
Memory Erasability Amplification

?

Jan Camenisch1, Robert R. Enderlein1,2, and Ueli Maurer2

1 IBM Research – Zurich, Switzerland
2 Department of Computer Science, ETH Zürich, Switzerland

Abstract. Erasable memory is an important resource for designing practical cryptographic pro-
tocols that are secure against adaptive attacks. Many practical memory devices such as solid state
drives, hard disks, or file systems are not perfectly erasable because a deletion operation leaves
traces of the deleted data in the system. A number of methods for constructing a large erasable
memory from a small one, e.g., using encryption, have been proposed. Despite the importance of
erasable memory in cryptography, no formal model has been proposed that allows one to formally
analyse such memory constructions or cryptographic protocols relying on erasable memory.
The contribution of this paper is three-fold. First, we provide a formal model of erasable memory.
A memory device allows a user to store, retrieve, and delete data, and it is characterised by a
leakage function defining the extent to which erased data is still accessible to an adversary.
Second, we investigate how the erasability of such memories can be amplified. We provide a num-
ber of constructions of memories with strong erasability guarantees from memories with weaker
guarantees. One of these constructions of perfectly erasable memories from imperfectly erasable
ones can be considered as the prototypical application of Canetti et al.’s All-or-Nothing Transform
(AoNT). Motivated by this construction, we propose some new and better AoNTs that are either
perfectly or computationally secure. These AoNTs are of possible independent interest.
Third, we show (in the constructive cryptography framework) how the construction of erasable
memory and its use in cryptographic protocols (for example to achieve adaptive security) can
naturally be composed to obtain provable security of the overall protocol.

Keywords: secure memory erasure; secure deletion; adaptive corruption; constructive cryptogra-
phy; all-or-nothing-transforms (AoNT).

? The first and second author were supported by the European Commission through the Seventh Framework
Programme under the ERC grant #321310 (PERCY) and the third author was supported by the Zurich
Information Security & Privacy Center (ZISC). This is the full version of the extended abstract that has
appeared at SCN 2016.

Table of Contents

Memory Erasability Amplification . 1
Jan Camenisch, Robert R. Enderlein, and Ueli Maurer

1 Introduction . 3
1.1 Contributions of this Paper . 3
1.2 Related Work . 3

2 Preliminaries . 4
2.1 Notation . 4
2.2 Constructive Cryptography . 4
2.3 Cryptographic Building Blocks . 5
2.4 All-or-Nothing Transform (AoNT) . 5

3 Modelling Imperfectly Erasable Memory . 6
3.1 Specification of the General Imperfectly Erasable Memory Resource Mh·i 7
3.2 Instantiations of Mh⌃, , ⇢,i . 7

4 Constructing Better Memory Resources . 9
4.1 Admissible Converters for Constructions using Erasable Memory 9
4.2 Memory Erasability Amplification . 10

4.2.1 Amplifying Memory Leaking Exactly d Symbols . 10
4.2.2 Amplifying Memory Leaking Symbols with Probability p 12
4.2.3 Amplifying Memory with Noisy Leakage . 13
4.2.4 Amplifying Memory with Limited Leakage Output . 13

4.3 Constructing a Large Perfectly Erasable Memory from a Small One 13
5 New Realizations of All-or-Nothing Transforms . 16

5.1 AoNT from a Protocol . 16
5.2 Perfectly Secure AoNT Based on Matrices with Ramp Minimum Distance 18
5.3 Realizing a Perfectly Secure AoNT over a Small Field by Combining AoNTs 21
5.4 Computationally Secure AoNT over a Large Field from a PRG 22

References . 24
A Known Constructions of AoNT . 25

A.1 Perfect AoNTs based on Shamir’s Secret Sharing . 25
A.2 Perfect AoNTs from Linear Block Codes . 25
A.3 Statistical AoNTs from Universal Hash Functions . 26
A.4 Computational AoNTs . 26

1 Introduction

Persistent and erasable memory is a crucial ingredient of many practical cryptographic protocols
that are secure against adaptive adversaries. However, for storage devices such as solid state
disks, hard disks, and tapes it is rather di�cult to truly erase information written on them.
Therefore, constructions have been proposed that use a small amount of memory that is easier
to erase (or at least harder for an attacker to tap into), such as smart cards and processor
registers, to store a cryptographic key, and then to encrypt the data to be stored so that it no
longer matters whether or not the ciphertext can be erased [12,14,20–22,24,25]. This approach
is sometimes referred to as crypto paging. Surprisingly, no formal model of erasable memory
has been proposed to date, despite of the importance of erasable memory for cryptographic
protocol design and the cryptographic constructions for it.

