
Improving Practical UC-Secure Commitments
based on the DDH Assumption ?

Eiichiro Fujisaki

NTT Secure Platform Laboratories
fujisaki.eiichiro@lab.ntt.co.jp

Abstract. At Eurocrypt 2011, Lindell presented practical static and adaptively UC-secure commit-
ment schemes based on the DDH assumption. Later, Blazy et al. (at ACNS 2013) improved the effi-
ciency of the Lindell’s commitment schemes. In this paper, we present static and adaptively UC-secure
commitment schemes based on the same assumption and further improve the communication and com-
putational complexity, as well as the size of the common reference string.

? This is an extended abstract of the paper with the same title appears in SCN 2016.



1 Introduction

Universal composability (UC) framework [5] guarantees that if a protocol is proven secure in the
UC framework, it remains secure even if it is run concurrently with arbitrary (even insecure)
protocols. The UC framework allows one to divide the design of a large system into that of simpler
sub-protocols, which provides the designer a fundamental benefit.

Commitment schemes are one of the most important tools in the cryptographic protocols. A
commitment scheme consists of a two-phase protocol between two parties, a committer and a re-
ceiver. In the commit phase, a committer gives a receiver the digital equivalent of a sealed envelope
containing value x. In the decommit phase, the committer reveals x in a way that the receiver can
verify it. From the original concept, it is required that a committer cannot change the value inside
the envelope (binding property), whereas the receiver can learn nothing about x (hiding property)
unless the committer helps the receiver open the envelope. Commitment schemes that are secure in
the UC framework were first presented by Canetti and Fischlin [6]. UC commitments are complete
for constructing UC zero-knowledge protocols [6, 13] and UC two-party and multiparty computa-
tion [7]. Informally, a UC commitment scheme maintains the above binding and hiding properties
under any concurrent composition with arbitrary protocols. To achieve this, a UC commitment
scheme requires equivocability and extractability at the same time. Since UC commitments cannot
be realized without an additional set-up assumption [6], the common reference string (CRS) model
is widely used.

Several UC commitment schemes in the CRS model have been proposed so far. After [6],
Canetti et al. [7] constructed inefficient schemes from general assumptions. Damg̊ard and Nielsen [13]
proposed interactive schemes that are the first efficient UC-secure commitment schemes. Camenish
and Shoup [4] also presented efficient interactive schemes. Although they are asymptotically effi-
cient, their concrete instantiations are implemented on Nd+1 modulus for RSA modulus N and
d ≥ 1, or p2q modulus with primes, p and q.

In [24], Lindell presented the first practical UC commitment schemes based on an ordinary
prime-order group. In practice, his constructions are much more efficient when implemented in
elliptic curves whose security is equivalent to that of RSA modulus. He proposed two types of UC
commitment schemes. One is static UC-secure and the other is adaptively UC-secure (with secure
erasure). If an adversary should decide to corrupt parities only before a protocol starts, it is called
static corruption. A corrupted party reveals its whole inner states to the adversary. A commitment
scheme is called static UC-secure if it is UC-secure against static corruptions. On the other hand,
if an adversary can decide to corrupt parties at any point in the executions of protocols, it is called
adaptive corruption. A commitment scheme is called adaptively UC-secure if it is UC-secure against
adaptive corruptions. Adaptive corruptions are more flexible and powerful attacks. Lindell’s adap-
tively UC-secure commitment scheme assumes secure erasure, which means that parties can securely
erase their unnecessary inner states that would have risks of their security at future corruptions.
Lindell’s static UC-secure commitment scheme has total communication complexity of 10 group
elements plus 4 scalars, whereas his adaptively UC-secure one has that of 12 group elements plus 6
scalars. Shortly after, Fishlin, Libert, and Manulis [15] transform Lindell’s static UC-secure scheme
into an non-interactive scheme adaptively UC-secure with erasure, by removing the interaction of
the Sigma protocol using Groth-Sahai proofs [20]. Although their proposal is non-interactive, the
communication and computational complexity is less efficient than [24], because it is implemented
in symmetric bilinear groups and requires expensive pairing operations. We note that implementing
it in asymmetric bilinear groups does not improve efficiency.

1



Blazy, Chevalier, Pointcheval, and Vergnaud [3] proposed the improvement of both Lindell’s
commitment schemes. Their static UC-secure commitment scheme has total communication com-
plexity of 9 group elements plus 3 scalars. The commit phase is non-interactive and the decommit
phase consists of 3 rounds (instead of 5 in Lindell’s scheme). Their adaptively UC-secure commit-
ment with secure erasure requires 10 group elements and 4 scalars. The commit phase has 3 rounds
(instead of 5 in Lindell’s scheme) and the decommit phase is non-interactive.

The static and adaptively UC-secure commitment schemes in [24, 3] assume the DDH assump-
tion and the existence of the collision resistant hash functions.

More on related works. The constructions of [12, 27, 17] are also asymptotically efficient. The con-
structions of [13, 4, 12, 27, 17] achieve adaptive UC-security without erasure in the CRS model. In
[13], the CRS size grows linearly in the number of the parties. In [27], the CRS is one-time, i.e.,
one needs a new common-reference string for each execution of the commitment protocol. In the
other works, the CRS is independent of the number of parties and re-usable. In addition, the work
of [17] achieves non-interactiveness. The most efficient constructions of [12, 27, 17] are implemented
on Nd+1 modulus for RSA modulus N , which are less efficient than [24, 3].

Recently, [18, 11, 9, 16, 8] have proposed UC commitment schemes in the UC oblivious transfer
(OT) hybrid model. Their constructions are very useful when a huge number of UC commitments
are required. Their common significant property is that the schemes are very fast except for the
overhead of UC OT protocols. In addition, one can make the number of the execution of UC
commitments independent of the number of the execution of OT protocols. However, the proposals
are only static UC-secure.

Therefore, [24, 3] are still the most efficient adaptively UC-secure commitment schemes.

Note. Lindell’s adaptively UC-secure commitment scheme [24] contains a small bug. Blazy et al. [3]
clarified and fixed it. We explain it slightly more and show the fixed version in Appedix B.

1.1 Our Contribution

In this paper we further improve the efficiency of Blazy et al. static and adaptively UC-secure
schemes [3]. By observing the security proof in [3], we realize that:

– In the adaptive case, two trapdoor commitments can be reduced to one.
– It is an overkill to use an IND-CCA secure public-key encryption (PKE) scheme in both static

and adaptive cases.

The first claim comes from a simple observation. The second claim derives from our main
technical contribution. We claim that an IND-PCA secure PKE scheme suffices for the protocols.
Here the IND-PCA security notion is formulated by Abdala, Benhamouda, and Pointcheval [1]
as a variant of the OW-PCA security notion [28]. The IND-PCA security notion is defined as
indistinguishability of PKE in the presence of the plaintext checkable oracle, and a short version of
Cramer-Shoup cryptosystem [10] satisfies this security notion.

In the concrete instantiation, we present practical static and adaptively UC-secure commitment
schemes under the same assumption as in [24, 3]. Our adaptively UC-secure commitment scheme
(with erasure) is more efficient than Blazy et al. static UC-secure one. Our statistic and adaptive
schemes both have the total communication complexity of 7 group elements and 3 scalars with the
computational complexity of 18 exponentiations.

2



In Table 1, we compare our proposals with the previous works. All schemes below are UC-secure
commitment schemes assuming the DDH assumption on cyclic group G and the existence of the
collision resistant hash functions. All adaptively UC-secure ones below assume secure erasure. κ
denotes the security parameter. Let q be the order of G. Then, log(q) = O(κ). |G| denotes the length
of the description of an element in G, which depends on the concrete instantiation, but is generally
slightly bigger than log(q). If it is implemented in an elliptic curve, it is at least |G| ≥ log(q) + 1.
T exp(G) denotes the computational cost of one exponentiation on G.

