the techniques used in the Chenette et al. construction as a domain-
extension mechanism for ORE. In particular, their construction can be viewed as a general transfor-
mation that takes as input a k-bit ORE scheme and outputs an kn-bit ORE scheme, with ciphertext

14

expansion that grows linearly in n and a slight reduction in security (that degrades with n). Under
this lens, the Chenette et al. construction can be viewed as taking a 1-bit ORE scheme (with
best-possible security) and extending it to an n-bit ORE scheme. In this work, we apply this general
domain-extension technique to our small-domain ORE from Section 3, and show how we can start
with a d-bit ORE and extend it to a dn-bit ORE. By varying the parameters n and d, we obtain a
performance-security tradeoff. At a high level, our composed construction implements encryption via

several parallel (prefix-dependent) instances of the small-domain ORE scheme Π
(s)
ore from Section 3,

one for each block of the plaintext. Using the techniques of Chenette et al. [CLWW16], a blinding

factor is derived from the prefix of each block and used to mask the Π
(s)
ore ciphertexts for that block.

We give the precise leakage of our construction in Theorem 4.1.

Construction. Fix a security parameter λ ∈ N, a message space size N > 0, and integers d, n > 0
such that dn ≥ N . Let F : {0, 1}λ × [N] → {0, 1}λ be a secure PRF on variable-length inputs,5

H : {0, 1}λ×{0, 1}λ → Z3 be a hash function (modeled as a random oracle), and π : {0, 1}λ×[d]→ [d]
be a secure PRP. For a d-ary string x = x1x2 · · ·xn, let x|i = x1x2 · · ·xi denote the d-ary string
representing the first i digits of x (i.e., the length-i prefix of x), and let x|0 be the empty prefix. We
define our ORE scheme Πore = (ORE.Setup,ORE.EncryptL,ORE.EncryptR,ORE.Compare) as follows.

• ORE.Setup(1λ). The setup algorithm samples PRF keys k1, k2
r←− {0, 1}λ. The master secret

key is sk = (k1, k2).

• ORE.EncryptL(sk, x). Let sk = (k1, k2). For each i ∈ [n], the left encryption algorithm
first computes x̃ = π(F (k2, x|i−1), xi) and then sets ui = (F (k1, x|i−1‖x̃), x̃). It returns the
ciphertext ctL = (u1, . . . , un).

• ORE.EncryptR(sk, y). Let sk = (k1, k2). First, the right encryption algorithm uniformly samples

a nonce r
r←− {0, 1}λ. Then, for each i ∈ [n] and j ∈ [d], letting j∗ = π−1(F (k2, y|i−1), j), it

computes
zi,j = cmp(j∗, yi) +H(F (k1, y|i−1‖j), r) (mod 3).

It then defines the tuple vi = (zi,1, . . . , zi,d) and outputs the ciphertext ctR = (r, v1, v2 . . . , vn).

• ORE.Compare(ctL, ctR). The compare algorithm first parses

ctL = (u1, . . . , un) and ctR = (r, v1, v2, . . . , vn),

where for each i ∈ [n], we write ui = (k′i, hi) and vi = (zi,1, . . . , zi,d). Then, let ` be the smallest
index i for which zi,hi −H(k′i, r) 6= 0 (mod 3). If no such ` exists, output 0. Otherwise, output
z`,h` −H(k′`, r) (mod 3).

Correctness. Let sk = (k1, k2) ← ORE.Setup(1λ) and take any x, y ∈ [N]. Let ct
(x)
L ←

ORE.EncryptL(sk, x) and ct
(y)
R ← ORE.EncryptR(sk, y). We show that with overwhelming proba-

bility, ORE.Compare(ct
(x)
L , ct

(y)
R) = cmp(x, y).

Let x = x1 · · ·xn and y = y1 · · · yn. Let ct
(x)
L = (u1, . . . , un) and ct

(y)
R = (r, v1, . . . , vn), ui =

(k′i, hi) and vi = (zi,1, . . . , zi,d) for all i ∈ [n]. Next, let i∗ ∈ [n] be the first index i where xi 6= yi. If

5The Chenette et al. ORE construction also used a PRF on variable-length inputs. We refer to their construc-
tion [CLWW16, §3] for one possible way of constructing a PRF on variable-length inputs from a standard PRF.

15

x = y, set i∗ = n+ 1. Then, if x 6= y, we have that cmp(x, y) = cmp(xi∗ , yi∗) By definition, for all
` < i∗, x|` = y|`, and so setting κ` = F (k2, x|`) = F (k2, y|`), we have that

π−1(κ`−1, h`) = π−1(κ`−1, π(κ`−1, x`)) = x`.

By definition of zi,j , we have that for all ` ≤ i∗

z`,h` = cmp(π−1(κ`−1, h`), y`) +H(F (k1, y|`−1‖h`), r)
= cmp(x`, y`) +H(F (k1, x|`−1‖h`), r)
= cmp(x`, y`) +H(k′`, r).

Thus, for all ` < i∗, z`,h` − H(k′`, r) = cmp(x`−1, y`−1) = 0, and for ` = i∗, z`,h` − H(k′`, r) =
cmp(xi∗ , yi∗). If x = y, then i∗ = n + 1 and for all ` ∈ [n], z`,h` − H(k′`, r) = 0, in which case
the comparison algorithm correctly outputs 0. Otherwise, the comparison algorithm outputs
cmp(xi∗ , yi∗) = cmp(x, y).

Security. Before stating our security theorem, we first specify our leakage function L(d)
blk. Each

ciphertext block in our ORE scheme is essentially a ciphertext for the underlying small-domain ORE,
and the comparison operation proceeds block-by-block. Intuitively then, since our small-domain
ORE scheme leaks nothing except the ordering (Theorem 3.3), the additional leakage of our new
ORE scheme is the index of the first block that differs between two ciphertexts. In particular, for
messages x = x1x2 · · ·xn and y = y1y2 · · · yn written in base d, we define the first differing block

function ind
(d)
diff(x, y) to be the first index i ∈ [n] such that xj = yj for all j < i and xi 6= yi. If x = y,

we define ind
(d)
diff(x, y) to be n+ 1. Then, our leakage function L(d)

blk for our extended ORE scheme is
given by

L(d)
blk(m1, . . . ,mt) = {(i, j,blk(mi,mj)) | 1 ≤ i < j ≤ t} ,

where blk(mi,mj) = (cmp(mi,mj), ind
(d)
diff(mi,mj)). In general, we refer to the parameter d as the

arity (or base) of the plaintext space, which grows exponential in the length (in bits) of the block.
We now state our main security theorem.

Theorem 4.1. The ORE scheme Πore is secure with leakage function Lblk assuming that F is a
secure PRF and H is modeled as a random oracle.

The proof of Theorem 4.1 can be viewed as a composition of the security proof for our underlying
small-domain ORE (Theorem 3.3) and the security proof of the Chenette et al. scheme [CLWW16,
Theorem 3.2]. We give the proof in Appendix A.

Space usage. Ciphertexts in our new ORE scheme consist essentially of n ciphertexts for our
small-domain ORE scheme (with domain size d). More concretely, a left ciphertext in our new
scheme consists of n(λ+ dlog de) bits and a right ciphertext consists of λ+ n dd log2 3e bits. Since
the size of the plaintext space N satisfies N ≤ dn, ciphertext size in our new ORE scheme grow as
O((λ+ d) logdN).

Non-uniform block sizes. In practice, some bits of the plaintext may be more sensitive than
others. Leaking information about these bits is less desirable than leaking information about less
sensitive bits. To accommodate the different sensitivities, we can use different input bases (e.g.,
use larger blocks for more sensitive bits) for the different blocks of the ciphertext. The leakage in
the resulting scheme is still the index of the first (variable-sized) block that differs between two
messages. Correctness is unchanged.

16

5 Encrypted Range Queries

In this section, we formally define the properties of a client-server protocol for range queries over
an encrypted database. In our model, a client stores an encrypted database on the server. The
client can update the database (e.g., by adding or removing records) and issue range queries against
the database. In a range query, the client specifies a numeric interval and the server responds by
returning all ciphertexts whose underlying messages fall within that interval.

Although our definitions are stated in terms of numeric intervals, our methods are broadly
applicable to more general settings—in particular, to any well-ordered domain such as English
names. For example, when the database consists of encrypted alphanumeric strings, range queries
can be used for both exact-keyword as well as prefixed-based search.

Our security definitions are adapted from existing definitions for searchable symmetric encryption
(SSE) [CGKO06, CK10]. We survey some of the work on SSE in Section 8. In our definitions we
consider both the online and offline settings. In the online setting, the adversary sits on the server
and sees both the encrypted database as well as the client’s queries, while in the offline setting, the
adversary just obtains a dump of the server’s encrypted database. By showing that in the offline
setting, the server’s encrypted database provides semantic security, we can argue that our new
range query scheme provides robustness against the kinds of offline inference attacks considered by
Naveed et al. [NKW15].

After formally defining the security requirements for a range query protocol, we give a construction
based on our ORE scheme Πore from Section 4. Our protocol not only satisfies our security properties,
but also has several additional appealing properties such as sublinear query time (in the size of the
database) and optimal round complexity.

Our proposed protocol is easily extensible to the multi-client setting where many clients are
interacting with the server. Each authorized client is simply given the secret key needed to query
and update the database.

5.1 Range Query Schemes

We begin with a formal definition of a range query scheme, followed by our notions of online and
offline security. We describe a range query scheme in terms of a set of algorithms, where each
algorithm is a single-round protocol between the client and the server. In each protocol, the client is
always stateless, but the server is stateful—in particular, the server’s state represents the information
stored on the server needed to efficiently respond to the client’s queries, including the encrypted
database itself.

Initially, the client runs a setup procedure that takes as input a plaintext database D of values
and outputs a secret key sk and some token t representing the encrypted database. The token t
is given to the server, and the server outputs some initial state st. Then, for each query (range
query, insert query, delete query), the client uses the secret key sk to derive a token t representing
its query, and sends t to the server. This token contains a masked version of the client’s input for
the query. On input a query token t, the server processes the query and updates its internal state.
In a range query, the server also returns a response r, which the client uses to learn the answer to
the range query.

More formally, let D ∈ [N]M represent a (possibly empty) database consisting of M ≥ 0 values,
each in the range [N]. A range query scheme Πrq = (RQ.Setup,RQ.Range,RQ.Insert,RQ.Delete)
consists of a tuple of algorithms defined as follows:

17

• RQ.Setup(1λ,D) → (t, st). The setup algorithm between the client and server proceeds as
follows:

– Client(1λ,D)→ (sk, t). The client, on input the security parameter λ and database D,
produces a key sk which is kept secret, and a token t which is sent to the server.

– Server(t)→ st. The server takes as input the token t and outputs an initial state st.

