
MPC-Friendly Symmetric Key Primitives

Lorenzo Grassi1, Christian Rechberger1, Dragos Rotaru2, Peter Scholl2, and Nigel P. Smart2

1 Graz Univeristy of Technology, Austria
2 University of Bristol, United Kingom.

Abstract. We discuss the design of symmetric primitives, in particular Pseudo-Random Functions
(PRFs) which are suitable for use in a secret-sharing based MPC system. We consider three different
PRFs: the Naor-Reingold PRF, a PRF based on the Legendre symbol, and a specialized block cipher
design called MiMC. We present protocols for implementing these PRFs within a secret-sharing based
MPC system, and discuss possible applications. We then compare the performance of our protocols.
Depending on the application, different PRFs may offer different optimizations and advantages over
the classic AES benchmark. Thus, we cannot conclude that there is one optimal PRF to be used in all
situations.

1 Introduction

Secure multi-party computation (MPC) allows a set of parties to jointly evaluate a function on
private inputs, with the guarantee that no party can learn anything more than the output of the
function. In the last decade, MPC has moved from a theoretical pursuit to a very practical field,
as protocols have become more efficient and many implementations been been developed.

For many years now, the de facto benchmark for MPC systems has been secure computation
of the AES function [38,21,22,36,32]. Although the actual choice of this function was originally
as a testbed for comparing protocols, it has often been justified as “useful”; for example if an
application needs to evaluate a symmetric encryption scheme or pseudorandom function (PRF)
with a secret-shared key. If this is indeed required, then there is no particular reason why AES
should be the best choice to work with MPC, compared with other PRFs or symmetric ciphers.
Indeed we contend that AES is in many ways a very unnatural choice of a PRF evaluation for use
in MPC applications. In this work, we conduct a study of some PRFs for use in MPC, including
new protocols for evaluating number-theoretic PRFs, and implementation of “traditional” block
cipher candidates designed to have a low complexity in MPC.

1.1 Main Motivating Applications

Before proceeding, we first outline some applications we have in mind. Our focus is on secret sharing
based MPC systems such as that typified by BDOZ [5], SPDZ [24,23], and VIFF [20]; or indeed
any classical protocol based on Shamir Secret Sharing. In such situations data is often shared as
elements of a finite field Fp, of large prime characteristic. Using such a representation one then has
efficient protocols to compute relatively complex functions such as integer comparison [19], fixed
point arithmetic [15], and linear programming [14]. Indeed the most famous of such efficient high
level protocols is that needed to compute the output of an auction [6].

Given such applications, evaluated by an MPC “engine”, the question arises as to how to get
data securely in and out of the engine. In traditional presentations the data is entered by the
computing parties, and the output is delivered to the computing parties. However, this in practice
will be a simplification. Input and output may need to be securely delivered/received by third

parties, in addition in a long term reactive functionality the intermediate secure data may need to
be stored in a database, or other storage device.

If we examine the case of long term storage of data, which is stored by the MPC engine only to
be used again at a later date, the trivial way to store such shared data is for each party to encrypt
their share with a symmetric key, and then store each encrypted share. However, this incurs an
N -fold increase in storage at the database end (for N MPC servers), which may be prohibitive. A
similar trivial solution also applies for data input and output, except data input is now performed
using N public keys (one for each MPC server) and output is performed by each server producing
a public key encryption of its share to the recipient’s public key.

A more efficient solution would be to use a direct evaluation of a symmetric key primitive
within the MPC engine. Such a symmetric key primitive should be able to be efficiently evaluated
by the MPC engine1. We call such a symmetric key primitive “MPC-Friendly”. Given almost all
symmetric key primitives can be constructed easily from Pseudo-Random Functions (PRFs), the
goal is therefore to produce an MPC-Friendly PRF.

The main problem of using “traditional” PRFs such as AES is that these are built for com-
putational engines which work over data types that do not easily match the operations possible
in the MPC engine. For example AES is very much a byte/word oriented cipher, which is hard to
represent using arithmetic in Fp. Thus we are led to a whole new area of PRF design, with very
different efficiency metrics compared to traditional PRF design.

1.2 Secondary Applications

A simple example application of MPC is to enable distributed secure storage of long-term cryp-
tographic keys, by secret-sharing the key and storing each share at a separate server. When the
key is required by an application such as encryption or authentication, the MPC protocol is used
to compute this functionality. If this cryptographic functionality is a symmetric cipher, then this
application would be greatly enhanced by using an “MPC-Friendly” symmetric primitive.

Using traditional symmetric cryptographic primitives directly on shared data can also improve
efficiency for some applications. For example, Laur et al. [30] used an oblivious AES implementation
to perform a secure join operation on a secret-shared database. After obliviously shuffling the
database, the (deterministic) AES encryptions are made public to all parties, so that the join can
then be performed efficiently using standard database algorithms.

Lu and Ostrovsky [33] presented a distributed oblivious RAM protocol, which achieves only
O(logN) overhead, better than any ORAM scheme in the non-distributed setting. This protocol
could be combined with a secret-shared MPC system to provide a mechanism to allow secure
computation of RAM programs. However, the ORAM construction of [33] makes heavy use of a
PRF, so such an application would require the use of an MPC-Friendly PRF.

For other operational reasons it may be useful to encrypt data using a special form of encryption
such as deterministic encryption, searchable symmetric encryption (SSE) or (leaky) order-revealing
encryption (ORE) [7,8,16,4,12], under a secret-shared key. These algorithms can enable efficient
queries on the encrypted data, whilst the query results can then be decrypted into shares for
more complex processing using MPC. For transmission across the wire, to (or from) an external
application, a form of Authenticated Encryption (AE) is needed. We note that all of these symmetric

1 Note that public key encryption applications as mentioned above can be built from the symmetric key key primitives
in the standard KEM-DEM manner. The KEM component being relatively easy to implement, in most cases, in
an MPC friendly manner. Thus we focus on symmetric key primitives in this paper.

2

primitives (SSE, OPE, AE etc) can be built, in generic ways, out of a PRF. Thus the main obstacle
preventing such applications is an efficient MPC-Friendly PRF.

1.3 Related Work

Surprisingly there has been little direct work on this problem, despite the recent plethora of pro-
posed MPC applications; indeed the only paper we know of which explicitly designs PRFs for use
in MPC, is [2], which we shall discuss below. The three lines of work most related to the work in
this paper, apart from re-purposing designs from elsewhere, are

– Low complexity, “lightweight” ciphers for use in IoT and other constrained environments.
– Block and stream ciphers suited to evaluation by a Fully Homomorphic/Somewhat Homomor-

phic encryption scheme. So called SHE-Friendly ciphers.
– Designs for use in SNARKs.

We now elaborate on the prior work in these areas.

Low Complexity Lightweight Ciphers: Block ciphers often iterate a relatively simple round
function a number of times to achive security goals. Most early designs in this domain focused on
small area when implemented as a circuit in hardware. There, large depth (via a large number
of rounds) of no concern as simply means clocking a circuit that implements a single round more
times. Notable exceptions are mCrypton[31] and Noekeon[17] which feature a relatively low depth
also. The more recent trend to emphasize low latency (with designs like PRINCE[9]) fits much
better with our requirement of having low-depth. A property of all these designs is that they lend
themselves well to implementations where binary NAND gates, XOR gates, or multiplexers are
the basic building blocks in the used libraries. As explained above the majority of secret sharing
based MPC applications require description via Fp. Whilst bit operations are possible over Fp using
standard tricks (which alas turn XOR into a non-linear operation), applying such ciphers would
require the Fp data types to be split into a shared bit representation over Fp to apply the cipher.
Such a conversion is expensive.

SHE-Friendly Ciphers: Perhaps due to the recent theoretical interest in SHE/FHE schemes this
area has had more attention than the more practical issues addressed in this paper. The motivating
scenario for a SHE-Friendly cipher is to enable data to be securely passed to a cloud environment,
using a standard encryption scheme, which the cloud server then homomorphically decrypts to
obtain a homomorphic encryption of the original data.