Table 1. Comparison among the UC commitments based on the DDH assumption

Schemes Public Communication Computational Rounds Security
Parameter Complexity Complexity Com/Decom

Lin11 [24, § 3] 7|G| 10|G|+ 4κ 27T exp(G) 1/4 Static

Lin11 [24, § 4] 8|G| 12|G|+ 6κ 36T exp(G) 5/1 Adaptive

BCPV13 [3, § 5.1] 7|G| 9|G|+ 3κ 22T exp(G) 1/3 Static

BCPV13 [3, § 5.3] 7|G| 10|G|+ 4κ 26T exp(G) 3/1 Adaptive

Ours (§4.2) 5|G| 7|G|+ 3κ 18T exp(G) 1/3 Static

Ours (§4.1) 5|G| 7|G|+ 3κ 18T exp(G) 3/1 Adaptive

2 Preliminaries

For n ∈ N, [n] denotes the set {1, . . . , n}. We let negl(κ) to denote an unspecified function f(κ) such
that f(κ) = κ−ω(1), saying that such a function is negligible in κ. We write PPT and DPT algorithms
to denote probabilistic polynomial-time and deterministic poly-time algorithms, respectively. For
PPT algorithm A, we write y ← A(x) to denote the experiment of running A for given x, picking
inner coins r uniformly from an appropriate domain, and assigning the result of this experiment
to the variable y, i.e., y = A(x; r). Let X = {Xκ}κ∈N and Y = {Yκ}κ∈N be probability ensembles
such that each Xκ and Yκ are random variables ranging over {0, 1}κ. The (statistical) distance
between Xκ and Yκ is Dist(Xκ, Yκ) , 1

2 · |Prs∈{0,1}κ [X = s] − Prs∈{0,1}κ [Y = s]|. We say that

two probability ensembles, X and Y , are statistically indistinguishable (in κ), denoted X
s
≈ Y ,

if Dist(Xκ, Yκ) = negl(κ). Let A and B be PPT algorithms that both take x ∈ {0, 1}∗. We write

{A(x)}κ∈N, x∈{0,1}κ,
s
≈ {B(x)}κ∈N, x∈{0,1}κ to denote {A(xκ)}κ∈N

s
≈ {B(xκ)}κ∈N for every sequence

{xκ}κ∈N such that |xκ| = κ.

2.1 (Tag-Based) Public-Key Encryption

We recall a tag-based public-key encryption (Tag-PKE) scheme (or a PKE scheme supported with
labels), following [32, 25, 22]. A Tag-PKE Π = (K,E,D) consists of the following three algorithms.
The key-generation algorithm K is a PPT algorithm that takes 1κ and outputs a pair of public and
secret keys, (pk, sk). The encryption algorithm E is a PPT algorithm that takes public key pk, tag
t ∈ {0, 1}κ and message m ∈ MSPenc, draws string r uniformly from the coin space COINenc, and
produces ciphertext (t, c) where c = Et

pk(m; r). The decryption algorithm D is a DPT algorithm

that takes sk and a presumable ciphertext (t, c) where c ∈ {0, 1}∗, and returns message m = Dt
sk(c).

We require that for every sufficiently large κ ∈ N, it always holds that Dt
sk(E

t
pk(m)) = m, for every

3



(pk, sk) generated by K(1κ) and every m ∈ MSPenc. We say that ciphertext (t, c) is proper if there
exists (m, r) ∈ MSPenc × COINenc such that c = Et

pk(m; r).
To suit actual instantiations, we assume MSPenc and COINenc are defined by pk.
IND-CCA. We recall CCA security for Tag-PKEs [25], also called weak CCA security in

[22]. We define the advantage of A = (A1, A2) for Π against indistinguishability against chosen
ciphertext attacks (IND-CCA) as

AdvccaΠ,A(κ) =
∣∣Pr[Exptcca-0Π,A (κ) = 1]− Pr[Exptcca-1Π,A (κ) = 1]

∣∣ ,
where experiment Exptcca-bΠ,A (κ) for b ∈ {0, 1} is defined in Fig. 1. The constraint of A in the expere-
ment is that A2 is not allowed to submit (t∗, ?) to Dsk(·, ·) where t∗ is the challenge tag. We say that
Π is indistinguishable against chosen-ciphertext attacks (IND-CCA secure) if AdvccaΠ,A(κ) = negl(κ)
for every non-uniform PPT A.

Exptcca-bΠ,A(κ)

(pk, sk)← K(1κ); (t∗,m0,m1, st)← A
Dsk
1 (pk)

c∗ ← Et∗pk(mb); b′ ← A
Dsk
2 (st, (t∗, c∗))

return bit b′.

Fig. 1. Experiment of Exptcca-bΠ,A

We note that this security notion is weaker than the standard IND-CCA security notion [30, 10,
2] for PKE, because an adversary is not only prohibited from asking for the challenge ciphertext
(t∗, c∗) but (t∗, c) with c 6= c∗.

IND-PCA. Recently, Abdalla, Benhamouda, and Pointcheval [1] proposed a security notion of
indistinguishability against plaintext checkable attacks (IND-PCA) for PKE. This paper utilizes

a Tag-PKE variant. Let Exptpca-bΠ,A (κ) for b ∈ {0, 1} be the experiment as in Fig. 2. Here oracle Opca
sk

takes (t,m, c) and returns 1 if and only if c is a proper ciphertext of m on tag t. The constraint
of A in the experiment is that A is not allowed to submit (t∗, ?, ?) to Opca

sk (·, ·, ·) where t∗ is the
challenge tag. We define the advantage of A for Π against indistinguishability against the plaintext
checkable attacks (IND-PCA) as

AdvpcaΠ,A(κ) =
∣∣∣Pr[Exptpca-0Π,A (κ) = 1]− Pr[Exptpca-1Π,A (κ) = 1]

∣∣∣ ,
We say that Π is indistinguishable against the plaintext checkable attacks (IND-PCA secure) if
AdvpcaΠ,A(κ) = negl(κ) for every non-uniform PPT A.

2.2 Trapdoor Commitments

We define a trapdoor commitment scheme. Let TCOM = (Gentc,Comtc,TComtc,TColtc) be a tuple
of the following four algorithms. Gentc is a PPT algorithm takes as input security parameter κ and
outputs a pair of public and trap-door keys (pk, tk). Comtc is a PPT algorithm takes as input pk and
message x ∈ {0, 1}λm committed to, chooses r ← COINcom, and outputs a ψ = Comtc

pk(m; r). TComtc

is a PPT algorithm takes as input tk and outputs (ψ, χ)← TComtc
tk(1

κ). TColtc is a DPT algorithm
that takes (tk, ψ, χ, x̂) where x̂ ∈ {0, 1}λm and outputs r̂ ∈ COINcom such that ψ = Comtc

pk(x̂; r̂).
We call TCOM is a trapdoor commitment scheme if the following two conditions hold.

4



Exptpca-bΠ,A (κ)

(pk, sk)← K(1κ); (t∗,m0,m1, st)← A
O

pca
sk

1 (pk)

c∗ ← Et∗pk(mb); b′ ← A
O

pca
sk

2 (st, (t∗, c∗))
return bit b′.

Fig. 2. Experiment of Exptpca-bΠ,A

Trapdoor Collision. For all pk generated by Gentc(1κ), and all x ∈ {0, 1}λm(κ), the following
ensembles are statistically indistinguishable in κ:{

(ψ, x, r) | r ← COINcom;ψ = Comtc
pk(x; r)

}
κ∈N,pk∈Gentc(1κ),x∈{0,1}λm

s
≈
{

(ψ, x, r) | (ψ, χ)← TComtc
tk(1

κ); r = TColtctk(ψ, χ, x)
}
κ∈N,pk∈Gentc(1κ),x∈{0,1}λm

.

Computational Binding. For all non-uniform PPT adversary A,

Pr

[
pk ← Gentc(1κ); (x1, x2, r1, r2)← A(pk) :
Comtc

pk(x1; r1) = Comtc
pk(x2; r2) ∧ (x1 6= x2)

]
= negl(κ).

2.3 Sigma Protocol

Let L be an NP language and RL be the relation derived from L. Let Σ = (Pcom
Σ ,Pans

Σ ,Vvrfy
Σ , simPcom

Σ )
be a tuple of algorithms (associated with L) as follows:

– Pcom
Σ is a PPT algorithm that takes (x,w) ∈ RL and outputs (α, ξ)← Pcom

Σ (x,w). For simplicity,
we assume that ξ is inner coins of Pcom

Σ .

– Pans
Σ is a DPT algorithm that takes (x,w, ξ, β) and outputs γ = Pans

Σ (x,w, ξ, β) where β ∈
{0, 1}λch .

– Vvrfy
Σ is a DPT algorithm that accepts or rejects (x, α, β, γ).

– simPcom
Σ is a PPT algorithm that takes (x, β) and outputs (α, β, γ)← simPcom

Σ (x, β).

Σ is called a Sigma protocol if it satisfies the following requirements:

Completeness: For every (x,w) ∈ RL, every (α, ξ) ∈ Pcom
Σ (x,w), and every β ∈ {0, 1}λch , it always

holds that Vvrfy
Σ (x, α, β, γ) = 1 where γ = Pans

Σ (x,w, ξ, β).

