
Subspace Trail Cryptanalysis and its
Applications to AES

Lorenzo Grassi1, Christian Rechberger1,3 and Sondre Rønjom2

1 IAIK, Graz University of Technology, Austria
2 Nasjonal sikkerhetsmyndighet, Norway

3 DTU Compute, DTU, Denmark
{firstname.lastname}@iaik.tugraz.at, sondrer@gmail.com

Abstract. We introduce subspace trail cryptanalysis, a generalization
of invariant subspace cryptanalysis. With this more generic treatment of
subspaces we do no longer rely on specific choices of round constants or
subkeys, and the resulting method is as such a potentially more powerful
attack vector.
We provide a general framework for subspace trail cryptanalysis of AES-
like Substitution-Permutation Network (SPN) constructions. Interest-
ingly, subspace trail cryptanalysis in fact includes earlier techniques based
on impossible or truncated differential cryptanalysis and the integral
property as special cases.
Choosing AES-128 as the perhaps most studied cipher, we describe dis-
tinguishers up to 5 round-reduced AES with a single unknown key. As
the perhaps most interesting concrete result, we are able to describe the
first 5-round distinguisher for (all versions of) AES that does not re-
quire any knowledge about subkeys and needs much less than the full
codebook.

Keywords: Block cipher - AES - Invariant Subspace Attack - Subspace Trail
Cryptanalysis - Secret-Key Distinguisher - Truncated Differential Cryptanalysis
- Zero-Sum - Impossible Differential Cryptanalysis

1 Introduction

In this paper we present a new cryptanalysis technique that adds to the toolbox
of techniques at the disposal for cryptanalysts to evaluate the security of designs
in symmetric cryptography. Our main contribution is the analysis of subspaces in
SPNs (substitution-permutation networks) constructions, which can be seen as a
generalization of the invariant subspace attack [15, 16]. While invariant subspace
cryptanalysis relies on iterative subspace structures, our analysis focuses on trails
of different subspaces. To clarify the presentation, we focus on the well-known
block cipher AES-128. In particular, we study the propagation of subspaces
trough various building blocks like S-Box and linear layers. In that sense it
has similarities with SASAS cryptanalysis [6], but also with Evertse’s linear
structures [12].

If a cryptographic primitive succumbs to particular non-random behavior, it
might be possible to distinguish it from what one would expect from sufficiently
generic behavior. Invariant subspace cryptanalysis is a cryptanalytic technique
that is extremely powerful for certain block ciphers. If there exists invariant
subspace for the round function and for the key schedule, then this technique
can be used to mount fast distinguishers and key recovery. This technique was
introduced in [15] at CRYPTO 2011 for the cryptanalysis of PRINTcipher. Its
efficiency has also been demonstrated on on the CAESAR candidate iSCREAM,
on the LS-design Robin and on the lightweight cipher Zorro in [16], and on the
block cipher Midori64 [13]. However, if such symmetries do not exist or are not
found, invariant subspace cryptanalysis is not applicable.

In this paper we investigate the behavior of subspaces in keyed permutations.
At a high level, we fix subspaces of the plaintext that maintain predictable prop-
erties after repeated applications of a key-dependent round function. First we
identify what we call subspace trails which is essentially a coset of a plaintext sub-
space that encrypts to proper subspaces of the state space over several rounds.
The trails are formed by the affine hulls of the intermediate ciphertexts. Subspace
trails typically consist of subspaces that increase in dimension for each round,
meaning that if the plaintext subspace has low dimension in comparison to the
block length, the subsequent subspaces dimension increases for each round. For
byte-based ciphers (like AES), a quick and dirty test for subspaces is to compute
the affine hulls of a n-round encryption (for a certain n ≥ 1) of all values for each
byte and then identify these subspaces. For bit-based ciphers, it is more impor-
tant to determine what was coined a nucleon in [16], that is candidate plaintext
subspaces that seem to fit symmetries in the round function. Trails of affine hulls
of the intermediate ciphertexts that grow slowly in dimension for each round,
typically reflect slow diffusion in the round function. This is often the case for
ciphers that iterate simple round functions many times. In this paper we will
focus on what we call constant dimensional subspace trails, which are trails of
cosets that preserve dimension over several rounds. We show how to connect
two or more trails and form longer trails that preserve predictable structure. In
particular, when we connect two trails we typically seek to describe an output
coset of a first trail in terms of cosets of the input coset for the second trail.

We consider the introduction of the generalization of the known distinguishers
from 1 up to 4 rounds using the subspace trails, and the 5-rounds distinguisher
of AES in the secret-key setting as the most important contributions of the
paper. It is important to note that well known techniques such as impossible
or truncated differentials as well as integral properties can be seen as special
cases of subspace trails. We discuss these links in Section 5. The approach to the
generalization from invariant subspace cryptanalysis to subspace trail is outlined
in Sect. 2. In Sect. 3 we give technical preliminaries with respect to AES-like
permutations, and in Sect. 4 we state central theorems related to subspace trails
and their intersections.

When concretely applying it to AES, the perhaps most widely used and
analyzed cipher, we describe in Sect. 5 distinguishers of round-reduced AES with
a single unknown key up to 4 rounds, which correspond to truncated differential,
impossible differential, and integral distinguishers. Finally, in Sect. 6, we are able
to present the first 5-rounds secret key distinguisher of AES which needs much
less than the full codebooks (it has a data complexity of 298.2 texts). However,
before we start with these sections, we discuss our concrete results about the
distinguishers in the unknown (secret)-key model.

1.1 Secret-Key Distinguishers for AES

In the usual security model, the adversary is given a black box (oracle) access to
an instance of the encryption function associated with a random secret key and
its inverse. The goal is to find the key or more generally to efficiently distinguish
the encryption function from a random permutation.

In Table 1.1 we summarize the secret-key distinguishers for 1 up to 5 rounds.
Such results often serve as a basis for key recovery attacks in the most relevant
single-key setting. The subspace trail cryptanalysis includes as special cases and
can be viewed as a generalization of differential cryptanalysis techniques (like
truncated or impossible differentials) and integral cryptanalysis.

About the 5-round secret key distinguishers for AES, there exist some distin-
guishers for AES-192 and AES-256 [11], while the first distinguisher for AES-128
has been proposed recently in CRYPTO 2016. However, it requires the whole
input-output space to work. Thus, our proposed secret key distinguisher of AES
is the first one that requires (much) less than the whole input-output space.

Relation to Differential and Integral Distinguishers. The 1-, 2- and
3-round distinguishers exploit the same well-known structural properties that
also truncated differentials exhibit. Using a different notation (namely the AES
“Super S-Box”), 2-rounds subspace trails were already discovered and investi-
gated in [9] and [10], with the objective to understand how the components of the
AES interact. In these papers, authors study the probability of differentials and
characteristics over 2 rounds of AES, giving bound on the maximum differential
probability (which can be used to derive bounds on the expected differential
probability of four-round differentials). Starting from such a 2-rounds subspace
trail, in the paper we present competitive key-recovery attacks on 2-, 3- and
4-rounds of AES.

The first key-recovery attacks on round-reduced AES were obtained by in-
troducing an attack vector that uses a 3-round distinguisher to attack up to
6 rounds of the cipher that goes back to the block cipher Square [7] and later
became known as integral attacks.

In the meanwhile the most recent attacks achieve 7 rounds (using either
impossible differentials or meet-in-the-middle techniques) with complexity sig-
nificantly faster than brute-force search [18, 11]. The impossible differential dis-
tinguishers used for those attacks are up to 4 rounds. Our 4-round subspace

Table 1. AES secret-key distinguishers, independent of key schedule. Data Complexity
is measured in minimum number of chosen plaintexts CP or/and chosen ciphertexts CC
(which is equal for the random and the subspace case) which are needed to distinguish
the two cases with high probability (usually higher than 95%). The case in which the
MixColumns operation is omitted in the last round is denoted by “r.5 rounds”, that is
r full rounds and the final round.

Rounds Data CP CC Property Reference

1 - 1.5 - 2 2 × × Subspace Trail Sect. 5.1

1 - 1.5 - 2 2 × × Truncated Differential [9]

2.5 - 3 20 ' 24.3 × × Subspace Trail Sect. 5.2

2.5 - 3 20 ' 24.3 × × Truncated Differential [5]

2.5 28 × × Integral [7]

3 28 × Subspace Trail Sect. 5.3

3.5 - 4 216.25 × × Impossible Differential [3]

3.5 - 4 216.25 × × Subspace Trail Sect. 5.3

3.5 232 × × Integral [7]

4 232 × Subspace Trail Sect. 5.3

4.5 - 5 298.2 × Subspace Trail Sect. 6

5 2128 × Integral [19]

trail distinguisher uses the same structural properties exploited by impossible
differential distinguishers.

In [19], authors present the first 5-rounds secret key distinguisher for AES-
128. First they construct several types of 5-rounds zero-correlation linear hulls for
AES-like ciphers, and then, using the link between integrals and zero correlation
linear hulls [20], they are able to construct an integral distinguisher on 5 rounds.
However, this distinguisher requires all the input-output space to work, that is
the data complexity is of 2128 texts, or alternatively some knowleduge about
subkey bits. Moreover, this distinguisher is constructed in the chosen-ciphertext
mode, and only in the case in which MixColumns in the last round is not omitted.
For this reason, authors claim that “since the 5-round distinguisher for AES can
only be constructed in the chosen-ciphertexts mode, the security margin for the
round-reduced AES under the chosen-plaintext attack may be different from that
under the chosen-ciphertext attack”.

Our 5-rounds secret key distinguisher presented in Sect. 6 is constructed in
the chosen-plaintexts setting, extending the impossible 4-rounds distinguisher
presented in Sect. 5.3 at the beginning. Our distinguisher works independent of
the presence of the last MixColumns operation. Hence it provides a counterex-
ample to the conjecture made in [19], i.e. it seems there is no clear evidence that
chosen-ciphertext security is less than chosen-plaintext security in AES. More-
over, the data complexity is only 298.2 chosen plaintexts instead of 2128.