• RQ.Range(sk, q, st) → (t, st′). The range query algorithm between the client and server
proceeds as follows:

– Client(sk, q = (x, y)) → t. The client, on input the secret key sk and a query q for the
range [x, y], produces a token t which is sent to the server.

– Server(st, t)→ (st′, r). The server takes as input its current state st and the token t and
produces an updated state st′, along with a response r, which is sent to the client.

– Client(sk, r) → S. The client, on input the secret key sk and the response r from the
server, obtains a subset S of entries which represent the answer to the range query.

• RQ.Insert(sk, q, st)→ (t, st′). The insert algorithm between the client and server proceeds as
follows:

– Client(sk, q = x)→ t. The client, on input the secret key sk and a query q representing
an insertion of the value x, produces a token t which is sent to the server.

– Server(st, t)→ (st′, r). The server takes as input its current state st and the token t and
produces an updated state st′.

• RQ.Delete(sk, q, st)→ (t, st′). The delete algorithm between the client and server proceeds as
follows:

– Client(sk, q = x)→ t. The client, on input the secret key sk and a query q representing a
deletion of the value x, produces a token t which is sent to the server.

– Server(st, t)→ (st′, r). The server takes as input its current state st and the token t and
produces an updated state st′.

We now define the correctness and security properties of a range query scheme. At a high level, we
say that a range query scheme is correct if for all range queries (x, y) the client makes, it obtains the
set of entries in the database D (taking into account any insertion and deletion queries occurring
before the range query) that lie in the interval [x, y].

Correctness. Fix a security parameter λ, positive integers x, y,N,M where x ≤ y ∈ [N], a
database D ∈ [N]M and a sequence of ` insertion, deletion, and range queries q1, . . . , q`−1. Let
q` = (x, y) be a range query. Let (st`, r)← Server(st`−1,Client(sk, q`)) and S← Client(sk, r), where
st`−1 is the server’s state after processing queries q1, . . . , q`−1. Let D0 = D,D1, . . . ,D` be the
effective database elements after each query—that is, for all i ∈ [`], Di = Di−1 if qi is a range query,
Di = Di−1 ∪ {x} if qi−1 is an insertion query for x, and Di = Di−1 \ {x} if qi−1 is a deletion query
for x. We say a range query scheme Πrq = (RQ.Setup,RQ.Range,RQ.Insert,RQ.Delete) is correct
if for all security parameters λ, integers N,M, x, y, databases D ∈ [N]M and sequence of queries
q1, . . . , q`, we have that the client’s response S satisfies S = D` ∩ [x, y].

18

Security. Our first notion of security is online security, which models the information revealed to
a malicious server in the range query protocol. Here, the adversary sees both the contents of the
server’s state (i.e., the encrypted database) as well as the client’s queries. We give a simulation-based
definition with respect to a concrete leakage function that operates over the plaintext values in the
database and the queries. Our definition is adapted from the standard paradigm used to define
security in searchable symmetric encryption schemes [CGKO06, CK10].

Definition 5.1 (Online Security). For all databases D and sequences of ` queries q1, . . . , q`, define
the sequence of states st0, . . . , st` and tokens t0, . . . , t` where (t0, st0)← RQ.Setup(1λ,D), and for
each i ∈ [`], (ti, sti) is the output of the ith query on input sk, qi, and sti−1. A range query scheme
is online secure with respect to a leakage function L if for every efficient adversary A, there exists a
simulator S where∣∣Pr[A(1λ, st0, . . . , st`, t0, . . . , t`) = 1]− Pr[S(1λ,L(D, q1, . . . , q`)) = 1]

∣∣ = negl(λ).

We also define an “offline” notion of security for a range query scheme. The offline setting
models scenarios where the adversary obtains a dump of the contents of the server (i.e., the server’s
state), but does not observe any queries made by the client. Against offline adversaries, we require
the much stronger property that the only thing leaked by the encrypted database is the size of the
encrypted database. This is the best-possible leakage.

Definition 5.2 (Offline Security). For all databases D and sequences of ` queries q1, . . . , q`, define
the sequence of states st0, . . . , st` and tokens t0, . . . , t` as in Definition 5.1 Let |st`| be the bit-length
of st`. A range query scheme is offline secure if for all efficient adversaries A, there exists an efficient
simulator S where ∣∣∣Pr[A(1λ, st`) = 1]− Pr[S(1λ, |st`|) = 1]

∣∣∣ = negl(λ).

The importance of offline security. Although offline security is strictly weaker than online
security, it captures the real-world scenario where an attacker breaks into a server and exfiltrates
any data the server has stored on disk. While companies are often able to detect and protect against
active online corruption of their servers, the question remains what happens after the fact when the
attacker has also exfiltrated the database for offline analysis. Of course, the ideal solution to this
problem is an encrypted database system that provides strong online security guarantees. However,
existing systems with strong online security typically require redesigning the database management
system and implementing elaborate cryptographic protocols for querying [CJJ+14, FJK+15], or
leverage heavy, less practical tools such as fully homomorphic encryption [Gen09] or oblivious
RAMs [GO96]. On the flip side, an OPE-based solution yields a scheme that does not provide
offline security in our model; this is one reason why OPE and other PPE-based encrypted database
schemes are vulnerable to inference attacks. This is true even if we use an (interactive) OPE scheme
with best-possible security; the ability to directly compare ciphertexts is sufficient to carry out the
inference attacks. Thus, there is an interesting intermediate ground where we build systems that
achieve decent online security, while still providing strong offline security guarantees to be robust
against inference attacks.

5.2 An Efficient Range Query Scheme

We now describe how to build an efficient range query scheme using our ORE construction from
Section 4. At a high level, the server’s encrypted database consists of right ciphertexts for each

19

value, stored in sorted order. The tokens t for each query consist of a left encryption of the query
value. This allows the server to use the ORE comparison algorithm to perform binary search over
the encrypted ciphertexts in the database. Thus, the server is able to answer queries efficiently and
maintain the database in sorted order (during updates). To answer a range query, the server performs
binary search to find the lower and upper boundaries in the encrypted database corresponding
to its query and returns all ciphertexts lying within those bounds. The client then decrypts the
ciphertexts to learn the response.

More formally, we define our range query scheme Πrq = (RQ.Setup,RQ.Range,RQ.Insert,RQ.Delete)
as follows:

• RQ.Setup(1λ,D) → (t, st). The setup algorithm between the client and server proceeds as
follows:

– Client(1λ,D)→ (sk, t). The client, on input the security parameter λ and database D,
generates a secret key sk← ORE.Setup(1λ). Then, the client sorts the database D, and
for each sequential element xi ∈D, the client computes cti ← ORE.EncryptR(sk, xi), and
sends the token t = (ct1, . . . , ctM) to the server.

– Server(t)→ st. The server simply sets st = t.

• RQ.Range(sk, q, st) → (t, st′). The range query algorithm between the client and server
proceeds as follows:

– Client(sk, q = (x, y)) → t. The client, on input the secret key sk and a query repre-
senting a range query for the range [x, y], produces the token t = (ORE.EncryptL(sk, x),
ORE.EncryptL(sk, y)) which is sent to the server.

– Server(st, t)→ (st′, r). The server takes as input its current state st = (ct1, . . . , ctM ′) for
some integer M ′, and the token t = (ctx, cty). Using ORE.Compare, it performs a binary
search to find the ciphertexts in st that are “at least” ctx and “at most” cty. Let r be
the set of ciphertexts lying in this interval. The server outputs the response r and an
updated state st′ = st.

– Client(sk, r)→ S. The client, on input the secret key sk and the response r = (ct1, . . . , ctm)
for some integerm, outputs the tuple S = (ORE.Decrypt(sk, ct1), . . . ,ORE.Decrypt(sk, ctm)).
(Recall from Remark 2.1 that any ORE scheme can be augmented with a decryption
algorithm.)

• RQ.Insert(sk, q, st)→ (t, st′). The insert algorithm between the client and server proceeds as
follows:

– Client(sk, q = x)→ t. The client, on input the secret key sk and a query representing an
insertion of the value x, produces a token t = (ORE.EncryptL(sk, x),ORE.EncryptR(sk, x))
which is sent to the server.

– Server(st, t) → (st′, r). The server takes as input its current state st and the token
t = (ct1, ct2). Using ORE.Compare(ct1, ·), it performs a binary search over the contents
of its database st to find the index at which to insert the new value. The server inserts
ct2 at that position and outputs the updated database st′.

• RQ.Delete(sk, q, st)→ (t, st′). The delete algorithm between the client and server proceeds as
follows:

20

– Client(sk, q = x)→ t. The client, on input the secret key sk and a query representing a
deletion of the value x, produces a token t = (ORE.EncryptL(sk, x),ORE.EncryptR(sk, x))
which is sent to the server.

– Server(st, t) → (st′, r). The server takes as input its current state st and the token
t = (ct1, ct2). Using ORE.Compare(ct1, ·), it performs a binary search over the contents
of its database st to find the indices of the elements in st equal to ct1. It removes the
entries at the matching indices and outputs the updated database st′.

Correctness. By correctness of the ORE scheme, the state st maintained by the server after each
query is a (sorted) list of right encryptions (under sk) of the values in the database D after the
corresponding insertions and deletions. Thus, the response r returned by the server to the client in
a range query for the range [x, y] is precisely the subset of ciphertexts whose plaintext values fall in
the range [x, y]. Correctness follows by correctness of ORE decryption (which in turn follows from
correctness of the ORE scheme).

Additional properties. In addition to the core security and correctness properties that we want
from a symmetric range query scheme, we also note several useful properties that our construction
Πrq achieves for handling efficient range queries in our client-server model.

• Stateless client and single-round protocols. The client does not need to maintain state
between queries, and each query is a single round trip between the client and the server. Our
protocol achieves optimal round complexity.

• Short query tokens. The size of each query token t is asymptotically optimal. They are
approximately the same length as the inputs used to generate the query, and independent of
the size of the database.

• Fast responses. The running time of the server’s algorithms is sublinear (logarithmic) in the
total number of elements in the database.

Dual-encryption leakage functions. To define the security of our range query scheme, we first
introduce a slight modification to the security notions achieved by our ORE scheme from Section 4.
Recall from Definition 2.2 that an ORE scheme is secure with respect to a leakage function L(·) if
for any adversarially-chosen sequence of messages m1, . . . ,m`, there is an efficient simulator S that
can simulate the real ORE ciphertexts given only the leakage L(m1, . . . ,mi).