This line of work has resulted in a handful of designs. A block cipher called LowMC [2], a stream
cipher called Kreyvium [11] (based on the Trivium stream cipher) and FLIP [34] (based on a filter
permutation)2. The block cipher LowMC is designed for both MPC and FHE implementation, but
actually does not meet the MPC design goals we have set. It does indeed have low depth, but it is
a cipher based on operations in characteristic two. The two SHE friendly stream cipher designs of
Kreyvium and FLIP also suffer from the same problem as the lightweight designs describe above,
as they are also bit-oriented.

SNARK-Friendly Constructions: Being SNARK-friendly means that the number of constraints
is low. This generally favours larger data types like Fp or F2n , and the depth of the circuit is of no

2 FLIP was recently cryptanalysed in [26].

3

concern. MiMC [1] was originally designed for this use case and seems to be the only one in this
area. As the depth is not too high either, we choose it for detailed evaluation.

1.4 Contributions

The goal of this work is to investigate the efficient evaluation of PRFs in a secret-sharing based
MPC setting. 3 We present new protocols for secure computation of PRFs, and implementation
results using an actively secure MPC protocol, which tolerates up to N − 1 out of N corrupted
parties (with an online phase based on the SPDZ protocol [24,23]).

To fix notation we will consider a PRF of the following form

F :

{
(Fp)` × (Fq)n −→ (Fr)m

(k1, . . . , k`, x1, . . . , xn) 7−→ Fk(x1, . . . , xn).

The various finite fields Fp, Fq and Fr may be distinct. Our MPC engine is assumed to work over
the finite field Fp, as we always assume the key to the PRF will be a secret shared value. As a
benchmark, we compare all of our candidates to the baseline AES example used in prior work, and
to implementations of the given PRFs on clear data.

Depending on the precise application, there are several distinct design criteria which we may
want to consider. Thus, there will not be a one size fits all PRF which works in all applications.
We then have various potential cases:

– In some applications the input is public and we need to embed the public elements x1, . . . , xn ∈
Fq into Fp. However, the more general case is when the input is secret shared itself, and we have
Fq = Fp.

– In some applications the output of the PRF will be public, and thus Fr can be any field. In
other applications we also want the output to be secret shared, so we can use it in some other
processing such as a mode of operation. In this latter case we will have Fr = Fp. In addition,
some applications, such as when using the (leaky) ORE scheme presented in [16] require PRF
outputs in {0, 1, 2}, and we may (or may not) require these to be secret shared (and hence
embedded in Fp).

– In some applications we would like a PRF which is just efficient in the MPC engine, and we
do not care whether the equivalent standard PRF is efficient or not. In other applications we
also require that the standard PRF is also efficient. For example when an external third party
is encrypting data for the MPC engine to decrypt.

In this paper we consider three candidate PRFs for use in MPC systems, as well as the com-
parison case of AES. Two of these are number theoretic in nature (the Naor-Reingold PRF, based
on DDH, and a PRF based on the Legendre symbol), whilst the third MiMC (originally presented
in [1]) is more akin to traditional symmetric block cipher constructions.

AES: Since AES does not lend itself well to secure computation over prime fields, we use this purely
as a benchmark. We assume an MPC system which is defined over the finite field F28 , allowing for
efficient evaluation of the S-box [21,22]. We have

FAES : (F28)16 × (F28)16 → (F28)16.

3 We leave the construction of the various higher level primitives (SSE, ORE, AE etc.) to future work, although
many of these can easily be constructed directly from a PRF.

4

Naor-Reingold: Let G = 〈g〉 be an elliptic curve group of prime order p in which DDH is hard, and
encode(·) be a hash function that maps elements of G into elements of Fp. The Naor-Reingold PRF
takes a uniform secret-shared key in Fn+1

p , a message in Fn2 (secret-shared over Fp), and outputs a
public Fp element as follows:

FNR(n) : (Fp)n+1 × (F2)
n → Fp

(k,x) 7→ encode(gk0·
∏n

i=1 k
xi
i)

To evaluate FNR in MPC naively would require computing exponentiations (or EC scalar multi-
plications) on secret exponents, which is very expensive. However, if the PRF output is public, we
show how the exponentiation (and hence PRF evaluation) can be done very efficiently, with active
security, using any MPC protocol based on secret sharing.

Legendre Symbol: We also consider an unusual PRF based on the pseudorandomness of the
Legendre symbol. This is a relatively old idea, going back to a paper of Damg̊ard in 1988 [18],
but has not been studied much by the cryptographic community. The basic version of the PRF is
defined as,

FLeg(bit) : Fp × Fp → F2

(k, x) 7→ Lp(x+ k)

where Lp(a) computes the usual Legendre symbol
(
a
p

)
∈ {−1, 0, 1} and maps this into {0, 1, (p +

1)/2}, by computing

Lp(a) =
1

2

((
a

p

)
+ 1

)
(mod p).

The output is embedded into Fp, giving a secret-shared output in Fp. If needed, the range can easily
be extended to the whole of Fp by using a key with multiple field elements and performing several
evaluations in parallel. This gives a PRF

FLeg(n) : (Fp)((n+1)·`) × (Fp)n → Fp,

for some value ` = O(log2 p) chosen large enough to ensure a sufficient statistical distance from
uniform of the output. This PRF takes n finite field elements as input and produces an element in
Fp as output, where n is some fixed (and relatively small) number, say one or two.

Perhaps surprisingly, we show that the Legendre PRF can be evaluated very efficiently in MPC,
at the cost of just two multiplications in three rounds of interaction for FLeg(bit). To the best of
our knowledge, this is the only PRF that can be evaluated in a constant number of rounds on
secret-shared data, using any arithmetic MPC protocol. Since the underlying hard problem is less
well-studied than, say, DDH or factoring, we also provide a brief survey of some known attacks,
which are essentially no better than brute force of the key.

MiMC: This is a very recent class of designs whose primary application domain are SNARKs [1].
In addition to a cryptographic hash function, the design also includes a block cipher which is also
usable as a PRF, with up to birthday bound security. The input, output and keys are all defined
over Fp, so we get:

FMiMC : Fp × Fp → Fp.

5

The core of the round function is the simple map x 7→ x3 over Fp. The number of rounds is quite high
(for a 128-bit prime p 82 for full security, 73 for PRF security), but in terms of Fp multiplications
the performance turns out to be competitive.

The reason for selecting MiMC as a “standard” block cipher is that firstly it works over a finite
prime field of large characteristic, which is a common requirement for applications of secret-sharing
based MPC that perform arithmetic on integers or fixed-point data types. Secondly, the depth of
the computation is not too large, being 146. Thirdly, the number of non-linear operations is also
146, this means that the offline pre-processing needed (to produce multiplication triples) will be
very small compared to other constructions.

In Table 1 we present an overview of the three MPC-friendly PRFs we consider. The table
shows the number of secure multiplication needed to execute the online evaluation of the function
on shared inputs (since in secret-sharing based MPC, additions are free) as well as the number of
rounds of communication.

PRF log2 p Output (type) Online cost Assumption

Mult. Rounds

FAES 8 shared 960 50 –
FNR(n) 256 public 2 · n 3 + log(n+ 1) EC-DDH
FLeg(bit) 128 shared 2 3 DSLS
FLeg(n) 128 shared 256 · n 3 DSLS
FMiMC 128 shared 146 73 –

Table 1. Overview of the cost of evaluating the PRFs in MPC.

1.5 Length Extension

We end this introduction by noting that FMiMC and FLeg(n) can be extended to cope with arbitrary
length inputs in the standard way; either by using a CBC-MAC style construction or a Merkle–
Damg̊ard style construction. For example, to extend FLeg(1)and FMiMC, so that they can be applied
to an input x1, . . . , xn ∈ Fp we can use CBC mode as in Figure 1. Whereas, to extend FLeg(2) we
can apply Merkle–Damgard as in Figure 2. These two extension techniques are often more efficient
than using an arbitrary length PRF as a base building block.

Length Extension for FLeg(1)

1. c0 ← n.
2. For i = 1, . . . , n do

(a) ci ← xi + FLeg(1)(k, ci−1).
3. a← FLeg(1)(k, cn).
4. Return a.