The subspace trail approach is mostly providing an alternative description of
known properties under the umbrella of a single framework. However, there are
other recent techniques that this approach does not seem to include. Recently
integral distinguishers have been generalized by Todo [23] and in there also
applied to AES-like primitives. Distinguishers for AES itself were not improved,
but clear progress e.g. with MISTY cryptanalysis was demonstrated [22]. Todo’s
generalization can take S-Box properties into account, on the other hand the
property exploited is still a type of zero-sum. Thus it complements our approach
which is independent of the S-Box, but exploits properties more subtle than
zero-sums.

Polytopic cryptanalysis, introduced by Tiessen in [21], is a generalization
of differential cryptanalysis, and provides another type of distinguisher. While
standard differential cryptanalysis uses statistical dependencies between the dif-
ference of two plaintexts and the difference of the respective two ciphertexts
to attack a cipher, polytopic cryptanalysis considers interdependencies between
larger sets of texts as they traverse through the cipher. Subspace trails do not
seem to capture this type of distinguisher.

1.2 Practical Results

We practically verified the secret-key distinguishers using a C implementation1

for 1 up to 4 rounds, and we have found that the practical results are consistent
with our theory.

2 Subspace Trails and Distinguishers

In this section, we recall the invariant subspace cryptanalysis of [15, 16] (depicted
in Fig. 1), and then we introduce the concept of subspace trails (Fig. 2).

Invariant subspace cryptanalysis can be a powerful cryptanalytic tool. Let
F denote a round function in an iterative block cipher and assume there exists
a coset2 V ⊕ a such that F (V ⊕ a) = V ⊕ a′. Then if the round key K resides
in V ⊕ (a ⊕ a′), it follows that F (V ⊕ a) ⊕K = V ⊕ a and we get an iterative
invariant subspace.

A slightly more powerful property can occur if for each a, there exists unique
b such that FK(V ⊕ a) := F (V ⊕ a) ⊕ K = V ⊕ b meaning that the subspace
property is invariant, but not the initial coset. That is, for each initial coset
V ⊕ a, its image under the application of FK is another coset of V , in general
different from the initial one. Equivalently, the initial coset V ⊕a is mapped into
another coset V ⊕ b, where b depends on a and on the round key. In this paper,

1 The source code of the distinguishers is available on https://github.com/

Krypto-iaik/Distinguishers_AES.
2 For completeness, we recall the definition of coset, largely used in the paper. Let W

a vector space and V a subspace of W . A coset of V in W is a subset of the form
V ⊕ a = {v ⊕ a | ∀v ∈ V }.

F

V ⊕ a V ⊕ a′

K ∈ V ⊕ (a⊕ a′)

V ⊕ a

Fig. 1. Invariant subspaces.

we generalize this concept and search for trails of subspaces. In the simplest case
we look for pairs of subspaces V1 and V2 such that

F (V1 ⊕ a)⊕K = V2 ⊕ b

holds for any constant a, that is for each a there exists unique b for which the
previous equivalence is satisfied.

F

V1 ⊕ a V2 ⊕ a′

K

V2 ⊕ b

Fig. 2. Trail of subspaces.

A subspace trail of length r is then simply a set of r+1 subspaces (V1, V2, . . . , Vr+1)
that satisfy

F (Vi ⊕ ai)⊕K ⊆ Vi+1 ⊕ ai+1.

When the relation holds with equality, the trail is called a constant-dimensional
subspace trail. In this case, if we let F tK denote the application of t rounds with
fixed keys, it means that

F tK(V1 ⊕ a1) = Vt+1 ⊕ at+1.

Definition 1. Let (V1, V2, ..., Vr+1) denote a set of r+1 subspaces with dim(Vi) ≤
dim(Vi+1). If for each i = 1, ..., r and for each ai ∈ V ⊥i , there exist (unique)
ai+1 ∈ V ⊥i+1 such that

FK(Vi ⊕ ai) ⊆ Vi+1 ⊕ ai+1,

then (V1, V2, ..., Vr+1) is subspace trail of length r for the function FK . If all the
previous relations hold with equality, the trail is called a constant-dimensional
subspace trail.

Note that ai+1 depends on ai and on the secret round key. With the aim to
simplify the notation, we use simply ai+1 instead of ai+1(ai, k).

With subspace structures at hand, we might ask questions about the proba-
bility that ciphertexts or sums of ciphertexts reside in certain subspaces, given
that the plaintexts obey certain subspace structure (e.g. their sum is also in a
fixed subspace). For AES-type block ciphers, we are typically not able to con-
struct very long trails. In this case we can connect trails together and depending
on the intersection properties of the endpoints of the trails, get predictable sub-
space properties for longer trails. However, in general these are not necessarily
simple constant dimensional trails. In the following we describe subspace trail
cryptanalysis and later on distinguishers based on it. For sake of concreteness
and better exposition we focus on the case of AES. We’d like to emphasize that
the properties described here extend almost immediately to any AES-like cipher
with little modifications.

Before to continue, we give the following definition of equivalence cosets of a
generic subspace X:

Definition 2. Let X a generic subspace, and let X ⊕ a and X ⊕ b two different
cosets of X (that is a 6= b). We say that they are equivalent under an “equivalence
relationship” (that is X ⊕ a ∼ X ⊕ b) if and only if a⊕ b ∈ X:

X ⊕ a ∼ X ⊕ b if and only if a⊕ b ∈ X.

3 Preliminaries - Description of AES

The Advanced Encryption Standard [8] is a Substitution-Permutation network
that supports key size of 128, 192 and 256 bits. The 128-bit plaintext initializes
the internal state as a 4 × 4 matrix of bytes as values in the finite fields F256,
defined using the irreducible polynomial x8 + x4 + x3 + x + 1. Depending on
the version of AES, Nr round are applied to the state: Nr = 10 for AES-128,
Nr = 12 for AES-192 and Nr = 14 for AES-256. An AES round applies four
operations to the state matrix:

– SubBytes (S-Box) - applying the same 8-bit to 8-bit invertible S-Box 16
times in parallel on each byte of the state (it provides the non-linearity in
the cipher);

– ShiftRows (SR) - cyclic shift of each row (i-th row is shifted by i bytes to
the left);

– MixColumns (MC) - multiplication of each column by a constant 4 × 4
invertible matrix over the field GF (28) (it and ShiftRows provide diffusion
in the cipher3);

– AddRoundKey (ARK) - XORing the state with a 128-bit subkey.

One round of AES can be described as R(x) = K ⊕MC ◦ SR ◦ S-Box(x). In
the first round an additional AddRoundKey operation (using a whitening key)
is applied, and in the last round the MixColumns operation is omitted.

3 ShiftRows makes sure column values are spread and MixColumns makes sure each
column is mixed.

As we consider only AES with 128-bit key, we shall describe only its key
schedule algorithm. The key schedule of AES-128 takes the user key and trans-
forms it into 11 subkeys of 128 bits each. The subkey array is denoted by
W [0, ..., 43], where each word of W [·] consists of 32 bits and where the first
4 words of W [·] are loaded with the user secret key. The remaining words of W [·]
are updated according to the following rule:

– if i ≡ 0 mod 4, then W [i] = W [i − 4] ⊕ RotByte(S-Box(W [i − 1])) ⊕
RCON [i/4],

– otherwise, W [i] = W [i− 1]⊕W [i− 4],

where i = 4, ..., 43, RotByte rotates the word by 8 bits to the left and RCON [·]
is an array of predetermined constant.

The Notation Used in the Paper Let x denote a plaintext, a ciphertext,
an intermediate state or a key. Then xi,j with i, j ∈ {0, ..., 3} denotes the byte
in the row i and in the column j. We denote by kr the key of the r-th round,
where k0 is the secret key. If only the key of the final round is used, then we
denote it by k to simplify the notation. Finally, we denote by R one round of
AES4, while we denote i rounds of AES by R(i). If the MixColumns operation is
omitted in the last round, then we denote it by Rf . As last thing, in the paper
we often use the term “collision” when two texts belong to the same coset of a
given subspace X.

3.1 Subspaces through 1-Round of AES

For a vector space V and a function F on F4×4
28 , let F (V) = {F (v) | v ∈ V } (as

usual). For a subset I ⊆ {1, 2, . . . , n} and a subset of vector spaces {G1, G2, . . . , Gn},
we define GI as GI :=

⊕
i∈I Gi.

In the following we define three families of subspaces essential to AES; the
diagonal spaces DI , the column spaces CI and the mixed spacesMI . Since AES
operates on 4×4 matrices over F28 , then we work with vectors and vector spaces
over F4×4

28 (that is, all the subspaces considered in the paper are subspace over

F4×4
28). Moreover, we denote with E = {e0,0, ..., e3,3} the unit vectors of F4×4

28

(e.g. ei,j has a single 1 in row i and column j).

Definition 3. (Diagonal spaces) The diagonal spaces Di are defined as

Di =< e0,i, e1,i+1, e2,i+2, e3,i+3 >

where the index i + j is computed modulo 4. For instance, the diagonal space
D0 corresponds to the symbolic matrix

D0 =

{
x1 0 0 0
0 x2 0 0
0 0 x3 0
0 0 0 x4

 ∣∣∣∣∀x1, x2, x3, x4 ∈ F28

}
.

4 Sometimes we use the notation RK instead of R to highlight that the round key is
K.

Definition 4. (Column spaces) The column spaces Ci are defined as

Ci =< e0,i, e1,i, e2,i, e3,i > .

For instance, the column space C0 corresponds to the symbolic matrix

C0 =

{
x1 0 0 0
x2 0 0 0
x3 0 0 0
x4 0 0 0

 ∣∣∣∣∀x1, x2, x3, x4 ∈ F28

}
.

The last type of subspaces we define are called mixed subspaces.

Definition 5. (Mixed spaces) The i-th mixed subspace Mi is defined as

Mi = MC ◦ SR(Ci).