Here, we consider “dual-encryption” leakage functions L′(·, ·) which take two collections of
plaintext values: one associated with “left” values, and the other associated with “right” values.
Now, we say that an ORE scheme with separate left and right encryption functions ORE.EncryptL

and ORE.EncryptR, is secure with respect to the dual-encryption leakage function L′(·, ·) if there
exists an efficient simulator such that for any two (adversarially-chosen) collections of plaintexts
x1, . . . , x` and plaintexts y1, . . . , yκ, and sk← ORE.Setup(1λ), the simulator can simulate the outputs
ORE.EncryptL(sk, xi) and ORE.EncryptR(sk, yj) for all i ∈ [`] and j ∈ [κ], given only the output of
L′((x1, . . . , x`), (y1, . . . , yκ)).

We note that the proof of Theorem 4.1 can be rewritten to prove security with respect to the
dual-encryption leakage function Ldual as defined in the following lemma.

21

Lemma 5.3. Let Ldual be the following dual-leakage function

Ldual((x1, . . . , x`), (y1, . . . , yκ)) =
{(
i, i′, j,blk(xi, yj), ind

(d)
diff(xi, xi′)

)
| i, i′ ∈ [`], j ∈ [κ]

}
,

where blk(xi, yj) = (cmp(xi, yj), ind
(d)
diff(xi, yj)) as defined in Section 4 and used in Theorem 4.1.

The ORE scheme Πore from Section 4 is secure with respect to the dual-encryption leakage function
Ldual.

Proof. Follows by inspection of the proof of Theorem 4.1.

Representing the leakage of our ORE scheme in terms of a dual-encryption leakage function
allows us to easily reason about the online and offline security properties of our scheme. At a high
level, the online leakage of our range query scheme is simply the output of the dual leakage function
on the sets of left ciphertexts appearing in the queries and the set of right ciphertexts appearing in
the database. We now describe the leakage more precisely. In the description below, we refer to the

leakage function L(d)
blk(m1,m2) as the “ORE leakage” between two equal-length values m1 and m2.

Informally, the “ORE leakage” in our setting is the ordering of m1 and m2 and the index of the
first differing digit in the d-ary representation of m1 and m2.

Our range query leakage function Lrq then takes as input the database D = (d1, . . . , dM), and
a sequence of ` queries q1, . . . , q` and outputs:

• For each i ∈ [M] and j ∈ [`], the ORE leakage between each database value di and query qj .
For a range query of the form q = (x, y), this includes the ORE leakage between both pairs
(di, x) and (di, y) for i ∈ [M].

• For each query qi, and each insertion or deletion query q′j , the ORE leakage between qi and q′j .
Similarly, for a range query of the form qi = (xi, yi), this include the ORE leakage between
both pairs (xi, q

′
j) and (yi, q

′
j).

Roughly speaking, our range query scheme reveals the ordering and index of first differing digit
between every query and every message in the database. In addition, we leak some information
between range queries and insertion/deletion queries. We now formalize our security claims.

Online security. For a database D ∈ [N]M and sequence of ` queries q1, . . . , q`, let R, I,D denote
the sequence of values appearing in the range queries, the insert queries, and the delete queries,
respectively. Note that the two values in each range query are expanded as separate elements in R.
Finally, let Q = R‖I‖D.

Theorem 5.4. Let Lrq be the following leakage function:

Lrq(D, q1, . . . , q`) = (Ldual(Q,D),Ldual(Q, I‖D))

Then, the range query scheme Πrq achieves online security with respect to the leakage function Lrq.

Proof. The proof follows immediately from observing that in Πrq, the values that are encrypted using
the left encryption algorithm are the values appearing in the queries Q, and the values encrypted
using the right encryption algorithm are the database elements, along with the respective components
appearing in the insertion and deletion queries. Hence, we can directly invoke Lemma 5.3, which
proves the theorem.

22

Offline security. The offline security of our range query scheme Πrq follows directly from the fact
that the encrypted database stored on the server only contains a collection of right ciphertexts,
which are simulatable given just the size of the collection.

Theorem 5.5. The range query scheme Πrq is offline secure.

Proof. The contents of the server’s state after each query in the range query protocol Πrq is always
a collection of ORE right ciphertexts. Hence, for any sequence of states st0, . . . , st` induced by
a database D and any sequence of queries q1, . . . , q`, we just need to invoke the simulator (for
constructing right ciphertexts) in the proof of Theorem 4.1 a total of |st`| times to simulate the
right encryptions in st`. This completes the proof.

Robustness against offline inference attacks. Offline security for our protocol implies that
the contents of the server’s database are always semantically secure. Consequently, ciphertext-only
inference attacks, such as those studied by Naveed et al. [NKW15], do not directly apply.

In their model [NKW15, §4.2], an attacker is able to obtain access to the “steady state” of an
encrypted database, which describes the database in a state that includes all auxiliary information
that is needed to perform encrypted searches efficiently. In our scheme, no such auxiliary information
is needed on top of the ORE scheme, and yet we are still able to achieve offline security. In contrast,
in other existing PPE-based schemes, comparisons are enabled by a underlying layer of OPE
encryption, which is vulnerable to inference attacks. Thus, even though these schemes can be
modified to satisfy our notion of offline security, their “steady-state” representation is in the form
of OPE ciphertexts which are vulnerable to inference attacks. Our scheme achieves robustness
against these ciphertext-only inference attacks because our steady-state representation is precisely
our offline representation. Finally, we note that we can always add additional layers of encryption
(e.g., onion encryption [PRZB11]) without compromising the security of our range query scheme,
which can serve as a useful countermeasure against general adversaries.

Existing schemes and the left/right framework. The key ingredient in our work that enables
us to construct an efficient, inference-robust range query protocol is the fact that ciphertexts in
our scheme naturally split into left and right components such that the right components, when
taken in isolation, are semantically secure. To our knowledge, our scheme is the first practical
ORE scheme where the ciphertexts split naturally into left and right components such that one
side is semantically secure. In contrast, no OPE scheme can satisfy this property—this is due to
the restriction that the comparison operation must be a numeric comparison on the ciphertexts.
Since comparisons are transitive, this means that if comparisons are possible between left and right
ciphertexts, they are necessarily possible between left ciphertexts or right ciphertexts in isolation.
Thus, neither side can be semantically secure.

Ciphertexts in the Chenette et al. [CLWW16] ORE scheme also do not decompose naturally
into left and right ciphertexts where one side is semantically secure. In fact, ciphertexts in their
scheme are deterministic, and thus, cannot provide semantic security. We note though that the
semantically-secure ORE constructions from multilinear maps [BLR+15] or indistinguishability
obfuscation [GGG+14] are naturally defined in the left/right framework (specifically, the encryption
function in these constructions also take an “input slot,” which directly corresponds to our notions
of left and right). Thus, these ORE constructions can also be leveraged to obtain a range query
scheme with sublinear query complexity and robustness against offline inference attacks. Due to
their reliance on extremely powerful tools, however, they are very far from being practically viable.

23

6 Impossibility Result for OPE

Our ORE construction from Section 4 uses a small-domain ORE scheme with best-possible security
as a core building block. A natural question to ask then is whether we could have applied the same
kind of transformation starting from a small-domain OPE scheme with best-possible security. While
Boldyreva et al. [BCLO09, BCO11] and Popa et al. [PLZ13] have previously ruled out the existence
of such OPE schemes over a superpolynomial size message space, their lower bounds do not rule out
the possibility of an OPE scheme over a polynomial-size domain that achieves best-possible security.

In this section, we show that even this is impossible. In particular, no OPE scheme whose
plaintext space contains just three messages can satisfy the “best-possible” notion of security
(IND-OCPA) unless the length of the ciphertexts is superpolynomial in the security parameter. In

other words, the size of the ciphertext space for any such OPE scheme is at least 22ω(log λ) . We
then show that our lower bound is tight by giving a construction of an IND-OCPA-secure OPE
scheme with plaintext space {1, 2, 3} and ciphertext space [M] where M = 22ω(log λ) . Our results
thus show that there does not exist any efficient stateless, non-interactive OPE scheme that satisfies
IND-OCPA security, even for small message spaces.

First, recall that an order-preserving encryption scheme [BCLO09, BCO11] is a special case
of ORE where the ciphertext space is required to be a well-ordered range R. Moreover, given
two ciphertexts ct1, ct2 ∈ R, the comparison algorithm outputs 1 if ct1 < ct2. In other words,
an OPE scheme is an ORE scheme where the comparison function is the “natural” comparison
operation on the ciphertext space. Formally we can specify an OPE scheme by a tuple of algorithms
ΠOPE = (OPE.Setup,OPE.Encrypt). We first review the formal definition of IND-OCPA security
from [BCLO09].

Definition 6.1 (IND-OCPA Security [BCLO09]). Let ΠOPE = (OPE.Setup,OPE.Encrypt) be an
OPE scheme. Then, ΠOPE is IND-OCPA secure if for all efficient and admissible adversaries A and
sk← OPE.Setup(1λ), ∣∣∣∣Pr

[
b

r←− {0, 1} : ALoR(sk,b,·,·)(1λ) = b
]
− 1

2

∣∣∣∣ = negl(λ),

where LoR(sk, b,m0,m1) is the left-or-right encryption oracle which on input a key sk, a bit b, and
two messages m0, m1, returns OPE.Encrypt(sk,mb). We say that an adversary A making q queries

(m
(1)
0 ,m

(1)
1), . . . , (m

(q)
0 ,m

(q)
1) to the LoR oracle is admissible if for all i, j ∈ [q], m

(i)
0 < m

(j)
0 if and

only if m
(i)
1 < m

(j)
1 .

Lower bound for OPE schemes. We first show that any stateless OPE scheme with a plaintext
space containing at least three messages cannot satisfy IND-OCPA security unless the ciphertext
space has size 22ω(log λ) . In other words, the number of bits needed to represent a ciphertext is
2ω(log λ), which is superpolynomial in the security parameter. This theorem effectively shows that
there are no efficient OPE schemes when the message space contains even 3 elements.

Theorem 6.2. Let ΠOPE be a stateless OPE scheme with plaintext space [N] and ciphertext space

[M]. If ΠOPE is IND-OCPA-secure and N ≥ 3, then M = 22ω(log λ).

Proof. By correctness of ΠOPE, the OPE.Encrypt(sk, ·) function is deterministic with overwhelming
probability over the randomness used to sample sk in OPE.Setup. Thus, without loss of generality,

24

we assume that OPE.Encrypt(sk, ·) is deterministic. Since N ≥ 3, define the random variable
yi = OPE.Encrypt(sk, i) for i ∈ [3], and let Di be the distribution of yi (taken over the randomness
used to sample sk). For 1 ≤ i < j ≤ 3, define random variables dij = yj − yi to be random variables
corresponding to the distance between ciphertexts. By definition, d13 = d12 + d23. Let Dij be the
distribution of dij . By construction, each Dij is a distribution over [M]. If ΠOPE is IND-OCPA

secure, then it must be the case that D12
c
≈ D23

c
≈ D13. To complete the proof, we show the

following two lemmas.

