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Abstract. One of the most common tasks in cryptography and crypt-
analysis is to find some interesting event (a needle) in an exponentially
large collection (haystack) of N = 2n possible events, or to demonstrate
that no such event is likely to exist. In particular, we are interested in
finding needles which are defined as events that happen with an unusu-
ally high probability of p � 1/N in a haystack which is an almost uni-
form distribution on N possible events. When the search algorithm can
only sample values from this distribution, the best known time/memory
tradeoff for finding such an event requires O(1/Mp2) time given O(M)
memory.
In this paper we develop much faster needle searching algorithms in
the common cryptographic setting in which the distribution is defined
by applying some deterministic function f to random inputs. Such a
distribution can be modelled by a random directed graph with N vertices
in which almost all the vertices have O(1) predecessors while the vertex
we are looking for has an unusually large number of O(pN) predecessors.
When we are given only a constant amount of memory, we propose a new
search methodology which we call NestedRho. As p increases, such
random graphs undergo several subtle phase transitions, and thus the
log-log dependence of the time complexity T on p becomes a piecewise
linear curve which bends four times. Our new algorithm is faster than
the O(1/p2) time complexity of the best previous algorithm in the full
range of 1/N < p < 1, and in particular it improves the previous time
complexity by a significant factor of

√
N for any p in the range N−0.75 <

p < N−0.5. When we are given more memory, we show how to combine
the NestedRho technique with the parallel collision search technique
in order to further reduce its time complexity. Finally, we show how to
apply our new search technique to more complicated distributions with
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multiple peaks when we want to find all the peaks whose probabilities
are higher than p.

Keywords: Cryptanalysis, Needles in Haystacks, Mode Detection, Rho Algo-
rithms, Parallel Collision Search

1 Introduction

Almost everything we do in the construction and analysis of cryptographic
schemes can be viewed as searching for needles in haystacks: identifying the
correct key among all the possible keys, finding preimages in hash functions,
looking for biases in the outputs of stream ciphers, determining the best differ-
ential and linear properties of a block cipher, hunting for smooth numbers in
factoring algorithms, etc. As cryptanalysts, our goal is to find such needles with
the most efficient algorithm, and as designers our goal is to make sure that such
needles either do not exist or are too difficult to find.

Needles can be defined in many different ways, depending on what distin-
guishes them from all the other elements in the haystack. One common theme
which characterizes many types of needles in cryptography is that they are prob-
abilistic events which have the highest probability p among all the N = 2n possi-
ble events in the haystack. Such an element is called the mode of the distribution,
and for the sake of simplicity we will first consider the case in which the dis-
tribution is almost flat: a single peak has a probability of p � 1/N and all the
other events have a probability of about 1/N (as depicted in Figure 1). Later on
we will consider the more general case of distributions in which there are several
peaks of varying heights, and we want to find all of them.

Our goal in this paper is to analyze the complexity of this probabilistic needle
finding problem, assuming that the haystack distribution is given as a black box.
By abstracting away the details of the task and concentrating on its essence, we
make our techniques applicable to a wide variety of situations. On the other
hand, in this general form we can not use specific optimization tricks that can
make the search for particular types of needles more efficient.1

We will be interested in optimizing both the time complexity and the memory
complexity of the search algorithm. Since random-access memory is usually much
more expensive than time, we will concentrate primarily on memory-efficient
algorithms: We will start by analyzing the best possible time complexity of
algorithms which can use only a constant amount of memory, and then study
how the time complexity can be reduced by using some additional memory.

The paper is organized as follows: Section 2 formalizes our computational
model. Section 3 describes the best previously known folklore algorithms for
solving the problem. We then show how to use standard collision detection al-
gorithms to identify the mode when its probability p is sufficiently large in Sec-
tion 4. We follow in Section 5 by introducing the new 2Rho algorithm which

1 We leave to future work specific applications of our techniques to the concrete prob-
lems mentioned at the beginning of this Section.
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Fig. 1. An Example of the Distributions that Interest Us

uses a collision detection algorithm on the amplified mode probability obtained
by running another collision detection algorithm on the original distribution.
The algorithm is then extended to a general iRho by using even deeper nest-
ing of the collision detection algorithm in Section 6. We consider time-memory
tradeoffs in Section 7, and discuss the adaptations needed when the probability
distribution has multiple peaks and we want to find all of them in Section 8.
Finally, Section 9 concludes the paper.

2 Problem Statement and Model Description

The simplest conceptual model for our problem is one in which the sampling
black box has a button, and each time we press it we are charged a unit of
time and we get a freshly chosen event from the distribution. We can thus test
whether a particular y is the mode y0 by counting how many times this y was
sampled from the distribution in O(1/p) trials. Notice that when we have a single
available counter, we have to run this algorithm separately for each candidate y.
The simplest possible algorithm sequentially tries all the N possible candidates,
but we can use the given distribution in order to make a better choice of the
next candidate to test. Since the correct candidate is suggested with an enhanced
probability of 1/p, the time complexity is reduced from N/p to 1/p2. When we
have M available counters, we can get a linear speed up by testing M candidate
values simultaneously with the same number of samples, provided that 1/p ≥M .
This trivial approach yields the best known algorithms for finding the mode of
a flat distribution with a single peak.