These subspaces are formed by applying ShiftRows and then MixColumns to a
column space. For instance, M0 corresponds to symbolic matrix

M0 =

{
α · x1 x4 x3 (α+ 1) · x2
x1 x4 (α+ 1) · x3 α · x2
x1 (α+ 1) · x4 α · x3 x2

(α+ 1) · x1 α · x4 x3 x2

 ∣∣∣∣ ∀x1, x2, x3, x4 ∈ F28

}
.

Definition 6. Given I ⊆ {0, 1, 2, 3} where 0 < |I| ≤ 3, we define:

CI =
⊕
i∈I
Ci, DI =

⊕
i∈I
Di, MI =

⊕
i∈I
Mi.

The dimension of any of the spaces DI , CI and MI is 4 · |I|. The essential sub-
spaces in AES are built from diagonal spaces Di, column spaces Cj and mixed
spacesMk. There are four of each of these spaces, and direct sums of subsets of
these result in higher-dimensional diagonal, column and mixed spaces.

It is easy to see that SubBytes maps cosets of diagonal and column spaces
to cosets of diagonal and column spaces. Since SubBytes operates on each byte
individually and it is bijective, and since the bytes of column and diagonal spaces
are independent, its only effect is to change the coset. It is also easy to see that
ShiftRows maps a coset of a diagonal space to a coset of a column space, since
diagonals are mapped to columns. The effect of MixColumns to a columns space
CI ⊕ a is simply to change the coset, since applying the MixColumns matrix to
a column space Ci has no effect.

Lemma 1. Let I ⊆ {0, 1, 2, 3} where 0 < |I| ≤ 3 and a ∈ D⊥I . There exists
unique b ∈ C⊥I such that

RK(DI ⊕ a) = CI ⊕ b.

Note that b is unique with respect to the equivalence relationship defined before
(analogous in the following).

S-Box

DI ⊕ a DI ⊕ b

SR

CI ⊕ c

MC

K

CI ⊕ (d⊕K)

S-Box

CI ⊕ a CI ⊕ b

SR

SR(CI)⊕ c

MC

K

MI ⊕ (d⊕K)

Fig. 3. The essential subspaces in the AES round.

Proof. As we have just seen, since SubBytes is bijective and operates on each
byte independently, it simply changes the coset DI ⊕ a to DI ⊕ a′, where a′i,j =
S-Box(ai,j) for each i, j = 0, ..., 3. ShiftRows simply moves the bytes of DI ⊕ a′
to a column space CI ⊕ b

′
, where b′ = SR(a′). MixColumns affects only the

constant columns, thus MC(CI ⊕ b
′
) = CI ⊕MC(b′) = CI ⊕ b

′′
. Key addition

then changes the coset to CI ⊕ b. ut

Lemma 2. Let I ⊆ {0, 1, 2, 3} where 0 < |I| ≤ 3 and a ∈ C⊥I . There exists
unique b ∈M⊥I such that

RK(CI ⊕ a) =MI ⊕ b.

Proof. By definition 5, the mixed spaces MI are defined as the application of
the linear layer in AES to column spaces CI . Since the SubBytes layer only
moves a coset CI ⊕ a to a coset CI ⊕ a′, it follows that for any fixed coset CI ⊕ a,
there exists b ∈ M⊥I such that MC ◦ SR ◦ SB(CI ⊕ a) ⊕ K = MI ⊕ b, where
b = MC ◦ SR(a′)⊕K and a′i,j = S-Box(ai,j) for each i, j = 0, ..., 3. ut

This simply states that a coset of a sum of diagonal spaces DI encrypt to a
coset of a corresponding sum of column spaces CI through one round. Similarly,
a coset of a sum of column spaces CI encrypts to a coset of the corresponding
sum of mixed spaces MI over one round.

4 Intersecting AES Subspaces

We continue with useful properties of AES subspaces. In this section we show the
following: diagonal spaces and column spaces have non-trivial intersection, col-
umn spaces and mixed spaces have non-trivial intersection, but diagonal spaces
and mixed spaces have only trivial intersection. This will be useful for creating
subspace trails covering a higher number of rounds.

Lemma 3. Di ∩ Cj =< ej+i,j >.

Proof. Di space corresponds to a symbolic matrix with variables along the i-th
diagonal, while Cj has variables in the j-th column. Any diagonal and column
meets in exactly one byte, precisely in row j + i and column j. ut

It follows that DI ∩CJ =< ej+i,j | i ∈ I, j ∈ J > where j + i is taken modulo
4. In particular, the intersection has dimension |I| · |J |.

Lemma 4. Ci ∩Mj = MC ◦ SR(Di ∩ Cj) =< MC(ej+i,i) > .

Proof. We have that MC◦SR(Di) = Ci and by definition 5,Mi = MC◦SR(Ci).
By Lemma 3, Di ∩ Cj =< ej+i,j >. Thus it follows that < MC(ej+i,j) >=
MC ◦ SR(Di) ∩MC ◦ SR(Cj) = Di ∩Mj . Finally, since SR(er,c) = er,c−r, we
obtain that < MC ◦ SR(ej+i,j) >=< MC(ej+i,i) > . ut

Thus, for two subspaces CI and MJ for non-empty subsets I and J of
{0, 1, 2, 3}, it follows that CI ∩ MJ =< MC(ej+i,i) | i ∈ I, j ∈ J > (where
i + j is taken modulo 4) which has dimension |I| · |J |. While the spaces DI
and CJ , and CI andMJ intersect non-trivially, the spaces DI andMJ intersect
trivially.

Lemma 5. Di ∩Mj = {0} for all i and j.

Proof. A basis for Mj is given by:

Mj =< MC(e0,j),MC(e1,j−1),MC(e2,j−2),MC(e3,j−3) >,

while a basis for Di is given by Di =< e0,i, e1,i+1, e2,i+2, e3,i+3 >, where in both
cases the indexes are taken modulo 4.

Suppose by contradiction that Di and Mj has a nonzero intersection. This
implies that there exist xk and yk for k = 0, ..., 3 such that

3⊕
k=0

xk · < ek,i+k > ⊕
3⊕
k=0

yk · < MC(ek,j−k) >=

=

3⊕
k=0

[
xk−i · < ek−i,k > ⊕ yk+j · < MC(ek+j,k) >

]
= 0. (1)

has a nontrivial solution. This is clearly impossible since < ek−i,k > and <
MC(ek+j,k) > are linearly independent for each k = 0, ..., 3. Thus, Di and Mj

intersect only in zero. ut

As long as |I|+ |J | ≤ 4, we have that any combinations of subspaces DI and
MJ only intersect in the zero vector. Indeed, consider the sum over k defined
in eq. (1). If |I| + |J | ≤ 4, then for each k (i.e. for each column) there are at
most four terms. Among them, there is at least one term of the form < e·,k >
and at least one of the form < MC(e·,k) >. Thus, equation (1) has only trivial
solutions. Instead, note that this is not true if |I|+ |J | > 4. Indeed, in this case

for each k (i.e. for each column), the equation (1) has at least 5 terms. Since
there are only 4 rows, it is always possible to find non trivial solutions5.

Lemma 6. DI ∩MJ = {0} for all I and J such that |I|+ |J | ≤ 4.

5 Subspace Distinguishers for AES with Secret
Round-Keys

In this section we describe a series of subspace trails for AES. Additionally we
also describe how these trails can be used to formulate ways to detect non-
randomness, often colloquially referred to a distinguishers. All distinguishers
in this section, ranging from two up to four rounds, are independent of the
round keys and are formulated without the knowledge of the key. From now on,
we assume that any subspaces DI , CI or MI has nonzero dimension (that is,
I ⊆ {0, 1, 2, 3} is not empty). Moreover, when we intersect two subspaces DI
and MJ , where both I and J are assumed non-empty, we always assume that
the sum of their dimensions is not larger than 16. Typically, the sum of their
dimensions will be exactly 16.

5.1 2-Rounds Subspace Distinguisher for AES

It follows directly from Section 3.1 that plaintexts from diagonal spaces are
encrypted over two rounds to ciphertexts in mixed subspaces. Let R(2) denote
two AES rounds with fixed random round keys K = K1,K2. Let I ⊆ {1, 2, 3, 4}
nonzero and fixed. By Lemma 1, a coset DI ⊕a of dimension 4 · |I| encrypts to a
coset RK1

(DI ⊕ a) = CI ⊕ a′ over one round. By Lemma 2, there exists unique b
(relative to the round keys and the constant a′) such that RK2(CI⊕a′) =MI⊕b.
By combining the two rounds, we get that for each a ∈ D⊥I , there exists unique
b ∈M⊥I such that R(2)(DI ⊕ a) =MI ⊕ b.

Consequently, we get the following properties. If two plaintexts belong to the
same coset of a diagonal space DI , then their encryption belongs to the same
coset of a mixed space MI . In particular, for a two round encryption R2 with
fixed keys, we have that

Pr(R(2)(u)⊕R(2)(v) ∈MI |u⊕ v ∈ DI) = 1 (2)

for nonzero set I of {0, 1, 2, 3} (i.e. |I| 6= 0) and where u 6= v. The opposite
follows directly; if two plaintexts belong to different cosets of a diagonal space

5 For example, the first column (i.e. k = 0) of the intersection D0,1,2 ∩M0,1 is equal
to:

(D0,1,2 ∩M0,1)col(0) ≡MC

(
x

(α+ 1) · x
0
0

)≡


(α2 + α+ 1) · x
(α2 + α+ 1) · x

α · x
0

 ∀x ∈ F28 .

DI , then their encryption belongs to different cosets of a mixed space WI . In
other words,

Pr(R(2)(u)⊕R(2)(v) ∈MI |u⊕ v /∈ DI) = 0.

R

DI ⊕ a CI ⊕ b

K

CI ⊕ (b⊕K)

R

MI ⊕ c

Fig. 4. Subspaces over two rounds.