1.1 Contributions of this Paper

In this paper we rectify this and first model erasable memory as a general resource in the
constructive cryptography framework [17, 18]. Our memory resource defines how a user, an
adversary, and the environment can interact with the resource and to what extent stored data
can be erased. In particular, di↵erent memory resources are characterized by what information
about the stored data an adversary will be able to obtain when the environment allows it
access to the memory resource. As we discuss, this allows one to model many di↵erent types
of memory such as hard disks, solid state drives, RAM, and smart cards. Next, we study
di↵erent constructions of erasable memory from one with weaker erasability properties or, in
other words, constructions that amplify erasability. These constructions also show how memory
resources can be used in protocol design and analysis. We then study the approach of crypto
paging in our setting, i.e., constructions of a large erasable memory from a small one and a
non-erasable memory. As it turns out, achieving the strongest possible type of erasable memory
with this approach requires non-committing encryption and hence is only possible in the random
oracle model (or requires additional communication between sender and receiver, which is not
applicable here). We also show what kind of erasable memory can be achieved with this approach
in the standard model.

One of our memory constructions employs All-or-Nothing Transforms (AoNT) [5] to obtain
a perfectly erasable memory from one that leaks a constant fraction of the erased data. Moti-
vated by this protocol, we study AoNTs and propose several new transforms that enjoy better
parameters than previously known ones, a result that may be of independent interest. For ex-
ample, we improve the standard construction of a perfectly-secure AoNT from a Linear Block
Code (LBC), by observing that an LBC with a large minimum distance does not yield an AoNT
with optimal privacy threshold. We propose the metric of ramp minimum distance and show
that LBCs optimized for this metric yield perfectly secure AoNTs with better parameters than
what can be achieved with the standard construction. We further propose a computationally
secure AoNT that operates over a large alphabet (large enough for one symbol to encode a
cryptographic key) and that is optimal: the encoded data is just one symbol longer than the
original data, and the transform is secure even if all but one of the symbols of the encoded data
leak. We show that such an AoNT can be realized from a pseudo-random generator (PRG) with
some specific properties.

1.2 Related Work

In most security frameworks, unlimited and perfectly erasable memory is available to protocols
as part of the framework, with the exception of protocols that are proven to be adaptively secure
in the non-erasure model, where no erasable memory is available. However, as mentioned already,
no security framework explicitly models memory and consequently security proofs treat the

3

adversary’s access to the memory of a compromised party informally only. The only exception
to this is the work by Canetti et al. and Lim [6,16], who model memory as special tapes of the
parties’ Turing machines and define how an adversary can access these special tapes. This very
specific modelling therefore changes the machine model underlying the UC framework.

Hazay et al. [13] follow a di↵erent approach. They introduce the concept of adaptive security

with partial erasures, where security holds if at least one party of a given protocol can success-
fully erase. Their model requires a special protocol design and has some restrictions regarding
composition.

Both these approaches are rather limited. Indeed, if one wanted to consider di↵erent types
of memory, one would have to change the modelling framework each time and potentially have
to prove all composition theorems all over again. Moreover, these approaches do not allow one
to analyse protocols that construct one type of memory from another type of memory, as we
do in this paper. Indeed, one cannot analyse the security of protocols such as Yee’s crypto-
paging technique [24,25] and the constructions of Di Crescenzo et al. [9]. In contrast, we model
memory as a resource (or ideal functionality) within the security framework (the constructive
cryptography framework in our case) and thus do not su↵er from these limitations.

2 Preliminaries

This section defines the notation used throughout this paper, presents the constructive cryptog-
raphy model, and recalls various cryptographic building blocks and their security properties.