However, closer inspection of the problem shows that in most of our crypto-
graphic applications, the distribution we want to analyze is actually generated
by some deterministic function f whose input is randomly chosen from a uni-
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form probability distribution. For example, when we look for biases in the first n
output bits of a stream cipher, we choose a random key, apply to it the determin-
istic bit generator, and define the (possibly non-uniform) output distribution by
saying that a particular bit string has a probability of i/N if it occurs as a prefix
of the output string for i out of the N possible keys. Similarly, when we look
for a high probability differential property, we choose random pairs of plaintexts
with a certain input difference, and deterministically encrypt them under some
fixed key. This process generates a distribution by counting how many times we
get each output difference, and the mode of this distribution suggests the best
differential on the block cipher which uses the selected input difference.

In such situations, we replace the button in the black box by an input which
can accept N possible values. The box itself becomes deterministic, and we
sample the distribution by providing to the box a randomly chosen input value.
The main difference between the two models is that when we repeatedly press
the button we get unrelated samples, but when we repeatedly provide the same
input value we always get the same output value. As we show in this paper, this
small difference leads to surprising new kinds of mode-finding algorithms which
have much better complexities than the trivial algorithm outlined above.

The mapping from inputs to outputs defined by the function f can be viewed
as a random directed bipartite graph such as the one presented in Figure 2, in
which one of the vertices has a large in-degree. For the sake of simplicity, we
assume that the function f has the same number N of possible inputs and
outputs2, and then we can merge input and output vertices which have the
same name to get the standard model of a random single-successor graph on
N vertices. When we iterate the application of the function f in this graph, we
follow a Rho-shaped path which starts with a tail and then gets into a cycle. The
graph consists of a small number of disjoint cycles, and all the other vertices in
the graph are hanging in the form of trees around these cycles.

As we increase the probability p from 1/N to 1, one of the vertices y0 be-
comes increasingly popular as a target, and the graph changes its properties. For
example, it is easy to show that when p crosses the threshold of O(1/

√
N), there

is a sudden phase transition in which y0 is expected to move from a tree into one
of the cycles (where it becomes much easier to locate), and the expected length
of its cycle starts to shrink (whereas earlier it was always the same). As we show
later in the paper, more subtle phase changes happen when p crosses several ear-
lier thresholds, and thus the log-log complexity of our mode-searching algorithm
becomes a piecewise linear function that bends several times at those thresholds,
as depicted by the solid line in Figure 5. Compared to the dotted line which de-
picts the best previous 1/p2 complexity, we get a significant improvement in the
whole range of possible p values.

2 If there is some discrepancy, we can use the same truncation trick that Hellman
used in his time/memory tradeoff to deal with cryptosystems in which the key and
ciphertext sizes are different.
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Fig. 2. A Graph Representation of a Biased Function f

2.1 Notations and Conventions

Notation 1 The set {1, 2, . . . , N} is denoted by [N ]. Throughout the paper, all
functions are from the set [N ] to itself. The mode of a function is the value in
its range with the largest number of preimages.

Problem setup: The basic problem we study is the following. We are given a
value 0 < p < 1 and a function f : [N ]→ [N ] which is generated by the following
three-step process:

1. Choose y0 ∈ [N ] uniformly at random.
2. Choose a subset S ⊂ [N ] uniformly at random amongst all subsets of size
pN . Set f(x) = y0 for all x ∈ S.

3. For each x 6∈ S, choose f(x) ∈ [N ] \ {y0} uniformly at random.

By definition, the values of f on [N ] \ S can be simulated by a truly random
oracle returning values in [N ] \ {y0}. Our initial goal is to detect y0 with the
fastest possible algorithm that uses only O(1) memory cells. We can assume that
the attacker knows p, since otherwise he can run a simple search algorithm with
a geometrically decreasing sequence of probabilities (e.g., 1, 1/2, . . . , 1/2i, . . .) to
find the highest value of p for which his attack succeeds (or stop when the attack
becomes too expensive, which provides an upper bound on the probability of y0,
but does not identify it).

3 Trivial Memoryless Algorithms

In this section we formally present the simplest possible memoryless algorithms
for detecting the mode for various values of p. They are based on sampling
random points, and then checking whether they are indeed the required mode.
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3.1 Memoryless Mode Verification Algorithm

We start the discussion by presenting a mode verification algorithm. The algo-
rithm accepts a candidate y, and checks whether it is the mode y0. The checking
is done by choosing O(1/p) random values, and verifying that sufficiently many
of them are mapped to y under the function f . The algorithm is presented in
Algorithm 1.

Algorithm 1 Mode Verification: Determining Whether a Given y is y0
Initialize a counter ctr ← 0.
for i = 1 to c/p do

Pick at random x ∈ [N ], and compute y′ = f(x).
if y′ = y0 then

Increment ctr.
end if

end for
if ctr ≥ t then

print y is y0.
end if

It is easy to see that Algorithm 1 makes c/p queries to f(·). Its success
depends on the picked constants c and t. Assuming that indeed y is y0 we expect
that the number of times the chosen x leads to y is distributed according to a
Poisson distribution with a mean value of c (otherwise, the distribution follows
a Poisson distribution with a mean value of c/Np � c). Hence, for any desired
success rate, one can easily choose c and the threshold t. For example, setting
c = 4 and t = 2 offers a success rate of about 90.8%.

3.2 Memoryless Sampling Algorithm

The sampling algorithm suggested in Algorithm 2 is based on picking at random
a value x, computing a candidate y = f(x) for the verification algorithm, and
verifying whether y is indeed the correct y0. It is easy to see that the algorithm
is expected to probe O(p−1) values of y, until y0 is encountered, and that each
verification takes O(p−1), resulting in a running time of O(p−2).