Fig. 1. Using CBC Mode With FLeg(1)

6

Length Extension for FLeg(2)

1. c0 ← n.
2. For i = 1, . . . , n do

(a) ci ← FLeg(2)(k, ci−1, xi).
3. Return cn.

Fig. 2. Using Merkle-Damg̊ard With FLeg(2)

2 Background

In this section we outline some of the basic material which we will assume for the rest of this paper.

2.1 Multi-Party Computation Model

The general model of MPC we consider is the so-called arithmetic black box, which is an ideal
functionality that allows parties to input and output values to be secret-shared, and performs basic
arithmetic operations on these secret values over a finite field Fp. This abstracts away the underlying
details of secret-sharing and MPC, and gives us the commands in Figure 3. Note that as well as
addition and multiplication, FABB has commands for generating random values according to various
distributions, which allows more efficient protocols for certain tasks. Finally, the Share command
gives parties access to random, additive shares of a value stored in the box. This essentially assumes
the underlying MPC protocol uses additive secret sharing, but is only used for the Naor-Reingold
PRF protocol (Section 3).

We use the notation [x] to denote a secret-shared value that is stored in FABB. We also define
addition and multiplication operators for the [·] notation; so, for example, the statement

[w] = [x] · [y] + 2[z]

implicitly means that the Add and Mult commands of FABB are used to compute the shared value
[w].

Functionality FABB

Each value stored in this functionality is associated with a unique identifier that is given to all parties. Let [x]
denote the identifier for a value x that is stored by the functionality.
Let A ⊂ {1, . . . , n} denote the index set of corrupted parties.

Input: Receive a value x ∈ Fp from some party and store x.
Add([x], [y]): Compute z = x+ y and store [z].
Mult([x], [y]): Compute z = x · y and store [z].

Random: Sample r
R← Fp and store [r].

RandomBit: Sample b
R← {0, 1} ⊂ Fp and store [b].

RandomSquare: Sample s
R← Fp and store [s2].

Share([x]): For each i ∈ A, receive xi ∈ Fp from the adversary. Sample uniform honest parties’ shares {xj}j /∈A,
subject to the constraint that

∑n
i=1 xi = x. Send xi to party Pi.

Output([x]): Send the value x to all parties.

Fig. 3. Ideal functionality for arithmetic MPC

7

Concretely, the MPC protocol we use to implement FABB is the SPDZ protocol by Damg̊ard
et al. [24,23], which operates over a finite field of size ≥ 2κ (for statistical security κ) and provides
active security against any number of corrupted parties. The protocol consists of two stages: a
preprocessing phase, which is independent of the inputs and done in advance, and a more efficient
online phase, where the actual computation takes place. The purpose of the preprocessing is to
generate enough random shared data that will be consumed later by the online phase. The main
data produced is one of three different forms:

– Multiplication Triples: A triple of random shares ([a], [b], [c]) such that c = a · b mod p.
– Square Pairs: A pair of random shares ([a], [b]) such that b = a2 mod p.
– Random Bit: A random sharing [a] of a value a ∈ {0, 1}.

The main arithmetic operations in FABB have roughly the following complexity when implemented
in SPDZ. Additions (and linear operations) are local operations so essentially for free. A multi-
plication uses a preprocessed multiplication triple and requires sending two field elements in the
online phase, with one round of interaction. Squaring can be done using a square pair and sending
just one field element, again in one round.

The preprocessing can be implemented using either somewhat homomorphic encryption (SHE)
— as in the original SPDZ protocols — or oblivious transfer (OT), using the recent protocol of
Keller et al. [28]. We present runtimes using the OT-based offline phase only, as it is much more
efficient, even when compared with the weaker covertly secure protocols using SHE.

2.2 MPC Evaluation of AES

As a means of comparison for the other PRFs we use as a base line a two party implementation
of AES using a SPDZ engine over the finite field F28 , embedded into F240 , as in [22]. We estimate
the offline phase costs 200ms per block, with an online phase latency of 8ms and a throughput of
550 blocks per second. Note that recently, much lower latencies have been obtained by evaluating
AES using secure table lookup [25]. However, this technique requires far more (i.e., 256 times)
preprocessing data, so we do not consider this. One should also bear in mind that this is only the
time needed to evaluate the PRF. In a given application, which is likely to be over a different finite
field, the MPC engine will also need to convert data between the two fields Fp and F240 . This is
likely to incur a more significant cost than the evaluation of the PRF itself.

3 Naor–Reingold PRF

In this section we describe the Naor-Reingold PRF, originally presented in [35]. We then go on to
describe how it can be efficiently implemented in a secret sharing based MPC system.

3.1 FNR Definition

Let G = 〈g〉 be a multiplicatively written group of prime order p in which DDH is hard, and
encode(·) be a hash function that maps group elements into elements of Fp. For a message x =
(x1, . . . , xn) ∈ {0, 1}n, the Naor-Reingold PRF [35] is defined by:

FNR(n)(k,x) = encode(gk0·
∏n

i=1 k
xi
i)

where k = (k0, . . . , kn) ∈ Fn+1
p is the key.

In practice, we choose G to be a 256-bit elliptic curve group over the NIST curve P-256, so
require an MPC protocol for Fp with a 256-bit prime p.

8

3.2 Public Output Exponentiation Protocol

The main ingredient of our method to evaluate FNR in MPC, when the key and message are secret-
shared over Fp, is an efficient protocol for publicly computing gs, for some secret value s ∈ Fp. The
protocol, shown in Figure 4, uses any arithmetic MPC protocol based on linear secret sharing over
Fp. This is modeled for the case of additive secret sharing by the Share command of the FABB

functionality, which produces random shares of secret values.

Given additive shares si ∈ Fp, each party Pi first broadcasts gsi , so the result y =
∏
gsi can be

computed. To obtain active security, we must ensure that each party used the correct value of si.
We do this by computing an additional public exponentiation of gt, where t = r ·s for some random,
secret value r. This serves as a one-time MAC on s, which can then be verified by opening r and
checking that gt = yr. If an adversary cheats then passing the check essentially requires guessing
the value of r, so occurs only probability 1/p.

Note that the functionality FABB-Exp (Figure 5) models an unfair computation, whereby the
adversary first learns the output, and can then decide whether to give this to the honest parties or
not. This is because in the protocol, they can always simply stop sending messages and abort after
learning y.

Protocol ΠExp([s])

1. The parties call FABB with command (Share, [s]), so that each party Pi obtains an additive share si ∈ Fp

2. Each party Pi broadcasts yi = gsi

3. Compute y =
∏

i yi
4. Take a random shared [r], and compute [t] = [r] · [s]
5. Call FABB with (Share, [t]) so that each Pi obtains ti. Broadcast zi = gti

6. Open [r] and check that
∏

i zi = yr

7. Output y

Fig. 4. Securely computing a public exponentiation

Functionality FABB-Exp

Let G = 〈g〉 be a group of prime order p. This functionality has all of the features of FABB (running in Fp), plus
the following command:

PubExp: On receiving (exp, [s]) from all parties, where s is stored in memory, retrieve s, then send y = gs

to the adversary and wait for a response. If the adversary responds with Deliver then send y to all parties.
Otherwise output ⊥ to all parties.

Fig. 5. Ideal functionality for public exponentiation

Theorem 1. The protocol ΠExp securely computes the functionality FABB-Exp in the FABB-hybrid
model.

Proof. We construct a simulator S, which interacts with any adversary A (who controls the corrupt
parties {Pi : i ∈ A}) and the ideal functionality FABB-Exp, such that no environment can distinguish
between an interaction with S and a real execution of the protocol ΠExp.

9

– In the first round S receives si for i ∈ A, as the corrupt parties’ inputs to the FABB-Share com-

mand. S calls FABB-Exp with (exp, [s]) and receives y = gs. Then S samples si
R← Fp and sets

yi = gsi for all i /∈ A. S modifies one honest party’s share yi to gs
∏
j 6=i y

−1
j , then sends yi for

all i /∈ A to the adversary and gets back the corrupted parties’ response y∗i , for i ∈ A.

– Proceed similarly to the previous step: S samples ri
R← Fp, sets zi = yrii such that

∏
i zi = yr.