Special Soundness: If there are two different accepting conversations for the same α on x, i.e.,
(α, β, γ) and (α, β′, γ′), with β 6= β′, it must hold that x ∈ L and there is an efficient extractor that
takes (α, β, γ) and (α, β′, γ′) as input and outputs w such that (x,w) ∈ RL. We call such a pair a

collision on x. Special soundness implies that there is at most one e such that Vvrfy
Σ (x, α, β, γ) = 1

for every x 6∈ L and every α.

5



Honest-Verifier Statistical Zero-Knowledgeness (HVSZK): For all (x,w) ∈ RL, and all
β ∈ {0, 1}λch , the following ensembles are statistically indistinguishable in κ:

{simPcom
Σ (x, β; rγ)}κ∈N, (x,w)∈RL, β∈{0,1}λch

s
≈{(Pcom

Σ (x,w; ξ)1, β,P
ans
Σ (x,w, ξ, β))}κ∈N, (x,w)∈RL, β∈{0,1}λch ,

where Pcom
Σ (x,w)1 denotes the first output of Pcom

Σ (x,w). Here the probability of the left-hand side
is taken over random variable rγ and the right-hand side is taken over random variable ξ.

3 Universal Composable Framework

The UC framework defines a non-uniform PPT environment machine Z that oversees the execution
of a protocol in one of two worlds. In both worlds, there are an PPT adversary and honest parties
(some of which may be corrupted by the adversary). In the real world, the real protocol is run among
the parties with some possible attacks given by the real-world adversary. In the ideal world, there
additionally exists a trusted uncorrupted party, ideal functionality F , where the honest parties in the
ideal world do not interact with each other and instead send their inputs to the ideal functionality
F , which carries out the computation of the protocol in the trusted manner and sends back to
the outputs to each party. We say that protocol π UC-realizes ideal functionality F if there exists
an ideal-world adversary (simulator) S such that no environment Z can distinguish the real world
where it runs with the real adversary A from the ideal world where it runs with the ideal-world
adversary (simulator) S.

In both worlds, the environment adaptively chooses the inputs for the honest parties and receives
the outputs that they get. The environment can control the adversary and order it to corrupt any
honest party at the beginning of the execution of the protocol (static corruption) or at any timing
during the execution of the protocol (adaptive corruption). When a honest party is corrupted,
the adversary may read the inner state of the honest party and fully control it. In the ideal world,
after a party is corrupted, the ideal-world adversary S may access to the ideal functionality as
the party does. The environment can see the inside of the execution of the protocol – the actual
interactions between the honest parties or between the honest parties and the adversary – via the
adversary’s view. Since there is no interaction between the honest parties or between the honest
parties and the adversary in the ideal world, the ideal-world simulator has to simulate the real-world
adversary’s view as it comes from the inside of the protocol in the real world.

We consider a model with ideal authentication channels, and so the adversary is allowed to
read the messages sent by uncorrupted honest party but cannot modify them. Our protocols are
executed in the common reference string (CRS) model. This means that the protocol is run in
a hybrid model where the parties have access to an ideal functionality Fcrs that chooses a CRS
according to the prescribed distribution and hands it to any party that requests it. Our adaptively
UC-secure protocol requires the secure erasure assumption that the honest parties can securely
erase their unnecessary inner states, as with [24, 3].

We denote by IdealF ,SA,Z(κ, z) the output of the environment Z with input z after an ideal
execution with the ideal adversary (simulator) S and functionality F , with security parameter κ. We
only consider black-box simulators S and denote the simulator by SA, which means that it works
with the adversary A attacking the real protocol. We denote by HybridFcrs

π,A,Z(κ, z) the output of
the environment Z with input z after an execution of the protocol π in the Fcrs hybrid model (or
in the real world in the CRS model). Informally, a protocol π UC-realizes a functionality F

6



in the Fcrs hybrid model if there exists a PPT simulator S such that for every non-uniform PPT
environment Z every PPT adversary A, and every polynomial p(·), it holds that

{IdealF ,SA,Z(κ, z)}κ∈N,z∈{0,1}p(κ)
c
≈{HybridFcrs

π,A,Z(κ, z)}κ∈N,z∈{0,1}p(κ) .

The importance of the universal composability framework is that it satisfies a composition theo-
rem that states that any protocol that is universally composable is secure when it runs concurrently
with many other arbitrary protocols. For more details, see [5].

We consider UC commitment schemes that can be used repeatedly under a single common ref-
erence string (re-usable common reference string). The multi-commitment ideal functionality
FMCOM from [7] is the ideal functionality of such commitments. We formally provide it in Figure
3.

Functionality FMCOM

FMCOM proceeds as follows, running with parties, P1, . . . , Pn, and an adversary S:

– Commit phase: Upon receiving input (commit, sid, ssid, Pi, Pj , x) from Pi, proceed as follows:
If a tuple (commit, sid, ssid, . . . ) with the same (sid, ssid) was previously recorded, does
nothing. Otherwise, record the tuple (sid, ssid, Pi, Pj , x) and send (receipt, sid, ssid, Pi, Pj)
to Pj and S.

– Reveal phase: Upon receiving input (open, sid, ssid) from Pi, proceed as follows: If a tuple
(sid, ssid, Pi, Pj , x) was previously recorded, then send (reveal, sid, ssid, Pi, Pj , x) to Pj and
S. Otherwise, does nothing.

Fig. 3. The ideal multi-commitment functionality

4 Our Proposal

For the space limitation, we focus on the adaptively UC-secure case. The static case is just a sim-
plified version of the adaptive case and hence the proof is omitted to avoid a redundant exposition.

4.1 Our Adaptively UC-Secure Commitment with Erasure

We start by explaining the basic idea of Lindell’s scheme [24]. As mentioned before, UC commit-
ments require extractability and equivocability. Therefore, it is natural to use a PKE scheme as an
extractable commitment scheme in the CRS model, where the committer commits to a secret value
by encrypting it using public-key pk put in the common reference string. In the simulation, the sim-
ulator can choose the public-key along with the corresponding secret-key and use it by extracting
the committed value. However, UC commitments should be equivocable at the same time. So, it is
not possible at the decommit phase to simply reveal the committed value and the randomness used
to encrypt, because encryptions are perfectly binding. Therefore, the committer instead sends the
committed value m and makes a concurrent (straight-line) non-malleable zero-knowledge proof such
that CT is a proper ciphertext of m. The straight-line zero-knowledge simulation is needed, because
in the UC setting, the rewinding simulation is not allowed. In addition, concurrent non-malleability
is needed because the simulator makes a number of fake proofs (i.e., valid (simulated) proofs on

7



false statements), but ensures that the adversary cannot produce any fake proof even after it sees
many fake ones. To do so, Lindell utilized a dual mode encryption scheme, an IND-CCA secure
PKE scheme, and a Sigma protocol. To make the scheme secure against the adaptive corruptions,
he additionally used a trapdoor commitment scheme. It enables the committer to switch the order
of messages in the proof and to run most of the proof in the commit phase. Then, the committer
can erase the randomness used to encrypt before sending ciphertext CT, which makes the scheme
adaptively UC-secure with erasure (Fig. 6). Blazy, Chevalier, Pointcheval, and Vergnaud [3] showed
that the dual mode encryption can be removed from the proofs in both static and adaptive cases.
By this observation, they improved the number of the rounds from five to three at the commit
phase in the adaptive case (resp. from four to three at the decommit phase in the static case). See
Table 1.

Our starting point is the BCPV adaptively UC-secure commitment scheme (Fig. 7). Before
exposing the difference, we give the description of our adaptively UC-secure commitment scheme.

The Adaptively UC-Secure Commitment Scheme. Let Π = (K,E,D) be a tag-based PKE

scheme. Let Σ = (Pcom
Σ ,Pans

Σ ,Vvrfy
Σ , simPcom

Σ ) be a Sigma protocol on a language such that

L = {(pkenc,m, t,CT) | ∃w ∈ COINenc s.t. CT = Et
pkenc(m;w)}.

Let TCOM = (Gentc,Comtc,TComtc,TColtc) be a trap-door commitment scheme. Our adaptively
UC-secure commitment scheme is constructed as follows (See also Fig. 4):

Common Reference String. The trusted party computes (pkenc, skenc) ← K(1κ) and (pktc, tktc) ←
Gentc(1κ). It chooses a collision-resistant hash H ← H such that H : {0, 1}∗ → {0, 1}λm and sets
crs = (pkenc, pktc, H).