Lemma 6.3. Suppose ΠOPE is IND-OCPA secure. Then, for any M ′ ≤M where Pr[d12 ≤M ′] =
1− negl(λ), it follows that M ′ = 2ω(log λ) (that is, M ′ is superpolynomial in λ).

Proof. We proceed via contradiction. Suppose that ΠOPE is IND-OCPA-secure and that M ′ =
poly(λ). Then, there must exist some x ∈ [M ′] such that Pr[d12 = x] ≥ 1/M ′ − negl(λ), which is
non-negligible. Let x ∈ [M ′] be the smallest such x such that Pr[d12 = x] is non-negligible. Next,
using the fact that d13 = d12 + d23, we have

Pr[d13 = x] = Pr[d12 = x] · Pr[d23 = 0 | d12 = x] +
∑
z<x

(Pr[d12 = z] · Pr[d23 = x− z | d12 = z])

= negl(λ) + negl(λ),

where the first term is negligible since Pr[d23 = 0 | d12 = x] = negl(λ) by correctness of the scheme,
and the second term is negligible since x is the smallest value for which Pr[d12 = x] is non-negligible.

By assumption, D13
c
≈ D12, so it must be the case that Pr[d12 = x] ≤ Pr[d13 = x]+negl(λ) = negl(λ),

which contradicts the assumption that Pr[d12 = x] is non-negligible.

Lemma 6.4. Let M ′ ≤ M be such that Pr[d12 ≤ M ′] = 1 − negl(λ). Then, Pr[d12 > M ′/2] =
negl(λ).

Proof. Suppose by contradiction that Pr[d12 > M ′/2] = ε1 for some non-negligible ε1. By the law
of total probability,

Pr[d23 ≤M ′/2] = Pr[d23 ≤M ′/2 | d12 ≤M ′/2] · Pr[d12 ≤M ′/2]

+ Pr[d23 ≤M ′/2 | d12 > M ′/2] · Pr[d12 > M ′/2]

=

at least 0︷ ︸︸ ︷
(1− ε1) Pr[d23 ≤M ′/2 | d12 ≤M ′/2] +ε1 Pr[d23 ≤M ′/2 | d12 > M ′/2] (6.1)

By assumption Pr[d12 > M ′] = negl(λ), and since D13
c
≈ D12, it follows that Pr[d13 > M ′] = negl(λ).

Since d13 > M ′ with negligible probability, and d12 > M ′/2 with non-negligible probability ε1, and
d13 = d12 + d23, it must be the case that Pr[d23 ≤M ′/2 | d12 > M ′/2] = 1− negl(λ). We conclude
from Eq. (6.1) that

Pr[d23 ≤M ′/2] ≥ ε1 Pr[d23 ≤M ′/2 | d12 > M ′/2]

= ε1 − negl(λ).

Next, we use the fact that d13 ≤M ′/2 only if d12 ≤M ′/2 and d23 ≤M ′/2. Let ε2 = Pr[d13 ≤M ′/2].
Then,

ε2 ≤ Pr[d12 ≤M ′/2] · Pr[d23 ≤M ′/2 | d12 ≤M ′/2]

= (1− ε1) · Pr[d23 ≤M ′/2 | d12 ≤M ′/2]. (6.2)

25

Substituting Eq. (6.2) into Eq. (6.1), we have that

Pr[d23 ≤M ′/2] =

at least ε2︷ ︸︸ ︷
(1− ε1) Pr[d23 ≤M ′/2 | d12 ≤M ′/2] +

equal to ε1−negl(λ)︷ ︸︸ ︷
ε1 Pr[d23 ≤M ′/2 | d12 > M ′/2]

≥ ε1 + ε2 − negl(λ).

Again using the fact that D13
c
≈ D23, we conclude that Pr[d13 ≤ M ′/2] ≥ ε1 + ε2 − negl(λ). By

definition, ε2 = Pr[d13 ≤M ′/2], so we obtain the relation ε2 ≥ ε1 + ε2 − negl(λ). By assumption,
ε1 is non-negligible, so this is impossible. The claim follows.

The theorem now follows by a straightforward invocation of Lemma 6.3 and 6.4. Let ΠOPE be
an IND-OCPA secure OPE scheme with ciphertext space [M] where M = 2λ

c
for some c ∈ N.

In other words, logM = λc = poly(λ). Define M0 = M and for i ∈ [λc], set Mi = M/2i. By
assumption, Pr[d12 ≤M] = 1, so invoking Lemma 6.4, Pr[d12 > M/2] = negl(λ). This means that
Pr[d12 ≤ M1] = 1 − negl(λ). We can now inductively apply Lemma 6.4 (a polynomial number
of times) to conclude that Pr[d12 ≤ Mλc] = 1 − negl(λ). However, if ΠOPE is IND-OCPA secure,
then invoking Lemma 6.3, we require that Mλc = 2ω(log λ). But Mλc = M/2λ

c
= O(1), so this is

impossible. The claim follows.

Upper bound for OPE schemes. We now give an explicit construction of a stateless OPE
scheme for a 3-message plaintext space that achieves best-possible security and whose ciphertext
space has size 22ω(log λ) . This matches the lower bound from Theorem 6.2.

Take any function f(·) where f(λ) = ω(log λ), and set M = 22f(λ)+1
. The ciphertext space in

our scheme will be [M]. Let ΠOPE = (OPE.Setup,OPE.Encrypt) be an OPE scheme with plaintext
space {1, 2, 3}, where the algorithms are given as follows:

• OPE.Setup(1λ): On input the security parameter λ, the setup algorithm chooses a value

z
r←− [M], and δ ← [2f(λ)]. It outputs the secret key sk = (z, δ).

• OPE.Encrypt(sk, x): On input a secret key sk = (z,∆) and a message x ∈ {1, 2, 3}, the
encryption algorithm writes x as x = 2 + i for some i ∈ {−1, 0, 1}, and computes y = z+ i · 2δ.
The algorithm outputs y if y ∈ [M], and ⊥ otherwise.

Correctness. Since the offset 2δ is always positive, it suffices to argue that OPE.Encrypt(sk, x)

does not output ⊥ with overwhelming probability. By construction, 2δ ≤ 22f(λ) . Therefore, the
quantity z − 2δ is less than 1 only in cases where z ≤ 22f(λ) . But this happens with probability
22f(λ)/22f(λ)+1

= 1/22f(λ) = negl(λ). Similarly, z + 2δ is greater than 22f(λ)+1
only in cases where

z ≥ 22f(λ)+1 − 22f(λ) , which again happens with probability 1/22f(λ) = negl(λ). Thus, correctness
holds with overwhelming probability.

Security. For i ∈ {1, 2, 3}, define the random variable yi = OPE.Encrypt(sk, i), and let Di be the
distribution of yi taken over the randomness used to sample sk. For 1 ≤ i < j ≤ 3, let Dij be the

distribution of yj − yi. First, we argue that for all i ∈ {1, 2, 3}, Di
s
≈ Unif([M]). By construction,

D2 ≡ Unif([M]). To show D1
s
≈ Unif([M]), we examine the quantity Pr[y1 = t] for t ∈ [M]. Since δ

26

is uniform over 2f(λ), we have that

Pr[y1 = t] =
1

2f(λ)

∑
δ′∈[2f(λ)]

Pr[y1 = t | δ = δ′]

=
1

2f(λ)

∑
δ′∈[2f(λ)]

Pr[z = t+ 2δ
′
].

If t+ 2δ
′ ≤ M , then by the fact that z is uniform over [M], Pr[z = t+ 2δ

′
] = 1/M . Thus, for all

t ≤M − 22f(λ) , Pr[y1 = t] = 1/M . More generally, we have for all t ∈ [M], Pr[y1 = t] ≤ 1/M . The
statistical distance between D1 and Unif([M]) can then be bounded as follows:∑

t∈[M]

∣∣∣∣Pr[y1 = t]− 1

M

∣∣∣∣ =
∑

M−22
f(λ)

<t≤M

∣∣∣∣Pr[y1 = t]− 1

M

∣∣∣∣
≤ 22f(λ)

M
+

22f(λ)

M
= negl(λ),

where we used the triangle inequality in the second line. A similar argument shows that D3
s
≈

Unif([M]).

To conclude the proof, we argue that for 1 ≤ i < j ≤ 3, Dij
s
≈ Unif(Sλ), where Sλ ={

21, 22, . . . , 22f(λ)
}

. By construction, D12 ≡ Unif(Sλ) ≡ D23, so it suffices to consider D13. By

construction, D13 ≡ Unif(S′λ) where S′λ =
{

22, 23, . . . , 22f(λ)+1
}

. Since |Sλ| = 2f(λ) = |S′λ|, the

statistical distance between Unif(Sλ) and Unif(S′λ) is 2/2f(λ) = negl(λ).

7 Experimental Evaluation

To assess the practicality of our order-revealing encryption scheme from Section 4, we give a
full implementation of our scheme and measure its performance on a wide range of parameter
settings. We then compare the performance against the Boldyreva et al. [BCLO09] OPE scheme
and the Chenette et al. [CLWW16] ORE scheme. In our implementation, we use the technique from
Remark 3.1 to shrink the ciphertexts.

Instantiating primitives. Our implementation is entirely written in C. We operate at 128-bits
of security (λ = 128). We instantiate the PRF with AES-128. To construct a PRP on 2d-bit
domains (for d < 128), we use a 3-round Feistel network using a PRF on d-bit inputs [LR88]. In our
experiments, we only consider d < 128, and thus, can instantiate the PRF using AES (where the
d-bit input is padded to 128-bits). For the random oracle, we consider two candidate constructions.
In the first, we use SHA-256, a standard cryptographic hash function commonly modeled as a
random oracle.

For our second instantiation of the random oracle, we use an AES-based construction. This allows
us to leverage the AES-NI instruction set for hardware-accelerated evaluation of AES. Recall from
Section 4 that our construction requires a random oracle mapping from a domain {0, 1}2λ = {0, 1}256

to Z2 (after applying the modification from Remark 3.1). On an input (k, x) ∈ {0, 1}128 × {0, 1}128,
we take the output of the random oracle to be the least significant bit of AES(k, x). Certainly, if we

27

model AES as an ideal cipher, then this construction implements a random oracle. We note that
modeling AES as an idealized object such as a random permutation or an ideal cipher has been
used in many other recent works such as constructing efficient garbling schemes [BHKR13] or the
Simpira family of permutations [GM16].

In our implementation, we use the OpenSSL [The03] implementations of AES and SHA-256
as well as the GMP [Gt12] library for big integer arithmetic. Our full implementation contains
approximately 750 lines of code. For our implementation of Boldyreva et al.’s OPE scheme, we use
the C++ implementation from CryptDB [PRZB11]6, and for our implementation of Chenette et al.’s
ORE scheme, we use the C implementation FastORE7. In our benchmarks, we substitute AES
for HMAC as the underlying PRF used in the FastORE library. We believe this provides a more
balanced comparison of the performance tradeoffs between the Chenette et al. scheme and our new
ORE scheme.