Sends zi to A on behalf of the honest parties. Receives back courrupted parties z∗i .
– Sends r ←

∑
i ri to the adversary. S performs the checking phase with z∗i from A and the honest

zi. If the check passes send Deliver to FABB-Exp.

The indistinguishability argument follows from the fact that all broadcasted values gxi by S
and the real protocol ΠExp have uniform distribution over Fp with output in G with respect to∏
i g
xi = gx.

Correctness is straightforward if all parties follow the protocol. An adversary A wins if it
changes the distribution of the functionality to output Deliver. Alas, this happens with negligible
probability:

Suppose a corrupt party Pj sends y∗j instead of yj = gsj . We can write y∗j = gsj · e, for some
error e 6= 1 ∈ G, and so y = gs · e. Then the check passes if A can come up with z∗j such that∏
i zi = grs · er. Writing z∗j = zj · f , this is equivalent to coming up with f ∈ G such that f = er.

Since r is uniformly random and unknown to the adversary at the time of choosing e and f , passing
this check can only happen with probability 1/|G|. Note that this requires G to be of prime order,
so that e (which is adversarially chosen) is always a generator of G.

More Efficient Protocol based on SPDZ. When using the SPDZ MPC protocol with the
secret-shared MAC representation from [23], we can save performing the multiplication [t] = [r] · [s].
Instead, we can take the shared MAC value [m] (on the shared s), which satisfies m = s · α for a
shared MAC key α, and use [m] and [α] in place of [t] and [r]. However, in this case α cannot be
made public, otherwise all future MACs could be forged. Instead, steps 4–6 are replaced with:

– Each party commits to zi = yαi · g−mi .
– All parties open their commitments and check that

∏
i zi = 1.

If the parties are honest, we have zi = gs·αi−mi , so the check will pass. Since in SPDZ, the honest
parties’ MAC shares mi are uniformly random, the shares of αi are perfectly masked by the g−mi

factor in zi, so no information on α is leaked. The main difference here is that the parties must
commit to the zi shares before opening, to prevent a rushing adversary from waiting and forcing
the product to always be 1. The number of rounds and exponentiations is the same, but one
multiplication is saved compared with the previous protocol.

3.3 Secure Computation of Naor-Reingold

Given the protocol for public exponentiation, it is straightforward to evaluate the Naor-Reingold
PRF with public output when given a bit-decomposed, secret-shared input [x1], . . . , [xn] and key
[k0], . . . , [kn]. First compute

[s] = [k0] ·
n∏
i=1

([xi] · [ki] + (1− [xi]))

10

Protocol ΠNR

KeyGen: Call FABB.Random to generate n+ 1 random keys [k0] . . . [kn].
Eval: To evaluate FNR(n)(k, x) on input [x] with key [k]:

1. Bit decompose [x] into [x1] . . . [xn].
2. Compute [s] = [k0] ·

∏n
i=1([ki][xi] + (1− [xi]) (see text for details).

3. Call FABB-Exp on input [s].

Fig. 6. Computing FNR(n)(k,x)

using FABB, and then use ΠExp to obtain gs.

The product can be computed in dlog2 n+ 1e rounds using a standard binary tree evaluation.
Alternatively, we can obtain a constant (4) rounds protocol using the prefix multiplication protocol
of Catrina and de Hoogh [13], (which is an optimized variant of the trick of Bar-Ilan and Beaver [3])
at the expense of 2(n+ 1) additional multiplications.

Security of the ΠNR protocol is straightforward, since there is no interaction outside of the
arithmetic black box functionality.

Handling Input in Fp. If the input is given as a field element rather than in bit-decomposed form,
then we must first run a bit decomposition protocol, such as that of Catrina and de Hoogh [13] or
Damg̊ard et al. [19]. The latter works for arbitrary values of x, whilst the former is more efficient,
but requires x is ` bits long, where p > 2`+κ for statistical security κ.

Complexity. For the logarithmic rounds variant based on SPDZ, with n-bit input that is already
bit decomposed, the protocol requires 2n multiplications of secret values and three exponentations,
in a total of dlog2 n+ 1e + 3 rounds. The constant rounds variant takes 4n + 2 multiplications in
7 rounds. Note that there is a higher cost for the secure multiplications, as we require an MPC
protocol operating over Fp for a 256-bit prime p (for 128-bit security), whereas our other PRF
protocols only require MPC operations in 128-bit fields.

3.4 Performance

The main advantage of this PRF is the small number of rounds required, which leads to a low latency
in our benchmarks (4.4ms over LAN). However, the high computation cost (for EC operations)
slows down performance and results in a low throughput. We found that with a 256-bit prime
p and n = 128, the logarithmic rounds variant outperformed the constant rounds protocol in all
measures in a LAN environment. In a WAN setting, the constant round protocol achieves a lower
latency, but is worse for throughput and preprocessing time.

4 PRF from the Legendre Symbol

In this section we describe a PRF based on the Legendre symbol. Whilst this PRF is very inefficient
when applied to cleartext data, we show that with secret-shared data in the MPC setting it allows
for a very simple protocol.

11

4.1 FLeg Definition

In 1988, Damg̊ard proposed using the sequence of Legendre symbols with respect to a large prime
p as a pseudorandom generator [18]. He conjectured that the sequence(

k

p

)
,

(
k + 1

p

)
,

(
k + 2

p

)
, . . .

is pseudorandom, when starting at a random seed k. Although there have been several works
studying the statistical uniformity of this sequence, perhaps surprisingly, there has been very little
research on cryptographic applications since Damg̊ard’s paper. Damg̊ard also considered variants
with the Jacobi symbol, or where p is secret, but these seem less suitable for our application to
MPC.

We first normalize the Legendre symbol to be in {0, 1, (p+ 1)/2}, by defining:

Lp(a) =
1

2

((
a

p

)
+ 1

)
(mod p).

We now define a corresponding pseudorandom function as

FLeg(bit)(k, x) = Lp(k + x)

for k, x ∈ Fp, where p ≈ 2λ is a public prime. The security of this PRF is based on the following
two problems:

Definition 1 (Shifted Legendre Symbol Problem). Let k be uniformly sampled from Fp, and
define OLeg to be an oracle that takes x ∈ Fp and outputs

(
k+x
p

)
. Then the Shifted Legendre Symbol

(SLS) problem is to find k, with non-negligible probability.

Definition 2 (Decisional Shifted Legendre Symbol Problem). Let OLeg be defined as above,
and let OR be a random oracle that takes values in Fp and produces outputs in {−1, 1}. The De-
cisional Shifted Legendre Symbol (DSLS) problem is to distinguish between OLeg and OR with
non-negligible advantage.

The following proposition is then immediate.

Proposition 1. The function FLeg(bit) is a pseudorandom function if there is no probabilistic poly-
nomial time algorithm for the DSLS problem.

4.2 Hardness of the Shifted Legendre Symbol Problem

The SLS problem has received some attention from the mathematical community, particularly in
the quantum setting. We briefly survey some known results below.

A naive algorithm for deterministically solving the SLS problem is to compute
(
k+x
p

)
for all

(k, x) ∈ F2
p and compare these with OLeg(x) for all x ∈ Fp, which requires Õ(p2) binary opera-

tions. Russell and Shparlinski [39] described a more sophisticated algorithm using Weil’s bound on
exponential sums, which reduces this to Õ(p).

Van Dam, Hallgren and Ip [41] described a quantum polynomial time algorithm for the SLS
problem that recovers the secret k if the oracle can be queried on a quantum state. They conjectured

12

that classically, there is no polynomial time algorithm for this problem. Russell and Shparlinski [39]
also extended this quantum algorithm to a generalization of the problem where the secret is a
polynomial, rather than just a linear shift.

One can also consider another generalization called the hidden shifted power problem, where the
oracle returns (k + x)e for some (public) exponent e|(p − 1). The SLS problem is a special case
where e = (p − 1)/2. Vercauteren [42] called this the hidden root problem and described efficient
attacks over small characteristic extension fields, with applications to fault attacks on pairings-
based cryptography. Bourgain et al. [10] showed that if e = p1−δ for some δ > 0 then this problem
has classical query complexity O(1). Note that neither of these attacks apply to the SLS problem,
which cannot be solved with fewer than Ω(log p) queries [40].