These properties are used to set up the distinguisher for two rounds. However,
other interesting properties hold when one considers two rounds of encryption. In
particular, by Lemma 6, the intersection between a mixed space MI space and
a diagonal space DJ space contains only zero, if |I|+ |J | is less than 4. Thus, if
two plaintexts are in the same coset ofMI , they must belong to different cosets
of DJ . In other words, for DI and DJ such that dim(DI) + dim(DJ) ≤ 16 (and
|I|, |J | 6= 0)

Pr(R(2)(u)⊕R(2)(v) ∈ DJ |u⊕ v ∈ DI) = 0 (3)

where u 6= v, since R(2)(u) and R(2)(v) are both in the same coset of MI and
thus are always in different cosets of DJ . We can get similar results for the mixed
spaces MI . In particular, if two plaintexts belong to the same coset of a mixed
space MI , then their two round encryptions belong to different cosets of any
mixed space MJ . Indeed, two (different) elements of MI belong to different
cosets of DJ (since MI ∩ DJ = {0}). Since R(2)(u)⊕R(2)(v) ∈ MJ if and only
if u ⊕ v ∈ DJ , we obtain the desired result. Thus, for MI and MJ such that
0 < dim(MI) + dim(MJ) ≤ 16, we have that

Pr(R(2)(u)⊕R(2)(v) ∈MJ |u⊕ v ∈MI) = 0 (4)

if u 6= v. We’ll use these probabilities to set up an efficient 4 rounds distinguisher.

A Concrete Distinguisher for 2 Rounds. As we have seen, if two plain-
texts belong to the same coset of DI , then they belong to the same coset ofMI

with probability 1 after two rounds - for each I. Consider instead two random
texts. By simple computation, the probability that there exists I such that they
belong to the same cosets of MI is

(
4
|I|
)
· (28)−16+4·|I| (note that there are

(
4
|I|
)

different subspaces MI). Setting |I| = 1, this probability is equal to 2−94.
Thus, one pair of plaintexts (that is 2 texts) is sufficient to distinguish the

random case from the other one. Indeed, on average in the random case we expect
2−94 · 2 = 2−93 ' 0 collisions (when two elements belong to the same coset of

MI , we say that there is a “collision”), while this number is equal to 1 (with
probability 1) in the other case. The cost of this distinguisher is hence 2 texts.
An equivalent distinguisher over 2 rounds was already introduced in [10], where
authors investigated how the components of the AES interact over 2 rounds.

Data: Pair of texts c1 and c2.
Result: i such that c1 ⊕ c2 ∈Mi, −1 otherwise.
c←MC−1(c1 ⊕ c2);
for i from 0 to 3 do

if c(i+1)%4,0 = 0 AND c(i+2)%4,0 = 0 AND c(i+3)%4,0 = 0
AND ci,1 = 0 AND c(i+1)%4,1 = 0 AND c(i+2)%4,1 = 0
AND ci,2 = 0 AND c(i+1)%4,2 = 0 AND c(i+3)%4,2 = 0
AND ci,3 = 0 AND c(i+2)%4,3 = 0 AND c(i+3)%4,3 = 0 then

return i;
end

end
return −1.

Algorithm 1: Distinguisher for 2-rounds of AES - Pseudo-code.

Finally, note that a similar distinguisher can be used for the 1 round case.
Indeed, note that if two plaintexts belong to the same coset of DI (equivalently
CI), then they belong to the same coset of CI (equivalentlyMI) with probability
1 for each I after 1 round. Moreover, observe that it also is possible to set up a
2 rounds distinguisher using the impossible differential properties defined in (3)
or (4).

5.2 3-Round Subspace Distinguisher for AES

To form a three round distinguisher, we extend a two round distinguisher to three
rounds. The following theorem describes the essential step for the extension.

Theorem 1. For any MI and MJ , we have that

Pr(R(u)⊕R(v) ∈MJ |u⊕ v ∈MI) = (28)−4|I|+|I|·|J|.

Proof. In the previous section, we have seen that R(x) ⊕ R(y) ∈ MJ if and
only if x ⊕ y ∈ CJ . This implies that the probability given in the Theorem is
equivalent to the following:

Pr(R(x)⊕R(y) ∈MJ |x⊕ y ∈MI) = Pr(x⊕ y ∈ CJ |x⊕ y ∈MI) = Pr(z ∈ CJ | z ∈MI).

Let Z =MI∩CJ . In Section 4, it is shown that dim(Z) = dim(MI∩CJ) = |I|·|J |.
Let Y the subspace of dimension 4 · |I| − |I| · |J | such thatMI = Y ⊕Z, and let
πY and πZ the projection of MI on Y and Z respectively:

πY :MI → Y, πY(x) = xy,

πZ :MI → Z, πZ(x) = xz.

That is, ∀x ∈MI , there exists unique xy ∈ Y and xz ∈ Z such that x = xz⊕xy.
It follows that:

Pr(x ∈ CJ |x ∈MI) = Pr(πY(z) = 0 | z ∈MI).

Since Y has dimension 4 · |I| − |I| · |J |, we obtain:

Pr(R(x)⊕R(y) ∈MJ |x⊕y ∈MI) = Pr(πY(z) = 0 | z ∈MI) = (28)−4·|I|+|I|·|J|.

ut

Note that if |J | = 4 (i.e. ifMJ is all the space), then the probability is equal to
1.

Let c ∈ W⊥I . Given Z :=MI ∩ CJ and Y :=MI \ Z, then

MI = Z ⊕ Y =
⋃
a∈Y
Z ⊕ a ⊆

⋃
a∈Y
CJ ⊕ a = CJ ⊕ Y, and

MI ⊕ c =
⋃

a′i∈CJ\Z

Z ⊕ (a′i ⊕ c) =

(28)4·|I|−|I|·|J|⋃
i=1

Z ⊕ ai,

where Z ⊕ ai = (MI ∩ CJ)⊕ ai are cosets of dimension |I| · |J |.
Let Ai := Z ⊕ ai. Since cosets of CJ spaces encrypts to cosets ofMJ spaces,

we get that
Bi := R(Ai) ⊆ R(CJ ⊕ ai) =MJ ⊕ bi,

since Ai = Z ⊕ ai ⊆ CJ ⊕ ai by definition of Z. As a consequence:

R(3)(DI ⊕ a) = R(MI ⊕ c) = R

(
n⋃
i=1

Ai

)
=

n⋃
i=1

R(Ai) =

n⋃
i=1

Bi ⊆
n⋃
i=1

MJ ⊕ bi,

where n := (28)4·|I|−|I|·|J|, R is the application of one round with a fixed key
and R(3) the application of three rounds.

For instance, consider a coset of DI . After two rounds, each element belongs
to a coset of MI . Equivalently, for a given J , after two rounds the texts are
uniform distributed in (28)4·|I|−|I|·|J| cosets of CJ . That is, after two rounds,
there exist (28)4·|I|−|I|·|J| cosets of CJ such that each one of these cosets contains
exactly (28)|I|·|J| elements. Since each coset of CJ encrypts to a unique coset of
MJ (that is, two elements that belong to different coset of CJ can not belong
to the same coset of MJ), if we start with a coset of DI , after three rounds the
texts are uniform distributed in (28)4·|I|−|I|·|J| cosets of MJ .

In order to better understand it, we give an example for the particular case
in which DI = Di is of dimension 1 and MJ =Mi1 ⊕Mi2 ⊕Mi3 of dimension
12. So, after 2 rounds, the texts are uniform distributed in 28 cosets of CJ , i.e.
there exist 28 cosets of CJ such that each one of them contains exactly 224 texts.
Note that the remaining 232 − 28 cosets of CJ don’t contain any texts. Thus,
after 3 rounds the texts are uniform distributed in 28 cosets of MJ , i.e. there

R

DI ⊕ a CI ⊕ b

Kt

CI ⊕ c

R

Kt+1

MI ⊕ d

An ⊆ CJ ⊕ an

A1 ⊆ CJ ⊕ a1

R

Bn ⊆MJ ⊕ bn

R

B1 ⊆MJ ⊕ b1

Fig. 5. 3-round distinguishers for AES (the index n is defined as n := (28)4·|I|−|I|·|J|).

exist 28 cosets of MJ such that each one of them contains exactly 224 texts,
since (as we have seen) each coset of CJ is mapped in exactly one coset of MJ ,
while the remaining 232 − 28 cosets of CJ don’t contain any texts.

A Concrete Distinguisher for 3 Rounds. In order to set up the dis-
tinguisher, we exploit the difference of probability to have a collision in the
ciphertexts set between the case in which two plaintexts are taken in a random
way and the case in which two plaintexts belong to the same coset of DI .

The probabilities that two elements drawn randomly from F4×4
28 (denoted by

p1) and that two plaintexts drawn from a coset of DI (denoted by p2) belong to
the same coset of MJ are respectively:

p1 =

(
4

|J |

)
· (28)−16+4|J|, p2 =

(
4

|J |

)
· (28)−4|I|+|I||J|.

It is very easy to observe that the probability to have a collision in the second
case is higher than in the random case. In particular, for |J | = 3 and |I| = 1, we
obtain that p2 = 2−6 while p1 = 2−30. Thus, the idea is to look for the minimum
number of texts m in order to guarantee at least one collision in the “subspace
case” and zero in the random case (with high probability).

To do this, we recall the birthday paradox. Given d (equally likely) values
and n variables, the probability that at least two of them have the same value
is given by:

p = 1− n!

(n− d)! · nd
= 1− (d)!

nd
·
(
n

d

)
' 1− e

−d(d−1)
2n ,

where the last one is an useful approximation.
Since if we encrypt two plaintexts from a coset of DI , each of them can only

belong to one of the 28 cosets ofMJ defined as before, the probability that there
is at least one collision in a coset is equal to the probability that two elements
belong to the same cosets of MJ , that is p = 1 − e−m(m−1)/(2·28). However,

this property holds if we choose any of the four 12-dimensional space MJ as a
target distinguisher space, each yielding an independent experiment. Since this
experiments are independent, we have that the probability to have at least one
collision in the subspace case given m texts is:

p = 1−
(

28!

(28 −m)! · (28)d

)4

' 1−
(
e
−m(m−1)

2·28

)4
= 1− e

−m(m−1)

2·26 .

