
On Plausible Tree Hash Modes for SHA-3

Kévin Atighehchi1 and Alexis Bonnecaze2

1 Aix Marseille Univ, CNRS, LIF, Marseille, France
kevin.atighehchi@univ-amu.fr

2 Aix Marseille Univ, CNRS, I2M, Marseille, France
alexis.bonnecaze@univ-amu.fr

Abstract. Discussions are currently underway about the choice of a
tree hash mode of operation for a standardization. It appears that a
single tree mode cannot address the specificities of all possible uses and
specifications of a system. In this paper, we review the tree modes which
have been proposed, we discuss their problems and propose remedies. We
make the reasonnable assumption that communicating systems have dif-
ferent specifications and that software applications are of different types
(securing stored content or streamed live content). More particularly, we
propose modes of operation that address the memory usage problem.
When designing a parallel algorithm, one major question is how to im-
prove the running time (using as many processors as we want) while
minimizing the required memory of an implementation using a small
number of (maybe only one) processors. Conversely, an interesting ques-
tion is how to obtain a near-optimal running time while containing the
memory consumption.

Keywords: SHA-3, Hash functions, Sakura, Keccak, Parallel algorithms, Merkle
trees, Live streaming

1 Introduction

1.1 Context

Hash functions are widely used in domains like cryptography or more generally
computer science. They are often used in data structures like bloom filter or
hash table and they require to satisfy certain properties which depend on the
intended application. For example, cryptographic hash functions must satisfy
the usual properties of pre-image resistance, second pre-image resistance and
collision resistance. In addition to these specific properties, hash functions are
generally asked to be efficient.

Historically, a hash function makes use of an inner function having a fixed
input size, like a compression function or a block cipher. This inner function is
called iteratively on the message blocks in order to process a message of arbitrary
length. This mode of operation makes it difficult to exploit parallel architectures.
In fact, a sequential (or serial) hash function can only use Instruction-Level Par-
allelism (ILP) and Single Instruction Multiple Data (SIMD) [12, 13], because the

amount of computation which can be done in parallel between two consecutive
synchronization points is too small.

Some operating modes use hash functions as inner functions and can exploit
a particular tree structure either for parallelism or incrementality3 purposes. A
(non degenerated) tree structure not only allows for further use of SIMD in-
structions, but also permits the use of multithreading in order to process in
parallel several parts of a message on several processors/cores. There exist sev-
eral conventions to describe tree structures in the context of hashing. The first
convention, denoted C1 and often used to deal with Merkle tree, consists in
considering a node as the result of the inner function applied on the concate-
nation of its children. A leaf is the result of the inner function applied on an
individual block of the message. A second convention, denoted C2, is a variant
of C1 in which the leaves are simply the blocks of the message. The last encoun-
tered convention [4, 7], denoted C3, considers the nodes as being the inputs of
the inner function. Throughout this text, except when mentioned, we use the
convention C2.

In this article, we focus on the efficiency of hash functions, depending on
the chosen modes. Instead of working at finite distance, we choose to consider
asymptotic complexities as it is usually done in algorithmic (e.g., sorting, ex-
ponentiation, etc). Let M be a message of n blocks, each block being of fixed-
length N . Since a sequential hash function iterates a “low-level” primitive on
fixed-size blocks of the message (with maybe a constant number of added blocks
for padding or other coding purposes), its running time is asymptotically linear
in n. In terms of memory usage, such a function needs to store only one hash
state. One hash state corresponds, at a given point in time, to the amount of
bits processed by the inner function, that is, approximately one block.

1.2 Tree hash modes

Tree hash modes have been proposed in the SHA-3 candidates Skein [10] and
MD6 [21], and also in Blake2 [2]. These tree modes are slightly parameterizable
since the arity of the tree can be chosen. Better still, in Skein, the node arities
are slightly more customizable: a parameter λin indicates that the inner nodes
(i.e. nodes of level ≥ 2) are of arity 2λin and a parameter λleaf indicates that the
base level nodes are of arity 2λleaf . Skein, Blake2 and MD6 have also a parameter
restricting the tree height. If this last parameter has a too small value, the root
node can have an arity proportional to the size of the message.

Bertoni et al. [4, 7] give sufficient conditions for a tree based hash function
to ensure its indifferentiability from a random oracle. They define the Sakura
coding [6] which ensures these conditions, and allows any hash algorithm using
it to be indifferentiable from a random oracle, automatically.

They also propose several tree hash modes for different usages. We can com-
pare the efficiency of these algorithms using Big-O notation. For example, there

3 Using a balanced binary tree is particularly efficient when we have to update the
hash of an edited message. For the change of one block in the message, we update
the digest in logarithmic time.