In conclusion, we are not currently aware of any classical algorithms for the SLS problem in
better than Õ(p) time, nor of any method for solving the DSLS problem without first recovering
the secret. We note that unlike discrete log and factoring, it is still an open question as to whether
there are even efficient quantum algorithms if the SLS oracle can only be queried classically.

4.3 Secure Computation of FLeg(bit)

It turns out that FLeg(bit) can be evaluated in MPC very efficiently, at roughly the cost of just 2
multiplications in 3 rounds of communication. Although this only produces a single bit of output,
composing together multiple instances in parallel with independent keys allows larger outputs to
be obtained (see later).

We first describe how to evaluate FLeg(bit) when the output is public, and then show how to
extend this to secret-shared output, with only a small cost increase.

Public output. Suppose we have a shared, non-zero [a] and want to compute the public output,
Lp(a). Since the output is public, we can simply take a random preprocessed non-zero square [s2],
compute [c] = [s2] · [a] and open c. By the multiplicativity of the Legendre symbol, Lp(c) = Lp(a).

By composing the PRF n times in parallel, this gives an n-bit output PRF that we can evaluate
in MPC with just n multiplications and n openings in two rounds. The preprocessing requires n
random squares and multiplication triples.

Shared output. Now suppose we instead want shared output, [Lp(a)]. If we have a random non-
zero value [t], and also the shared value [Lp(t)], then this is easy. Just open [a] · [t], and compute
the Legendre symbol of this to get c = Lp(a · t). The shared value [Lp(a)] can then be computed
locally using c and [Lp(t)], as c is public.

Generating a random value with a share of its Legendre symbol can be done very cheaply. Our
key observation is that we can do this without having to compute any Legendre symbols in MPC.
Let α ∈ Zp be a (public) quadratic non-residue, and perform the following:

– Take a random square [s2] and a random bit [b].
– Output (2[b]− 1, [b] · [s2] + (1− [b]) · α · [s2])

Note that since α is a non-square, the second output value is clearly either a square or non-
square based on the value of the random bit b (which is mapped into {−1, 1} by computing 2 ·b−1).
Finally, note that since s2 provides fresh randomness each time, α can be reused for every PRF
evaluation. This gives us the protocol in Figure 7, which realizes the functionality FABB-Leg shown

13

in Figure 8. Notice that all bar the computation of u can be performed in a preprocessing phase if
needed.

Protocol ΠLegendre

Let α be a fixed, quadratic non-residue modulo p.

KeyGen: Call FABB.Random to generate a random key [k].
Eval: To evaluate FLeg(bit) on input [x] with key [k]:

1. Take a random square [s2] and a random bit [b]
2. [t]← [s2] · ([b] + α · (1− [b]))
3. u← Open([t] · ([k] + [x]))
4. Output [y]← (

(
u
p

)
· (2[b]− 1) + 1)/2

Fig. 7. Securely computing the FLeg(bit) PRF with secret-shared output

Security. At first glance, the security of the protocol appears straightforward: since t and k are
uniformly random, the opened value u should be simulatable by a random value, and this will be
correct except with probability 1/p (if s2 = 0). However, proving this turns out to be more tricky.
We need to take into account that if x = −k then the protocol causes u = 0 to be opened, but in
the ideal world the simulator does not know k so cannot simulate this. This reflects the fact that
an adversary who solves the SLS problem can find k and run the protocol with x = −k. Therefore,
we need to assume hardness of the SLS problem and show that any environment that distinguishes
the two worlds (by causing x = −k to be queried) can be used to recover the key k. The reduction
must use the SLS oracle, OLeg, to detect whether x = −k, in order to simulate the u value to the
environment. To do this, they simply obtain the value y =

(
x+k
p

)
from OLeg and check whether

y = 0, for each Eval query made by the adversary.

Functionality FABB-Leg

This functionality has all of the same commands as FABB, plus the following:

KeyGen: On receiving (keygen) from all parties, sample k
R← Fp and store k.

PRF: On receiving (legendre, [x]) from all parties, where x is stored in memory, compute y = Lp(x+ k) and
store y in memory.

Fig. 8. Ideal functionality for the Legendre symbol PRF, FLeg(bit)

Theorem 2. The protocol ΠLegendre securely computes the functionality FABB-Leg in the FABB-
hybrid model, if the SLS problem is hard.

Proof. We construct a simulator S such that no environment Z corrupting up to n − 1 parties
can distinguish between the real protocol ΠLegendre, and S interacting with the ideal functionality
FABB-Leg.

In the KeyGen stage, S simply calls FABB-Leg with the keygen command. In the Eval stage,

the main task of S is to simulate the opened value u, which is done by sampling u
R← Fp, and then

call FABB-Leg with (legendre, [x]).

14

We now argue indistinguishability of the two executions. In the real world, since t is computed
as s2 · (b+ (1− b) ·α) for a uniform quadratic residue s2 and random bit b, then t is uniform in Fp.
This is because the map defined by multiplication by α is a bijection between the sets of squares
and non-squares modulo p. Therefore, if s2 is a uniformly random square, then α · s2 is a uniformly
random non-square.

Now, since t is a fresh uniformly random value on each evaluation, the real world value u and
output y, as seen by Z, will be identically distributed to the simulated values as long as k + x 6= 0
and s 6= 0. Whenever the former happens in the real world u = 0 is opened, whereas the ideal world
still simulates a random value, so the environment can distinguish. In the latter case, s = 0, the
output y will be incorrectly computed in the real world, but this can only happen with probability
1/p.

However, any environment Z that causes k + x = 0 to happen with non-negligible probability
can be used to construct an algorithm A∗ that breaks the SLS problem.
A∗ runs Z, emulating a valid execution of ΠLegendre by replacing Lp(x + k) computation with

calls to OLegk . These modified transcripts have the same distribution since the SLS oracle and
(keygen) both generate a random key. When A∗ runs Z internally, it knows the inputs provided by
Z to all parties, so knows the x value on each invocation of ΠLegendre. Once Z constructs a query for
which OLegk returns 0 then A∗ responds to the SLS challenge with k = −x. Finally, the algorithm
looks like this:

1. Interact with Z as the simulator S would do.
2. Instead of computing the Legendre symbol Lp(x+ k) as in FABB-Leg, make a call to OLegk .
3. If OLegk(x) = 0, return −x as the SLS secret.

The only way Z can distinguish between S and ΠLegendre — except with probability 1/p — is
by producing a query x for which OLegk(x) = 0, since the two worlds are statistically close up until
this point. If Z can do this with probability ε then the probability that A∗ solves the SLS problem
is the same.

Overall, S correctly simulates the protocol ΠLegendre as long as u 6= 0, which happens with
probability ≤ 1/p+ ε (s = 0 or solving SLS with probability ε).

Perfect Correctness. The basic protocol above is only statistically correct, as s2 = 0 with
probability 1/p, and if this occurs the output will always be zero. Although this suffices for most
applications, we note that perfect correctness can be obtained, at the expense of a protocol that
runs in expected constant rounds. We can guarantee that the square s2 is non-zero by computing
it as follows:

– Take a random square [s2] and a random value [y].
– Compute [v] = [y · s2] and open v. If v = 0 then return to the first step.

Note, that the iteration of the first step only happens if y = 0 or s = 0, which occurs with probability
2/p, so the expected number of rounds for this stage of the protocol is one.

4.4 Domain and Codomain Extension

Some applications may require a PRF which takes multiple finite field elements as input, and
outputs a finite field element. We now present how to extend the basic PRF FLeg(bit) to a function

15

which takes messages consisting of n finite field elements and outputs a single uniformly random
finite field element. Indeed our input could consist of up to t elements in the finite field where
t ≤ n. In practice we will take n = 1 or 2, and can then extend to larger lengths using CBC-mode
or Merkle-Damg̊ard (as in Section 1.5).