Benchmarks and evaluation. We run all of our experiments on a laptop running Ubuntu 14.04
with a 2.3 GHz Intel Core i7 CPU (Haswell microarchitecture) and 16 GB of RAM. Although our
encryption algorithm is easily parallelizable, we do not leverage parallelism in our benchmarks.
The processor supports the AES-NI instruction set, hence our decision to base as many primitives
as possible on AES. Our micro-benchmarks for encrypting and comparing 32-bit integers are
summarized in Table 1. In Figure 1, we compare the cost of encryption for the different schemes
across different-sized message spaces.

From Table 1, the time needed to compare two ORE ciphertexts is similar to the time needed
to compare two integers (in the OPE setting). Thus, while it is the case that deploying ORE in
encrypted database systems would require implementing a custom comparator in the database
management system, in practice, this incurs a very small computational overhead.

Compared to OPE, our new ORE scheme is significantly faster. For instance, when processing
byte-size blocks, encrypting a single 32-bit value requires just over 50 µs of computation and is over
65 times faster compared to vanilla OPE. Even our SHA-256-based implementation is about 10x
faster compared to OPE. Moreover, as shown in [CLWW16], an ORE scheme which leaks the first
bit that differs between two encrypted messages is provably more secure than any OPE scheme
which behaves like a truly random order-preserving function. Since our new ORE scheme leaks
strictly less information than the Chenette et al. scheme, we conclude that our new ORE scheme is
both more secure and faster compared to OPE schemes. Of course, when compared to the bit-by-bit
construction of [CLWW16], our new ORE scheme is much slower. However, in exchange, our new
ORE scheme confers stronger security as well as lends itself nicely towards a range query system
that provides robustness against inference attacks.

One of the main limitations of our new ORE scheme is the increase in the ciphertext size. Both
OPE and the Chenette et al. ORE schemes are able to achieve ciphertexts where the overhead is an
additive or (small) multiplicative factor in the length of the messages. In our setting, because our
main construction relies critically on a small-domain ORE scheme that offers best-possible security,
and the existing small-domain ORE scheme have ciphertexts that grow linearly in the size of the
message space, the size of the ciphertexts in our composed scheme grows quickly in the block size.
Nonetheless, when encrypting byte-by-byte, encrypting a 32-bit integer requires just 224 bytes,
which is quite modest for many practical applications. An interesting direction for future work is
to construct a more compact small-domain ORE with best-possible security. Such a construction

6https://github.com/CryptDB/cryptdb
7https://github.com/kevinlewi/fastore

28

Scheme d Encrypt Compare |ct| Leakage

Boldyreva et al. OPE [BCLO09] – 3601.82 µs 0.36 µs 8 bytes (Hard to quantify)

Chenette et al. ORE [CLWW16] 1 2.06 µs 0.48 µs 8 bytes First bit that differs

Our ORE scheme (RO: SHA-256)
4 54.48 µs 0.38 µs 192 bytes

First block of d-bits
that differs

8 361.04 µs 0.98 µs 224 bytes
12 4370.64 µs 3.20 µs 1612 bytes

Our ORE scheme (RO: AES)
4 16.50 µs 0.31 µs 192 bytes

First block of d-bits
that differs

8 54.87 µs 0.63 µs 224 bytes
12 721.37 µs 2.61 µs 1612 bytes

Table 1: Performance comparison between our ORE scheme from Section 4 and existing OPE and
ORE schemes. We consider two variants of our scheme: one where the random oracle is instantiated
using an AES-based construction and one where the random oracle is instantiated with SHA-256.
We describe these two instantiations in greater detail in Section 7. In these benchmarks, we use a
32-bit plaintext space, and measure the time needed to encrypt a (randomly chosen) message and
the time needed to compare two ciphertexts. The parameter d is the block size (in bits) in our ORE
scheme. Our micro-benchmarks are averaged over 50–107 iterations (the precise number is adjusted
based on the approximate runtime of the algorithm).

can be extended to a large-domain ORE with shorter ciphertexts by applying our techniques from
Section 4.

8 Related Work

In this section, we survey some of the literature on order-revealing and order-preserving encryption,
as well as the existing work on searching over encrypted data.

OPE and ORE. The concept of order-preserving encryption was first introduced by Agrawal,
Kiernan, Srikant, and Xu et al. [AKSX04], who explored the application of OPE for performing
encrypted database queries. The first explicit OPE construction was formalized in the seminal
work of Boldyreva et al. [BCLO09], and has subsequently been expanded on in a multitude of
works [BCO11, PR12, PLZ13, TYM14, KS14, Ker15, MCO+15, RACY15, BPP16]. Some of these
works [BCO11, TYM14] have focused on exploring the security properties of order-preserving
encryption. Others [PLZ13, KS14, Ker15, RACY15, BPP16] have considered stateful or interactive
OPE solutions which avoid both the lower bounds in [BCLO09, BCO11, PLZ13] as well as our
strengthened lower bound from Section 6. However, synchronizing state and coordinating multi-round
interactions in distributed, large-scale execution environments is often difficult, and consequently,
nearly all existing OPE deployments (e.g., SkyHigh Networks, CipherCloud) use stateless variants of
OPE for sorting and filtering on encrypted data. Numerous ad hoc OPE schemes [BHF09, KAK10]
have also been proposed in recent years, but they often lack a formal security analysis.

The notion of order-revealing encryption was first introduced by Boneh et al. [BLR+15], who
gave a construction from multilinear maps that satisfies best-possible security. More generally,
ORE is a special case of multi-input functional encryption (MIFE) [GGG+14]. To date, the

29

0 16 32 48 64

1

10

100

1,000

10,000

Bit Length of Message Space

A
ve

ra
g
e

E
n
cr

y
p

ti
on

T
im

e
(µ

s)

Boldyreva et al. Chenette et al.

Our scheme (SHA) Our scheme (AES)

Figure 1: Performance comparison between our ORE scheme (Section 4) and existing OPE and
ORE schemes. We use a fixed base representation d = 8 for our ORE scheme in these experiments.
The two variants of our scheme, labeled SHA and AES, refer to how we instantiate the random
oracle in our construction.

only constructions of general-purpose MIFE rely on heavy primitives such as indistinguishability
obfuscation [BGI+12, GGH+13b] and are far too inefficient to deploy. In the small-domain setting,
it is possible to construct ORE from either symmetric or public-key encryption [AJ15, BKS15] or
bilinear maps [KLM+16], but these constructions are far less efficient compared to our small-domain
ORE from Section 3, which just relies on PRFs.

Searching on encrypted data. Numerous techniques, such as searchable symmetric encryp-
tion (SSE) [SWP00, CGKO06, CK10], property-preserving encryption (PPE) [BCLO09, PR12],
fully homomorphic encryption (FHE) [Gen09], oblivious RAMs (ORAM) [GO96], hidden vector
encryption [BW07] and others have been proposed for tackling the general problem of searching
and querying on encrypted data. While tools such as FHE or ORAM can be used for searching
on encrypted data [BGH+13, YSK+13], these methods are prohibitively expensive for nearly all
real-world deployments. On the more practical side, numerous SSE schemes [SWP00, Goh03,
CM05, CGKO06, CK10, JJK+13, NPG14] have been proposed in the last 15 years, but these past
works are limited to exact keyword searches, and generally do not handle the efficient compu-
tation of complex queries (such as range queries) over encrypted data. More recently, several
works [CJJ+13, CJJ+14, PKV+14, FJK+15] describe constructions of SSE schemes that are able
to handle more expressive queries. We survey these works below.

Cash et al. [CJJ+13] give the first SSE scheme that supports Boolean queries (in time sublinear
in the size of the database) with a small amount of leakage and security from the decisional Diffie-
Hellman (DDH) assumption. Subsequently, Cash et al. [CJJ+14] extend the construction to allow
for updates to the encrypted database as well as support multiple, potentially dishonest clients.

30

Handling updates requires the client to maintain a small amount of state (or requires additional
rounds of communication and leads to increased leakage). Boolean queries alone, however, do
not suffice for range queries, so in another follow-up work, Faber et al. [FJK+15] show how the
Cash et al. SSE scheme can be leveraged for range queries. Their resulting construction leaks some
additional information about the database contents, namely the number of values that fall into
certain subintervals within the requested range. Moreover, due to the use of universal covers, the
size of the server’s response set to a range query may be up to 66% larger than the size of the true
response set. We do not know of any existing SSE scheme that can efficiently support range queries
with optimal (minimal) leakage.

Concurrent to the work of Cash et al., Pappas et al. [PKV+14] introduce BlindSeer, a private
database management system that can support a wide-range of queries in sublinear time over an
encrypted database. Their construction leverages generic two-party computation tools such as Yao’s
garbled circuits [Yao82], and their construction provides security in the semi-honest model.

Comparison to our techniques. To conclude, we highlight some of the key differences between
existing SSE methods and our ORE-based construction for implementing range queries over an
encrypted database:

• Like other PPE-based constructions, our ORE-based construction integrates well with existing
database management systems—we just need to implement a custom comparator. With SSE,
we would have to deploy a new, and oftentimes, complex database management system. This
lacks legacy compatibility, which is a barrier to deployment in existing systems. Our approach
provides a fast, simple, and direct solution for supporting range queries on encrypted data
without requiring significant infrastructural changes.

• We explicitly model and analyze the leakage of our range query protocol assuming adaptive
updates to the database.

• Our construction only requires symmetric primitives and does not require more expensive
primitives such as public-key cryptography or oblivious transfer.

9 Conclusions

In this work, we gave two new constructions of order-revealing encryption schemes that rely only on
symmetric primitives. Both of our constructions fit naturally into the left/right model for ORE
(Section 1.1) and have the appealing property that in isolation, right ciphertexts are semantically
secure. We leveraged this property to build an efficient range query protocol that is robust against
inference attacks. Thus, our work shows that it is possible to leverage property-preserving encryption
for searching on encrypted data while resisting offline inference attacks. As part of our analysis into
the security of OPE and ORE, we also strengthen the lower bound on OPE schemes and show that
there are no efficient OPE schemes on any message space containing at least three messages. To
conclude, we present several interesting directions for future study:

• Can we construct a practical small-domain ORE with best-possible security and ciphertext
length that is sublinear in the size of the message space? Such an ORE scheme can be combined
with our domain-extension technique from Section 4 to obtain an ORE scheme with shorter
ciphertexts or increased security (by allowing for larger block sizes).

31

• Can we construct a left/right ORE scheme (with similar or less leakage) from simple primitives
where both the left ciphertexts and the right ciphertexts are semantically secure when taken
in isolation? In our constructions from Sections 3 and 4, the left ciphertexts are deterministic
and do not satisfy this property. The only ORE constructions that achieve semantic security
for both left and right ciphertexts require multilinear maps [BLR+15] or indistinguishability
obfuscation [GGG+14].