is a mode, called in this article Mode 1, that can make use of a tree of height 2,
defined in the following way: the message is divided into fixed-size chunks which
have to be hashed separately. The hash computations are distributed among the
processors, and the concatenation of the resulting digests is hashed (sequentially)
by a single processor. The advantages of this mode is its scalability (the number
of processors can be linear in the number of blocks) and its reduced memory
usage when executed sequentially. Its drawback is its ideal running time which
remains linear in the message size. In Mode 2, the message is divided into as
many parts (of roughly equal size) as there are processors so that each processor
hashes each part, and then the concatenation of all the results is sequentially
hashed by one processor. In order to divide the message into parts of roughly
equal size, the algorithm needs to know in advance the size of the message, which
limits its use to the hashing of stored (or streamed stored) contents. Bertoni et
al. use an idea from Gueron [11] to propose a variant (Mode 2L) which still
makes use of a tree having two levels and a fixed number of processors, but this
one interleaves the blocks of the message. This interleaving, which consists in
distributing the message bits (or blocks) in a round-robin fashion among q clus-
ters, has several advantages. It allows an efficient parallel hashing of a streamed
message, a roughly equal distribution of the data processed by each processor
in the first level of the tree (without prior knowledge of the message size), and
finally a correct alignment of the data in the processors’ registers (for SIMD
implementations). The major drawback of this interleaving is that the memory
consumption is O(q) if the message bits have to be processed in order of their
arrival, no matter the way this tree hash function is implemented (sequentially
or not). Finally, the classic binary tree, in Mode 3, offers the best ideal running
time but it consumes a lot of storage when executed by a single processor. Table
1 compares the efficiency of these algorithms.

Mode Live
streaming

Memory
(sequential)

Memory
(with p

processors)

Parallel
running time
(ideal case)

Comments

1 yes 1 p n

2S no 1 p
n/q not scalable

2L yes q q

3 yes logn p logn logn

Table 1. Asymptotic efficiency using Big-O notation of existing hash tree algorithms,
where n is the number of blocks of the message. The “ideal” parallel running time
refers to the running time when we have the maximum allowed number of processors.
Mode 2 is dedicated to a “fixed” number q of processors (with the assumption that
q ≥ p). Its asymptotic efficiency is given without hiding the quantities p, q and 1/q in
the Big-O.

There is a continuing debate [17] about the way of standardizing tree hash
modes. On the one hand, some would like to have a single (and simple) tree hash

mode allowing unrestricted depth4 (like Skein [10], MD6 [21] or Blake2 [2]), with
maybe several sets of parameters for the node arities. These tree topologies are
flexible and have a good potential parallelism, in the sense that they support
live streaming, they are scalable and they allow a nice ideal speedup (in running
time). The problem is that, when its height is unbounded, such a tree brings
a performance penalty for sequential execution, as the amount of work (i.e.
computations) to do is much greater than for a serial (traditional) hash function.
Note that the asymptotic efficiency of such a tree is the same as that of Mode
3. However, if a parameter restrict its height (as allowed by Skein or MD6), its
asymptotic (parallel) efficiency can fall into the case of Mode 1.

h(.) h(.) h(.) h(.)h(.)

h(.) h(.)

Fig. 1. Illustration of Mode 1 (on the left side) and Mode 2 (on the right side). On the
left side, the message is divided into chunks of fixed size, while on the right side it is
divided into two chunks of roughly the same size. In this example, Mode 2 is dedicated
to the use of two processors.

On the other hand, some argue that there should be as many tree modes
as application usages. According to Kelsey [15], there should be two standards:
one standard for parallel hashing and one standard for tree hashing. The stan-
dard for tree hashing would focus on trees of arbitrary (unrestricted) depth,
with small node arities. These tree topologies are suitable for timestamping, au-
thenticated dictionnary or Merkle signatures (and their variants). The standard
for (fast) parallel hashing would focus on trees having a small height, because
the evaluation of a hash function should remain efficient on resource-constrained
machines (having few memory and maybe a single processor). Indeed, as we will
see later, the memory consumption is linear in the tree height. Moreover, a small
tree height means a reduced amount of work. The modes discussed for this last
standard correspond to the two variants of Mode 2.

Thus, the discussed modes are roughly the ones summarized in Table 1. Even
if it is scalable and allows an optimal running time (in ideal conditions), Mode
3 seems to be left aside. It is just recommended for incremental hashing, or for
the other cited cryptographic algorithms (or protocols). Regarding the other
proposed modes (an illustration is depicted Figure 1), it seems that one have
to choose between scalability (Mode 1) and a reduced sequential part of the

4 The term unrestricted can be misused. For some of these modes, there is a parameter
defining the depth of the tree, and this one can be set large enough so that, in
practice, it does not have any impact on the tree topology.

computation (the root node computation in Mode 2). In practice, for a small
number of processors, this makes a difference. Asymptotically, in either case, the
running time is still linear in the size of the message.

1.3 Our contributions

This paper proposes several scalable tree hash modes (whose complexities are
summarized in Table 2) addressing the memory usage problem:

– We show how to parameterize the tree topology and give 6 modes suitable
for the hashing of (streamed or not) stored content.

– Then, we show that it is interesting to have a sequence of increasing levels ar-
ities. This leads us to propose 3 modes suitable for the hashing of streamed
live content. While at first glance this seems somewhat contradictory, we
show that without knowing in advance the size of the message, these 3 adap-
tive tree constructions actually lead to different asymptotic complexities.

– We discuss the way of decreasing the number of processors required to obtain
the ideal (asymptotic) parallel running time.

– We give some guidelines for the use of interleaving.

Our
modes

Live
streaming

Memory usage
(sequential)

Memory usage
(with p

processors)

Parallel running
time (ideal case)

4 impossible 1 p nε

5 no log logn p log logn n
1

log logn log logn

6S no √
logn p

√
logn n

1√
logn
√

logn6L yes

7S no logn
log logn

p logn
log logn

log2 n
log2 logn7L yes

8S no logn
log log logn

p logn
log log logn

logn log logn
log log logn8L yes

9 no logn
log logn

p logn
log logn

log1+ε n

Table 2. Asymptotic efficiency (using Big-O notation) of our tree modes, where n is
the number of blocks of the message. The “ideal” parallel running time refers to the
running time when we have the maximum allowed number of processors.