We first define a statistical security parameter 2−stat, which bounds the statistical distance from
uniform of the output of our PRF. We let define p′ to be the nearest power of two to the prime p
and set α = |p− p′|. Then if α/p < 2−stat we set ` = dlog2 pe, otherwise we set ` = dlog2 pe+ stat.
A standard argument will then imply that the following PRF outputs values with the correct
distribution.

The key for the PRF is going to be an `×(n+1) matrix K of random elements in Fp, except (for
convenience) that we fix the first column to be equal to one. To apply the PRF to a vector of elements
x = (x1, . . . , xt) we “pad” x to a vector of n+ 1 elements as follows x′ = (x1, . . . , xt, 0, . . . , 0, t) and
then product the matrix-vector product y = K · x′ ∈ (Fp)`. The output of FLeg(n) is then given by

FLeg(n)(K,x) =

(
`−1∑
i=0

2i · Lp(yi)

)
(mod p).

This extended PRF requires one extra round of ` · (n − 1) secure multiplications compared to
FLeg(bit).

Since the matrix K is compressing, the distribution of y will act, by the leftover hash lemma,
as a random vector in F`p. With probability `/p we have yi 6= 0 for all i, which implies that the
values of Lp(yi) behave as uniform random bits, assuming our previous conjectures on the Legendre
symbol. Thus the output value of FLeg(n)(K,x) will, by choice of `, have statistical distance from
uniform in Fp bounded by 2−stat.

Our choice of padding method, and the choice of the first matrix column to be equal to one, is
to ensure that in the case of n = 1 we have

FLeg(n)(K,x) =

(
`−1∑
i=0

2i · FLeg(bit)(ki, yi)

)
(mod p).

In addition the padding method ensures protection against length extension attacks.

4.5 Performance

We measured performance using the prime p = 2127 + 45, which implied for FLeg(n) we could
take ` = 128. Both FLeg(bit) and FLeg(1) obtain very low latencies (0.4ms and 1.4ms over LAN,
respectively) due to the low number of rounds. For a PRF with small outputs, FLeg(bit) achieves by
far the highest throughput, with over 160000 operations per second. For full field element outputs,
FLeg(1) is around 128 times slower, but still outperforms AES in all metrics expect for cleartext
computation.

5 MiMC

5.1 FMiMC Definition

MiMC is a comparatively simple block cipher design, where the plaintexts, the ciphertexts and the
secret key are elements of Fp and can be seen as a simplification of the KN-cipher[37]. Its design

16

is aimed at achieving an efficient implementation over a field Fp by minimizing computationally
expensive field operations (e.g. multiplications or exponentiations).

Let p a prime that satisfies the condition gcd(3, p− 1) = 1. For a message x ∈ Fp and a secret
key k ∈ Fp, the encryption process of MiMC is constructed by iterating a round function r times.
At round i (where 0 ≤ i < r), the round function Fi : Fp → Fp is defined as:

Fi(x) = (x+ k + ci)
3,

where ci are random constants in Fp (for simplicity c0 = cr = 0). The output of the final round is
added with the key k to produce the ciphertext. Hence, the output of FMiMC(x, k) is then given by

FMiMC(x, k) = (Fr−1 ◦ Fr−2 ◦ ... ◦ F0)(x) + k.

The condition on p ensures that the cubing function creates a permutation.

The number of rounds for constructing the keyed permutation is given by r = dlog3 pe - for
prime fields of size 128 bits the number of rounds is equal to r = 82. This number of round r
provides security against a variety of cryptanalytic techniques. In particular, due to the algebraic
design principle of MiMC, the most powerful key recovery methods are the algebraic cryptanalytic
attacks, as the Interpolation Attack and the GCD Attack. In the first one introduced by Jakobsen
and Knudsen in [27], the attacker constructs a polynomial corresponding to the encryption function
without any knowledge of the secret key. In particular, the attacker guesses the key of the final
round, constructs the polynomial at round r − 1 and checks it with one extra plaintext/ciphertext
pair. In the second one, given two plaintext/ciphertext pairs (pj , cj) for j = 1, 2, the attacker
constructs the polynomials FMiMC(p1,K)− c1 and FMiMC(p2,K)− c2 in the fixed but unknown key
K. Since these two polynomials share (K − k) as a factor (where k is the secret key), the attacker
can find the value of k by computing the GCD of them.

If the attacker has access to a limited number of plaintext/ciphertext pairs only (at most
n < p), then the number of round r can be reduced. In this case, the number of rounds is given by
r = max{dlog3 ne, dlog3 p− 2 log3(log3 p)e} - for prime field of size 128 bits, the number of rounds
is equal to r = 73 if n ≤ 2115, while r = dlog3 ne otherwise.

5.2 Computing FMiMC in MPC

We consider two different approaches for computing FMiMC in MPC, with a secret shared key and
message. The basic approach is simplest, whilst the second variant has half the number of rounds
of communication, with slightly more computation.

MiMCbasic: The naive way to evaluate FMiMC requires one squaring and one multiplication for each
of the r rounds. Using SPDZ, the squaring costs one opening in one round of communication, and
the multiplication costs two openings in one round, giving a total of 3r openings in 2r rounds of
communication.

MiMCcube: If for each round we first compute a tuple ([r], [r2], [r3]), where r
R← Fp, then given a

secret-shared value [x], we can open y = x− r and obtain a sharing of x3 by the computation

[x3] = 3y[r2] + 3y2[r] + y3 + [r3]

which is linear in the secret-shared values so does not require interaction.

17

For a single MiMC encryption, we first compute all of the cube triples for each round, which
takes just one round of communication by taking a preprocessed random square pair ([r], [r2]) and
performing one multiplication to obtain [r3]. Each round of the cipher then requires just one opening
and a small amount of interaction. The total communication complexity is still 3r openings, but in
only r rounds.

5.3 Performance

Using r = 73, we measured a latency of 14ms per evaluation for the simple protocol MiMCbasic,
which halves to 7ms for the lower round variant, MiMCcube. MiMCbasic gives a very high throughput
of over 6000 blocks per second (around 20% higher than MiMCcube), and the offline cost is fairly
low, at 34 blocks per second. In fact, apart from in latency, MiMC outperforms all the other PRFs
we studied.

6 Performance Evaluation

In this section, we evaluate the performance of the PRFs using the SPDZ multi-party computation
protocol [24,23], which provides active security against any number of corrupted parties. We focus
here on the two-party setting, although the protocol easily scales to any number of parties with
roughly a linear cost.

The two main metrics we use to evaluate performance are latency and throughput, both of which
relate to the online phase of the SPDZ protocol. Latency measures the waiting time for a single
PRF evaluation; the best possible latency is recorded by simply timing a large number of sequential
executions of the PRF, and taking the average for one operation. In contrast, throughput is maxi-
mized by running many operations in parallel to reduce the number of rounds of communication. Of
course, this comes at the expense of a higher latency, so a tradeoff must always be made depending
on the precise application. In addition to latency and throughput, we present the cost of running
the preprocessing phase and computing the PRF on cleartext data, for comparison.

Implementation Details: We implemented the protocols using the architecture of Keller et
al. [29], which runs the online phase of SPDZ. This system automatically uses the minimum number
of rounds of communication for a given program description, by merging together all independent
openings. We extended the software to use the Miracl library for elliptic curve operations over
the NIST P-256 curve, as required for the Naor-Reingold protocol. Note that although the SPDZ
implementation supports multi-threading, all of our online phase experiments are single-threaded
to simplify the comparison.

To estimate the cost of producing the preprocessing data (multiplication triples, random bits
etc.), we used figures from the recent MASCOT protocol [28], which uses OT extensions to ob-
tain what are currently the best reported triple generation times with active security. Although
in [28], figures are only given for triple generation in a 128-bit field, we can also use these times
for random square and random bit generation, since each of these can be easily obtained from one
secret multiplication [19]. For the Naor-Reingold PRF, we multiplied these times by a factor of
4 to obtain estimates for a 256-bit field (instead of 128), reflecting the quadratic communication

18

Data type
Fp (ms) F2128 (ms)

128-bit 256-bit

Triple/Sq. 0.204 0.816 0.204
Bit 0.204 0.816 0.00014

Triple/Sq. 4.150 16.560 4.150
Bit 4.150 16.560 0.00285

Table 2. Time estimates for generating preprocessing data in various fields using oblivious transfer.