The Commit Protocol.

1. Upon receiving (commit, sid, ssid, C,R,m) wherem ∈ MSPpkenc , committer C sets t = (sid, ssid, C,R),
chooses random w ← COINpkenc , and computes CT = Epkenc(t,m;w).

2. Let L = {(pkenc,m, t,CT) | ∃w ∈ COINenc s.t. CT = Epkenc(t,m;w)}. C computes (α, ξ) ←
Pcom
Σ (x,w) as the first message of Sigma protocol on x = (pkenc,m, t,CT).

3. C computes φ = H(t, x, α) where t = (sid, ssid, C,R).
4. C chooses random rtc ← COINcom and computes ψ = Comtc

pktc(φ; rtc).
5. C sends (t, ψ) to receiver R.
6. Receiver R checks t = (sid, ssid, C,R). If there is nothing wrong, then it sends back β ←
{0, 1}λch .

7. C computes γ = Pans
Σ (x,w, ξ, β).

8. C erases (w, ξ).
9. C sends CT to R.

10. R stores (t,CT, ψ, β) and outputs (receipt, sid, ssid, C,R).

The Decommit Protocol.

1. Upon receiving (open, sid, ssid), committer C sends (t,m, α, γ, rtc) to receiver R where t =
(sid, ssid, C,R).

2. R computes φ = H(t, x, α), where x = (pkenc,m, t,CT), and verifies ψ = Comtc
pktc(φ; rtc) and

Vvrfy
Σ (x, (α, β, γ)) = 1. If all relations hold, R accepts and outputs (reveal, sid, ssid, C,R,m).

8



Protocol Idea. The difference of our scheme from the BCPV scheme is the following two: Our
scheme commits to ciphertext CT and the first message of the Sigma prorocol, denoted α, in the
same sealed envelope ψ, whereas the BCPV scheme commits to CT and α in the distinct envelopes,
ψ1 and ψ2, respectively. However, the committer can simply reveal CT (without any witness) at
the commit phase and postpone to show the witness that ψ1 really contains CT until the decommit
phase. So, the two envelops can be unified. This is because in the ideal world, the value m̃ extracted
by the simulator at the commit phase is revealed to the environment only when the corrupted
committer (controlled by the adversary) successfully executes the decommit phase.

The second improvement comes from realizing that IND-PCA secure PKE [1] suffices, instead
of IND-CCA secure PKE. We note that a simplified variant of Cramer-Shoup scheme, the Short
Cramer-Shoup (SCS) scheme [1], is IND-PCA secure. The ciphertext of the SCS scheme consists of
three group elements, instead of four. Hence, the first message of the Sigma protocol is also reduced
to three group elements (instead of four).

We informally explain the reason that IND-PCA security suffices. In the ideal world, the sim-
ulator simulates an honest committer without knowing the committed value at the commit phase.
In addition, when interacting with a corrupted committer as an honest receiver, the simulator must
extract the committed value m′ that the corrupted committer has committed to before the decom-
mit phase. The extracted value m̃′ is revealed to the environment when the corrupted committer
successfully executes the decommit phase. Therefore, if the extracted value is different from the
value opened by the corrupted committer, the environment can distinguish the real world from the
ideal world. By construction, at the decomit phase, a committer opens the committed value m′ with
the proof that CT is a proper ciphertext of m′. If it is a real proof, m̃′ = m′ always holds. As long
as the adversary only see the real proofs produced by the honest committer (or the simulator), the
corrupted committer (controlled by the adversary) cannot make a fake proof (i.e., a “valid” proof
on a false statement), because of the binding property of TCOM and the soundness property of the
Sigma protocol. Hence, the valid proofs produced by the corrupted committer should be real. Thus,
the extracted value m̃′ should be the same as the opened value m′. This corresponds to Game 1. In
Game 2, the simulator simulates the honest committer, by producing the simulated proofs on the
true statements that CT = Epk(m) is a proper ciphertext of m. Still, the adversary cannot make
a fake proof. This comes from the trapdoor collision property of TCOM and the HVSZK property
of the Sigma protocol. Indeed, the simulated proofs on the true statements are statistically indis-
tinguishable from the real proofs. In the next game, the simulator finally makes fake proofs when
simulating the honest committer, i.e., simulated proofs on the false statements that CT = Epk(0)
is a proper ciphertext of m. Here, to prove the environment’s view is indistinguishable from that in
the former game, the works of [24, 3] rely on the power of IND-CCA secure PKE. However, it is an
overkill. In Game 2, we know that the adversary cannot make a fake proof. Hence, if it can make a
fake proof, it means that we are playing the latter game. To realize in which game we are playing,
we need the power of the PCA oracle. We can then construct an IND-PCA adversary A whose
advantage can be reduced to the probability of distinguishing these two games. If the adversary
makes a fake proof, then A can see, with the power of the PCA oracle, that it is playing in the
latter game. Then, it can halt and make a precise decision. If the adversary does not make fake
proofs, then A can perfectly simulate either of two games according to which message, Epk(m) or
Epk(0), is encrypted. We let A output the output of the environment. Then, if the difference of the
environment’s output in the two games is significant, the advantage of A in the IND-PCA game is
also significant, which contradicts IND-PCA security.

We now state the main theorem, followed by the formal proof.

9



Theorem 1. Let Π be IND-PCA. Then, the above construction UC-securely realizes the FMCOM

functionality in the FCRS-hybrid model against the adaptive corruptions with secure erasure.

Proof. As usual, we consider a sequence of hybrid games on which the probability spaces are
identical, but we change the rules of games step by step.

HybridFcrs Game: It corresponds to the real world in the CRS model, where the real protocol
is run among the parties. The environment Z adaptively chooses the input for honest committer C
and receives the honest parties’ output. There is an adversary A that attacks the real protocol in
the real world, i.e., it can see the interactions between the honest parties or interact with the honest
parties as playing the role of some parties after they are corrupted. When a party is corrupted, A
can read it’s current inner state and fully control it. The environment Z can control A and see the
inside of the execution of the protocol – the interactions between the honest parties or between the
honest parties and the adversary – via the view of A.

Game 1: In the set-up, S generates (pkenc, skenc) ← K(1κ) and (pktc, tktc) ← Gentc(1κ). S then
chooses H : {0, 1}∗ → {0, 1}λm and sets crs = (pkenc, pktc, H) as the common reference string. In this
game, S simulates honest players identically as in the HybridFcrs Game, except for the case that
receiver R is honest but sender Ĉ is corrupted. After receiving (t, ψ, β,CT) in the commit

phase with corrupted Ĉ, where t = (sid, ssid, Ĉ, R), S decrypts and stores m̃ = Dt
skenc(CT) .

In the decommit phase when Ĉ successfully decommits to m. S instead outputs (reveal, t, m̃)
to environment Z.

In the case of adaptive corruption of R before the decommit phase, S simply reveals (t, ψ, β,CT).
We note that honest R has no secret.

Security analysis. The only difference from the previous game is that in Game 1, S (playing
as honest R) outputs m̃ instead of the value m at the decommit phase. We note that S outputs
m̃ after Ĉ decommits to m in the verifiable way. If not, S outputs nothing. We denote by BAD
the event that m̃ 6= m where m is the value successfully decommitted to by Ĉ. Our claim is that
the event BAD occurs only with a negligible probability; Otherwise, either of the soundness of the
Sigma protocol, the binding of the trapdoor commitment, or the collision resistance of the hash
functions is broken. Assume that m̃ 6= m at least in one of such executions. For the first one, we
rewind the adversary at Step 4 in the commit phase and send a new random challenge β′. Assume
that Ĉ returns CT′ such that CT′ 6= CT, but still successfully decommits to some value m′ with α′.
Then it implies the breaking of the binding of the trapdoor commitment or the collision resistant
hash function, because we can simulate it without knowing the trapdoor key. For the same reason,
m′ = m and α′ = α hold except with a negligible probability. Therefore, rewinding the commit
phase, Ĉ outputs the same (m,CT, α) except with a negligible probability when it can successfully
decommits. Note that m̃ 6= m implies that x = (pkenc,m, t,CT) 6∈ L. Since x, α are now fixed
with an overwhelming probability, Ĉ can convince R on false instance x only with 2−λch (special
soundness), which is negligible in κ. Hence, BAD occurs only with a negligible probability and the
views of the environment in the two games are computationally indistinguishable. We stress that
the rewind is just for the proof of binding, but not in the simulation.