1.4 Organisation of the article

After this brief survey and summary of our results, the paper is organized as
follows. Section 2 contains background information regarding hash functions
and tree hash modes. We discuss their security, implementation strategies and
their time-space efficiency. Using a parameterizable tree hash mode described

in Section 3, we derive several modes addressing the memory usage problem. In
particular, Section 4 gives parameters that produce tree topologies suitable for
streamed stored content. Then, parameters suitable for streamed live content are
given in Section 5. Finally, in the last section, we discuss how we can conciliate
scalability and interleaving.

2 Preliminaries

2.1 Security

Bertoni et al. [4, 7] give some guidelines to design correctly a tree hash mode τ
operating an inner hash (or compression) function f . They define three sufficient
conditions which ensure that the constructed hash function τf , which makes use
of an ideal hash (or compression) function f , is indifferentiable from an ideal
hash function. They propose to use in the inputs to f particular frame bits (i.e.
meta information bits) in order to meet these conditions. We refer to [4, 7] for
the detailed definitions, and we give here a short description for each of them:

– message-completeness: Given all the inputs to the function f , we are able to
uniquely determine the message. A deterministic algorithm should be able
to do that in a time linear in the number of bits in the tree.

– final-node-separability: There must be a domain separation when using f for
calculating the root node and for calculating any other nodes. For instance,
a different prepended (or appended) bit in each of these two cases can be
used to differentiate them.

– tree-decodability: Ensuring this property means several things. For any hash
tree computed with the mode of interest, we should be unable to extract a
final subtree (final in the sense that this subtree contains the original root
node) which could have been generated legitimately by the mode. We can
describe a deterministic algorithm whose running time is linear in the number
of bits in the tree and which performs the following: it decodes all the inputs
to f in order to retreive message bits, chaining value bits and frame bits.
Moreover, given as input a hash tree, if it notices that it has been generated
legitimately by the mode, it returns compliant. If it notices that it can be
extracted from a hash tree legitimately generated by the mode, it returns
final-subtree-compliant. Otherwise, it returns incompliant.

These conditions ensure that no weaknesses will be introduced when using
the inner function. For instance, with tree-decodability, an inner collision in the
tree is impossible without a collision for the inner function. Andreeva et al. have
shown in [1] that a hash function indifferentiable from a random oracle satisfies
the usual security notions, up to a certain degree, such as pre-image and second
pre-image resistance, collision resistance and multicollision resistance.

In the modes we propose, we use Sakura coding [6]. Sakura allows any tree
based hash function using it to be automatically indifferentiable from a random
oracle, without the need of further proofs. It is specified with an ABNF grammar

[6]. The coding used for computing a node depends on some information about
it. For instance, if a node has children, the information about their number is
encoded inside it using Sakura.

2.2 Implementation strategies and complexities

Sequential hash function. Since a hash function processes a number of bits
which is a multiple of a certain block size N , its time complexity behaves like a
staircase function of this number of bits. We say that the time complexity of an
iterated hash function f for the operation f(x) can approximately be described
as a function of its input size l (in number of blocks) by the function

T (l) = a · l + b

where a and b are constants which depend on the choice of the hash function
and its parameters. For instance, we can use the Keccak algorithm [5] which is
based on a sponge construction [3] and is the winner of the SHA-3 competition
[20]. The two important parameters of this sponge construction are the rate r
and the capacity c. This construction uses a permutation P to process a state S
of r+ c bits at each iteration, and is divided in two phases: the absorbing phase
which processes the message blocks and the squeezing phase which generates
the hash output. In the absorbing phase, the rate r corresponds to the speed of
the processing of the message bits, while in the squeezing phase it corresponds
to the speed of the generation of the hash output bits. In the first phase, the
state S is initially 0. At each iteration, a block of size r bits from the padded
message is XORed with the first r bits of S, and P is applied on S to obtain
the new state S′. The squeezing phase starts once all the message blocks have
been processed, and, since the output bits are extracted from the first r bits of
the state, this state is transformed via P as many times as needed to extract
bits to complete the hash ouput (possibly of size > r). The collision resistance
and pre-image resistance strengths are related to the bit-size c/2. Throughout
the paper, we can suppose the use of SHA3-256 which needs a capacity of 512
bits and which, according to the standard FIPS 202 [19], has a state size of 1600
bits and subsequently a rate of 1088 bits.

Tree hashing. A tree hash mode uses a hash (or compression) function as
underlying primitive to compute the node values based on the values of their
children. Depending on the target application, the result can simply be the
root node of the hash tree, or all its nodes. Tree hashing is due to Merkle and
Damg̊ard [9, 18] and has several applications: Post-Quantum Cryptography with
Merkle signatures, Incremental Cryptography, Authenticated Dictionaries, and
the field we are concerned with here, Parallel Cryptography. A hash tree can
be evaluated sequentially (i.e. with a single processor), or in parallel by using
SIMD instructions or multithreading (using several processors/cores). The time
and space complexities of a sequential execution of the tree mode are particularly
important for resource-constrained systems.