Thus, if we set m = 20, we get that the probability to have at least one
collision in one of the four different MJ spaces (with |J | = 1) is 95.251% (14
texts are sufficient to have at least one collision with probability greater than
75%). In order to distinguish the two sets (that is, the random one and the
“subspace” one), the verifier has to construct all the possible pairs of texts and
to count the number of collisions, for each of them. In particular, given 20 texts
(that is, 190 different pairs), we expect 190 · 2−6 ' 3 collisions in the subspace
case and 190 · 2−30 = 2−22.4 ' 0 in the random case.

Observe that the distinguisher works in similar way in the decryption direc-
tion, with the same complexity.

Data: 20 texts ci (for i = 1, ..., 20).
Result: number of collisions.
n← 0;
for each pair (ci, cj) with i 6= j do

c←MC−1(ci ⊕ cj);
for k from 0 to 3 do

if ck,0 = 0 AND c(3+k)%4,1 = 0 AND c(2+k)%4,2 = 0 AND c(1+k)%4,3 = 0
then
n← n+ 1;
next pair

end

end

end
return n.

Algorithm 2: Distinguisher for 3-rounds of AES - Pseudo-code.

Finally, in a very different scenario, an analogous distinguisher (based on
truncated differential) was introduced in [5], and showed in Fig. 6. Consider a pair
of plaintexts that belong to the same coset of D0. With probability 2−8 ·4 = 2−6,
after one round they belong to the same coset of C0 ∩ DI , for a certain I with
|I| = 3. That is, with probability 2−6, after one round only three bytes are active
instead of four. Thus, since C0 ∩DI ⊆ DI and since for each a ∈ D⊥I there exists
unique b ∈ M⊥I such that R(2)(DI ⊕ a) = MI ⊕ b, if two texts belong to the
same coset of Di, then they belong to the same coset of MI with |I| = 3 after
three rounds with probability 2−6.

Fig. 6. Truncated differential characteristic over 3-rounds AES. White box denotes a
byte with a zero difference, while black box denotes a byte with a non-zero difference.

5.3 4-Rounds Subspace Distinguisher for AES

From now on, we assume that I and J satisfy the condition 0 < |I| + |J | ≤ 4
(in order to use Lemma 6). To set up the 4-rounds distinguisher, we start from
the 2-rounds one. Fix DI and DJ such that 0 < dim(DI) + dim(DJ) ≤ 16.
We can construct a four round trail by simply combining two-round subspaces
properties. Indeed, we have seen that

Pr(R(2)(u)⊕R(2)(v) ∈MI |u⊕ v ∈ DI) = 1

Pr(R(2)(u)⊕R(2)(v) ∈MJ |u⊕ v ∈MI) = 0

if u 6= v. Combining these two probabilities for two-rounds yields a four round
probability

Pr(R(4)(u)⊕R(4)(v) ∈MJ |u⊕ v ∈ DI) = 0 (5)

where u 6= v. This means that the adversary can pick any coset of a non-
zero plaintext space DI and a non-zero ciphertext space MJ , as long as 0 <
dim(DI) + dim(MJ) ≤ 16, and distinguish on the fact that the probability that
two plaintexts encrypt to the same coset of the ciphertext space is zero over four
rounds.

RKt

DI ⊕ a CI ⊕ b

RKt+1

MI ⊕ c

An ⊆ DJ ⊕ an

A1 ⊆ DJ ⊕ a1

RKt+2

Bn ⊆ CJ ⊕ bn

RKt+2

B1 ⊆ CJ ⊕ b1

RKt+3

RKt+3

Cn ⊆MJ ⊕ cn

C1 ⊆MJ ⊕ c1

Fig. 7. 4-round distinguishers for AES (where the index n is defined as n := (28)
4|I|

and the indexes I and J satisfy the condition 0 < |I|+ |J | ≤ 4).

A Concrete Distinguisher for 4 Rounds. The idea is pick parameters
that maximize probability in the random case. The best minimal data complexity
is found if we choose |J | = 3. This implies that |I| = 1, since we have the
condition that |I| + |J | ≤ 4. In this case, the probability that two random
elements belong to the same coset ofMJ for a certain J with |J | = 3 is 2−30 (as
we have already seen). Instead, the probability that two elements, that belong
to the same coset of DI , belong to the same coset of MJ after four rounds is 0.

Exactly as before, the idea is to look for the minimum number of texts m in
order to guarantee at least one collision in the random case with high probability.
Since there are four 12-dimensional space MJ and using the birthday paradox,
the probability to have at least one collision in the random case given m texts
is well approximated by p = 1 − e−m(m−1)/(2·230). Thus, m ' 216.25 texts are
sufficient to set up a 4-Rounds distinguisher (in this case, the probability to have
a collision in the random case is approximately 95% - note that 215.75 texts are
sufficient to have at least one collision with probability of 75%). Indeed, given
216.25 texts (that is about 231.5 pairs), the number of collision in the random
case is on average 231.5 · 2−30 = 21.5 ≈ 3, while the number of collision in the
other case is 231.5 · 0 = 0. That is, 216.25 chosen plaintexts are sufficient for this
distinguisher.

Data: 216.25 texts ci (for i = 1, ..., 216.25).
Result: 1 if there is at least one collision, 0 otherwise.
for each pair (ci, cj) with i 6= j do

c←MC−1(ci ⊕ cj);
for k from 0 to 3 do

if ck,0 = 0 AND c(3+k)%4,1 = 0 AND c(2+k)%4,2 = 0 AND c(1+k)%4,3 = 0
then

return 1;
end

end

end
return 0.

Algorithm 3: Distinguisher for 4-rounds of AES - Pseudo-code.

Note that this distinguisher exploits the Impossible Differential property pre-
sented in [3]. Thus, it is not a surprise that the computational complexity of these
two distinguishers is the same. Only for completeness, note that it is possible to
set up a 0-probability distinguishers also for the 3-rounds case:

Pr(R(3)(x)⊕R(3)(y) ∈MI |x⊕ y ∈ CJ) =

=Pr(R(3)(x)⊕R(3)(y) ∈ CI |x⊕ y ∈ DJ) = 0

where 0 < |I| + |J | ≤ 4. Since in the random case, the probability that two
elements belong to the same coset of CI orMI is upper bounded by 2−30 for each
I and J , one needs at least 215.75 chosen plaintexts to set up this distinguisher.

That is, in the case of 3-rounds of AES, the 0-probability distinguisher is worse
than the one described in the previous section

Finally, note that also the 4-rounds distinguisher (as the 3-rounds one) works
also in the decryption direction. In this case, using the same argumentation as
before, if we two texts belong to the same coset ofMI , then they belong to two
different cosets of DJ four rounds before for |I|+ |J | ≤ 4.

Relationship between 4-Rounds Subspace Trail and Impossible Dif-
ferential Cryptanalysis. We would like to highlight the relationship between
the 4-rounds subspace trails found in Sect. 5.3 and the impossible differen-
tial cryptanalysis. As we have seen, if 0 < dim(DI) + dim(MJ) ≤ 16 then
Pr(R(4)(x) ⊕ R(4)(y) ∈ MJ |x ⊕ y ∈ DI) = 0. We define this subspace trail as
a “0-Probability Subspace Trail” or “Impossible subspace trail”. In the follow-
ing, we’d like to show the relationship between (5) and Impossible Differential
Analysis [3], [2], which is a generalization of Differential Analysis [4]. Differ-
ential cryptanalysis traditionally considers characteristics or differentials with
relatively high probabilities and uses them to distinguish the correct unknown
keys from the wrong keys. The idea is that the difference predicted by the differ-
ential appears frequently only when the correct key is used to decrypt the last
few rounds of many pairs of ciphertexts. Impossible differential analysis exploits
instead the differences which should not occur (i.e., that have probability exactly
zero). In this case, a key that decrypts a pair of ciphertexts to that difference is
certainly wrong.

Definition 7. (Inverse-diagonal spaces) The inverse-diagonal spaces IDi
are defined as

IDi = 〈e0,i, e1,i−1, e2,i−2, e3,i−3〉.

If I ⊆ {0, 1, 2, 3}, the subspace IDI is defined as IDI =
⊕

i∈I IDi.

For instance, ID0 = SR(C0) corresponds to the symbolic matrix

ID0 =

{
x1 0 0 0
0 0 0 x2
0 0 x3 0
0 x4 0 0

 ∣∣∣∣∀x1, x2, x3, x4 ∈ F28

}
.

Using similar argumentations as before, if |I|+ |J | ≤ 4 and if the final Mix-
Columns operation is omitted, then Pr(Rf ◦R(3)(x)⊕Rf ◦R(3)(y) ∈ IDJ |x⊕y ∈
DI) = 0. Thus, consider 5 rounds of AES:

ph
R(·)−−→ sh

Rf◦R(3)(·)−−−−−−−→ ch

for h = 1, 2. If there exists a pair of ciphertexts c1 and c2 that belong to the
same coset of IDJ (that is c1 ⊕ c2 ∈ IDJ), then all the keys of the first round
such that s1 ⊕ s2 = R(p1)⊕ R(p2) ∈ DI for 0 < dim(DI) + dim(IDJ) ≤ 16 are
certainly wrong.

To exploit this fact in order to discover the key, the idea is to choose plain-
texts with a particular shape. For simplicity, let I = {0} fixed. Suppose to
considers pair of plaintexts p1, p2 such that p1i,j = p2i,j for each i, j = 0, ...3 with

(i, j) 6= {(0, 0), (1, 3), (2, 2), (3, 1)} (that is SR−1(p1)col(i) = SR−1(p2)col(i) for
i = 1, 2, 3). This choice implies that for each key K:

R(p1)col(i) = R(p2)col(i) ∀i = 1, 2, 3,

that is the second, the third and the fourth columns of the two texts are equal
after one round6. Given c1 and c2 such that c1⊕ c2 ∈ IDJ (with dim(YJ) ≥ 12),
in order to guarantee that R(p1)⊕R(p2) ∈ DI , the attacker has to work only on
the first column of R(p1) and R(p2), that is only on the first column of SR−1(k)
(for the other columns, all the values are fine). Thus, all the keys such that
R(p1)⊕R(p2) ∈ DI are certainly wrong.