Algorithm 2 Finding y0 by Sampling:

while y0 was not found do
Pick x ∈ [N ] at random.
Compute y = f(x).
Call Algorithm 1 to check y.

end while
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4 Using Rho-based Collision Detection Algorithms

We now present a different class of algorithms for detecting the mode, using col-
lision detection algorithms combined with the trivial mode verification algorithm
(Algorithm 1). These algorithms (such as Floyd’s [7] or its variants [2, 8]) start
from some random point x, and iteratively apply f to it, i.e., produce the se-
quence x, f(x), f2(x) = f(f(x)), f3(x), . . ., until a repetition is detected3. In the
sequel, we call such algorithms “Rho algorithms”. We denote the first repeated
value in the sequence x, f(x), f2(x), . . . by fµ(x) and its second appearance by
fµ+λ(x), and call this common value the cycle’s entry point.

Optimal detection when p� N−1/2 First, we show that when p� N−1/2,
the mode y0 can be found in time O(1/p). This complexity is clearly the best pos-
sible: if the number of queries to f is o(1/p), then with overwhelming probability
no preimage of y0 is queried and so y0 cannot be detected.

The idea is simple: we run a Rho algorithm, with an arbitrary random
starting point x and an upper bound c/p on the length of the sequence for some
small constant c. For such a length, we expect the mode y0 to appear twice in
the sequence with high probability, whereas due to the fact that c/p <

√
N the

collision found by Rho is not expected to be one of the other random values.
We show the full analysis of the algorithm in Appendix A.

By using a memoryless Rho algorithm, we get a time complexity of O(1/p)
and a memory complexity of O(1). As usual, the probability that y0 is detected
can be enhanced even further by repeating the algorithm with other starting
points and checking each suggested point in time O(1/p) using the trivial mode
verification algorithm.

The RepeatedRho algorithm: Detection in O(p−3N−1) for arbitrary p
The above approach can be used for any value of p. However, when p < 1/

√
N ,

the probability that the output of Rho (i.e., the cycle’s entry point) is indeed
y0 drops significantly. Specifically, we have the following lower bound, and one
can easily show that the actual value is not significantly larger.

Proposition 1. Assume that p < 1/
√
N and thus Rho encounters O(

√
N)

different output values until a collision is detected. Then the probability that
Rho outputs y0 is Ω(p2N).

Proof. Since the probability of obtaining y0 as the output is non-decreasing as
a function of p, there is no loss of generality in assuming p = cN−1/2 for a
small c. In such a case, a lower bound on the probability of Rho producing y0 is
the probability that in the first

√
N/2 steps of the sequence (x, f(x), f2(x), . . .),

each value y′ 6= y0 appears at most once, while y0 appears twice. Formally, let
L′ = (x, f(x), . . . , f t(x)), where t = min(µ+λ,

√
N/2). Denote by Ey′ the event:

3 Such a repetition must occur due to the fact that f : [N ]→ [N ].
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“Each y′ 6= y0 appears at most once in L′”, and by Ey0 the event: “y0 appears
twice in L′”. Then

Pr[Output(Rho) = y0] ≥ Pr[Ey′ ∧ Ey0 ] = Pr[Ey′ ] Pr[Ey0 |Ey′ ].

As we show in Appendix A, we have Pr[Ey′ ] ≥ e−1/4 ≈ 0.78 and

Pr[Ey0 |Ey′ ] = Pr[X ≥ 2|X ∼ Poi(|L′|p)] ≥ Pr[X ≥ 2|X ∼ Poi(
√
Np/2)].

Finally, for any small λ we have

Pr[X ≥ 2|X ∼ Poi(λ)] = 1− e−λ(1 + λ) ≈ 1− (1− λ)(1 + λ) = λ2,

and thus, combination of the above inequalities yields

Pr[Output(Rho) = y0] ≥ 0.78(
√
Np/2)2 = 0.19p2N,

as asserted.

�

This yields the RepeatedRho algorithm – an O(p−3N−1) algorithm for
detecting the mode: run the Rho algorithm O(1/p2N) times, and check each
output point in O(1/p) time using the mode verification algorithm. With a con-
stant probability, y0 is suggested by at least one of the Rho invocations and is
thus verified. As p−3N−1 < p−2 for all p > N−1, this algorithm outperforms the
sampling algorithm (Algorithm 2) whose running time is O(p−2) for all p.

The analysis above implicitly assumes that all the invocations of Rho are
independent. However, this is clearly not the case if we apply Rho to the same
function f , while changing only the starting point x in each invocation. Indeed,
since p < 1/

√
N , y0 is not expected to be on a cycle of f , and thus no matter how

many times we run the Rho algorithm using the same f but different starting
points, we will never encounter y0 as a cycle entry point.

In order to make the invocations of Rho essentially independent, we in-
troduce the notion of flavors of f , like the flavors used in Hellman’s classical
time-memory tradeoff attack [3]. More specifically, we define the v’s flavor of f
as the function fv(x) = f(x+v) where the addition is computed modulo N . The
different flavors of f share some local properties (e.g., they preserve the number
of preimages of each y, and thus y0 remains the mode of the function), but have
different global properties (e.g., when iterated, their graphs have a completely
different partition into trees and cycles). In particular, it is common to consider
the various flavors of f as unrelated functions, even though this is not formally
justified. We define the output of the v’s invocation of Rho as the entry point
into the cycle defined by fv when we start from point v, and run the Repeate-
dRho algorithm by calling Rho multiple times with different randomly chosen
flavors.
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5 The 2Rho Algorithm

In this section we introduce the 2Rho algorithm, and show that running a Rho
algorithm over the results of a Rho algorithm outperforms all the previously
suggested algorithms.