Memory usage. The memory space used by the execution of a hash function
can be divided into two quantities, the space used by the message to hash,
and the auxiliary space used to execute the function on the message. This last
one is particularly important for memory-constrained devices. Besides, in the
case of streaming applications, a message can be processed by a system as it
arrives without being stored. In such a case, the total memory space used is
approximately reduced to the auxiliary space. In this paper, we refer to the
auxiliary space when speaking of memory usage. A sequential hash function
needs to store Θ(1) hash states in memory. For constructing a hash tree of
height h, a sequential implementation needs to store Θ(h) hash states in memory,
regardless of the node arities. This memory consumption is due to a highest node
first strategy, which consists to compute the highest node first. For a classic k-
ary Merkle tree where k is a small number, this node is the highest node that has
all its children values ready to be processed. This strategy is particularly used
in Merkle tree traversal techniques [22, 8]. For a hash tree having nodes of very
high arity (e.g. of arity a, possibly dependent of the message size), this strategy
has to be changed in the following way: start (or continue) the computation of
the highest node that has d children not yet processed (with d a constant much
lower than a). Thus, this number d serves as a threshold value to trigger the
(continuation of the) processing of the parent node. With such a variant, there
is no need to wait until all children be ready to process their parent node, and,
as a consequence, there can at most be d hash states in memory by level. An
example is depicted Figure 2.

M1 M4 M5M2 M3 M6 M7 M8

Fig. 2. Application of the variant of the highest node first strategy. We represent the
hash subtree covering the first 8 blocks of the message. In this example, it is assumed
that one block is processed (or one chaining value) by unit of time and that d = 1,
meaning that each newly computed child node is immediately used to advance the
computation of its parent node. As a result, when 9 units of time have elapsed, the
node at level 2 is computed up to the three-quarter mark.

Multithreading. Having multiple processors/cores, we would like to use them
to improve performances. We need to employ multithreading to distribute, by

means of working threads, the parallel computations among these processors. We
assume here that we have p processors and that we use a fixed thread pool con-
taining p threads (one thread per processor). Multithreaded implementations
are very efficient if the threads do not need to communicate and/or synchro-
nize, or as little as possible. Synchronization delays are indeed very expensive.
Depending on the scheduling strategy used, tree hashing can require a lot of
synchronizations. Many situations have to be explored:

– If the message to hash is already available (i.e. locally stored on the sys-
tem), we recommend to assign to each thread one of the p biggest subtrees
(of roughly the same size). More precisely, we seek the highest level hav-
ing a number of nodes ≥ p, and we assign to each thread the computation
of the subtree rooted at one of these nodes. For the rest of the nodes, the
method can vary. For instance, we can distribute the computations of the
remaining nodes as fairly as possible between the processors (at the cost of
some synchronizations), or merely compute them sequentially. Such a strat-
egy reduces greatly the number of synchronization points, and thus improve
performances. Note that a thread processes its subtree as done by a sequen-
tial implementation, i.e., using the highest node first algorithm described
above.

– If the message is received via a streaming system (no matter if it is stored
or generated on the fly on the remote server), the allocation strategy is
necessarily fine-grained, with a grain size depending on the bandwidth with
which the message is received. Thus, compared to the previous case, such
a parallel implementation has to cope with more synchronization delays.
Assuming that the link bandwidth is not a problem, we describe here a
scheduling strategy for the simple case where the tree arity a is small. This
one could be named higher level first as it is similar to the strategy used in a
sequential implementation. For a set of p threads, at each level we use a buffer
which can receive pa blocks (they are message blocks or chaining values). At
any time, the threads are working at a same level of the tree and their goal
is to fill up as soon as possible the highest level buffer. On a same level these
threads have to compute pa node values in order to move up and compute p
node values at the next level. Once these p nodes values are computed, the
buffer at the level below is flushed (i.e. the pa corresponding children values
are removed). If the current level occupied by threads is greater than 1 and
the lack of resources on the level below prevents them from filling up the
current buffer (i.e. they cannot finish the computation of the pa blocks), then
they return down to level 1, otherwise they continue, and so on. We let the
reader deduce a termination phase for the end of the message, where buffers’
contents of less than pa blocks have to be processed. Note that depending
on the throughput with which the message is received, this strategy could be
adapted to process subtrees instead of nodes with the aim of increasing the
amount of work done between two synchronization points. In other words,
there could be a trade-off between the algorithm we just described and the
one presented at the first point above.

– There are possibly other situations in which the message blocks are not
received in the order. They could be interleaved in a certain way for the
need of the hash function. In this paper, we do not discuss further more
such a situation which seems unreasonable from a transport layer (e.g., in
the OSI layered model for network protocol) standpoint.

For a hash tree of height h, a parallel implementation using p processors requires
O(ph) hash states in memory.

SIMD implementations. The single-instruction multiple-data (SIMD) units are
present in a modern x86 processor or core. Well known instruction sets are
MMX, 3DNow!, SSE, SSE2, SSE3, SSSE3, SSE4, AVX and AVX2. These units
can apply a same instruction on several data simultaneously. They are thus
very useful to compute several instances of a hash (or compression) function
in parallel. The size of SIMD registers determines how many parallel hash (or
compression) functions can be evaluated.

Interleaving. It is very useful for streamed content and serves two purposes:
first, for multithreaded implementations, it allows the feeding of each processor
as soon as possible. If each processor is responsible for the computation of a node,
interleaving allows the distribution of the message bits/blocks among these nodes
in a round-robin fashion. Second, for SIMD implementation, it allows a perfect
alignment of the message blocks in the processor registers.