2.1 Notation

Let GF(q) denote the Galois field of q elements, where q is a prime power. If u is a vector or a
list, let ui or u[i] denote the ith element of u. If u = (u1, . . . , un) and v = (v1, . . . , vm) are lists,
then (u, e) denotes the list (u1, . . . , un, e) and (u, v) denotes the list (u1, . . . , un, v1, . . . , vn); we
write e 2 u to denote (9i : e = ui); we write v = (u, ·) to denote that (8i 2 {1, . . . , n} : ui = vi).
If L is a set of positive integers, let [u]L denote the subvector of u taken at all positions in L.
If S is a set, then 2S denotes the powerset of S (the set of all subsets of S). Let Ir denote the
identity matrix of size r ⇥ r, and let 0 denote the zero matrix of appropriate size.

If A is a deterministic polynomial-time algorithm, then y A(x) denotes the assignment
of variable y to the output of A(x). If A is a probabilistic polynomial-time (PPT) algorithm,
then y $ A(x) denotes the assignment of y to the output of A(x) when run with fresh random
coins on input x. For a set A: x $ A denotes the assignment of x to a value chosen uniformly
at random from A. For a distribution A(x), we denote the ensemble {A(x)}x2{1⌘ |⌘2N,⌘>⌘0} by
the shorthand {A}1⌘ .

Throughout this paper we denote the security parameter by ⌘ 2 N. Let 1⌘ denote the string
consisting of ⌘ ones. Unless otherwise noted, all algorithms in this paper are PPT and take 1⌘

as extra (often implicit) input.

2.2 Constructive Cryptography

We present our results in the Constructive Cryptography framework [17, 18]. The framework
argues about resources and how to securely construct a resource from other resources using a
protocol which consists of a set of converters. Resources and converters are systems that have a
set of interfaces. Resources have an interface for each party considered (e.g., Alice), one for the
adversary (the Eve interface), and one for the distinguisher (the World interface). The latter
is an example of what Gaži et al. [11] introduce as a free interface and allows one to model
the influence of the distinguisher (environment) on a resource, e.g., to define when a memory
becomes readable by the adversary or to model adaptive adversarial behaviour. Converters have
only two interfaces, an inner interface that connects to a party interface of a resource and an
outer interface to which a party can connect. A simulator is a converter that attaches to the

4

R⇡ ⇡ S
Alice

interface
interface

Eve

�

interfaceWorld Fig. 1: The constructive statement for a resource with
interfaces Alice, Eve, and World. Protocol ⇡ con-
structs S from R if there is a simulator � such that
R with ⇡ attached to its Alice-interface is indistin-
guishable from the resource S with � attached to its
Eve-interface (cf. Defintion 1).

adversary interface of a resource. In this paper we consider only resources that have a single
party interface, i.e., Alice. The security condition of Constructive Cryptography is as follows
(we do not consider the availability condition in this paper) [18].

Definition 1. A protocol (converter) ⇡ constructs resource S from resource R with respect to

simulator �, within ✏, denoted

R
⇡,�,✏

S ,

if for all distinguishers D we have �D(⇡AliceR,�EveS)  ✏(D), where �D
is the advantage of

D in distinguishing the two systems [18].

The distinguisher D is a system itself and has access to all external interfaces of the composition
of the resources and converters (cf. Figure 1). With ⇡AliceR we denote the system obtained by
attaching the inner interface of ⇡ to the interface Alice of resource R, and likewise for �Eve.
In this definition, ✏ is a function mapping distinguishers to positive real numbers. Informally,
computational security corresponds to ⇡ and � being e�ciently implementable and ✏(D) being

negligible for all e�ciently implementable D. Constructions are composable, i.e., if R
⇡1,�1,✏1 S

and S
⇡2,�2,✏2 T, then R

⇡2⇡1,�1�2,✏2+✏1 T.

2.3 Cryptographic Building Blocks

For our constructions, we require pseudo-random generators and exposure-resilient functions,
the definitions of which we recall here for convenience.

Definition 2. An `-pseudo-random generator (PRG), i.e., prg : {0, 1}⌘ 7! {0, 1}`(⌘), is secure if
these ensembles are computationally indistinguishable: {b}1⌘ for b $ {0, 1}`(⌘); and {prg(a)}1⌘
for a $ {0, 1}⌘ [15].