The main idea behind the new algorithm is that a single application of Rho
can be viewed as a bootstrapping step that amplifies the probability of y0 to
be sampled. Indeed, by Proposition 1, The probability that Rho with a ran-
domly chosen flavor will output y0 is Ω(p2N), and as long as p � N−1, this is
significantly larger than the probability p that y0 will be sampled by a single
invocation of f . Note that by symmetry the probabilities of all the other values
of y to be returned by Rho with a random flavor remain uniformly low. We
are thus facing exactly the same needle finding problem but with a magnified
probability peak at exactly the same location y0. In particular, if this new prob-
ability peak exceeds N−0.5, we can find it by using a simple Rho algorithm. On
the other hand, a single evaluation of Rho is now more time consuming than a
single evaluation of f , and thus the bootstrapping yields a tradeoff between the
total number of operations and the cost of each operation, so the parameters
should be chosen properly in order to reduce the total complexity.

Our goal now is to formally define the new inner function g(x) which will be
used by the outer Rho algorithm. This g maps a flavor v to the cycle’s entry
point defined by running the Rho algorithm on the v’s flavor of f (i.e., on fv),
starting with the initial value v. When we iterate g, we jump from a flavor to a
cycle entry point, and then use the identity of the cycle’s entry point to define
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the next flavor and starting point. This creates a large Rho structure over small
Rho structures, as depicted in Figure 4 in which the different colors indicate the
different flavors of f we use in the algorithm. Each dotted line represents the
first step we take when we switch to a new flavor, and is used only to visually
separate the Rhos so that the figure will look more comprehensible. Note that
the collision in the big cycle happens when we encounter the same cycle entry
point a second time, but this does not imply that the two colliding small Rho’s
or their starting points are the same, since they typically use different flavors; it
is only in the second and third times we meet the same cycle entry point that
their corresponding Rho structures also becomes identical, and from then on we
go through the same Rhos over and over.

We now turn our attention to a specific range of probabilities p for which
the 2Rho algorithm (that runs an outer Rho algorithm over an inner Rho
algorithm) offers a significant gain over the previously described algorithms.

5.1 Analysis of 2Rho in the Range N−3/4 � p ≤ N−1/2

Assume that N−3/4 � p ≤ N−1/2, and construct the function g as described
above. Defining p′ = Pr[g(x) = y0], we have shown that p′ = Ω(p2N)� N−1/2,
and thus the mode of g can be found optimally in O(1/p′) evaluations of g using
the 2Rho algorithm.
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In order to find the total complexity of 2Rho, we have to compute the
complexity of each evaluation of g, i.e., of an evaluation of Rho algorithm.

Note that for c > 1, the probability that all values x, f(x), f2(x), . . . , f c
√
N (x)

are different is at most

(N − 1)(N − 2) · . . . · (N − c
√
N)

(N − 1)c
√
N

≤ (N − 1)
√
N (N −

√
N − 1)(c−1)

√
N

(N − 1)c
√
N

≤
(
N −

√
N

N

)(c−1)
√
N

≈ e−(c−1).

Hence, with an overwhelming probability, Rho finds a cycle in O(
√
N) opera-

tions. In order to avoid the rare cases where such algorithms take more time,
we can slightly modify any Rho algorithm by stopping it after a predetermined
number of f evaluations (e.g., 10

√
N), in which case g(x) = Rho(f, x+ 1).4 In

any case, the expected time complexity of an evaluation of g is O(
√
N) evalua-

tions of f .
Therefore, the time complexity of 2Rho is O( 1

p′ ·
√
N) = O(p−2N−1/2)

operations. This is significantly faster than the Sampling algorithm, and also
significantly faster than RepeatedRho, since p−2N−1/2 < p−3N−1 for all p <
N−1/2.

Just like the Rho algorithm, the nested 2Rho algorithm can be repeated
when p < N−3/4, to yield an algorithm for any p. Indeed, repeating 2Rho until
the mode is found (and verified by the verification algorithm), takesO(p′−3N−1) =
O((p2N)−3N−1) = O(p−6N−4) evaluations of g, or O(p−6N−3.5) evaluations
of f . Hence, Repeated2Rho is better than the RepeatedRho algorithm for
p > N−5/6 and is worse for p < N−5/6.

Table 1 describes our experimental verification of the 2Rho algorithm for
different values of p in the range N−0.79 ≤ p ≤ N−0.5. We used a relatively
small N = 228 (which makes the transition at p = N−0.75 more gradual than
we expect it to be for larger N), and repeated each experiment 100 times with
different random functions f .

6 Deeper Nesting of the Rho Algorithm

We now show how one can nest iRho to obtain (i + 1)Rho. We analyze the
resulting complexities, and show that while for a small i, it yields better results,
as i becomes larger it loses to simpler algorithms. In particular, it is advantageous
to nest the NestedRho algorithm up to four times, but not a fifth time.