3 A parameterizable tree hash mode

We recall that the number of hash states in memory corresponds, in the worst
case, to the height h of the tree. Besides, if we denote by ui the biggest arity
at level i, for i = 1 . . . h, the “ideal” parallel running time is (asymptotically)

a linear function of
∑h
i=1 ui. In what follows, we present a tree hash mode

using Sakura which, when the parameters are adequatly chosen, produces modes
offering interesting trade-offs between memory consumption and parallel running
time. The parameters suitable for streaming stored content and streaming live
content will be discussed in Section 4 and Section 5 respectively.

3.1 Notations

Let f be a hash function which takes as input a message M of an arbitrary
length, and maps it to an output f(M) of a fixed bit-length N . Before describing
a hashing mode with Sakura, we recall some useful notations:

– The operator ‖ denotes the concatenation.
– I2OSP(x, xLen) is a function specified in the standard PKCS#1 [16]. It con-

verts a non-negative integer, denoted x, into an byte stream of specified
length, denoted xLen.

– {xLen} is a single byte that represents the binary encoding of xLen. The
arity x of a node is encoded by using I2OSP(x, xLen) and {xLen}, where
xLen is appropriately chosen.

– The encoding of the arity x is defined as:

enc(x) := I2OSP(x, blog256 xc+ 1)‖{blog256 xc+ 1}.

– 0∗ indicates a non-negative number of bits 0 to be used in a f -input for
padding, for alignment purposes. We will assume that this is the minimum
number of bits 0 so that the bit-length of the f -input is a multiple of a word
bit-length (i.e. 64 bits).

– I is the interleaving block size of a node that determines how the message
bits are distributed over its children. To the first child are given the first
I bits, to the second child is given the second sequence of I bits and so
on. After reaching the last child, we return to the first child, and so on. A
child node (of a node having an interleaving block size) can have its own
interleaving block size, meaning that the bits of which it is responsible for
are distributed over its children according to this attribute. This process can
be repeated recursively if several generations of descendants have their own
interleaving block size. The notation I∞ means the absence of interleaving.

– {I} represents two bytes that encode I. It is defined with a floating point
representation, with one byte for the mantissa and one byte for the expo-
nent. For the absence of interleaving, {I∞} is represented (using hexadecimal
notation) with the coded mantissa 0xFF and the coded exponent 0xFF. We
refer to the Sakura specification [6] for further information.

3.2 The tree hash mode

Given a message M of bit-length |M | and a sequence of arities (ui)i≥1, a tree
hash mode using Sakura could be the following:

1. Let l0 = d|M |/Ne and M0 = M . The quantity l0 is the number of blocks of
M , where the last block may be shorter than N bits. We set i = 0.

2. We first split Mi into blocks Mi,1, Mi,2, ..., Mi,li+1 where:
(1) li+1 = dli/uie;
(2) all blocks but the last one are uiN bits long and the last block may be
shorter than uiN bits.
We set the node arities ui,j as follows:

ui,j =

{
ui for j = 1 . . . li+1 − 1,

li − uibli/uic for j = li+1.
(1)

Then, we check certain conditions to apply Sakura coding correctly:
– If i = 0 and li+1 ≥ 2, we compute the message

Mi+1 :=

li+1n

j=1

f (Mi,j‖110∗0) .

– If i = 0 and li+1 = 1, we compute the message

Mi+1 := f (Mi,1‖11) .

– If i > 0 and li+1 > 1, we compute the message

Mi+1 :=

li+1n

j=1

f (Mi,j‖enc(ui,j)‖{I∞}‖010∗0) .

Remark: the number of children of the rightmost node may be lower than
ui. For implementation purposes, it is suggested (in [6]) that the number
of padding bits for the rightmost f -input be such that all the f -inputs, at
this level of the tree, have same length.

– If i > 0 and li+1 = 1, we compute the message

Mi+1 := f (Mi,1‖enc(ui,j)‖{I∞}‖01) .

3. We set i = i+1. If li = 1, we return the hash value Mi. Otherwise, we return
to step 2.

We remark that

dd· · · ddn/u1e/u2e · · · e/uie = dn/(u1u2 · · ·ui)e

for a sequence of (strictly) positive integers (uj)j=1...i. Consider a sequence of
arities (uj)j≥1. At level i, there are exactly dn/(u1u2 · · ·ui)e nodes. If this se-
quence has an increasing number of terms greater than or equal to 2, then there
exists a non-zero positive integer h such that

h∏
j=1

uj ≥ n.

This ensures that we obtain a tree structure since, at level h, it remains a single
hash value, the root node. The problem is to find a sequence of arities (uj)j≥1
such that the tree height h is O(f(n)) and

∑h
j=1 uj is O(g(n)), where f(n) and

g(n) are the desired complexities. Indeed, the memory usage of a sequential
implementation and the ideal parallel running time are related to these two
quantities. In the following sections, we give sets of parameters allowing to obtain
interesting trade-offs in terms of time complexity and space complexity.

4 Parameters for streaming stored content

The Internet is well known as a network interconnecting heterogeneous comput-
ers, and this becomes particularly true with the advent of the Internet of Things
(IoT). When choosing a hashing mode, we have to determine what kind of devices
will process the message (e.g. by checking its integrity). According to [14], IoT

devices can be classified in two categories, based on their capability and perfor-
mance: high-end IoT devices which regroup single-board computers and smart-
phones, and low-end IoT devices which are much more resource-constrained.
Based on the memory capacity of its devices, this last category has been fur-
ther subdivided into three categories (denoted Class 0, Class 1 and Class 2 by
increasing order of memory capacity) by the Internet Engineering Task Force
(IETF). We refer to [14] for further information.