• Can we strengthen our OPE lower bound to show that no OPE scheme can satisfy best-possible
security even if they are stateful or interactive? Popa et al. [PLZ13] previously showed that
even if we allow for state and interaction, the size of the ciphertext space must be exponential
in the size of the plaintext space. However, their lower bound does not rule out the possibility
of a stateful or interactive OPE scheme with best-possible security for small domains.

Acknowledgments

We thank Dan Boneh, Mark Zhandry, and Joe Zimmerman for insightful discussions about this
work. We thank the members of the 2015 Stanford Theory Retreat for initiating our study of new
OPE lower bounds. This work was supported by the NSF, DARPA, the Simons foundation, a
grant from ONR, and an NSF Graduate Research Fellowship. Opinions, findings and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of DARPA.

References

[AC15] Reed Abelson and Julie Creswell. Data breach at anthem may forecast a trend. The
New York Times, 2015.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact
functional encryption. In CRYPTO, 2015.

[AKSX04] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Order-
preserving encryption for numeric data. In ACM SIGMOD, 2004.

[BCLO09] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’Neill. Order-
preserving symmetric encryption. In EUROCRYPT, 2009.

[BCO11] Alexandra Boldyreva, Nathan Chenette, and Adam O’Neill. Order-preserving encryp-
tion revisited: Improved security analysis and alternative solutions. In CRYPTO,
2011.

[BGH+13] Dan Boneh, Craig Gentry, Shai Halevi, Frank Wang, and David J. Wu. Private database
queries using somewhat homomorphic encryption. In ACNS, 2013.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM, 2012.

32

[BHF09] Carsten Binnig, Stefan Hildenbrand, and Franz Färber. Dictionary-based order-
preserving string compression for main memory column stores. In ACM SIGMOD,
2009.

[BHKR13] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. Efficient
garbling from a fixed-key blockcipher. In IEEE SP, 2013.

[BKS15] Zvika Brakerski, Ilan Komargodski, and Gil Segev. From single-input to multi-input
functional encryption in the private-key setting. IACR Cryptology ePrint Archive,
2015.

[BLR+15] Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai, Mark Zhandry, and Joe
Zimmerman. Semantically secure order-revealing encryption: Multi-input functional
encryption without obfuscation. In EUROCRYPT, 2015.

[BPP16] Tobias Boelter, Rishabh Poddar, and Raluca Ada Popa. A secure one-roundtrip index
for range queries. Cryptology ePrint Archive, Report 2016/568, 2016.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In CCS, 1993.

[BS03] Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptography.
Contemporary Mathematics, 2003.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and
challenges. In TCC, 2011.

[BW07] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted
data. In TCC, 2007.

[CGKO06] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. Searchable
symmetric encryption: improved definitions and efficient constructions. In ACM CCS,
2006.

[CJJ+13] David Cash, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-Catalin
Rosu, and Michael Steiner. Highly-scalable searchable symmetric encryption with
support for boolean queries. In CRYPTO, 2013.

[CJJ+14] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk,
Marcel-Catalin Rosu, and Michael Steiner. Dynamic searchable encryption in very-large
databases: Data structures and implementation. In NDSS, 2014.

[CK10] Melissa Chase and Seny Kamara. Structured encryption and controlled disclosure. In
ASIACRYPT, pages 577–594, 2010.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear
maps over the integers. In CRYPTO, 2013.

[CLWW16] Nathan Chenette, Kevin Lewi, Stephen A. Weis, and David J. Wu. Practical order-
revealing encryption with limited leakage. In FSE, 2016.

33

[CM05] Yan-Cheng Chang and Michael Mitzenmacher. Privacy preserving keyword searches
on remote encrypted data. In ACNS, 2005.

[FJK+15] Sky Faber, Stanislaw Jarecki, Hugo Krawczyk, Quan Nguyen, Marcel-Catalin Rosu,
and Michael Steiner. Rich queries on encrypted data: Beyond exact matches. In
ESORICS, 2015.

[FV15] Jim Finkle and Dustin Volz. Database of 191 million u.s. voters exposed on internet:
researcher. Reuters, 2015.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, 2009.

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-
Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional
encryption. In EUROCRYPT, 2014.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In EUROCRYPT, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In FOCS, 2013.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. J. ACM, 1986.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci.,
1984.

[GM16] Shay Gueron and Nicky Mouha. Simpira v2: A family of efficient permutations using
the AES round function. IACR Cryptology ePrint Archive, 2016.

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious
rams. J. ACM, 1996.

[Goh03] Eu-Jin Goh. Secure indexes. IACR Cryptology ePrint Archive, 2003.

[Gt12] Torbjrn Granlund and the GMP development team. GNU MP: The GNU Multiple
Precision Arithmetic Library. http://gmplib.org/, 2012.

[JJK+13] Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-Catalin Rosu, and
Michael Steiner. Outsourced symmetric private information retrieval. In ACM CCS,
2013.

[KAK10] Hasan Kadhem, Toshiyuki Amagasa, and Hiroyuki Kitagawa. A secure and efficient
order preserving encryption scheme for relational databases. In KMIS, 2010.

[Kel14] Gordon Kelly. ebay suffers massive security breach, all users must change their
passwords. Forbes, 2014.

[Ker15] Florian Kerschbaum. Frequency-hiding order-preserving encryption. In ACM CCS,
2015.

34

[KLM+16] Sam Kim, Kevin Lewi, Avradip Mandal, Hart William Montgomery, Arnab Roy, and
David J. Wu. Function-hiding inner product encryption is practical. IACR Cryptology
ePrint Archive, 2016.

[KS14] Florian Kerschbaum and Axel Schröpfer. Optimal average-complexity ideal-security
order-preserving encryption. In ACM CCS, 2014.

[LR88] Michael Luby and Charles Rackoff. How to construct pseudorandom permutations
from pseudorandom functions. SIAM J. Comput., 1988.

[MCO+15] Charalampos Mavroforakis, Nathan Chenette, Adam O’Neill, George Kollios, and Ran
Canetti. Modular order-preserving encryption, revisited. In ACM SIGMOD, 2015.

[NKW15] Muhammad Naveed, Seny Kamara, and Charles V. Wright. Inference attacks on
property-preserving encrypted databases. In ACM CCS, 2015.

[NPG14] Muhammad Naveed, Manoj Prabhakaran, and Carl A. Gunter. Dynamic searchable
encryption via blind storage. In IEEE SP, 2014.

[PKV+14] Vasilis Pappas, Fernando Krell, Binh Vo, Vladimir Kolesnikov, Tal Malkin, Seung Geol
Choi, Wesley George, Angelos D. Keromytis, and Steve Bellovin. Blind seer: A scalable
private DBMS. In IEEE SP, 2014.

[PLZ13] Raluca A. Popa, Frank H. Li, and Nickolai Zeldovich. An ideal-security protocol for
order-preserving encoding. In IEEE SP, 2013.

[PR12] Omkant Pandey and Yannis Rouselakis. Property preserving symmetric encryption. In
EUROCRYPT, 2012.

[PRZB11] Raluca A. Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakrishnan.
Cryptdb: protecting confidentiality with encrypted query processing. In ACM SOSP,
2011.

[RACY15] Daniel S. Roche, Daniel Apon, Seung Geol Choi, and Arkady Yerukhimovich. POPE:
partial order-preserving encoding. IACR Cryptology ePrint Archive, 2015.

[SWP00] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for
searches on encrypted data. In IEEE SP, 2000.

[The03] The OpenSSL Project. OpenSSL: The open source toolkit for SSL/TLS. www.openssl.
org, 2003.

[TYM14] Isamu Teranishi, Moti Yung, and Tal Malkin. Order-preserving encryption secure
beyond one-wayness. In ASIACRYPT, 2014.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In
FOCS, 1982.

[YSK+13] Masaya Yasuda, Takeshi Shimoyama, Jun Kogure, Kazuhiro Yokoyama, and Takeshi
Koshiba. Secure pattern matching using somewhat homomorphic encryption. In CCSW,
2013.

35

www.openssl.org
www.openssl.org

A Proof of Theorem 4.1

Let A = (A1, . . . ,Aq) where q = poly(λ) be an efficient adversary for the ORE security game
(Definition 2.2). We construct an efficient simulator S = (S0, . . . ,Sq) such that the two distributions
REALoreA (λ) and SIMore

A,S,Lblk(λ) are computationally indistinguishable.

A.1 Description of the Simulator

We begin by describing the simulator S. As in the proof of Theorem 3.3, we model H as a random
oracle. Recall that the inputs to the encryption scheme are written in base d. First, on input the
security parameter 1λ, the simulator S0 maintains the following tables and sets which will be used
to ensure consistency throughout the simulation:

• The table Tro : {0, 1}λ × {0, 1}λ → Z3, used to maintain the input-output mappings to the
random oracle.

• The collection of tables Tkeys[j, s] : {0, 1}λ → [q] × [d], for each j ∈ [q] and s ∈ [n] used to
maintain mappings of keys k ∈ {0, 1}λ to tuples containing a message index associated with k,
along with the (permuted) position within the block associated with the key k.

• The collection of sets Sj,s ⊂ [d], for each j ∈ [q] and s ∈ [n], used to lazily sample the random
permutations for each block. Each of these sets Sj,s will always be a subset of [d].

The simulator’s initial state stS consists of the (initially empty) tables Tro, Tkeys[j, s], and the
(initially empty) sets Sj,s, for all j ∈ [q] and s ∈ [n]. Then, for each t ∈ [q], after the adversary outputs
a message mt, the simulation algorithm St is invoked on the input stS and the leakage function

Lblk(m1, . . . ,mt). In particular, Lblk(m1, . . . ,mt) includes both cmp(mi,mt) and ind
(d)
diff(mi,mt)

for all i < t. In the following, we write ct(i) = (ct
(i)
L , ct

(i)
R) to denote the simulator’s response to the

ith query, and we will implicitly assume that the simulator’s state stS also includes its responses
ct(1), . . . , ct(t−1) in the previous queries. We now describe how St responds to the tth query.

Simulating the left ciphertexts. First, we describe how St simulates the left ciphertext ct
(t)
L .

The left ciphertext ct
(t)
L consists of a tuple of the form (ū

(t)
1 , . . . , ū

(t)
n), and for each s ∈ [n], the

simulator constructs ū
(t)
s as follows:

• Case 1: There exists a j < t such that ind
(d)
diff(mj ,mt) > s. If there are multiple j for which

ind
(d)
diff(mj ,mt) > s, let j be the smallest one. In this case, the simulator sets ū

(t)
s = ū

(j)
s .