The 3Rho Algorithm for N−7/8 � p ≤ N−3/4 Assume that N−7/8 �
p ≤ N−3/4, and define a new function h(x) which maps an input flavor x into

4 Of course, with a negligible probability, we may need to continue and define g(x) =
Rho(f, x + 2), and so forth.
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p = Pr[y0] Success
Value logN (p) Rate

2−14 -0.5 100%
2−15 -0.54 100%
2−16 -0.57 100%
2−17 -0.61 97%
2−18 -0.64 91%
2−19 -0.68 71%
2−20 -0.71 32%
2−21 -0.75 8%
2−22 -0.79 0%

Table 1. Success Rate of 2Rho for N = 228 over 100 Experiments

Algorithm 3 (i + 1)Rho Algorithm for the Function f(·) (Based on iRho)

Input: a random input x ∈ [N ].
Set z ← iRho (fx, x). . Note that in the recursion, the flavors of f add up.
while Repeated value of z is not encountered do

Set z ← iRho (fz, z).
end while
Identify the repeated z value.5

return z.

the cycle’s entry point defined by the 2Rho algorithm. As in the analysis of
2Rho above, we define p′′ = Pr[h(x) = y0], and can show that p′′ = Ω(p′2N) =
Ω(p4N2N)� N−1/2. Hence, the mode of h can be found optimally in O(1/p′′)
evaluations of h using Rho. Since each evaluation of h requires O(

√
N) evalua-

tions of g, and since each evaluation of g requires O(
√
N) evaluations of f , the

overall complexity of the algorithm is O(p−4N−3N) = O(p−4N−2) evaluations
of f . We call this algorithm 3Rho, as it essentially performs yet another nesting
layer of 2Rho.

The complexity of the 3Rho algorithm is always better than that of Re-
peatedRho and is better than the O(p−6N−3.5) complexity of Repeated2Rho
for all p < N−3/4.

As in the case of 2Rho, the 3Rho algorithm can also be repeated as Re-
peated3Rho with mode verification to yield an algorithm for any p. The result-
ing complexity is O(p′′−3N−1) = O((p4N3)−3N−1) = O(p−12N−10) evaluations
of h, or O(p−12N−9) evaluations of f . This algorithm is better than the Re-
peatedRho for p > N−8/9 and is worse for p < N−8/9. However, it turns out
that for N−9/10 � p ≤ N−7/8, we can do better by nesting 3Rho yet another
time.

5 The identification can be done using Floyd’s algorithm [7], or any of its variants.
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Probability range Complexity formula Complexity range Algorithm

p ≥ N−0.5 T = p−1 T ≤ N0.5 Rho
N−0.75 ≤ p ≤ N−0.5 T = p−2N−0.5 N0.5 ≤ T ≤ N 2Rho
N−0.875 ≤ p ≤ N−0.75 T = p−4N−2 N ≤ T ≤ N1.5 3Rho
N−0.9 ≤ p ≤ N−0.875 T = p−8N−5.5 N1.5 ≤ T ≤ N1.7 4Rho
N−1 ≤ p ≤ N−0.9 T = p−3N−1 N1.7 ≤ T ≤ N2 RepeatedRho

Table 2. Summary of the best complexities of algorithms for detecting the mode

The 4Rho Algorithm for N−9/10 � p ≤ N−7/8 Assume that N−15/16 �
p ≤ N−7/8, and define a new mapping `(x) which maps a flavor x into the cycle’s
entry point found by the 3Rho algorithm. As in the above case of 3Rho, we
have p′′′ = Pr[`(x) = y0] = Ω(p′′2N) = Ω(p8N6N) � N−1/2. Hence, the mode
of ` can be found optimally in O(1/p′′′) evaluations of ` using Rho.

Since each evaluation of ` requires O(N1.5) evaluations of f , the overall com-
plexity of the algorithm is O(p−8N−7N1.5) = O(p−8N−5.5) evaluations of f . We
call this algorithm 4Rho, as it performs a four-layer nesting of Rho.

Unlike the previous algorithms, 4Rho is not better than all previous algo-
rithms in the whole range N−15/16 � p ≤ N−7/8. Indeed, as p → N−15/16, the
complexity of 4Rho approaches N2, which is higher than even the straightfor-
ward Sampling Algorithm. In particular, 4Rho is faster than RepeatedRho
only as long as p > N−0.9, which explains why the complexity curve reduces its
slope at the top right corner of Figure 5.

We note that the natural extension to 5Rho is clearly inferior for any p since
the complexity of each step of the outer Rho requires N2 steps, which is already
higher than the overall complexity of the Sampling algorithm.

The complexities of the best algorithms we were able to achieve (as a function
of p) are presented in a mathematical form in Table 2 and in graphical form in
Figure 5.

7 Time-Memory Tradeoffs

In this section, we revisit the basic problem of detecting the mode, but assume
that we have O(M) memory cells available. Our goal is to detect the mode as
efficiently as possible, where the complexity is formulated as a function of the
parameters N , p and M .

Before starting, we note that we only deal with the case of p < N−1/2, as we
already have an optimal6 memoryless algorithm for the case of p ≥ N−1/2 (as
shown in Section 4).

6 Given additional memory and/or CPUs allows parallelizing Rho algorithms. At the
same time, the total computational complexity (which is the focus of this paper)
remains the same, or (in some cases) may become worse.
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Fig. 5. Complexities of Our Best Memoryless Algorithms as a Function of p

We begin by describing the basic parallel collision search algorithm of [10].
We then describe a sequence of algorithms that extend the iRho memoryless
algorithms using parallel collision search.

7.1 Parallel Collision Search

The parallel collision search (PCS) algorithm presented by van Oorschot and
Wiener [10] is a memory-efficient algorithm for finding multiple collisions at
low amortized cost per collision in a function f that maps [N ] to [N ]. Since
its introduction, the algorithm has been extensively used in cryptanalysis (e.g.,
in [4–6, 9]). Given M memory cells, the algorithm builds a structure of M chains
which is similar to the one built in Hellman’s time-memory tradeoff algorithm [3].