When we have to hash a stored file or a streamed stored media, its size is
known in advance. We can then use this information to define a finite sequence
of arities (ui)i=1...h with ui = a for all i ∈ J1, hK. We give six interesting pairs
(a, h) of parameters:

– Mode 4. a = dnεe and h = 1
ε , with a positive constant ε < 1 such that 1/ε

is a strictly positive integer. For instance ε = 1/2.

– Mode 5. a =
⌈
n

1
dlog logne

⌉
and h = dlog log ne.

– Mode 6S. a =
⌈
n

1
d
√

logne

⌉
and h =

⌈√
log n

⌉
.

– Mode 7S. a =
⌈

logn
W (logn)

⌉
and h =

⌈
logn

W (logn)

⌉
, where W (.) is the first branch

of the Lambert function.

– Mode 8S. a = dlog log ne and h =
⌈

logn
log log logn

⌉
.

– Mode 9. a =
⌈
W−1(− ln−ε n)

− ln−ε n

⌉
and h =

⌈
− lnn

W−1(− ln−ε n)

⌉
, where W−1(.) is the

second branch of the Lambert function.

Let us suppose that we have a secured application making use of hashing.
Choosing a hashing mode suitable for this application involves determining what
are the most memory-constrained devices using it and what their proportion is.
If this application is very likely to be used by a Class 1 device, then Mode 1, 2
or 4 should be used. If Class 0 is absent, but Class 1 is sufficiently represented,
then Mode 5 or 6S could be a good choice. If neither Class 0 nor Class 1 is
present, but Class 2 is, then Mode 7S or 8S is an interesting choice. If none of
these classes are present, but high-end IoT devices are, then we propose to use
Mode 9. Finally, if none of these devices are present, the memory consumption
is not really a problem and then Mode 3 is the best choice.

Theorem 1. There are 6 tree hashing modes having the following efficiency
complexities:

– Mode 4 has an ideal running time in O(nε), for a sequential memory con-
sumption of O(1) hash states. There exists a variant conserving these same
complexities, but requiring only O(n1−ε) processors.

– Mode 5 has an ideal running time in O(n
1

log logn log log n), for a sequential
memory consumption of O(log log n) hash states. There exists a variant con-

serving these same complexities, but requiring only O
(

1
log lognn

1− 1
log logn

)
processors.

M2 M10M3 M4M1 M9M6 M8M7M5

Fig. 3. Application of Mode 4 on a message of 6 blocks, with the parameter ε = 1/2.

– Mode 6S has an ideal running time in O(n
1√

logn
√

log n), for a sequential
memory consumption of O(

√
log n) hash states. There exists a variant con-

serving these same complexities, but requiring only O
(

1√
logn

n
1− 1√

logn

)
pro-

cessors
– Mode 7S has an ideal running time in O

(
log2 n

log2 logn

)
, for a sequential memory

consumption of O
(

logn
log logn

)
hash states. There exists a variant conserving

these same complexities, but requiring only O
(
n log2 logn

log2 n

)
processors.

– Mode 8S has an ideal running time in O
(

logn log logn
log log logn

)
, for a sequential

memory consumption of O
(

logn
log log logn

)
hash states. There exists a variant

conserving these same complexities, but requiring only O
(
n log log logn
logn log logn

)
pro-

cessors.
– Mode 9 has an ideal running time in O

(
log1+ε n

)
, for a sequential memory

consumption of O
(

logn
log logn

)
hash states. There exists a variant conserving

these same complexities, but requiring only O
(

n
log1+ε n

)
processors.

Proof. First, we examine the modes, in terms of parallel running time and mem-
ory consumption, one after the other:

– Mode 4 is consistent since dnεe1/ε ≥ n. Its asymptotic parallel running time
is clearly O(nε/ε) and the height of the tree is O(1/ε), where ε is a constant.

– For Mode 5 and Mode 6S, we would like a tree of height h(n) where h(n)
is dlog log ne or

⌈√
log n

⌉
. We seek the smallest a such that ah(n) ≥ n, i.e.

log a ≥ log n/h(n). We find a =
⌈
n1/h(n)

⌉
, and the product height × arity

gives the expected asymptotic parallel running time.
– For Mode 7s, the approach is different. We seek the smallest a such that
aa ≥ n. We first note that the Lambert function, denoted W , solves the
equations of type xex = y, where the solution for the unknown variable x
is W (y). This function can be used to solve the equation aa = n. We get
a = logn

W (logn) which is increasing for n ≥ 1. Thus, the smallest a solution to the

inequation aa ≥ n is dlog n/W (log n)e. Note that W (a) = Θ(log a−log log a),

meaning that a is O
(

logn
log logn

)
. Consequently, the tree height is O

(
logn

log logn

)
and the ideal parallel running time is O

(
log2 n

log2 logn

)
.

– For Mode 8S, we seek the smallest a such that a
logn

log log logn ≥ n, which gives a =
dlog log ne. The product height × arity gives the expected parallel running
time. We thus notice a slight decrease in the memory consumption for a
near-optimal parallel running time.