LAN

WAN

cost of the protocol. 4 The costs for all of these preprocessing data types are summarized in Table 2.

Benchmarking Environment: In any application of MPC, one of the most important factors
affecting performance is the capability of the network. We ran benchmarks in a standard 1Gbps
LAN setting, and also a simulated WAN setting, which restricts bandwidth to 50Mbps and latency
to 100ms, using the Linux tc tool. This models a real-world environment where the parties may be
in different countries or continents. In both cases, the test machines used have Intel i7-3770 CPUs
running at 3.1GHz, with 32GB of RAM.

PRF Best latency Best throughput Prep. (ops/s) Cleartext (ops/s)

(ms/op) Batch size ops/s

AES 8.378 2048 552 5.097 106268670
FNR(128)(log) 4.375 1024 370 4.787 1359
FNR(128)(const) 4.549 256 281 2.384 1359

FLeg(bit) 0.393 1024 163400 1225 17824464
FLeg(1) 1.418 64 1331 9.574 115591

FMiMC(basic) 14.053 1024 6561 33.575 189525
FMiMC(cube) 7.267 2048 5536 33.575 189525

Table 3. Performance of the PRFs in a LAN setting

Results: The results of our experiments in the LAN and WAN environments are shown in Tables 3
and 4, respectively. All figures are the result of taking an average of 5 experiments, each of which
ran at least 1000 PRF operations. We present timings for AES purely as a comparison metric; as
explained in the introduction AES is not suitable for many MPC applications as it is not defined
over a large characteristic finite field.

In both scenarios, the Legendre PRF gives the lowest latency, even when outputing 128-bit field
elements rather than bits, due to its low round complexity. The single-bit output variant achieves
by far the highest throughput of all the PRFs, so would be ideally suited to an application based on
a short-output PRF, such as secure computation of the (leaky) order-revealing encryption scheme

4 The experiments in [28] showed that communication is the main bottleneck of the protocol, so this should give an
accurate estimate.

19

PRF Best latency Best throughput Prep. (ops/s)

(ms/op) Batch size ops/s

AES 2640 1024 31.947 0.256
FNR(128)(log) 713 1024 59.703 0.2359
FNR(128)(const) 478 1024 30.384 0.1175

FLeg(bit) 202 1024 2053 60.241
FLeg(1) 210 512 68.413 0.4706

FMiMC(basic) 7379 512 59.04 1.650
FMiMC(cube) 3691 512 79.66 1.650

Table 4. Performance of the PRFs in a simulated WAN setting

in [16]. The Legendre PRF with large outputs is useful in scenarios where low latency is very
important, although the preprocessing costs are expensive compared to MiMC below. However, the
high cost of the Legendre PRF “in the clear” may not make it suitable for applications in which
one entity is encrypting data to/from the MPC engine

The Naor-Reingold PRF also achieves a low latency — though not as good as the Legendre
PRF — but it suffers greatly when it comes to throughput. Notice that in the LAN setting, the con-
stant rounds protocol actually performs worse than the logarithmic rounds variant in all measures,
showing that here the amount of computatation and communication is more of a limiting factor
than the number of rounds. Profiling suggested that over 70% of the time was spent performing EC
scalar multiplications, so it seems that computation rather than communication is the bottleneck
in these timings. The requirement for a 256-bit field (for 128-bit security) will be a limiting factor
in many applications, as will the need to bit decompose the input, if it was previously a single field
element.

The MiMC cipher seems to provide a good compromise amongst all the prime field candidates,
especially as it also performs well when performed “in the clear”. The “cube” variant, which halves
the number of rounds, effectively halves the latency compared to the naive protocol. This results
in a slightly worse throughput in the LAN setting due to the higher computation costs, whereas
in the WAN setting round complexity is more important. Although the latency is much higher
than FLeg, due to the large number of rounds, MiMC achieves the best throughput for ≥ 128-bit
outputs, with over 6000 operations per second. In addition, the pre-processing costs of MiMC are
better than that of both Legendre and the Naor-Reingold PRFs.

So in conclusion there is no single PRF which meets all the criteria we outlined at the beginning.
But one would likely prefer the Legendre PRF for applications which require low latency, and which
do not involve any party external to the MPC engine, and MiMC for all other applications.

Acknowledgements

The work in this paper has been partially supported by ERC Advanced Grant ERC-2010-AdG-
267188-CRIPTO, DARPA and the US Navy under contract #N66001-15-C-4070, and by the Aus-
trian Science Fund (project P26494-N15).

20

References

1. Albrecht, M., Grassi, L., Rechberger, C., and Tiessen, T. MiMC: Efficient encryption and cryptographic
hashing with minimal multiplicative complexity. Cryptology ePrint Archive, 2016. http://eprint.iacr.org/

2016/492.
2. Albrecht, M. R., Rechberger, C., Schneider, T., Tiessen, T., and Zohner, M. Ciphers for MPC and

FHE. In EUROCRYPT 2015, Part I (Apr. 2015), E. Oswald and M. Fischlin, Eds., vol. 9056 of LNCS, Springer,
Heidelberg, pp. 430–454.

3. Bar-Ilan, J., and Beaver, D. Non-cryptographic fault-tolerant computing in constant number of rounds of
interaction. In 8th ACM PODC (Aug. 1989), P. Rudnicki, Ed., ACM, pp. 201–209.

4. Bellare, M., Boldyreva, A., and O’Neill, A. Deterministic and efficiently searchable encryption. In
CRYPTO 2007 (Aug. 2007), A. Menezes, Ed., vol. 4622 of LNCS, Springer, Heidelberg, pp. 535–552.

5. Bendlin, R., Damg̊ard, I., Orlandi, C., and Zakarias, S. Semi-homomorphic encryption and multiparty
computation. In EUROCRYPT 2011 (May 2011), K. G. Paterson, Ed., vol. 6632 of LNCS, Springer, Heidelberg,
pp. 169–188.

6. Bogetoft, P., Christensen, D. L., Damg̊ard, I., Geisler, M., Jakobsen, T., Krøigaard, M., Nielsen,
J. D., Nielsen, J. B., Nielsen, K., Pagter, J., Schwartzbach, M. I., and Toft, T. Secure multiparty
computation goes live. In FC 2009 (Feb. 2009), R. Dingledine and P. Golle, Eds., vol. 5628 of LNCS, Springer,
Heidelberg, pp. 325–343.

7. Boldyreva, A., Chenette, N., and O’Neill, A. Order-preserving encryption revisited: Improved security
analysis and alternative solutions. In CRYPTO 2011 (Aug. 2011), P. Rogaway, Ed., vol. 6841 of LNCS, Springer,
Heidelberg, pp. 578–595.

8. Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., and Zimmerman, J. Semantically secure
order-revealing encryption: Multi-input functional encryption without obfuscation. In EUROCRYPT 2015, Part
II (Apr. 2015), E. Oswald and M. Fischlin, Eds., vol. 9057 of LNCS, Springer, Heidelberg, pp. 563–594.

9. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E. B., Knežević, M., Knudsen, L. R., Leander,
G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen, S. S., and Yalçin, T. PRINCE - A
low-latency block cipher for pervasive computing applications - extended abstract. In ASIACRYPT 2012 (Dec.
2012), X. Wang and K. Sako, Eds., vol. 7658 of LNCS, Springer, Heidelberg, pp. 208–225.

10. Bourgain, J., Garaev, M. Z., Konyagin, S. V., and Shparlinski, I. E. On the hidden shifted power
problem. SIAM Journal on Computing 41, 6 (2012), 1524–1557.

11. Canteaut, A., Carpov, S., Fontaine, C., Lepoint, T., Naya-Plasencia, M., Paillier, P., and Sirdey,
R. Stream ciphers: A practical solution for efficient homomorphic-ciphertext compression. In Fast Software
Encryption - 23nd International Workshop, FSE 2016 (2016).