A chain in the structure starts at an arbitrary point x, and is evaluated
by repeated applications of f (namely, f i(x) = f(f i−1(x))). The chains are
terminated after about

√
N/M evaluations of f , thus the structure contains a

total of about M ·
√
N/M =

√
NM points. Moreover, as

√
N/M ·

√
NM = N ,

according to the birthday paradox, each chain is expected to collide with another
chain in the structure, and hence the chain structure contains O(M) collisions. In
order to find the O(M) collisions efficiently, we define a set of distinguished points
and terminate each chain once it reaches such a point. In our case, we define a
set of

√
NM distinguished points (e.g., the points whose (log2(N) + log2(M))/2

least significant bits are zero), and hence the expected chain size is N/
√
NM =√

N/M as required. The actual O(M) collision points are recovered by sorting
the M termination points of the chains (which are distinguished points), and
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restarting the chain computation for each colliding pair of chains. For sake of
completeness we give in Appendix B the pseudo code for PCS (Algorithm 6). In
total, the algorithm finds O(M) collisions in

√
NM time using O(M) memory.

7.2 Mode Verification with Memory

The basic memoryless mode verification algorithm (Algorithm 1) can be ex-
tended to exploit memory, by checking multiple targets simultaneously. Namely,
given M candidate yi’s, it is possible to check all of them at the same time for
the cost of O(1/p) queries to f , as suggested by Algorithm 4.

Algorithm 4 Mode Verification: Determining Whether y0 is one of y1, y2, . . . yM
Initialize an array of counters ctr[i]← 0 for 1 ≤ i ≤M .
for j = 1 to c/p do

Pick at random x ∈ [N ], and compute y′ = f(x).
if y′ = yi for 1 ≤ i ≤M then

Increment ctr[i].
end if

end for
for i = 1 to N do

if ctr[i] ≥ t then
print yi is y0.

end if
end for

Using Algorithm 4, we can immediately improve the sampling algorithm
(Algorithm 2). Instead of checking only one value at each call to the verification
algorithm, we can now check M such values for the same complexity. Hence,
Algorithm 5 picks each time M random values of yi by random sampling, and
calls Algorithm 4 to test which of them (if at all) is indeed y0.

Algorithm 5 Finding y0 by Sampling (with Memory):

while y0 was not found do
for i = 1 to M do

Pick xi ∈ [N ] at random.
Compute yi = f(xi).

end for
Call Algorithm 4 to check y1, y2, . . . , yM .

end while

The probability that a single call to Algorithm 4 (testing M images) succeeds
is about Mp (assuming7 M ≤ p−1), and therefore we expect O(M−1p−1) calls

7 We note that when M > p−1, it is sufficient to fill O(p−1) memory cells.
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to Algorithm 4. Each such call takes O(p−1) evaluations of f , and hence the
total time complexity of the algorithm is O(M−1p−2). Note that for M = 1 this
algorithm reduces to Algorithm 2.

7.3 Mode Detection with Parallel Collision Search

This algorithm runs PCS with M chains and checks the O(M) collision points
found by running Algorithm 4. This process is repeated until it finds y0, where
each repetition is performed with a different flavor of f .

Since the M chains cover about
√
NM distinct points, the probability that

two distinct preimages of the mode y0 (which are not expected to be distin-
guished points) are covered by the structure is about (

√
NM · p)2 = NM · p2

(assuming
√
NM · p < 1, i.e., p < (NM)−0.5). In this case, the algorithm will

successfully recover the mode y0 using the mode verification algorithm. There-
fore, the algorithm is expected to execute PCS (and mode verification) about
N−1M−1 · p−2 times, where each execution requires O(p−1) time (assuming
p < (NM)−1/2, mode verification dominates PCS in terms of time complexity).
In total, the time complexity of the algorithm is O(M−1N−1 · p−3). Note that
for M = 1 we obtain RepeatedRho.

The formula above is only valid for p < (NM)−0.5 or M < p−2N−1. Oth-
erwise, we can utilize only M = p−2N−1 memory and obtain the essentially
optimal time complexity of O(p−1).

7.4 Mode Detection with Parallel Collision Search over 2Rho

We now assume that M < p−2N−1 (otherwise, we use the previous PCS al-
gorithm to detect the mode with optimal complexity) and extend the 2Rho
algorithm using PCS. This is done by defining a chain structure, computed by
iterating the function g (as defined in Section 5) whose execution is computed
by iterating a particular flavor of f until a collision point is found. Each chain
starts with an arbitrary input to g (which defines a flavor of f) and is termi-
nated at a distinguished point of g. Namely, the distinguished points are defined
on the outputs of g (which are the collision points in f). Once again, we use
Algorithm 4 to test the O(M) collisions of g.

As calculated in Section 5 the probability that the mode y0 will be the col-
lision point in a single run of Rho (an iteration of g) is p′ = p2N . Since the
M chains of g cover about

√
NM distinct collision points, the probability that

two distinct preimages of the mode y0 in g (which are not expected to be dis-
tinguished points) will be covered by the structure is about (

√
NM · p′)2 =

NM ·p′2 = NM ·p4N2 = M ·N3p4 (assuming
√
NM ·p′ < 1 or p2N ·(NM)1/2 < 1,

namely p2N3/2M1/2 < 1). As a result, we repeat the PCS algorithm (and
the mode verification algorithm) M−1 · N−3p−4 times (using distinct flavors
of g). The PCS algorithm requires (NM)1/2 invocations of g, each requir-
ing N1/2 time, namely, N ·M1/2 time in total which dominates the complex-
ity of the mode verification. Overall, the time complexity of the algorithm is
M−1 ·N−3p−4 ·N ·M1/2 = M−1/2 ·N−2p−4.
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The formula above is only valid given that p2N3/2M1/2 < 1 or M < p−4N−3.
Otherwise, we can utilize only M = p−4N−3 (assuming8 p−4N−3 ≥ 1) memory
and obtain time complexity of M−1/2 ·N−2p−4 = p2N3/2 ·N−2p−4 = p−2N−1/2.