• Case 2: For each ` < t, ind
(d)
diff(m`,mt) ≤ s, and there exists some j < t for which

ind
(d)
diff(mj ,mt) = s. If there are multiple j for which ind

(d)
diff(mj ,mt) = s, let j be the smallest

one. The simulator samples an index ī
r←− [d] \ Sj,s, and a key k̄

r←− {0, 1}λ. If there exists a
mapping of the form (k̄, y) 7→ ρ in Tro for some y ∈ {0, 1}λ and ρ ∈ Z3, then the simulator
aborts and outputs ⊥1. Otherwise, it adds the index ī to Sj,s, and also adds the mapping

k̄ 7→ (t, ī) to Tkeys[j, s]. Finally, it sets ū
(t)
s = (k̄, ī).

• Case 3: For each ` < t, ind
(d)
diff(m`,mt) < s. In this case, the simulator samples an index

ī
r←− [d] and a key k̄

r←− {0, 1}λ. If there exists a mapping (k̄, y) 7→ ρ in Tro for any y ∈ {0, 1}λ

36

and ρ ∈ Z3, then the simulator aborts and outputs ⊥1. Otherwise, it adds the index ī to St,s,

and also adds the mapping k̄ 7→ (t, ī) to Tkeys[j, s]. Finally, it sets ū
(t)
s = (k̄, ī).

Simulating the right ciphertexts. To simulate the right ciphertext ct
(t)
R for the tth query, the

simulator samples a random nonce r̄t
r←− {0, 1}λ. Next, it checks whether there is a mapping of the

form (k, r̄t) 7→ ρ in Tro for some k ∈ {0, 1}λ and ρ ∈ Z3. If so, the simulator aborts and outputs ⊥2.

Otherwise, for i ∈ [n] and j ∈ [d], the simulator samples z̄
(t)
i,j

r←− Z3, sets v̄
(t)
i = (z̄

(t)
i,1 , . . . , z̄

(t)
i,d), and

constructs ct
(t)
R = (r̄t, v̄

(t)
1 , . . . , v̄

(t)
n).

Simulating the random oracle queries. To conclude the specification of the simulator S, we
describe how it responds to a random oracle query. Let t ≤ q be the number of encryption queries
the adversary has made so far, and recall that r̄1, . . . , r̄t ∈ {0, 1}λ are the nonces chosen by the
simulator when constructing the right ciphertexts for each encryption query. Then, on input
(k, r) ∈ {0, 1}λ × {0, 1}λ, the simulator responds as follows:

• If there is a mapping (k, r) 7→ ρ̄ in Tro for some ρ̄ ∈ Z3, the simulator simply replies with ρ̄.

• If there is a mapping k 7→ (α, β) in Tkeys[j, s] for some α, j ∈ [q], β ∈ [d], s ∈ [n], and r = r̄i
for some i ∈ [t], then the simulator responds as follows:

– If ind
(d)
diff(mα,mi) < s, then the simulator samples ρ̄

r←− Z3.

– If ind
(d)
diff(mα,mi) = s, then the simulator sets ρ̄ = z̄

(i)
s,β − cmp(mi,mα) (mod 3).

– If ind
(d)
diff(mα,mi) > s, then the simulator sets ρ̄ = z̄

(i)
s,β.

Finally, the simulator adds the mapping (k, r) 7→ ρ̄ to Tro and replies with ρ̄.

• For the final case, if there is either no mapping of the form k 7→ (α, β) for some α ∈ [q] and
β ∈ [d] in Tkeys[j, s] for all j ≤ t and s ∈ [n], or r 6= r̄i for all i ∈ [t], then the simulator chooses

ρ̄
r←− Z3, adds the mapping (k, r) 7→ ρ̄ to Tro, and replies with ρ̄.

A.2 Correctness of the Simulation

To complete the proof, we argue that the real and ideal experiments REALoreA (λ) and SIMore
A,S,Lblk(λ),

respectively, are computationally indistinguishable. Similar to the proof of Theorem 3.3, we proceed
via a hybrid argument:

• Hybrid H0: The is the real experiment REALoreA (λ) (Definition 2.2).

• Hybrid H1: Same as H0, except that the PRFs F (k1, ·) and F (k2, ·) are replaced by truly
random functions f1, f2 : {0, 1}λ → {0, 1}λ.

• Hybrid H2: Same as H1, except that for each k ∈ {0, 1}λ, we replace each of the PRPs π(k, ·)
with a truly random permutation τk over [d]. In other words, whenever there is an invocation
to π(k, ·), we replace it with an invocation to τk(·). For distinct k, k′ ∈ {0, 1}λ, the truly
random permutations τk and τk′ are independent.

• Hybrid H3: Same as H2, except that the experiment aborts and outputs either ⊥1 or ⊥2 if
one of the following events occur:

37

– If the adversary queries for an encryption of a message m = m1m2 · · ·mn ∈ [N] and the
adversary is able to query the random oracle H on a tuple (f1(m|i−1‖τk(mi)), r

′), where

k = f2(m|i−1) for some i ∈ [n], and r′ ∈ {0, 1}λ, before it has made an encryption query
on some message m′ ∈ [N] for which m′|i = m|i. In this case, the experiment outputs ⊥1.

– If for some j ∈ [q], the adversary queries H on an input of the form (k, rj), for some
k ∈ {0, 1}λ, before it makes the jth encryption query. Recall that rj ∈ {0, 1}λ is the
nonce sampled by the right encryption algorithm on the jth encryption query. In this
case, the experiment outputs ⊥2.

• Hybrid H4: This is the ideal experiment SIMore
A,S,Lblk(λ) (Definition 2.2).

Note that our sequence of hybrid experiments almost exactly mirrors the sequence used in the proof
of Theorem 3. The main difference is the needing to switch from using the PRP to using a truly
random permutation. This step was unnecessary in the small-domain setting because there, we
required just a single permutation which could be sampled during setup. We now argue that each
consecutive pair of hybrid arguments are computationally indistinguishable.

Lemma A.1. Hybrids H0 and H1 are computationally indistinguishable if F is a secure PRF.

Proof. Formally, we define an intermediate hybrid where we first replace F (k1, ·) with the truly
random function f1, but keep F (k2, ·) as normal. In the second hybrid, we replace F (k2, ·) with
the truly random function f2. For the first hybrid argument, we use the fact that k1 is sampled
uniformly at random from the keyspace K (during the setup procedure). Thus, we can invoke
the PRF security of F to argue that F (k1, ·) is indistinguishable from a truly random function
f1(·) : {0, 1}λ → {0, 1}λ. The second hybrid argument proceeds similarly where we now use the fact
that k2 is sampled uniformly at random from the keyspace. The claim then follows by the PRF
security of F .

Lemma A.2. Hybrids H1 and H2 are computationally indistinguishable if π is a secure PRP.

Proof. In hybrid H1, the keys used by the challenger to evaluate π are all derived from the outputs
of the truly random function f2. Using a sequence of hybrid arguments (one for each PRP key k),
we invoke security of the PRP and replace π(k, ·) with a truly random permutation τk(·) on [d].

Note that we only require a polynomial number of intermediate hybrids in this reduction, since
we only need to invoke PRP security for each PRP key k that arises when responding to the
adversary’s queries. On each chosen message query, to construct the left ciphertexts, the challenger
needs to evaluate the PRP π on up to n = poly(λ) different keys (one for each digit in the message).
Thus, if the adversary makes q queries, there are at most qn = poly(λ) number of PRP keys that
will be used to construct the ciphertexts in the real experiment. We conclude that the number of
intermediate hybrids is polynomially-bounded, and so the claim follows from PRP security.

Lemma A.3. Hybrids H2 and H3 are statistically indistinguishable if H is modeled as a random
oracle.

Proof. The proof of this lemma proceeds very similarly to the proof of Lemma 3.6. We argue that
each of the abort events (represented by the simulator outputting either ⊥1 or ⊥2 in hybrid H2 can
only occur with negligible probability.

38

• Case 1: The experiment outputs ⊥1. Take any prefix m|i for some m ∈ [N] and i ∈ [n]
and let µ = m|i−1‖τk(mi) from the simulator for the left ciphertexts. Suppose the adversary
has not yet queried for an encryption of any message m′ where m′|i = m|i. Then, we claim that

the adversary’s view is completely independent of f1(µ). Consider the ciphertext ct′ = (ct′L, ct
′
R)

the adversary obtains when it requests an encryption of a message m′.

First, we write ct′L as ct′L = (u′1, . . . , u
′
n). Since f1 is a truly random function, each component

u′j for all j 6= i is completely independent of f1(µ). More precisely, the first component
of u′j is an output of f1 on a different-lengthed prefix and the second component is the
output of a random permutation independent of f1. Finally, consider u′i. Again, the second
component of u′i is the output of a random permutation independent of f1 so it suffices to just
consider the first component. The first component of u′i is given by f1(m′|i−1‖τk′(m

′
i)) where

k′ = f2(m′|i−1). There are two possibilities. If m|i−1 = m′|i−1 (so τk = τk′), then mi 6= m′i, and

so τk(m′i) 6= τk(mi). Independence of u′i and f1(µ) then follows from the fact that the outputs
of f1 are independently uniform in {0, 1}λ. If m|i−1 6= m′|i−1, then once again, we have that u′i
is independent of f1(µ).

Next, we reason about the right ciphertext components ct′R = (r′, v′1, . . . , r
′
n). First r′ is sampled

uniformly at random, and thus, is independent of f1(µ). Next, each of the components v′j for
j ∈ [n] can be written as cmp(j∗,m′j) +H(·) where j∗ ranges over the values in [d] in some
order. Certainly, the comparison outputs are independent of f1 and likewise for the outputs
of the random oracle. We conclude that ct′R is independent of f1(µ).

We have thus shown that as long as the adversary has not queried for an encryption of any
message m′ where m|i = m|i′ , its view is independent of f1(µ). Now, let z1, . . . , z` be the
adversary’s queries to the random oracle before it requests for an encryption of some m′

where m′|i = m|i. By our argument above, each of the zi’s is necessarily chosen independently

of f(µ). Since f is a truly random function, the probability that there is some i such that
zi = (f1(µ), y) for any y, is at most `/2λ = negl(λ), since ` = poly(λ). Therefore, we conclude
that experiment H3 outputs ⊥1 with negligible probability.

• Case 2: The experiment outputs ⊥2. Let z1, . . . , z` for ` = poly(λ) be the random oracle
queries the adversary makes before making its jth encryption query. When constructing the
right ciphertext for the jth encryption query, the real experiment samples rj

r←− {0, 1}λ. In
particular, rj is independent of z1, . . . , z`, and so the probability that there is some i such
that zi = (x, rj) for any x is at most `/2λ = negl(λ), and so the experiment outputs ⊥2 with
negligible probability. The claim follows.

Lemma A.4. Hybrid H3 and H4 are statistically indistinguishable if H is modeled as a random
oracle.