Definition 3. A d-exposure-resilient function (ERF) erf : �n 7! �k
, also denoted (�, n, d, k)-

ERF, is ✏-secure if for any set L ⇢ {1, . . . n} of size at most d, these distributions are ✏-
indistinguishable: ([b]L,x0) for b $ �n,x0 erf(b); and ([b]L,x1) for b $ �n,x1 $ �k

[5].

2.4 All-or-Nothing Transform (AoNT)

An all-or-nothing transform (AoNT) [5, 23] is similar to a secret-sharing scheme that requires
all shares in order to reconstruct the secret. It consists of two algorithms aenc and adec.

Definition 4. A d-AoNT with aenc : �k $7! �n
and adec : �n 7! �k

, also denoted (�, n, d, k)-
AoNT, is ✏-secure if:

(Completeness) For all messages a 2 �k
, a = adec(aenc(a)).

(Privacy) For any set L ⇢ {1, . . . n} of size at most d and for any two messages a0,a1 2 �k
,

the two distributions (a0,a1, [aenc(a0)]L) and (a0,a1, [aenc(a1)]L) are ✏-indistinguishable.

5

Computational security. In the context of computational security, the two functions aenc and
adec take as additional input a (usually implicit) security parameter and the parameters �, n, k,
and d may depend on that security parameter. For the privacy condition, it is required that the
ensembles {(a0,a1, [aenc(1⌘,a0)]L)}1⌘ and {(a0,a1, [aenc(1⌘,a1)]L)}1⌘ be indistinguishable. In
the sequel we also denote such computationally secure AoNTs as (�, n, d, k)-AoNTs, where the
security parameter is implicit.

AoNT with public part. Canetti et al. [5] also consider AoNTs that have a two-part output,
a pubic part that needs no protection and a secret part that has the privacy property. More
formally, an (�, n+ ⌫, d, k)-AoNT has a ⌫-public part, if in the privacy condition above the last
⌫ symbols of aenc(a) are output in addition to [aenc(a)]L.

Realization of AoNTs. In Appendix A, we summarise a number of known constructions of
AoNTs. For instance, one can realize a perfect (�, n, d, k)-AoNT from any secret sharing scheme
over alphabet � that outputs m shares, has a reconstruction threshold of n, a privacy threshold
of d, and that encodes messages of size k shares, by simply ignoring all shares after the first n
ones. This technique also works in the statistical and computational case.

Given an ERF, it is easy to realize an ✏-secure (�, n + k, d, k)-AoNT with a k-public part

from any ✏-secure (�, n, d, k)-ERF: aenc(a)
$7! b||(erf(b) + a) where b $ �n; and adec(b||x) 7!

x� erf(b) [5]. This technique also works in the computational case.

3 Modelling Imperfectly Erasable Memory

We now present our erasable memory resource. Recall that we aim to model memory that is used
for persistent storage (such as hard disks, solid state drives, RAM, and smart cards), and not
processor registers that store temporary values during computations. To this end, we define how
the resource behaves upon inputs on the user (Alice), the adversary, and the world interfaces. It
allows a user Alice to store a single data item once, retrieve it (many times), and erase it. The
adversary can get access to the data only if such access is enabled on the World-interface. That
is, the data stored is not initially available to her. Then, once access is enabled via a weaken

input on the World-interface, the adversary can either read the data item stored (if the user
has not yet deleted it) or leak the data, meaning that she will obtain as answer a function of
the once stored data. This function determines the information that is still leaked although the
data has been deleted. The adversary can influence the leakage by providing an additional input
to the function (e.g., specify some bits that are leaked).

In reality, there might be many di↵erent reason why an adversary gains access to the contents
of a memory. This might be because the memory device is lost, the adversary controlling some
malware on the computer that uses the memory, or the adversary running a cache-timing attack
[2] on the computer, etc. O↵ering a World-interface via which it is determined what access is
given to the adversary by the memory resource, models any such event. The UC and GNUC
frameworks use a similar mechanism for corrupting parties, except that they (ab)use the party
interfaces to do so. In UC, it is the adversary who corrupts and the environment is informed of
the corruption through the party interfaces. In GNUC, the environment corrupts parties and
the adversary is informed thereof.