We now notice that it is possible to obtain more generic formulas that can be
reused later. Essentially, the analysis of the algorithm depends on three parame-
ters, as follows. The probability that the mode y0 will be the collision point in a
single run of Rho (an iteration of g) is p′ = p2N , which we denote as px1Nx2 for
x1 = 2, x2 = 1 in our case. In addition, each invocation of g requires N1/2 time,
which we denote as Nx3 for x3 = 1/2 in this case. Based on these parameters, we
can redo the analysis above symbolically and obtain that the time complexity
of the algorithm is M−1/2 ·N−2x2−1/2+x3p−2x1 .

This formula is only valid given that M < p−2x1N−2x2−1. Otherwise, we can
utilize only M = p−2x1N−2x2−1 (assuming p−2x1N−2x2−1 ≥ 1) memory and
obtain time complexity of p−x1N−x2+x3 .

7.5 Mode Detection with Parallel Collision Search over 3Rho

We continue to analyze the sequence of algorithms that extend 3Rho using
PCS. The idea is essentially the same as in the extension of 2Rho, where the
difference is the function over which PCS is performed.

Here, PCS is executed over the function h (as defined in Section 6) while
calling Algorithm 4 to test the O(M) collisions points of h.

As calculated in Section 6 the probability that the mode y0 will be the col-
lision point in a single run of g is p′′ = p4N3, which we denote as px1Nx2 for
x1 = 4, x2 = 3. In this case, each invocation of h requires N time, or Nx3 for
x3 = 1.

We now reuse the formulas obtained in Section 7.4 and consider our specific
parameters x1 = 4, x2 = 3, x3 = 1 for the case M < p−2x1N−2x2−1, or M <
p−8N−7 assuming p−8N−7 ≥ 1 or p ≤ N−7/8. This gives time complexity of
M−1/2 · N−2x2−1/2+x3p−2x1 or M−1/2 · N−5.5p−8. Note that for M = 1 we
obtain Algorithm 4Rho.

For M > p−8N−7, we obtain time complexity of p−x1N−x2+x3 = p−4N−2.

Mode Detection with Parallel Collision Search over 4Rho The extension
of PCS over 4Rho does not make sense since the function ` (defined in Section 6)
used for 4Rho is never iterated more than N0.5 times in our algorithms. Hence,
all its iterations can be covered by a single chain of 4Rho and there is no benefit
in using memory in this case.

7.6 Discussion

It is not intuitive to compare the algorithms described above, as their complex-
ities are functions of both p and M . In order to get some intuition regarding

8 When p−4N−3 < 1, the algorithm is not applicable in its current form.
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Probability range Complexity formula Complexity range Algorithm

p ≥ N−0.5 T = p−1 T ≤ N0.5 Rho

N−5/8 ≤ p ≤ N−0.5 T = p−1 N0.5 ≤ T ≤ N5/8 PCS

N−3/4 ≤ p ≤ N−5/8 T = p−3N−5/4 N5/8 ≤ T ≤ N PCS

N−13/16 ≤ p ≤ N−3/4 T = p−2N−1/2 N ≤ T ≤ N9/8 PCS over 2Rho

N−7/8 ≤ p ≤ N−13/16 T = p−4N−17/8 N9/8 ≤ T ≤ N11/8 PCS over 2Rho

N−1 < p ≤ N−7/8 T = p−3N−5/4 N11/8 ≤ T ≤ N7/4 PCS

Table 3. Summary of the best complexities of algorithms for detecting the mode with
M = N1/4
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Fig. 6. Complexities of Our Best Algorithms as a Function of p Given M = N0.25

Memory

their performance, we fix M = N1/4 and summarize the complexity of the best
algorithms for this case as a function of the single parameter p in Table 3. It
is evident from the table that there is a range of p values for which we do not
know how to efficiently exploit the memory. For example, consider p = N−3/4,
where our best algorithm is PCS over 2Rho. However, it is actually a degen-
erate variant of PCS with M = 1 that coincides with the 2Rho algorithm of
Section 6.
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8 Finding Multiple Peaks

We consider a generalization of our basic problem to the case that f is uniformly
distributed except for k peaks. The peaks are denoted by y0, y1, . . . , yk−1, their
associated probabilities are denoted by p0, p1, . . . , pk−1, and our goal is to find
all of them.9

The simplest case is one in which there are two peaks of equal height p0 = p1.
By running the NestedRho algorithm several times with different flavors of f ,
we expect to find each one of y0 and y1 about half the time, and thus there is
no need to modify anything.

The next case to consider is one in which there are only two peaks but
p0 > p1. Due to the high power of p in our formulas, even moderate differences
in the peak probabilities are amplified by the NestedRho algorithm to huge
differences in the probability of finding the two peaks. For example, if p0 is a
thousand times bigger than p1, and we run the algorithm multiple times, then
we expect to find y1 only in one in a million runs when we use 1Rho, and only
in one in a trillion runs when we use 2Rho. Clearly, we have to reduce the
attractiveness of y0 before we have a realistic chance of noticing y1.

The simplest way to neutralize the first peak we find (which is likely to be y0),
is to scatter its preimages so that they will point to different targets. Consider
a modified function f ′ which is defined as f for any x for which f(x) 6= y0, and
as f(x) + x for any x for which f(x) = y0. In f ′, y0 is no longer a peak, but y1
remains at its original height. By applying NestedRho to f ′, we will find y1
with high probability.