– With Mode 9, the parallel running time is obtained by construction. Indeed,
we seek the smallest h such that hn1/h = log1+ε n. We have:

n1/h =
1

h
log1+ε n⇔ −1

logε n
=

(
−1

h
log n

)
e
−1
h logn,

and it follows that −1h log n = W
(
−1

logε n

)
. Thus, h = − logn

W (− log−ε n)
. Since

− log−ε n is negative and tends to 0, we can evaluate h thanks to the two
branches W−1(.) or W (.) of the Lambert function. We choose to use W−1(.)
since we have the asymptotic approximation

W−1(x) = Ω (log(−x)− log(− log(−x)))

when x ∈ [−1/e, 0[. Consequently, h is O(logn
ε log logn).

Hence, there are variants of all these modes reducing the number of processors
required to obtain the aforementioned parallel running times. Let T (n) be the
ideal parallel running time of a mode. We consider the following tree topology:
The first level has approximately n/T (n) nodes, each having T (n) children,
except maybe the rightmost one whose number of children can be smaller. The
rest of the tree is constructed in the following way. The mode is applied on the
concatenation of these n/T (n) node values. The overall parallel running time for
this tree is approximately T (n) + T (n/T (n)), by using only n/T (n) processors.

5 Parameters for streaming live content

In this section, we discuss the parallel operating modes which do not require the
message size as input. These modes are scalable and can process the message as
it is received. They are essential for any application making use of live streaming.
In order to reduce the memory consumption, we propose to use an increasing
sequence (ui)i≥1 of arities. First, we note that it is impossible to adapt Mode 4
to support streaming live content while keeping the same complexities. Suppose
that the tree height h is constant. It is impossible to have a finite sequence
(ui)i=1...h such that

∏h
i=1 ui ≥ n for all possible message size n, and where

the terms ui do not depend on n. Thus, we have to make do with Mode 1 or
Mode 2. However, in what follows, we show that certain sequences of arities give
interesting asymptotic efficiencies.

Mode 3w (weak compromise). We fix the arity of the tree to a constant k which
is a power of 2. For instance, if k = 24, the number of hash states of a sequential
implementation is approximately divided by 4, with the counterpart that the
parallel running time is approximately multiplied by 4. Generally, if k = 2i

where i is a positive integer, then the memory consumption of a sequential
implementation is approximately divided by i while the parallel running time is
multiplied by k/ log2 k. There is no major change asymptotically.

Mode 6L. The arities ui of the levels i ≥ 1 grow as follows:

ui = 2i ∀i ≥ 1.

Theorem 2. Suppose that we have as many processors as we want. Mode 6L

has O(n
1√
logn
√

log n) parallel running time and requires O(
√

log n) hash states
in memory to process the message with a single processor.

Proof. Asymptotically, the amount of memory consumed in a sequential imple-
mentation corresponds, in the worst case, to the height k of the tree. We seek
the lowest k such that

∏k
i=1 ui ≥ n. We have

∏k
i=1 2i ≥ n which is equivalent to∑k

i=1 i ≥
logn
log 2 . Then, k2 ∼ logn

log 2 and
∑k
i=1 2i ∼ n

1√
log2 n

√
log2 n.

Mode 7L. The arities ui of the levels i ≥ 1 grow as follows:

ui = i+ 1 ∀i ≥ 1.

Theorem 3. Suppose that we have as many processors as we want. Mode 7L

has O
(

log2 n
log2 logn

)
parallel running time and requires O

(
logn

log logn

)
hash states in

memory to process the message with a single processor.

Proof. Asymptotically, the amount of memory consumed in a sequential imple-
mentation corresponds, in the worst case, to the height k of the tree. We seek
the lowest k such that

∏k
i=1 ui ≥ n. According to the Stirling Formula, we

have k! ∼ kke−k
√

2πk. Thus, we have log n ∼ log(kke−k
√

2πk) = k log k − k +
1
2 log(2πk) ∼ k log k. Hence, log log n ∼ log(k log k) = log k + log log k ∼ log k.

Then, we have k ∼ log n

log k
∼ log n

log log n
. If we have as many processors as we want,

then the amount of blocks processed sequentially is asymptotically the sum of
the k level arities. Considering that

∑k
i=2 i ∼ k2, we deduce the expected result.

Mode 8L. The arities ui of the levels i ≥ 1 grow as follows:

ui = blog(i+ 3)c ∀i ≥ 1.

Theorem 4. Suppose that we have as many processors as we want. Mode 8L has

O
(

logn log logn
log log logn

)
parallel running time and requires O

(
logn

log log logn

)
hash states in

memory to process the message with a single processor.

Proof. For the sake of simplification, we can seek the lowest k such that∏k
i=2 log i ≥ n, which is an equivalent problem. Asymptotically, we can then

seek k such that k log log k ∼
∑k
i=2 log log i ∼ log n. The solution k is a fixed

point of the function k 7→ logn
log log k , meaning that k is close to logn

log log logn when n

tends to infinity. Regarding the parallel running time, it follows that
∑k
i=2 log i ∼

k log k ∼ logn
log log logn log

(
logn

log log logn

)
, giving the expected result.

As for the modes dedicated to stored content, we can reduce the number of
processors allowing the ideal parallel running time to be reached by means of
a rescheduling technique. Indeed, since the processors have more computations
to do at higher levels of the tree (and the lower level nodes have smaller arity),
we could assign to each processor a subtree that represents the amount of com-
putations of a higher level node. In doing so, the parallel running time is only
increased by a constant factor. This aspect will be developed in further works.