There are three possibilities that can be exploited for an impossible differ-
ential attack, which are dim(DI) = 4 and dim(IDJ) = 12, dim(DI) = 12 and
dim(IDJ) = 4, and finally dim(DI) = dim(IDJ) = 8. For each of these com-
binations, using the definitions of DI and IDJ it is possible to obtain and to
list all the impossible input/output combinations of difference that can be ex-
ploited to set up the attack. In particular, the first combination is exploited
for example in [17] and in [1], while the second one is exploited in [18]. Inter-
estingly, in literature there isn’t any attack that exploits the last (impossible)
input/output combination of differences. A possible reason of this fact is that
using this combination it is not possible to attack 7 rounds of AES-128 as for
the other combinations. Moreover, even if it is possible to attack 7 rounds of
AES-192 and 8 rounds of AES-256 using it, our results (omitted due to page
limit) show that in this case the data and the computational complexity is not
better than the other attacks already present in literature that exploit the first
and the second impossible combinations.

Relationship between 3- and 4-Rounds Subspace Trail and Integral
Attack. For comparison, another four round (without the final MixColumns
operation) integral distinguisher for AES uses the fact that summing over all
232 ciphertexts (formed by encrypting a coset of a diagonal space Di four rounds
without the final MixColumns operation) is zero. In terms of subspaces, this has
a different interpretation.

6 For completeness, to show this fact we compute the i-th column of SR−1(p1) and
SR−1(p2) after one round for i = 1, 2, 3. By simple computation, we have that for
each j = 1, 2:

R(SR−1(pj)col(i) = [k1 ⊕MC ◦ S-Box(pj ⊕ k0)]col(i),

where we use the fact that she ShiftRows, the SubBytes and the AddRoundKey
operations can be switched positions. Thus, since the MixColumns operation works
on each column independently by the others and since SR◦SR−1(p1)col(i) = p1col(i) =

p2col(i) = SR ◦SR−1(p1)col(i) for each i = 1, 2, 3, it follows that the second, the third
and the fourth columns of the two texts are equal after one round.

First of all, note that the entire space F4×4
28 can be decomposed as F4×4

28 =
ID0 ⊕ ID1 ⊕ ID2 ⊕ ID3, where IDj is the j-th inverse diagonal space defined
above. Let IDI = ID0 ⊕ ID1 ⊕ ID2. If we encrypt the 232 plaintexts of a
coset of Di (for four round without the final MixColumns), we get a set of 232

ciphertexts C = {c1, c2, . . . , c232}, where each ci belongs to a different coset of
IDI . If we decompose these vectors with respect to the subspaces IDi, each ci
can be written as ci = ci,0⊕ci,1⊕ci,2⊕ci,3 where ci,j ∈ IDj . Since each ci belongs
to a different coset of IDI , it means that the components ci,3 are all different;
thus their sum must be zero since it amounts to summing over all vectors in
ID3. Since this property holds for all four choices of IDI , it means that all of
the components ci,j must be different with respect to the same subspace IDj ,
thus the sum over all the vectors in C is zero. In comparison to integrals we have
more structure that allows for distinguisher with lower data-complexity.

Finally, note that the integral attack on 4 rounds works in a similar way also
in the decryption direction, where in this case it is not necessary to omit the
final MixColumns operation. Indeed, given 232 ciphertexts that belong to the
same coset of Mi with |i| = 1, then the sum of the corresponding plaintexts
is equal to zero. In fact, after one decryption round all these texts belong to
the same coset of Ci. Thus, it is a well-known fact that their sum is equal to
zero three rounds before. For example, this property is exploited by Knudsen
and Rijmen in [14] to construct the first 7-rounds known-key distinguisher for
AES. Instead, if the final MixColumns operation is omitted, then one has to take
the 232 ciphertexts in the same coset of IDi with |i| = 1. Since the decryption
algorithm on 3.5 rounds is equivalent to the encryption one, it follows that the
sum of the corresponding plaintexts is equal to zero.

Note that the same holds also for the 3 rounds case. In this case, if the final
MixColumns is not omitted, given 28 ciphertexts that belong to the same coset
of Ci ∩Mj for |j| = |i| = 1, then they belong to the same coset of Di ∩ Cj one
round before (that is, only one byte is active one round before), and the sum of
the corresponding plaintexts is equal to zero. Instead, if the final MixColumns
operation is omitted, then one has to take the 28 ciphertexts in the same coset
of Ci ∩ IDj for |j| = |i| = 1. For the same reason of before, the sum of the
corresponding plaintexts is equal to zero.

6 A 5-Rounds Secret Key Distinguisher for AES

In CRYPTO 2016, new 5-rounds secret key distinguishers of AES-128 have been
presented [19]. In this paper, authors construct a 5-rounds zero-correlation linear
hulls for AES, and then use it to construct 5-rounds integral distinguisher for
AES. First, they present them in the case in which the difference of two sub-
key bytes is known (in this case, the distinguisher requires 2120 texts). Then
they extend it to the general case, i.e. they prove that it is always possible to
distinguish 5 rounds of AES from random permutations even when the difference
of the sub-keys is unknown (in this case, the distinguisher requires 2128 texts,
i.e. the entire input-output space). We refer to [19] for more details.

Following a similar procedure, we present a new 5-rounds secret key distin-
guisher for AES-128 in the chosen-plaintexts mode, which needs much less than
the full codebook. Our idea is basically to extend the impossible subspace trail
distinguisher on 4-rounds presented in Sect. 5.3 at the beginning. As a result,
this distinguisher works both in the case in which the last MixColumns opera-
tion is omitted or not. As a result, our secret key distinguisher on 5 rounds of
AES needs only 298.2 chosen plaintexts instead of 2128.

In order to set up it, first we consider the case in which the difference two
sub-key bytes is known. Then we show how to generalize it in the case in which
no information about the secret key is known. Finally, we evaluate the possibility
to exploit more than a single sub-key bytes difference. However, as we show in
the following, the best distinguisher (from the point of view of the data and cost
complexity) is the one in which only a single difference of two sub-key bytes is
considered. The distinguisher is shown in Fig. 8.

The Difference of Two Sub-Key Bytes is Known. Suppose for the
moment to know the difference of two sub-key bytes, that is ∆ := k0,0 ⊕ k1,1.
As we’ve already said, the idea is to extend at the beginning the 4-rounds dis-
tinguisher based on impossible differential presented in Sect. 5.3. To do this, the
idea is to choose plaintexts that belong to the same coset of DI for a certain I
after one round.

Thus, consider a set of plaintexts-ciphertexts V∆ of the form7:

V∆ ={(pi, ci) for i = 0, ..., 28 − 1 | pi0,0 ⊕ pi1,1 = ∆ ∀i and

and pik,l = pjk,l ∀(k, l) 6= {(0, 0), (1, 1)} and i 6= j},
(6)

that is plaintexts with 14 constants bytes and where ∆ := k0,0 ⊕ k1,1 and that
|V∆| = 28. It is easy to prove that this choice of plaintexts guarantees that after
one round they belong to the same coset of DI where I = {0, 1, 3} (see for
example Footnote 6). That is, there exists unique (unknown) ã ∈ D⊥I such that
for each p ∈ V∆, then R(p) ∈ DI ⊕ ã for I = {0, 1, 3}. Equivalently, if p, q ∈ V∆,
then R(p) ⊕ R(q) ∈ DI . More in details, there exists unique (unknown) a ∈
(DI ∩C0)⊥ such that R(V∆) ⊆ (C0∩D0,1,3)⊕a (note that |C3∩D0,1,3⊕a| = 224).

Proposition 1. Let V∆ defined as in (6) and let I = {0, 1, 3}. There exists
a ∈ (DI ∩ C0)⊥ such that R(V∆) ⊆ (C0 ∩ D0,1,3)⊕ a.

Proof. First of all, note that given two arbitrary elements p and q in V∆, then af-
ter one round their second, third and fourth columns are equal, that is R(p)i,j =
R(q)i,j ∀i = 0, ..., 3 and ∀j 6= 0. Thus, in order to prove that R(V∆) ⊆ (C0 ∩
D0,1,3)⊕ a, it is sufficient to prove that given two arbitrary elements p and q in

7 In [19], authors consider a set of plaintexts-ciphertexts Ṽ∆̃ of the form Ṽ∆̃ =
{(p, c) | c0,0 ⊕ c1,3 = ∆̃} where ∆̃ = k0,0 ⊕ k1,3 and with anyone assumptions on
the other bytes. Note that |Ṽ∆̃| = 2120.

Fig. 8. 5-Rounds Secret Key Distinguisher based on the Impossible Subspace Trail on
4-Rounds (from Sect. 5.3). The choice of the plaintexts (i.e. p0,0 ⊕ p1,1 = k0,0 ⊕ k1,1)
guarantees that after one round there are only three bytes with non-zero difference
instead of four. White box denotes denotes a byte with a zero-difference, while a black
box denotes a byte with non-zero difference.

V∆, then R(p)2,0 ⊕R(q)2,0 = 0. By simple computation:

R(p)2,0 = S-Box(p0,0 ⊕ k00,0)⊕ S-Box(p1,1 ⊕ k01,1)⊕
⊕ α · S-Box(p2,2 ⊕ k2,2)⊕ (α+ 1) · S-Box(p3,3 ⊕ k3,3).

First of all observe that S-Box(p0,0⊕k00,0)⊕ S-Box(p1,1⊕k01,1) = 0. Indeed, since
p0,0 ⊕ p1,1 = k0,0 ⊕ k1,1 by definition, then p0,0 ⊕ k00,0 = p1,1 ⊕ k01,1, that is
S-Box(p0,0 ⊕ k00,0) = S-Box(p1,1 ⊕ k01,1) and so S-Box(p0,0 ⊕ k00,0)⊕ S-Box(p1,1 ⊕
k01,1) = 0. Thus:

R(p)2,0 = α · S-Box(p2,2 ⊕ k2,2)⊕ (α+ 1) · S-Box(p3,3 ⊕ k3,3)

and in a similar way:

R(q)2,0 = α · S-Box(q2,2 ⊕ k2,2)⊕ (α+ 1) · S-Box(q3,3 ⊕ k3,3).