Game 2: This game is identical to Game 1 except for the case that S modifies the simulation
of honest sender C. Upon receiving input (commit, t,m) from Z where t = (sid, ssid, C,R),

1. S runs (ψ, χ)← TComtc
tk(1

κ) using trapdoor key tk. S sends (t, ψ) to R and waits for challenge
β.

10



2. When receiving β, S computes CT = Et
pkenc(m;w) with random w and returns CT to R.

In the decommit phase, upon receiving input (open, sid, ssid) from Z,

1. S first sets x = (pkenc, t,m,CT).

2. S computes (α, β, γ)← simPcom
Σ (x, β) and rtc = TColtctk(ψ, χ, φ) where φ = H(t, x, α).

3. S sends (t,m, α, γ, rtc) back to R.

We note that in the simulation of C in the decommit phase, S does not need to know w.
In the case of adaptive corruption of C before receiving β,

1. S generates CT = Et
pkenc(m;w) with random w.

2. S honestly computes (α, ξ) = Pcom
Σ (x,w; ξ) where x = (pkenc, t,m,CT) and generates rtc =

TColtctk(ψ, χ, φ) where φ = H(t, x, α).

3. S reveals (m,w, ξ, rtc) to environment Z.

In the case of adaptive corruption of C after the commit phase but before the decommit phase,

1. S produces (α, γ, rtc) as in the case of the decommit phase.

2. S reveals (t,m,CT, rtc, β, γ).

Here, we note that (w, ξ) is supposed to be erased by honest C before sending CT, and
hence, S does not need to reveal them.

Security analysis. Due to the HVSZK property of the Sigma protocol and the trapdoor
collision property of TCOM, the environment’s views in both games are statistically close.

Game 3: In this game, S modifies the simulation of honest C in the commit phase again.
Upon receiving input (commit, t,m) from Z where t = (sid, ssid, C,R),

1. S identically simulates Step 1 in the commit phase in Hybrid Game 2.

2. When it receives β, S instead computes CT← Et
pkenc(0) and returns CT to R.

In the decommit phase, upon receiving input (open, sid, ssid) from Z,

1. S first sets x = (pkenc, t,m,CT) where x 6∈ L because CT = Etpkenc(0).

2. S identically simulates Step 2 in the decommit phase in Game 2.

3. S identically simulates Step 3 in the decommit phase in Game 2.

In the case of adaptive corruption of C, S simulates C identically as in Hybrid Game 2.
Security analysis. The only difference from the previous game is that in Game 3, the simulator

S (playing as honest C) computes CT = Et
pkenc(0) instead of CT = Et

pkenc(m). We run the (multi-
message) IND-PCA game to show this game is indistinguishable from the previous game. We denote
by BADi the event in Game i that m̃ 6= m where m is the value successfully decommitted to by
Ĉ. As analysed above, Pr[BAD] = Pr[BAD1] = negl(κ). In addition, Game 1 is statistically close to
Game 2 and so, Pr[BAD1] ≈ Pr[BAD2] = negl(κ). We use this fact to prove the following lemma.

Lemma 1. Let Π be IND-PCA. Then, the environment’s view in Game 2 is computationally in-
distinguishable from that in Game 3.

We postpone the formal proof till Appendix A.

11



Ideal World: We note that in the ideal world, there additionally exists an ideal functionality
FMCOM and the task of the honest parties in the ideal world simply convey inputs from environment
Z to the ideal functionalities and vice versa (the ideal honest parties communicate only with the
environment Z and the ideal functionalities).

– Initialization step: S generates (pkenc, skenc) ← K(1κ) and (pktc, tktc) ← Gentc(1κ). S also
chooses H : {0, 1}∗ → {0, 1}λm . S sets crs = (pkenc, pktc, H).

– Simulating the communication with Z: Every input value that S receives from Z is written
on A’s input tape (as if coming from Z) and vice versa.

– Simulating the commit phase when committer C is honest: Upon receiving the re-
ceipt message (receipt, t) from FMCOM where t = (sid, ssid, C,R), S computes (ψ, χ) ←
TComtc

tk(1
κ). S sends (t, ψ) to R and waits for challenge β. When it receives β, S computes

CT← Et
pkenc(0) and sends CT back to R.

– Simulating the decommit phase when C is honest: Upon receiving input (reveal, t,m)
from FMCOM where t = (sid, ssid, C,R), S first sets x = (pkenc, t,m,CT) and then computes
(α, β, γ)← simPcom

Σ (x, β) and rtc = TColtctk(ψ, χ, φ) where φ = H(t, x, α). S sends (t,m, α, γ, rtc)
back to R.

– Simulating adaptive corruption of C before receiving β in the commit phase: When
C is corrupted, S can immediately read ideal committer C’s inner state and obtain m. Then,
S generates CT = Et

pkenc(m;w) with random w and compute (α, ξ) = Pcom
Σ (x,w; ξ) where

x = (pkenc, t,m,CT). Then it computes rtc = TColtctk(ψ, χ, φ) where φ = H(t, x, α) and reveals
(m,w, ξ, rtc).

– Simulating adaptive corruption of C after the commit phase but before the decom-
mit phase: When C is corrupted, S can immediately read ideal committer C’s inner state and
obtain m. Then, S produces (α, γ, rtc) as in the case of the decommit phase when C is honest
and reveals (t,m,CT, rtc, α, β, γ).

– Simulating the commit phase when committer Ĉ is corrupted and the receiver R
is honest: After (t, ψ, β,CT) receiving from Ĉ controlled by A in the commit phase where
t = (sid, ssid, Ĉ, R), S computes m̃ = Dt

skenc(CT) and sends (commit, t, m̃) to FMCOM.

– Simulating the decommit phase when committer Ĉ is corrupted and receiver R
is honest: Upon receiving (t,mα, γ, rtc) from corrupted committer Ĉ controlled by A where
t = (sid, ssid, Ĉ, R), as it expects to send to R, S sends (open, sid, ssid) to FMCOM. (FMCOM

follows its codes: If a tuple (sid, ssid, Ĉ, R, m̃) with the same (sid, ssid) was previously stored
by FMCOM, FMCOM sends (reveal, t, m̃) to ideal receiver R and S. Then, ideal receiver R convey
it to Z.)

– Simulating adaptive corruption of R after the commit phase but before the de-
commitment phase: When R is corrupted, S simply reveals (t,CT, ψ, β) as if it comes from
R.

Security analysis. By construction, this game is identical to the previous game.

4.2 Our Static UC-Secure Commitment

Our static UC-secure commitment scheme is constructed as follows (See also Fig. 5):

Common Reference String. The trusted party computes (pkenc, skenc) ← K(1κ) and (pktc, tktc) ←
Gentc(1κ). It chooses a collision-resistant hash H ← H such that H : {0, 1}∗ → {0, 1}λm and sets
crs = (pkenc, pktc, H).

12



The Commit Protocol.

1. Upon receiving (commit, sid, ssid, C,R,m) wherem ∈ MSPpkenc , committer C sets t = (sid, ssid, C,R),
chooses random w ← COINpkenc , and computes CT = Epkenc(t,m;w).

2. C sends (t,CT) to receiver R.

3. R stores (t,CT) and outputs (receipt, t).

The Decommit Protocol.

1. Upon receiving (open, sid, ssid), committer C sets t = (sid, ssid, C,R), and computes (α, ξ)←
Pcom
Σ (x,w) as the first message of Sigma protocol on x = (pkenc,m, t,CT) for L = {(pkenc,m, t,CT) | ∃w ∈

COINenc s.t. CT = Epkenc(t,m;w)}.
2. C computes φ = H(t, x, α) where t = (sid, ssid, C,R).

3. C chooses random rtc ← COINcom and computes ψ = Comtc
pktc(φ; rtc).

4. C sends (t, ψ) to receiver R.

5. Receiver R checks t = (sid, ssid, C,R). If there is nothing wrong, then it sends back β ←
{0, 1}λch .

6. C computes γ = Pans
Σ (x,w, ξ, β).

7. Committer C sends (t,m, α, γ, rtc) to receiver R where t = (sid, ssid, C,R).

8. R computes φ = H(t, x, α), where x = (pkenc,m, t,CT), and verifies ψ = Comtc
pktc(φ; rtc) and

Vvrfy
Σ (x, (α, β, γ)) = 1. If all relations hold, R accepts and outputs (reveal, sid, ssid, C,R,m).

Theorem 2. Let PKE be IND-PCA. Then, the above construction UC-realizes the FMCOM func-
tionality in the FCRS-hybrid model against the static corruptions.

The proof is omitted due to the similarity of the proof of Theorem 1.