12. Cash, D., Jarecki, S., Jutla, C. S., Krawczyk, H., Rosu, M.-C., and Steiner, M. Highly-scalable
searchable symmetric encryption with support for boolean queries. In CRYPTO 2013, Part I (Aug. 2013),
R. Canetti and J. A. Garay, Eds., vol. 8042 of LNCS, Springer, Heidelberg, pp. 353–373.

13. Catrina, O., and de Hoogh, S. Improved primitives for secure multiparty integer computation. In SCN 10
(Sept. 2010), J. A. Garay and R. D. Prisco, Eds., vol. 6280 of LNCS, Springer, Heidelberg, pp. 182–199.

14. Catrina, O., and de Hoogh, S. Secure multiparty linear programming using fixed-point arithmetic. In
ESORICS 2010 (Sept. 2010), D. Gritzalis, B. Preneel, and M. Theoharidou, Eds., vol. 6345 of LNCS, Springer,
Heidelberg, pp. 134–150.

15. Catrina, O., and Saxena, A. Secure computation with fixed-point numbers. In FC 2010 (Jan. 2010), R. Sion,
Ed., vol. 6052 of LNCS, Springer, Heidelberg, pp. 35–50.

16. Chenette, N., Lewi, K., Weis, S. A., and Wu, D. J. Practical order-revealing encryption with limited
leakage. In Fast Software Encryption - 23nd International Workshop, FSE 2016 (2016).

17. Daemen, J., Peeters, M., Van Assche, G., and Rijmen, V. Nessie proposal: Noekeon. In First Open NESSIE
Workshop (2000).

18. Damg̊ard, I. On the randomness of legendre and jacobi sequences. In CRYPTO’88 (Aug. 1990), S. Goldwasser,
Ed., vol. 403 of LNCS, Springer, Heidelberg, pp. 163–172.

19. Damg̊ard, I., Fitzi, M., Kiltz, E., Nielsen, J. B., and Toft, T. Unconditionally secure constant-rounds
multi-party computation for equality, comparison, bits and exponentiation. In TCC 2006 (Mar. 2006), S. Halevi
and T. Rabin, Eds., vol. 3876 of LNCS, Springer, Heidelberg, pp. 285–304.

20. Damg̊ard, I., Geisler, M., Krøigaard, M., and Nielsen, J. B. Asynchronous multiparty computation:
Theory and implementation. In PKC 2009 (Mar. 2009), S. Jarecki and G. Tsudik, Eds., vol. 5443 of LNCS,
Springer, Heidelberg, pp. 160–179.

21

http://eprint.iacr.org/2016/492
http://eprint.iacr.org/2016/492

21. Damg̊ard, I., and Keller, M. Secure multiparty AES. In FC 2010 (Jan. 2010), R. Sion, Ed., vol. 6052 of
LNCS, Springer, Heidelberg, pp. 367–374.

22. Damg̊ard, I., Keller, M., Larraia, E., Miles, C., and Smart, N. P. Implementing AES via an ac-
tively/covertly secure dishonest-majority MPC protocol. In SCN 12 (Sept. 2012), I. Visconti and R. D. Prisco,
Eds., vol. 7485 of LNCS, Springer, Heidelberg, pp. 241–263.

23. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., and Smart, N. P. Practical covertly secure
MPC for dishonest majority - or: Breaking the SPDZ limits. In ESORICS 2013 (Sept. 2013), J. Crampton,
S. Jajodia, and K. Mayes, Eds., vol. 8134 of LNCS, Springer, Heidelberg, pp. 1–18.

24. Damg̊ard, I., Pastro, V., Smart, N. P., and Zakarias, S. Multiparty computation from somewhat homo-
morphic encryption. In CRYPTO 2012 (Aug. 2012), R. Safavi-Naini and R. Canetti, Eds., vol. 7417 of LNCS,
Springer, Heidelberg, pp. 643–662.

25. Damg̊ard, I., and Zakarias, R. W. Fast oblivious AES A dedicated application of the minimac protocol. In
AFRICACRYPT 2016 (2016), pp. 245–264.

26. Duval, S., Lallemand, V., and Rotella, Y. Cryptanalysis of the FLIP family of stream ciphers. In CRYPTO
2016 (2016).

27. Jakobsen, T., and Knudsen, L. R. The interpolation attack on block ciphers. In FSE’97 (Jan. 1997), E. Biham,
Ed., vol. 1267 of LNCS, Springer, Heidelberg, pp. 28–40.

28. Keller, M., Orsini, E., and Scholl, P. MASCOT: Faster malicious arithmetic secure computation from
oblivious transfer. Cryptology ePrint Archive, 2016. http://eprint.iacr.org/2016/505.

29. Keller, M., Scholl, P., and Smart, N. P. An architecture for practical actively secure MPC with dishonest
majority. In ACM CCS 13 (Nov. 2013), A.-R. Sadeghi, V. D. Gligor, and M. Yung, Eds., ACM Press, pp. 549–560.

30. Laur, S., Talviste, R., and Willemson, J. From oblivious AES to efficient and secure database join in the
multiparty setting. In ACNS 13 (June 2013), M. J. Jacobson Jr., M. E. Locasto, P. Mohassel, and R. Safavi-Naini,
Eds., vol. 7954 of LNCS, Springer, Heidelberg, pp. 84–101.

31. Lim, C. H., and Korkishko, T. mCrypton - a lightweight block cipher for security of low-cost RFID tags
and sensors. In WISA 05 (Aug. 2006), J. Song, T. Kwon, and M. Yung, Eds., vol. 3786 of LNCS, Springer,
Heidelberg, pp. 243–258.

32. Lindell, Y., and Riva, B. Blazing fast 2PC in the offline/online setting with security for malicious adversaries.
In ACM CCS 15 (Oct. 2015), I. Ray, N. Li, and C. Kruegel:, Eds., ACM Press, pp. 579–590.

33. Lu, S., and Ostrovsky, R. Distributed oblivious RAM for secure two-party computation. In TCC 2013 (Mar.
2013), A. Sahai, Ed., vol. 7785 of LNCS, Springer, Heidelberg, pp. 377–396.

34. Méaux, P., Journault, A., Standaert, F., and Carlet, C. Towards stream ciphers for efficient FHE with
low-noise ciphertexts. In EUROCRYPT 2016 (2016), M. Fischlin and J. Coron, Eds., vol. 9665 of Lecture Notes
in Computer Science, Springer, pp. 311–343.

35. Naor, M., and Reingold, O. Number-theoretic constructions of efficient pseudo-random functions. In 38th
FOCS (Oct. 1997), IEEE Computer Society Press, pp. 458–467.

36. Nielsen, J. B., Nordholt, P. S., Orlandi, C., and Burra, S. S. A new approach to practical active-secure
two-party computation. In CRYPTO 2012 (Aug. 2012), R. Safavi-Naini and R. Canetti, Eds., vol. 7417 of LNCS,
Springer, Heidelberg, pp. 681–700.

37. Nyberg, K., and Knudsen, L. R. Provable security against a differential attack. Journal of Cryptology 8, 1
(1995), 27–37.

38. Pinkas, B., Schneider, T., Smart, N. P., and Williams, S. C. Secure two-party computation is practical.
In ASIACRYPT 2009 (Dec. 2009), M. Matsui, Ed., vol. 5912 of LNCS, Springer, Heidelberg, pp. 250–267.

39. Russell, A., and Shparlinski, I. Classical and quantum polynomial reconstruction via legendre symbol eval-
uation. Journal of Complexity 20, 2-3 (2004), 404–422.

40. Van Dam, W. Quantum algorithms for weighing matrices and quadratic residues. Algorithmica 34, 4 (2002),
413–428.

41. van Dam, W., Hallgren, S., and Ip, L. Quantum algorithms for some hidden shift problems. In 14th SODA
(Jan. 2003), ACM-SIAM, pp. 489–498.

42. Vercauteren, F. The hidden root problem. In PAIRING 2008 (Sept. 2008), S. D. Galbraith and K. G.
Paterson, Eds., vol. 5209 of LNCS, Springer, Heidelberg, pp. 89–99.

22

http://eprint.iacr.org/2016/505

	MPC-Friendly Symmetric Key Primitives