Since p2,2 = q2,2 and p3,3 = q3,3 by definition, it follows that R(p)2,0 = R(q)2,0,
and so the thesis. ut

Note that the assumption pik,l = pjk,l for each (k, l) 6= {(0, 0), (1, 1)} and i 6= j is
necessary. Indeed, without this assumption, it is not true that all the plaintexts
belong to the same coset of DI for I = {0, 1, 3} after one round.

Since R(p)⊕ R(q) ∈ D{0,1,3} for each pair of plaintexts p and q in V∆, then

R(4) ◦R(p) ⊕ R(4) ◦ R(q) = R(5)(p) ⊕ R(5)(q) /∈ MJ for |I| + |J | ≤ 4 with
probability 1 due to the 4-rounds impossible differential distinguisher of Sect.
5.3. That is:

Pr(R(5)(x)⊕R(5)(y) ∈MJ |x0,0 ⊕ x1,1 = y0,0 ⊕ y1,1 = ∆ and

and xi,j = yi,j ∀(i, j) 6= {(0, 0), (1, 1)}) = 0,

for each J with |J | = 1 and where∆ := k0,0⊕k1,1 is known. Thus, if the difference
of two sub-key bytes (∆ := k0,0 ⊕ k1,1) is known, it is possible to construct
an impossible differential distinguisher over 5 rounds. Only for completeness,
in the case in which the final MixColumns operation is omitted, the previous
probability becomes

Pr(R
(5)
f (x)⊕R(5)

f (y) ∈ IDJ |x0,0 ⊕ x1,1 = y0,0 ⊕ y1,1 = ∆ and

and xi,j = yi,j ∀(i, j) 6= {(0, 0), (1, 1)}) = 0,

for each J with |J | = 1, where R
(5)
f (·) := Rf ◦ R(4)(·) and IDj is the inverse-

diagonal space (defined as IDj = SR(Cj)).
In order to set up the distinguisher, we look for the minimum number of texts

necessary to have a collision in the random case with high probability. Since
|J | = 1 and since there are four different J such that |J | = 1, the probability
that two texts belong to the same coset ofMJ is 4 ·(28)−16+4 = 2−94 (analogous
for IDJ). Thus, given n pairs, the probability to have at least one collision in
the same coset of MJ for |J | = 1 is given by

p = 1−
(
e−n/2

96

)4

= 1− e−n/2
94

.

If the number of pairs n is approximately 295.6, then p is greater than 95%. Given
a single set V∆, it is possible to construct 27 · (28−1) ' 215 different pairs. Thus,
for the distinguisher we need approximately 295.6 ·2−15 = 280.6 different sets V∆.
Since each of this set contains 28 texts, the data complexity of the distinguisher
is of 280.6 · 28 = 288.6 text. We’d like to emphasize that for each difference ∆
fixed, there are 2128 · 2−8 = 2120 different sets of V∆.

The 5-Round Secret Key Distinguisher for AES. Next we choose how
to extend the previous distinguisher in the case in which the difference ∆ :=
k0,0 ⊕ k1,3 is not known.

First of all, note that ∆ can only assume 28 values. The idea is simply to
“repeat” the previous distinguisher for each possible values of ∆, i.e. the idea is

to construct a sufficient number of different sets V∆ for each possible values of
∆ 8. That is, the idea is to construct 28 collections of sets, one for each possible
value of ∆. For each one of these 28 collections, one has to count the number
of collisions, i.e. the number of pairs of texts that belong to the same coset of
MJ for |J | = 1. For a random permutation, the goal is to have at least one
collision for each one of the 28 collections, i.e. for each value of ∆. Instead, for
the AES permutation, note that there exists one collection in which there is no
collisions with probability 1. This collection corresponds to the one for which
∆ := k0,0⊕ k1,1. For the other values of ∆, the behavior is similar to that of the
random case. Thus, it is not difficult to distinguish the two cases: the random
case is the one for which all the collections have at least one collision, while the
AES case is the one for which there is one collection with no collisions.

To set up the distinguisher, we are interested to compute the number of sets
of the form V∆ for each one of the 28 collection. If each collection has 280.6 sets
(as before), then for each fixed collection the probability to have one collision is
95%. Since all the 28 collections are independent, the probability that there is at
least one collision for each one of the 28 collections is 0.95256 ' 2 ·10−6. In order
to have a total probability of about 95%, the probability to have at least one
collision in each fixed collection has to be approximately (0.95)1/2

8

= 0.9998. In
this way, the total probability is given by 0.9998256 = 0.95. Thus, for each one
of the 28 collections (i.e. for each ∆), we need at least 297.2 pairs to have at least
one collision with probability 0.9998 (analogous computation as before). Since
each set V∆ has about 215 different pairs, then we need about 297.2 ·2−15 = 282.2

different sets for each ∆ (instead of 280.6 as before), that is 290.2 texts for each
∆. Since each set V∆ has 28 texts, the total number of texts required for this
distinguisher is of 28 · 290.2 = 298.2 texts, which is lower than the total input-
output space.

To summarize, suppose to have 28 collections (one for each ∆), each one with
282.2 different sets V∆, where each of this set contains 28 texts, for a total of 298.2

texts. In the random case and with probability 95%, we expect that in each one of
these 28 collections there is at least one collision. Note that the average number
of collisions for each collection (i.e. for each ∆) is about 2−94 · 297.2 = 23.2 ' 9.
For the AES permutation, we expect that there exists one ∆ for which there
is no collision with probability 1 in the corresponding collection of sets. For all
the other collections, we expect to have at least one collision with probability
95%. We’d like to highlight that given the 298.2 texts defined as before, it is
always possible to divide them in 28 collections (one for each ∆), and that each
collection can be divided in a very simple way in 282.2 different sets V∆ (simply
using the definition of V∆). For example, given a fixed ∆, the corresponding
collection is composed of all the texts p such that p0,0 ⊕ p1,1 = ∆.

8 In [19], in order to construct the secret key distinguisher, authors simply consider
all the input-output space, and divide it in the 28 subsets defined by Ṽ∆̃. Then they
argue that there exists ∆̃ such that after 5 rounds the zero-sum property holds (and
which corresponds to ∆̃ := k0,0⊕ k1,3). For random permutation, this happens with
probability 2−120.

In order to compare this distinguisher with the one presented in [19], we
analyze the data and the computational cost of our distinguisher. First of all,
to construct all the plaintext-ciphertext pairs, the cost is of 298.2 encryptions
or oracle queries. For comparison, in [19], since the entire input-output space is
required, the cost is of 2128 Encryptions or Oracle Queries. Consider instead the
cost to check that there exists at least one collision. To do this check, one has to
construct all the possible pairs and to check that there is at least one pair that
collides in the same coset of MJ for |J | = 1 (note that when the first collision
is found, one can consider the next collection). First of all, given a pair of texts,
the cost to verify that they collide in the same coset of MI is approximate the
cost of 1 bit-XOR operation and the cost of an inverse MixColumns. Since the
costs of these two operations is negligible compared to a table look-ups, the total
cost can be approximated by the cost to construct all the pairs. Note that one
has to construct only the pairs of texts that belong to the same coset of V∆.
Thus, the cost for this step can be approximated by 28 (number of ∆) ·282.2
(number of sets)·27 · (28 − 1) (number of pairs) ' 2105.2 table look-ups. For the
distinguisher presented in [19], the cost to do the verification operation can be
approximated to 2128 bit-XOR operations. In conclusion, our distinguisher of 5
rounds of AES with a secret key requires 298.2 texts, the cost to construct them
is of 298.2 encryptions and the verification cost is of 2105.2 table look-ups. The
distinguisher presented in [19] requires 2128 texts, the cost to construct them
is of 2128 encryptions or oracle queries and the verification cost is of 2132 XOR
operations. We’d like to emphasize that our distinguisher on 5-rounds AES with
secret key is the first one that doesn’t require all the entire input-output space, but
only about 298.2 texts. To the best of our knowledge, this is the best distinguisher
for the 5-rounds reduced AES in the secret-key setting.

Finally, note that besides the possibility to distinguish between a random
permutation and an AES one using less than the entire input-output space,
we can also recover some information on the secret key (that is, the difference
k0,0 ⊕ k1,1), with a computational cost that is lower than a brute force attack.

Other Distinguishers. In order to construct the previous distinguisher,
we focus only on the difference of two sub-key bytes that belong to the same
column after the first ShiftRows operation. However, since there are two 1’s in
each column of the MixColumns matrix, we exploit the possibility to construct
distinguishers using the differences of two sub-key bytes (that belong to the
same column after the first ShiftRows operation) for more than one column.
However, we found that the best distinguisher (from the point of view of the
data complexity) is obtained when only one difference of two sub-key bytes is
considered. In the following, we present as example the distinguisher in which
all the four differences (one for each column) of two sub-key bytes are exploited
- the other cases are similar.

Data: 28 collections (one for each possible value of ∆. Each collection contains
282.2 different sets V∆ defined as in (6).

Result: ∆ if the permutation is an AES permutation (where ∆ = k0,0 ⊕ k1,1);
−1 if the permutation is a Random one.

for ∆ from 0 to 28 − 1 do
flag = 0;
for each one of the 282.2 different sets V∆ do

for each pair (ci, cj) ∈ V∆ do // about 215 different pairs

if ci ⊕ cj ∈Mk for |k| = 1 then // for details, see Algorithm

1
flag = 1;
next collection ∆;

end

end

end
if flag = 0 then // AES permutation

return ∆;
end

end
return −1. // Random permutation

Algorithm 4: Distinguisher for 5-rounds of AES - Pseudo-code. The 298.2

input texts are already divided in 28 collections (one for each ∆), and for each
collection the texts are already divided in the sets V∆. Given a pair (ci, cj), to
check that ci⊕cj belongs inMk for a |k| = 1 or not see for example Algorithm
1.