4.3 Actual Instantiations

In the above constructions, we use the following building blocks.

The Short Cramer-Shoup (Tag-PKE) SchemeΠpca = (K,E,D). This is a Tag-PKE variant
of the short version of Cramer-Shoup (SCS) cryptosystem introduced in [1].

– K(1κ, (G, q)): It picks up hash function H ′ : {0, 1}∗ → Z/qZ and a random generator g in G.
It picks up independent random elements xe, x1, x2, y1, y2 ← Z/qZ and computes h = gxe , c =
gx1hx2 , and d = gy1hy2 . It finally outputs (pkenc, skenc) = ((G, q,H ′, g, h, c, d), (xe, x1, x2, y1, y2)).

– Epkenc(t,m): To encrypt m ∈ G on tag t ∈ {0, 1}κ, it picks up random w ← COINenc, sets
τ = H ′(t, gw), and outputs CT = (gw,mhw, (cτd)w).

– Dskenc(t,CT): It first parses CT = (C1, C2, C3) and computes m = C2C
−xe
1 . It aborts if C3 =

Cτx1+y11 (C2/m)τx2+y2 where τ = H(t, C1); otherwise, it outputs m.

The SCS cryptosystem is proven (in [1]) IND-PCA secure if the DDH assumption holds and
H ′ is a collision-resistant hash. The proof that the SCS Tag-PKE scheme is (the tag version of)
IND-PCA secure defined in Sec. 2 is straightforward from the original proof in [1].

13



Pedersen Commitment TCOM = (Gentc,Comtc,TComtc,TColtc). The following is the de-
scription of Pedersen commitment scheme [29].

– Gentc(1κ, (G, q, g)): It picks up random xtc ← Z/qZ and computes ĥ = gxtc . It outputs pktc =
(G, q, g, ĥ) and tktc = (pktc, xtc).

– Comtc
pktc(φ): To commit to φ ∈ {0, 1}λm , it picks up random rtc ← Z/qZ and outputs ψ = grtc ĥφ.

– TComtc
tktc(1

κ): It picks up random ξ ← Z/qZ and outputs ψ = gξ.

– TColtctktc(ξ, φ̂): To open ψ to φ̂ ∈ {0, 1}λm , it outputs r̂tc = ξ − φ̂ · xtc mod q. One can note that

ψ = gr̂tc ĥφ̂.

The Pedersen commitment scheme holds the trapdoor collision property unconditionally and
the computational binding property under the discrete log (DL) assumption on G.

The Sigma Protocol on the language derived from the SCS Tag-PKE scheme. Let

Lenc = {(pkenc,m, t,CT) | ∃w s.t. C1 = gw, C2 = m · hw, and C3 = (cτd)w},

where τ = H ′(t, C1). Sigma protocol Σ = (Pcom
Σ ,Pans

Σ ,Vvrfy
Σ , simPcom

Σ ) on Lenc is described as follows.

– (α, ξ) ← Pcom
Σ (x,w), where x = (pkenc,m, τ,CT) and α = (α1, α2, α3) such that ξ ← Z/qZ;

α1 = gξ; α2 = hξ; and α3 = (cτd)ξ.

– γ ← Pans
Σ (x,w, ξ, β), where β ∈ {0, 1}λch and γ = ξ − βw mod q.

– Vvrfy
Σ (x, (α, β, γ)) = 1 if and only if it holds that α1 = gγC1

β, α2 = hγ(C2/m)β, and α3 =

(cτd)γCβ3 .

– (α, β, γ) ← simPcom
Σ (x, β), where α = (α1, α2, α3) such that γ ← Z/qZ; α1 = gγC1

β; α2 =

hγ(C2/m)β; α3 = (cτd)γC3
β.

Applied to Our Adaptively UC-Secure Commitment Scheme.

– Common Reference String: crs = (G, q,H,H ′, g, h, c, d, ĥ).

– The Commit phase:

• Communication: (ψ, β,CT) ∈ G× {0, 1}λch ×G3.

• Committer’s Computation: w ← Z/qZ; CT = (C1, C2, C3) = (gw,m · hw, (cτd)w) with τ =
H ′(t, C1) for t = (sid, ssid, C,R); ξ ← Z/qZ; α = (α1, α2, α3) = (gξ, hξ, (cτd)ξ); γ = ξ−βw
mod q; rtc ← Z/qZ; ψ = gφĥrtc , where φ = H(t, x, α) with x = (pkenc,m, t,CT).

• Receiver’s Computation: β ← {0, 1}κ.

– The Decommit phase:

• Communication: (m,α, γ, rtc) where α ∈ G3 and γ, rtc ∈ Z/qZ.

• Committer’s Computation: None

• Receiver’s Computation: Verify ψ = gφĥrtc , α1 = gγC1
β, α2 = hγ(C3/m)β, and α3 =

(cτd)γC3
β, where τ = H ′(t, C1) and φ = H(t, x, α) with t = (sid, ssid, C,R) and x =

(pkenc,m, t,CT).

14



Applied to Our Static UC-Secure Commitment Scheme.

– Common Reference String: crs = (G, q,H,H ′, g, h, c, d, ĥ).

– The Commit phase:

• Communication: CT ∈ G.

• Committer’s Computation: w ← Z/qZ; CT = (C1, C2, C3) = (gw,m · hw, (cτd)w) with τ =
H ′(t, C1) for t = (sid, ssid, C,R).

• Receiver’s Computation: None.

– The Decommit phase:

• Communication: (m,ψ, α, β, γ, rtc) where ψ ∈ G, α ∈ G3, β ∈ {0, 1}λch , and γ, rtc ∈ Z/qZ.

• Committer’s Computation: ξ ← Z/qZ; α = (α1, α2, α3) = (gξ, hξ, (cτd)ξ); γ = ξ − βw
mod q; rtc ← Z/qZ; ψ = gφĥrtc , where φ = H(t, x, α) with x = (pkenc,m, t,CT).

• Receiver’s Computation: β ← {0, 1}κ; Verify ψ = gφĥrtc , α1 = gγC1
β, α2 = hγ(C3/m)β,

and α3 = (cτd)γC3
β, where τ = H ′(t, C1) and φ = H(t, x, α) with t = (sid, ssid, C,R) and

x = (pkenc,m, t,CT).

5 Acknowledgments

We thank the members of public-key crypto study workshop at NTT and the anonymous reviewers
of SCN 2016 for nice feedback in the early version of this work.

References

1. Michel Abdalla, Fabrice Benhamouda, and David Pointcheval. Public-key encryption indistinguishable under
plaintext-checkable attacks. In Katz [21], pages 332–352. See also http://eprint.iacr.org/2014/609.

2. Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations among notions of security for
public-key encryption scheme. In Krawczyk [23], pages 26–45.

3. Olivier Blazy, Céline Chevalier, David Pointcheval, and Damien Vergnaud. Analysis and improvement of lindell’s
uc-secure commitment schemes. In Michael J. Jacobson, Jr., Michael E. Locasto, Payman Mohassel, and Reihaneh
Safavi-Naini, editors, ACNS 2013, volume 7954 of Lecture Notes in Computer Science, pages 534–551. Springer,
Heidelberg, 2013.

4. Jan Camenisch and Victor Shoup. Practical verifiable encryption and decryption of discrete logarithms. In Dan
Boneh, editor, CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages 126–144. Springer,
Heidelberg, 2003.

5. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS 2001,
pages 136–145. IEEE Computer Society, 2001. The full version available at at Cryptology ePrint Archive
http://eprint.iacr.org/2000/067.

6. Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe Kilian, editor, CRYPTO 2001,
volume 2139 of Lecture Notes in Computer Science, pages 19–40. Springer, Heidelberg, 2001.

7. Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-party and multi-
party secure computation. In STOC 2002, pages 494–503. ACM, 2002. The full version is available at
http://eprint.iacr.org/2002/140.

8. Ignacio Cascudo, Ivan Damg̊ard, Bernardo David, Nico Döttling, and Jesper Buus Nielsen. Rate-1, linear time
and additively homomorphic UC commitments. IACR Cryptology ePrint Archive, 2016:137, 2016.

9. Ignacio Cascudo, Ivan Damg̊ard, Bernardo Machado David, Irene Giacomelli, Jesper Buus Nielsen, and Roberto
Trifiletti. Additively homomorphic UC commitments with optimal amortized overhead. In Katz [21], pages
495–515.

10. Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure against adaptive chosen
ciphertext attack. In Krawczyk [23], pages 13–25.