This can be easily generalized to a sequence of k peaks, provided that we
have at least O(k) memory to store all the peaks. Our algorithm is likely to
discover them sequentially in decreasing order of probability, and we can decide
to stop at any point when we run out of space or time.

The most general case is one in which we have a non-uniform distribution
with no sharp peaks. In this case the output of the NestedRho algorithm has
a preference to pick y values with higher probabilities, but may pick a lower
probability y if there are many such values. In fact, the probability that our
algorithm will pick a particular y is proportional to some power of its original
probability, which depends on which nesting level we use (the detailed analysis
is left for future work).

9 Conclusions and Open Problems

In this paper we introduced the generic problem of finding needles in haystacks,
developed several novel techniques for its solution, and demonstrated the sur-

9 In [1] a related problem is studied: Let f be a hash function. Assume that its range is
smaller than its domain and that it is not balanced (i.e., not all outputs appear with
the same probability). This work studies the effect of this irregularity on the com-
plexity of the birthday collision search. In contrast, our work studies the algorithmic
aspects of finding the collision (in a memory-efficient manner).
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prising complexity of its complexity function. Many problems remain open, such
as:

1. Find non-trivial lower bounds on the time complexity of the problem.
2. Find better ways to exploit the available memory, beyond using PCS.
3. Extend the model to deal with other types of needles.
4. Find additional applications of the new NestedRho technique.
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A Detailed Complexity Analysis of the Rho Approach
for p > 1/

√
N

Consider the sequence x, f(x), f2(x), . . .. If we limit the length of the sequence
by 4/p “random” steps, then with high enough probability, we expect to en-
counter y0 twice. On the other hand, the probability that a “random” value is
encountered twice is low, since 4/p is significantly smaller than the “birthday
bound”

√
N . Hence, y0 is expected to be the first repeated point, and hence, the

output.
Formally, let A be a “truncated” Rho algorithm:10

1. Choose x ∈ [N ] uniformly at random.
2. Run Rho algorithm that computes the chain x, f(x), . . . , f4/p(x) (or shorter

chain if a collision is found before).
(a) If a collision is detected, denote its value by y, and run the verification

algorithm on y.
(b) If no collision is detected, output “FAIL”.

Proposition 2. Assume that Algorithm A is run in the case p ≥ 16/
√
N . Then

Pr[Output(A) = y0] ≥ 0.69.

Proof. Throughout the proof we consider the sequence L = (x, f(x), . . . , fµ+λ(x))
of values encountered by the algorithm until the first repetition (inclusive) or
until the process terminates (if a repetition was not encountered). By the def-
inition of f , this sequence is distributed like an independent sampling of µ + λ
elements of the distribution of range(f). Note that if a meeting point is detected
at step t, this implies that the sequence x, f(x), . . . , f2t(x) contains a repetition,
and thus, |L| ≤ 8/p ≤

√
N/2.

First, we bound from above Pr[∃y′ 6= y0 : Output(A) = y′], i.e., the prob-
ability that some y′ 6= y0 appears twice in L. Consider all values non-equal to
y0 that appear in L. Since |L| ≤

√
N/2, the probability that they are mutually

different is at least

(N − 1)(N − 2) · · · (N − |L|)
(N − 1)|L|

≥
(
N − |L|
N

)|L|
≥
(
N −

√
N/2

N

)√N/2
≈ e−1/4.

Hence, Pr[∃y′ 6= y0 : Output(A) = y′] ≤ 1− e−1/4 ≈ 0.22.

10 The reader may think of the algorithm as Floyd’s one, but the same analysis holds
for any “reasonable” memoryless detection algorithm.
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Second, we bound from above Pr[Output(A) = FAIL], i.e., the probability
that neither y0 nor any other value appears twice in L. Note that in such a case,
|L| = 4/p since no repetition is encountered. By the definition of f , for any k,
Pr[fk(x) = y0] = p. Hence, the number of occurrences of y0 in L is distributed
like a Bin(|L|, p) = Bin(4/p, p) random variable, that can be approximated by
a Poi(|L|p) = Poi(4) random variable. Hence,

Pr[Output(A) = FAIL] ≤ Pr[Poi(4) ≤ 1] = e−4 + 4e−4 ≈ 0.09.

Combining the two bounds, we obtain

Pr[Output(A) = y0] = 1− Pr[∃y′ 6= y0 : Output(A) = y′]− Pr[Output(A) = FAIL]

≥ 1− 0.22− 0.09 = 0.69,

as asserted.

�

B The Parallel Collision Search Algorithm
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Algorithm 6 Parallel Collision Search

Initialize an empty table of M entries.
for i = 1 to M do

Pick at random a point xi ∈ [N ].
Set tmp← xi, len← 0.
while f(tmp) is not a distinguished point do

tmp← f(tmp).
Increment len.

end while
tmp← f(tmp).
Increment len.
Store in the table the pair (tmp, xi, len).

end for
for All collisions ((pi, xi, leni), (pj , xj , lenj)) s.t. pi = pj do

Set tmp1 ← xi, tmp2 ← xj .
if len1 > len2 then

for i = 1 to len1 − len2 do
tmp1 ← f(tmp1)

end for
end if
if len2 > len1 then

for i = 1 to len2 − len1 do
tmp2 ← f(tmp2)

end for
end if
while f(tmp1) 6= f(tmp2) do

tmp1 ← f(tmp1), tmp2 ← f(tmp2)
end while
print tmp1, tmp2.

end for
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