In the same way as before, let the set of plaintext-ciphertext W∆ defined as
follows

W∆ ={(pi, ci) for i = 0, ..., 232 − 1 | pi0,0 ⊕ pi1,1 = ∆0, p
i
1,2 ⊕ pi2,3 = ∆1,

pi2,0 ⊕ pi3,1 = ∆2, p
i
0,3 ⊕ pi3,2 = ∆3 ∀i and pik,l = pjk,l otherwise},

where ∆0 = k0,0 ⊕ k1,1, ∆1 = k1,2 ⊕ k2,3, ∆2 = k2,0 ⊕ k3,1 and ∆3 = k0,3 ⊕ k3,2.
Note that |W∆| = 232, thus it is possible to construct 231 ·(232−1) = 263 different
pairs.

Proposition 2. Let W∆ defined as before and let I = {0, 1, 3}. There exists
a ∈ D⊥I such that R(W∆) ⊆ D0,1,3 ⊕ a.

The proof of this proposition is analogous to that given for Prop. 1. As a con-
sequence, given two elements p and q in W∆, then R(p)⊕R(q) ∈ D0,1,3, and so
as before R(5)(p)⊕R(5)(q) /∈MJ with probability 1 for each J with |J | = 1.

Suppose to know all the difference ∆i for each i = 0, ..., 3. As we’ve already
seen, to distinguish between a random permutations and the AES one in this
case, we need about 295.6 pairs. Since each W∆ contains about 231 ·(232−1) = 263

pairs, we need approximately 295.6 · 2−63 = 232.6 different sets of W∆, that is
about 232.6 · 232 = 264.6 texts (each set of W∆ contains 232 texts).

Suppose instead that all the difference ∆i are unknown. As before, the idea
is to construct 232 collections (one for each possible combination of values of
∆i for i = 0, ..., 3), each one with a certain number of sets W∆. To compute
this number, our goal is to guarantee that in the random case, there is at least
one collision for each possible combination of values of ∆i for i = 0, ..., 3 with
probability 95%. Using the same computation as before, for each one of the 232

collections (i.e. for each combination of values of ∆i for i = 0, ..., 3), we need

at least one collision with probability higher than 0.951/2
32 ' 1 − 1.1 · 10−11.

Thus, to have at least one collision with this probability for each one of the
232 collections, each collection has to be composed of 2100.1 pairs (instead of
295.6 pairs). Equivalently, this means that for each one of the 232 collections
we need about 2100.1 · 2−63 = 237.1 different sets W∆. Since each one of these
sets contains 232 texts (equivalently 263 pairs) and since there are 232 possible
∆, the total number of texts is 232 ·237.1 ·232 = 2101.1, which is higher than before.

Observations. We’d like to conclude with some observations regarding our
distinguishers. To present them, we focus on the AES case. However, it is simply
to generalize them for other encryption scheme design if some important as-
sumptions hold. These assumptions (equivalent to the ones for the distinguisher
proposed in [19]) are:

– the encryption scheme has to adopt identical S-Boxes;
– at least one column of the MixColumns matrix MC (or its inverse) has to

contain (at least) two identical elements.

If one of these two assumptions is missing, the above distinguishers don’t work.
Actually, the first one can be relaxed. Indeed, it is sufficient that only the two
S-Boxes that are in the positions in which the MixColumns matrix has identical
elements are equal. Note that both the assumptions are necessary to construct
V∆ (for example, the second one is necessary to prove Prop. 1). However, note
that the above distinguishers don’t depend on the particular choice of which S-
Box and MixColumns matrix MC are used in the cipher. That is, it works for
each S-Box and for each MC matrix for which the previous assumptions hold.

Finally, we’d like to emphasize that these assumptions are quite common
for the construction of AES-like ciphers (or more in general, for Substitution-
Permutation Network (SPN) ciphers). Indeed, symmetric encryption schemes
are usually a trade-off between the security and computational efficiency. Thus,
to enhance the performance of an encryption scheme (especially for lightweight
cryptography), designers usually use identical S-Box and a diffusion layer which
maximize the number of 1’s (or elements with relatively low hamming weights).
However, these choices can cause some weakness, as we have shown.

7 Conclusion

We have proposed a generalization of invariant subspace cryptanalysis. Com-
pared to other attack vectors and the state-of-the-art, it’s application to 1-4

rounds of AES lead to similar or identical distinguishers, for 5-round of AES
however we reported the best distinguisher known so far. Future work includes
using this approach to devise key-recovery attacks, and apply it to other schemes.

References

1. B. Bahrak and M. R. Aref, “Impossible differential attack on seven-round AES-
128.” IET Information Security, vol. 2, no. 2, pp. 28–32, 2008.

2. E. Biham, A. Biryukov, and A. Shamir, “Cryptanalysis of Skipjack Reduced to
31 Rounds Using Impossible Differentials,” in Advances in Cryptology — EURO-
CRYPT 1999: International Conference on the Theory and Application of Cryp-
tographic Techniques, Czech Republic. Proceedings, J. Stern, Ed., 1999, pp. 12–23.

3. E. Biham and N. Keller, “Cryptanalysis of Reduced Variants of Rijndael,” unpub-
lished, 2001, http://csrc.nist.gov/archive/aes/round2/conf3/papers/35-ebiham.
pdf.

4. E. Biham and A. Shamir, “Differential cryptanalysis of DES-like cryptosystems,”
Journal of Cryptology, vol. 4, no. 1, pp. 3–72, 1991.

5. A. Biryukov and D. Khovratovich, “Two New Techniques of Side-Channel Crypt-
analysis,” in Cryptographic Hardware and Embedded Systems - CHES 2007: 9th
International Workshop, Austria. Proceedings, 2007, pp. 195–208.

6. A. Biryukov and A. Shamir, “Structural Cryptanalysis of SASAS,” Journal of
Cryptology, vol. 23, no. 4, pp. 505–518, 2010.

7. J. Daemen, L. R. Knudsen, and V. Rijmen, “The Block Cipher Square,” in Fast
Software Encryption - FSE 1997: 4th International Workshop, Israel. Proceedings,
1997, pp. 149–165.

8. J. Daemen and V. Rijmen, The Design of Rijndael: AES - The Advanced Encryp-
tion Standard, ser. Information Security and Cryptography. Springer, 2002.

9. ——, “Two-Round AES Differentials,” Cryptology ePrint Archive, Report
2006/039, 2006.

10. ——, “Understanding Two-Round Differentials in AES,” in Security and Cryptog-
raphy for Networks 2006, vol. 4116, 2006, pp. 78 – 94.

11. P. Derbez, P. Fouque, and J. Jean, “Improved key recovery attacks on reduced-
round AES in the single-key setting,” in Advances in Cryptology - EUROCRYPT
2013: 32nd Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Greece. Proceedings, 2013, pp. 371–387.

12. J. Evertse, “Linear Structures in Blockciphers,” in Advances in Cryptology - EU-
ROCRYPT 1987: Workshop on the Theory and Application of of Cryptographic
Techniques, Netherlands. Proceedings, 1987, pp. 249–266.

13. J. Guo, J. Jean, I. Nikolic, K. Qiao, Y. Sasaki, and S. M. Sim, “Invariant Subspace
Attack Against Full Midori64,” Cryptology ePrint Archive, Report 2015/1189,
2015.

14. L. R. Knudsen and V. Rijmen, “Known-Key Distinguishers for Some Block Ci-
phers,” in Advances in Cryptology – ASIACRYPT 2007: 13th International Con-
ference on the Theory and Application of Cryptology and Information Security,
Malaysia, 2007. Proceedings, 2007, pp. 315–324.

15. G. Leander, M. A. Abdelraheem, H. AlKhzaimi, and E. Zenner, “A Cryptanalysis
of PRINTcipher: The Invariant Subspace Attack,” in Advances in Cryptology –
CRYPTO 2011: 31st Annual Cryptology Conference, Santa Barbara, CA, USA,
2011. Proceedings, 2011, pp. 206–221.

16. G. Leander, B. Minaud, and S. Rønjom, “A Generic Approach to Invariant Sub-
space Attacks: Cryptanalysis of Robin, iSCREAM and Zorro,” in Advances in
Cryptology - EUROCRYPT 2015: 34th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Bulgaria. Proceedings, Part
I, 2015, pp. 254–283.

17. J. Lu, O. Dunkelman, N. Keller, and J. Kim, Progress in Cryptology - INDOCRYPT
2008: 9th International Conference on Cryptology in India, India. Proceedings,
2008, ch. New Impossible Differential Attacks on AES, pp. 279–293.

18. H. Mala, M. Dakhilalian, V. Rijmen, and M. Modarres-Hashemi, “Improved im-
possible differential cryptanalysis of 7-round AES-128,” in Progress in Cryptology -
INDOCRYPT 2010: 11th International Conference on Cryptology in India, India.
Proceedings, 2010, pp. 282–291.

19. B. Sun, M. Liu, J. Guo, L. Qu, and V. Rijmen, “New Insights on AES-like SPN
Ciphers,” Cryptology ePrint Archive, Report 2016/533, 2016.

20. B. Sun, Z. Liu, V. Rijmen, R. Li, L. Cheng, Q. Wang, H. Alkhzaimi, and C. Li,
“Links among Impossible Differential, Integral and Zero Correlation Linear Crypt-
analysis,” in Advances in Cryptology – CRYPTO 2015: 35th Annual Cryptology
Conference, Santa Barbara, CA, USA. Proceedings, 2015, pp. 95–115.

21. T. Tiessen, “Polytopic Cryptanalysis,” in Advances in Cryptology - EUROCRYPT
2016 - 35th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Austria. Proceedings, Part I, 2016, pp. 214–239.

22. Y. Todo, “Integral cryptanalysis on full MISTY1,” in Advances in Cryptology -
CRYPTO 2015: 35th Annual Cryptology Conference, Santa Barbara, CA, USA.
Proceedings, Part I, 2015, pp. 413–432.

23. ——, “Structural evaluation by generalized integral property,” in Advances in
Cryptology - EUROCRYPT 2015: 34th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Bulgaria. Proceedings, Part
I, 2015, pp. 287–314.