11. Ivan Damg̊ard, Bernardo Machado David, Irene Giacomelli, and Jesper Buus Nielsen. Compact VSS and efficient
homomorphic UC commitments. In Sarkar and Iwata [31], pages 213–232.

15



12. Ivan Damg̊ard and Jens Groth. Non-interactive and reusable non-malleable commitment schemes. In STOC
2003, pages 426–437. ACM, 2003.

13. Ivan Damg̊ard and Jesper Buus Nielsen. Perfect hiding and perfect binding universally composable commit-
ment schemes with constant expansion factor. In Moti Yung, editor, CRYPTO 2002, volume 2442 of Lec-
ture Notes in Computer Science, pages 581–596. Springer, Heidelberg, 2002. The full version is available at
http://www.brics.dk/RS/01/41/.

14. Joan Feigenbaum, editor. Advances in Cryptology - CRYPTO ’91, 11th Annual International Cryptology Confer-
ence, Santa Barbara, California, USA, August 11-15, 1991, Proceedings, volume 576 of Lecture Notes in Computer
Science. Springer, Heidelberg, 1991.

15. Marc Fischlin, Benôıt Libert, and Mark Manulis. Non-interactive and re-usable universally composable string
commitments with adaptive security. In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume
7073 of Lecture Notes in Computer Science, pages 468–485. Springer, Heidelberg, 2011.

16. Tore Kasper Frederiksen, Thomas P. Jakobsen, Jesper Buus Nielsen, and Roberto Trifiletti. On the complexity
of additively homomorphic UC commitments. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A (1),
volume 9562 of Lecture Notes in Computer Science, pages 542–565. Springer, Heidelberg, 2016.

17. Eiichiro Fujisaki. All-But-Many encryption - A new framework for fully-equipped UC commitments. In Sarkar
and Iwata [31], pages 426–447.

18. Juan A. Garay, Yuval Ishai, Ranjit Kumaresan, and Hoeteck Wee. On the complexity of UC commitments. In
Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of Lecture Notes in Computer
Science, pages 677–694. Springer, Heidelberg, 2014.

19. Juan A Garay, Philip P.Mackenzie, and Ke Yang. Strengthening zero-knowledge protocols using signatures. In Eli
Biham, editor, EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages 177–194. Springer,
Heidelberg, 2003.

20. Jens Groth and Amit Sahai. Efficient noninteractive proof systems for bilinear groups. SIAM J. Comput.,
41(5):1193–1232, 2012.

21. Jonathan Katz, editor. Public-Key Cryptography - PKC 2015 - 18th IACR International Conference on Practice
and Theory in Public-Key Cryptography, Gaithersburg, MD, USA, March 30 - April 1, 2015, Proceedings, volume
9020 of Lecture Notes in Computer Science. Springer, Heidelberg, 2015.

22. Eike Kiltz. Chosen-ciphertext security from tag-based encryption. In Shai Halevi and Tal Rabin, editors, TCC
2006, volume 3876 of Lecture Notes in Computer Science, pages 581–600. Springer, Heidelberg, 2006.

23. Hugo Krawczyk, editor. Advances in Cryptology - CRYPTO ’98, 18th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 23-27, 1998, Proceedings, volume 1462 of Lecture Notes in
Computer Science. Springer, Heidelberg, 1998.

24. Yehuda Lindell. Highly-efficient universally-composable commitments based on the DDH assumption. In
Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer Science,
pages 446–466. Springer, Heidelberg, 2011. The full version available at at Cryptology ePrint Archive
http://eprint.iacr.org/2011/180.

25. Philip MacKenzie, Michael K. Reiter, and Ke Yang. Alternatives to non-malleability: Definitions, constructions,
and applications (extended abstract). In Moni Naor, editor, TCC 2004, volume 2951 of Lecture Notes in Computer
Science, pages 171–190. Springer, Heidelberg, 2004.

26. Philip MacKenzie and Ke Yang. On simulation-sound trapdoor commitments. In Christian Cachin and Jan
Camenisch, editors, EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages 382–400.
Springer, Heidelberg, 2004.

27. Ryo Nishimaki, Eiichiro Fujisaki, and Keisuke Tanaka. An efficient non-interactive universally composable string-
commitment scheme. IEICE Transactions, 95-A(1):167–175, 2012.

28. Tatsuaki Okamoto and David Pointcheval. REACT: rapid enhanced-security asymmetric cryptosystem transform.
In David Naccache, editor, CT-RSA 2001, volume 2020 of Lecture Notes in Computer Science, pages 159–175.
Springer, Heidelberg, 2001.

29. Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In Feigenbaum
[14], pages 129–140.

30. Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of knowledge and chosen ciphertext
attack. In Feigenbaum [14], pages 434–444.

31. Palash Sarkar and Tetsu Iwata, editors. Advances in Cryptology - ASIACRYPT 2014 - 20th International Con-
ference on the Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C.,
December 7-11, 2014, Proceedings, Part II, volume 8874 of Lecture Notes in Computer Science. Springer, Heidel-
berg, 2014.

32. Victor Shoup. A proposal for an ISO standard for public key encryption. Cryptology ePrint Archive, Report
2001/112, December 2001.

16



A The Proof of Lemma 1

Firstly, we define the multi-message IND-PCA security for Tag-PKE Π. Let Exptmpca-b
Π,A (κ) for

b ∈ {0, 1} be the experiment mentioned below:

– (pk, sk)← K(1κ).
– A takes pk.
– A may have access to the following two oracles polynomially many times in an arbitrary order.
• Encryption Oracle Eb

pk: It takes (t∗,m0,m1) and rejects it if t∗ has been already submitted

to PCA oracle Opca
sk . Otherwise, it returns CT← Epk(t

∗,mb).
• PCA Oracle Opca

sk : It takes (t,m,CT) and rejects it if t has been already submitted to
Encryption Oracle Epk. Otherwise, it returns 1 if and only if CT is a proper ciphertext of m
on tag t.

– A finally outputs a bit.

We define the advantage of A for Π against multi-message indistinguishability against the
plaintext checkable attacks (mIND-PCA) as

Advmpca
Π,A (κ) =

∣∣∣Pr[Exptmpca-0
Π,A (κ) = 1]− Pr[Exptmpca-1

Π,A (κ) = 1]
∣∣∣ ,

We say that Π is multi-message indistinguishable against the plaintext checkable attacks (mIND-
PCA secure) if Advmpca

Π,A (κ) = negl(κ) for every non-uniform PPT A.
By using the standard hybrid argument, we have for any mIND-PCA adversary A against Π

with at most q queries to the encryption oracle, there is an IND-PCA adversary A′ against Π such
that

Advmpca
Π,A (κ) ≤ q(κ) · AdvpcaΠ,A′(κ),

where the running time of A′ is roughly bounded by the running time of A plus (q− 1) encryption
operations.

We now construct mIND-PCA adversary A using the environment Z and the adversary A as
follows. Without loss of generality, we assume that

Pr[Hybrid2
π,A,Z,Fcrs

(κ, z) = 1] ≤ Pr[Hybrid3
π,A,Z,Fcrs

(κ, z) = 1],

where Hybridiπ,A,Z,Fcrs
(κ, z) is the random variable assigning the output bit of the environment Z

in Game i.
A is given pkenc as an instance in the mIND-PCA game. A sets up crs, by picking up the

remaining parameter. Hence, it knows tk of TCOM but does not know skenc of Π. A runs Z and A
and plays the role of simulator S as in Game 2 (or Game 3), except for the following two cases.

– In the case that C is honest and A receives (t, φ) from Z where t = (sid, ssid, C,R), A submits
(t,m, 0) to the encryption oracle Epk and receives CT. Then, A plays the role of the simulator
in Game 2 (or equivalently Game 3).

– In the case that R is honest but Ĉ is corrupted, After receiving (t, ψ, β,CT) in the commit
phase with corrupted Ĉ (controlled by A), where t = (sid, ssid, Ĉ, R), A simply stores it. In
the decommit phase when Ĉ successfully decommits to m, A submits (t,m,CT) to the PCA
oracle Opca

sk and receives the answer bit. If the answer bit is 1, then A outputs (reveal, t,m) to
the environment. Otherwise, it halts and outputs 1 (break point).

17



If such an event does not occur, A proceeds the game with Z and A as playing the role of S. Finally,
A outputs bit b′ that Z outputs, as the output of the mIND-PCA game.