6 Conciliating interleaving and scalability

The interleaving of the message bits/blocks is an interesting feature if it is applied
to nodes having a low number of children. For instance, in Mode 2L, it is applied
to a single node having q children, and we can think that q is small enough so
that the memory space consumption is small as well. Even though Sakura allows
the coding of an interleaving parameter for each node, we can wonder whether
it is judicious to use it for all nodes in the tree. In fact, using interleaving for all
nodes leads to a memory consumption in the order of the size of the message.
It is then preferable to use it for the nodes of a single level (or of a constant
number of levels) in the tree.

Interleaving is bounded to an architecture, that is, it is difficult to imagine
an interleaving mechanism that could be (in some sense) scaled on different
architectures (with different register sizes). Having this in mind, we can still
imagine a mode that could be both bounded to a single architecture and scalable
from the multithreading standpoint. In order to use interleaving in the tree
structures having high arity nodes (possibly dependent of the message size), we
propose to add a single level of small and constant arity nodes. This level would
be inserted near the root and the interleaving parameter would be set for all the
nodes of this level. Note that the asymptotic complexity remains unchanged by
this modification.

References

1. Elena Andreeva, Bart Mennink, and Bart Preneel. Security reductions of the second
round sha-3 candidates. Cryptology ePrint Archive, Report 2010/381, 2010.

2. Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn, and Christian
Winnerlein. Blake2: Simpler, smaller, fast as md5. In Proceedings of the 11th In-
ternational Conference on Applied Cryptography and Network Security, ACNS’13,
pages 119–135, Berlin, Heidelberg, 2013. Springer-Verlag.

3. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Sponge functions. In
Ecrypt Hash Workshop, May 2007.

4. Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Sufficient
conditions for sound tree and sequential hashing modes. Cryptology ePrint Archive,
Report 2009/210, 2009.

5. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak. In
Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Athens, Greece,
May 26-30, 2013. Proceedings, pages 313–314, 2013.

6. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sakura: A
flexible coding for tree hashing. In Applied Cryptography and Network Security -
12th International Conference, ACNS 2014, Lausanne, Switzerland, June 10-13,
2014. Proceedings, pages 217–234, 2014.

7. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Suffi-
cient conditions for sound tree and sequential hashing modes. Int. J. Inf. Secur.,
13(4):335–353, August 2014.

8. Johannes Buchmann, Erik Dahmen, and Michael Schneider. Merkle tree traversal
revisited. In Proceedings of the 2Nd International Workshop on Post-Quantum
Cryptography, PQCrypto ’08, pages 63–78, Berlin, Heidelberg, 2008. Springer-
Verlag.

9. Ivan Damg̊ard. A design principle for hash functions. In CRYPTO ’89: Proceedings
of the 9th Annual International Cryptology Conference on Advances in Cryptology,
pages 416–427, London, UK, 1990. Springer-Verlag.

10. Niels Ferguson, Stefan Lucks Bauhaus, Bruce Schneier, Doug Whiting, Mihir Bel-
lare, Tadayoshi Kohno, Jon Callas, and Jesse Walker. The skein hash function
family (version 1.2), 2009.

11. Shay Gueron. Parallelized hashing via j-lanes and j-pointers tree modes, with
applications to SHA-256. IACR Cryptology ePrint Archive, 2014:170, 2014.

12. Shay Gueron and Vlad Krasnov. Parallelizing message schedules to accelerate the
computations of hash functions. J. Cryptographic Engineering, 2(4):241–253, 2012.

13. Shay Gueron and Vlad Krasnov. Simultaneous hashing of multiple messages. J.
Information Security, 3(4):319–325, 2012.

14. O. Hahm, E. Baccelli, H. Petersen, and N. Tsiftes. Operating systems for low-
end devices in the internet of things: a survey. IEEE Internet of Things Journal,
PP(99):1–1, 2015.

15. John Kelsey. What Should Be In A Parallel Hashing Standard? NIST, SHA3
Workshop, 2014.

16. RSA Laboratories. PKCS # 1 v2.2 RSA Cryptography Standard, 2012.
17. Stefan Lucks. Tree hashing: A simple generic tree hashing mode designed for

SHA-2 and SHA-3, applicable to other hash functions. In Early Symmetric Crypto
(ESC), 2013.

18. Ralph Charles Merkle. Secrecy, Authentication, and Public Key Systems. PhD
thesis, Stanford, CA, USA, 1979.

19. National Institute of Standards and Technology. FIPS PUB 202: Secure Hash
Standard (SHS). Technical report, aug 2015.

20. Andrew Regenscheid, Ray Perlner, Shu jen Chang, John Kelsey, Mridul Nandi,
and Souradyuti Paul Nistir. The sha-3 cryptographic hash algorithm competition,
2009.

21. Ronald L. Rivest, Benjamin Agre, Daniel V. Bailey, Christopher Crutchfield, Yev-
geniy Dodis, Kermin Elliott, Fleming Asif Khan, Jayant Krishnamurthy, Yuncheng

Lin, Leo Reyzin, Emily Shen, Jim Sukha, Drew Sutherland, Eran Tromer, and
Yiqun Lisa Yin. The md6 hash function: A proposal to nist for sha-3, 2008.

22. Michael Szydlo. Merkle tree traversal in log space and time. In Advances in
Cryptology - EUROCRYPT 2004, International Conference on the Theory and
Applications of Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004,
Proceedings, pages 541–554, 2004.