Proof. Let (ct1, . . . , ctq) be the joint distribution of the ciphertexts output in H3 and let (ct1, . . . , ctq)
be the joint distribution of the ciphertexts output in H4. We show that these two distributions are
statistically indistinguishable, and moreover, that the outputs of the random oracle are properly
simulated in H4. The structure of our proof proceeds very similarly to that of Lemma 3.6.

Let m1, . . . ,mq be the messages chosen by the adversary in H3 and H4. Recall that in the
simulation, the tables Tkeys[·, ·] are used to maintain the mapping of keys k ∈ {0, 1}λ (the inputs
to the random oracle) to tuples containing a message index associated with k, along with the

39

(permuted) slot within the block associated with k. This is the analog of the table Tkeys used in the
proof of Theorem 3.3. The table Tro is a mapping for the inputs and outputs of the random oracle.

We now proceed via induction on the number of queries q. In each step of the induction, we
assume that the following invariants hold for each t < q:

• (ct1, . . . , ctt) ≡ (ct1, . . . , ctt).

• The outputs of the random oracle queries prior to the (t+ 1)th query are statistically indistin-
guishable in H3 and H4.

Consider the base case where t = 0. If suffices to argue that all of the random oracle queries are
simulated properly in H4. Suppose the adversary queries the oracle on an input (k, r). Before the
adversary makes a single encryption query, the outputs to the adversary’s random oracle query are
always a uniformly random draw from Z3 in both H3 and H4, which completes the base case.

For the inductive step, suppose that the two conditions hold for some t < q. We show that
the same conditions hold for t + 1. First, we introduce some notation. For all j ∈ [t], we write

ctj =
(
ct

(j)
L , ct

(j)
R

)
and similarly, ctj =

(
ct

(j)
L , ct

(j)
R

)
. Next, we write ct

(j)
L =

(
u

(j)
1 , . . . , u

(j)
n

)
and

ct
(j)
L =

(
ū

(j)
1 , . . . , ū

(j)
n

)
, where u

(j)
s =

(
k

(j)
s , h

(j)
s

)
and ū

(j)
s =

(
k̄

(j)
s , h̄

(j)
s

)
for each s ∈ [n]. Finally, we

also write ct
(j)
R =

(
rj , v

(j)
1 , . . . , v

(j)
n

)
and ct

(j)
R =

(
r̄j , v̄

(j)
1 , . . . , v̄

(j)
n

)
, where v

(j)
s =

(
z

(j)
s,1 , . . . , z

(j)
s,d

)
, and

v̄
(j)
s =

(
z̄

(j)
s,1 , . . . , z̄

(j)
s,d

)
.

We begin by showing that the responses to the random oracle queries the adversary makes
between its tth and (t+ 1)th encryption query are statistically indistinguishable in H3 and H4.
Let (k, r) be a random oracle query made between the tth and (t+ 1)th encryption query by the
adversary. We consider several possibilities:

• Suppose in H3 that k = k
(α)
s for some s ∈ [n], α ∈ [t] and that r = ri ∈ {0, 1}λ for some

i ∈ [t]. In H4, this corresponds to the case where k = k̄
(α)
s and r = r̄i. By construction of the

simulation in H4 this corresponds to the setting where there is some mapping of the form
k 7→ (α, β) in Tkeys[j, s] for some β ∈ [d] and j ∈ [q].

In hybrid H3, since the nonces r1, . . . , rt ∈ {0, 1}λ are sampled uniformly at random, they
are distinct with overwhelming probability. Moreover, all of the ciphertexts ctj for j 6= i are
constructed independently of ri. Therefore, the outputs of the random oracle on an input
H(·, ri) are independent of ctj for all j 6= i with overwhelming probability. Additionally, all of

the entries v
(i)
j for j 6= s are independent of k = k

(α)
s with overwhelming probability (since

these keys are derived from the outputs of a truly random function on distinct inputs). We
now consider several possibilities:

– If ind
(d)
diff(mα,mi) < s, then mα and mi do not share a prefix of length s. Note that v

(i)
s

is independent of kαs because mα and mi differ on the first s− 1 bits, and so the keys

used to blind the sth block are distinct. We conclude that k = k
(α)
s is independent of

ct
(i)
R , and correspondingly, cti. Since k is independent of all the ciphertexts, its value is

thus uniformly distributed over Z3. In H4, when ind
(d)
diff(mα,mi) < s, the simulator replies

with ρ̄
r←− Z3, which is precisely the response in H3.

– If ind
(d)
diff(mα,mi) = s, then mα and mi differ at position s. In H3, this means that

z
(i)
s,τk′ (mi,s)

= cmp(mα,mi) +H(k, r), (A.1)

40

where mi,s denotes the sth digit of message mi and k′ is f2 applied to the common prefix
(of length s−1) of mi. In H4, the simulator uses the sets Sj,s to maintain the permutation
τk′ , and in particular, the value β corresponds to τk′ on mi,s. Thus, in H4, the simulator’s
response ρ̄ is precisely the value ρ̄ such that Eq. (A.1) is satisfied.

– Finally, if ind
(d)
diff(mα,mi) > s, then mα and mi agree on a prefix of length at least s. In

H3, this means that

z
(i)
s,τk′ (mi,s)

= H(k, r),

where mi,s and k′ are defined identically to the previous case. By the same argument as
in the previous case, we have that the distributions of the output H(k, r) in hybrids H3

and H4 are statistically indistinguishable.

• Otherwise, if k 6= k
(α)
s for all s ∈ [n] and α ∈ [t] or r 6= ri for all i ≤ t, then H(k, r) is

independent of all the ciphertexts ct1, . . . , ctt given out so far in H3. In this case, the output
of the random oracle is uniform and independent over Z3. By construction of the simulator,
the same holds in H4. In this case then, the outputs of the random oracle in H3 and H4 are
identically distributed.

Next, we show that the conditional distributions of ct
(t+1)
L and ct

(t+1)
L given the adversary’s view in

H3 and H4, respectively, are statistically indistinguishable. Let mt+1 be the adversary’s (t+ 1)th

encryption query. Since the components u
(t+1)
1 , . . . , u

(t+1)
n and ū

(t+1)
1 , . . . , ū

(t+1)
n in the left cipher-

texts are constructed independently in H3 and H4, respectively, we reason about each component
individually. For each s ∈ [n], we consider the three possibilities highlighted in the simulation:

• Case 1: There exists a j < t+ 1 such that ind
(d)
diff(mj ,mt+1) > s. If there are multiple j for

which ind
(d)
diff(mj ,mt+1) > s, let j be the smallest one.

By construction of ORE.EncryptL, the component u
(t+1)
s of the left ciphertext is a function of

only the first t+ 1 blocks of the message mt+1. Thus, if there is a message mj for which the

first t+ 1 blocks of mj and mt+1 are identical, then correspondingly, u
(t+1)
s = u

(j)
s . In hybrid

H4, the simulator sets ū
(t+1)
s = ū

(j)
s , and so the claim follows from the inductive hypothesis.

• Case 2: For each ` < t, ind
(d)
diff(m`,mt) ≤ s, and there exists some j < t for which

ind
(d)
diff(mj ,mt) = s. If there are multiple j where ind

(d)
diff(mj ,mt) = s, let j be the small-

est one.

In hybrid H3, h
(t+1)
s = τk(mt+1,s), where k is derived from f2 applied to the first s− 1 blocks

of mt+1. But since the first s−1 blocks of mt+1 match mi, the index h
(t+1)
s is derived from the

same permutation used to construct h
(j)
s . In the simulation, the simulator samples a random

index from the set Sj,s, which is used to lazily sample the permutation τk. This is precisely
how the simulator lazily samples the permutation π in the proof of Theorem 3.3. In hybrid H3,

the key k
(t+1)
s is computed as the output of f1 on the prefix concatenated with the permuted

index. By construction, this is the first time f1 is evaluated on this input (otherwise, we would
be in Case 1), and so the output of f1 is uniformly and independently distributed. This is

how h̄
(t+1)
s is sampled in H4. Finally, both H3 and H4 abort (with output ⊥1) if the adversary

has already queried the random oracle on h
(t+1)
s and h̄

(t+1)
s , respectively, as required.

41

• Case 3: For each ` < t, ind
(d)
diff(m`,mt) < s.

In H3, h
(t+1)
s = τk(mt+1,s), where k is derived from f2 applied to the first s− 1 blocks of mt+1.

But since the first s− 1 blocks differ from those of all other messages, this is the first time τk
is evaluated on any input, and so h

(t+1)
s is distributed uniformly over [d]. Similarly, the key

k
(t+1)
s is computed as the output of f1 on a unique input (not appearing in any of the previous

queries), and so the output of f1 is also uniformly distributed. In H4, St samples h̄
(t+1)
s

uniformly from [d] and k̄
(t+1)
s uniformly from {0, 1}λ. Thus, the components (k

(t+1)
s , h

(t+1)
s)

and (k̄
(t+1)
s , h̄

(t+1)
s) are identically distributed in this case. Finally, both H3 and H4 aborts

with output ⊥1 if the adversary has already queried the random oracle on h
(t+1)
s and h̄

(t+1)
s .

We conclude from the above case analysis that the conditional distribution of the left ciphertexts in
hybrids H3 and H4 is statistically indistinguishable.

To conclude the proof, we argue that the right ciphertext components are statistically indistin-
guishable in H3 and H4. Certainly rt+1 and r̄t+1 are identically distributed. By construction, in
H3 and H4, the adversary must never have queried the random oracle on an input containing rt+1

and r̄t+1 (otherwise, the experiment aborts with output ⊥2). But now, each component in ct
(t+1)
R

and ct
(t+1)
R is blinded by the output the random oracle on an input containing rt+1 or r̄t+1. Thus,

conditioned on the view of the adversary up to the point it issues its t+ 1th encryption query, in

H3, the components of ct
(t+1)
R are perfectly hidden by the outputs of the random oracle, and thus,

appear independently and uniformly random over Z3. This is precisely the distribution from which

the simulator samples the elements of ct
(t+1)
R in H4. We conclude that the right ciphertexts are

properly distributed in H3 and H4. The lemma now follows by induction on t.

Combining Lemmas A.1 through A.4, we conclude that Πore is secure with leakage function Lblk.

42

	Introduction
	Extending ORE: The Left/Right Framework
	Our Contributions

	Preliminaries
	Order-Revealing Encryption

	ORE for Small Domains
	Small-Domain ORE Construction
	Proof of Security

	Domain Extension: A Large-Domain ORE
	Encrypted Range Queries
	Range Query Schemes
	An Efficient Range Query Scheme

	Impossibility Result for OPE
	Experimental Evaluation
	Related Work
	Conclusions
	Proof of Theorem 4.1
	Description of the Simulator
	Correctness of the Simulation