Security analysis. In the above, A perfectly simulates Game 2 when b = 0 just before the
break point. Let us recall that BADi denotes the event in Game i that m̃ 6= m where m is the value
successfully decommitted to by corrupted Ĉ. The probability that the break occurs is equivalent
to the probability that BAD2 occurs, which is negligible. Similarly, A perfectly simulates Game 3
when b = 1 just before the break point. We do not know the probability of BAD3. However, since
Pr[BAD2] = negl(κ), we can conclude b = 1 if the break happens. If the break never happens, A
perfectly simulates either Game 2 or Game 3 according to b. Hence, the difference of the output of
Z is bounded by the advantage of mIND-PCA PKE Π.

More concretely,

Advmpca
Π,A (κ) = |Pr[Z3 = 1 ∧ ¬BAD3] + Pr[BAD3]− (Pr[Z2 = 1 ∧ ¬BAD2] + Pr[BAD2])| .

Therefore,

Pr[Z3 = 1]− Pr[Z2 = 1] ≤ Advmpca
Π,A (κ) + Pr[BAD2]− Pr[Z2 = 1 ∧ BAD2]

≤ Advmpca
Π,A (κ) + ε(κ),

where the last two probabilities in the right-hand side is bounded by some negligible function ε.

B UC Commitment Protocols

For comparison, we describe our static and adaptively UC-secure commitment schemes along with
the previous adaptively UC-secure ones in [24, 3]. In the original Lindell’s and BCPV schemes, they
use a standard PKE scheme and tag t = (sid, ssid, C,R) is embedded in the message, with an
injective map G, such as m′ = G(t,m). In the following templates, to clarify the comparison, we
modify standard PKE schemes to Tag-PKE schemes, so that t is explicitly taken as input. We stress
that Lindell’s and BCPV schemes both remain adaptively UC-secure even when the underlying
Tag-PKE scheme is IND-CCA (Note that our IND-CCA security for Tag-PKE is weaker than the
standard IND-CCA security). In addition, the original Lindell’s adaptively UC-secure scheme did
not explicitly commit to message m in the sealed envelop ψ2. Then, statement x = (pkenc,m, t,CT)
was not uniquely determined just when the Sigma protocol starts, which caused a gap in the security
proof for soundness. In Fig. 6, we fix the problem according to the suggestion given in [3].

The difference of our adaptively UC-secure one from BCPV scheme is that our scheme commits
to the ciphertext CT and the first message of the Sigma protocol, denoted α, in the same sealed
envelop ψ. In addition, the underlying PKE scheme only requires IND-PCA security instead of
IND-CCA security, which enables us to improve the communication and computation complexity,
as well as the size of the public parameter. The Lindell and BCPV schemes both utilize the full
Cramer-Shoup (Tag) PKE scheme as a building block, whereas our construction uses the short
Cramer-Shoup Tag-PKE scheme as described in Sec. 4.3.

18



The Commit Phase.

C(crs, sid, ssid,m) R(crs, sid, ssid)

Set t = (sid, ssid, C,R);
CT = Epca

pkenc(t,m;w);

Set x = (pkenc,m, t,CT);
(α, ξ)← Pcom

Σ (x,w)
Set φ = H(t, x, α);
ψ = Comtc

pktc(φ; rtc).
t,ψ−−−−−−−−−−−−−−−→

β ← {0, 1}λch .
β←−−−−−−−−−−−−−−−

γ = Pans
Σ (x,w, ξ, β);

Erase (w, ξ).
CT−−−−−−−−−−−−−−−→

Output (receipt, t).

Store (t,m, α, γ, rtc). Store (t,CT, ψ, β).

The Decommit Phase.

C(crs, sid, ssid,m) R(crs, sid, ssid)
(t,m, α, γ, rtc) (t,CT, ψ, β).

where t = (sid, ssid, C,R).
(t,m,α,γ,rtc)−−−−−−−−−−−−−−−→

Set x = (pkenc,m, t,CT);
Set φ = H(t, x, α);

Accepts if and only if
ψ = Comtc

pktc(φ; rtc) and

Vvrfy
Σ (x, (α, β, γ)) = 1.

Output (reveal, t,m).

Fig. 4. Our UC Commitment Protocol Adaptive with Erasures

19



The Commit Phase.

C(crs, sid, ssid,m) R(crs, sid, ssid)

Set t = (sid, ssid, C,R);
CT = Epca

pkenc(t,m;w);
CT−−−−−−−−−−−−−−−→

Output (receipt, t).

Store (t,CT).

The Decommit Phase.

C(crs, sid, ssid,m) R(crs, sid, ssid)
(t,m,CT, w) (t,CT).

where t = (sid, ssid, C,R).

Set x = (pkenc,m, t,CT);
(α, ξ)← Pcom

Σ (x,w)
Set φ = H(t, x, α);
ψ = Comtc

pktc(φ; rtc).
t,ψ−−−−−−−−−−−−−−−→

β ← {0, 1}λch .
β←−−−−−−−−−−−−−−−

γ = Pans
Σ (x,w, ξ, β);

(t,m,α,γ,rtc)−−−−−−−−−−−−−−−→
Set x = (pkenc,m, t,CT);

Set φ = H(t, x, α);
Accepts if and only if
ψ = Comtc

pktc(φ; rtc) and

Vvrfy
Σ (x, (α, β, γ)) = 1.

Output (reveal, t,m).

Fig. 5. Our Static UC-Secure Commitment Protocol

20



The Commit Phase.

C(crs, sid, ssid,m) R(crs, sid, ssid)

Set t = (sid, ssid, C,R);
CT = Ecca

pkenc(t,m;w);
Set φ1 = H(CT);

ψ1 = Comtc
pktc(φ1; r1tc).

t,ψ1−−−−−−−−−−−−−−−→
β ← {0, 1}λch .

c′←−−−−−−−−−−−−−−− c′ = Edual(β; r′)
Set x = (pkenc,m, t,CT);

(α, ξ)← Pcom
Σ (x,w)

Set φ2 = H(t,m, α);
ψ2 = Comtc

pktc(φ2; r2tc).
ψ2−−−−−−−−−−−−−−−→

Accept if and only if
β,r′←−−−−−−−−−−−−−−−

c′ = Edual(β; r′);
γ = Pans

Σ (x,w, ξ, β);
Erase (w, ξ).

CT,r1tc−−−−−−−−−−−−−−−→
Output (receipt, t)

if and only if
ψ1 = Comtc

pktc(H(CT); r1tc).
Store (t,m, α, γ, r2tc). Store (t,CT, ψ2, β).

The Decommit Phase.

C(crs, sid, ssid,m) R(crs, sid, ssid)
(t,m, α, γ, r2tc) (t,CT, ψ2, β).

where t = (sid, ssid, C,R).
(t,m,α,γ,r2tc)−−−−−−−−−−−−−−−→

Set x = (pkenc,m, t,CT);
Set φ2 = H(t,m, α);

Accepts if and only if
ψ2 = Comtc

pktc(φ2; r2tc) and

Vvrfy
Σ (x, (α, β, γ)) = 1.

Output (reveal, t,m).

Fig. 6. (The fixed version of) Lindell’s UC Commitment Protocol Adaptive with Erasures

21



The Commit Phase.

C(crs, sid, ssid,m) R(crs, sid, ssid)

Set t = (sid, ssid, C,R);
CT = Ecca

pkenc(t,m;w);
Set x = (pkenc,m, t,CT);

(α, ξ)← Pcom
Σ (x,w)

Set φ1 = H(CT);
Set φ2 = H(t,m, α);
ψ1 = Comtc

pktc(φ1; r1tc).
ψ2 = Comtc

pktc(φ2; r2tc).
t,ψ1,ψ2−−−−−−−−−−−−−−−→

β ← {0, 1}λch .
β←−−−−−−−−−−−−−−−

γ = Pans
Σ (x,w, ξ, β);

Erase (w, ξ).
CT,r1tc−−−−−−−−−−−−−−−→

Output (receipt, t)
if and only if

ψ1 = Comtc
pktc(H(CT); r1tc).

Store (t,m, α, γ, r2tc). Store (t,CT, ψ2, β).

The Decommit Phase.

C(crs, sid, ssid,m) R(crs, sid, ssid)
(t,m, α, γ, r2tc) (t,CT, ψ2, β).

where t = (sid, ssid, C,R).
(t,m,α,γ,r2tc)−−−−−−−−−−−−−−−→

Set x = (pkenc,m, t,CT);
Set φ2 = H(t,m, α);

Accepts if and only if
ψ2 = Comtc

pktc(φ2; r2tc) and

Vvrfy
Σ (x, (α, β, γ)) = 1.

Output (reveal, t,m).

Fig. 7. BCPV UC Commitment Protocol Adaptive with Erasures

22