There seem to be two natural extensions to our erasable memory resource which for simplicity
we chose not to consider. First, we assume that inputs at the World-interface do not impact
the user’s ability to access the data, which might often not be the case. Although this would
not be hard to model, it is not important for the scope of this paper. Second, the user cannot
change the stored data or store many di↵erent data items. Again, while it would not be hard
to extend the resource to allow for that, we choose not to do that for simplicity. Also, this is
not a serious restrictions as such requirements can also be addressed by using several instances

6

The resource Mh⌃, , ⇢,i:
Internal state and initial values: data = ?, ldat = ?,hist = ().
Behavior:

– Alice(store, µ 2 ⌃): if data = ?: data µ; ldat $ (µ);Alice ().
– Alice(retrieve): if “e” 62 hist: Alice data.
– Alice(erase): if “e” 62 hist ^ data 6= ?: hist (hist, “e”);Alice ().

– Eve(gethist): Eve hist.
– Eve(read): if ⇢(hist): Eve data.
– Eve(leak, ⇠): if (hist, ⇠): hist (hist, “l”||⇠); Eve ⇠(ldat).

– World(weaken, w): if (“w”||w) 62 hist: hist (hist, “w”||w);World ().

Fig. 2: The general (imperfectly) erasable memory resource Mh·i.

of our memory resources.

3.1 Specification of the General Imperfectly Erasable Memory Resource Mh·i
We now present our formal specification of the general resource for imperfectly erasable memory
Mh⌃, , ⇢,i that is given in Figure 2 and then discuss in the next subsection a few instantiations
of this general resource that match di↵erent types of memory. The resource maintains three
variables data, ldat, and hist. The first one stores the data provided by the user, the second
the data that can potentially be leaked to the adversary, and the third one logs the history of
events, namely the erasure event, the parameter of each call on the World interface, and the
input arguments of each successful leakage query. The resource is parametrized by an alphabet
⌃, a conditional probability distribution , and two predicates ⇢ and . The alphabet ⌃ is
the set of possible values that can be stored. The conditional distribution operates on the
data and determines what information could potentially leak to the adversary by outputting
ldat. This models the extent to which the resource is able to erase the data. The predicate
⇢ takes as input the history of the resource and determines whether or not the adversary is
allowed to read the memory. Finally, the predicate  takes as input the history of the resource
and the deterministic function ⇠ submitted by the adversary and determines whether or not the
adversary obtains the leakage ⇠(ldat).

Most of the commands that can be submitted to the resource and its behaviour should
now be clear from Figure 2, however, a few details merit explanation. First, the data that is
potentially leaked, ldat, is determined using already when the data is stored in the resource.
This is without loss of generalty but is here useful because, depending on the predicate , the
adversary may query the resource multiple times with the leak command and the answers to
these commands need to be consistent. Second, when the adversary queries the resource with
a leak command, she can input a parameter ⇠ that may influence the leakage she obtains. This
models the process of an adversary reading the erased data from a memory device, e.g., an
adversary might try to read the data bit by bit, each time influencing the remaining bits in the
memory. Third, the adversary is allowed to obtain the history from the resource at any time.
This is necessary so that a simulator has enough information to properly simulate a construction.
Finally, the World-interface accepts any value w for an external event, because these depend on
the particular resource that is modelled and possibly on how it is constructed. This will become
clear later when we discuss constructions of one type of memory from other types in Section 4.

3.2 Instantiations of Mh⌃, , ⇢,i
We now describe special cases of the Mh⌃, , ⇢,i resource that correspond to memory devices
appearing in the real world. We start by describing non-erasable memory, i.e., memory that
becomes readable by the adversary once access is enabled by the World-interface. This models
what happens in a typical file system: files that are unlinked are not actually erased and can

7

Perfectly erasable memory Influence of the World interface
PMh⌃i single world event makes memory readable by adversary
PMWh⌃i multiple world events are modelled
PMWah⌃i specific version of PMWh⌃i (Fig. 6)
PMWbh⌃i specific version of PMWh⌃i (Fig. 6)
PMWch⌃i specific version of PMWh⌃i (Fig. 6)
Imperfectly erasable memory Information adversary obtains on deleted data
IMh⌃, ,⌅i reveals ⇠(ldat) if ⌅(⇠) = 1
IMDh�, n, di reveals d symbols to adversary
IMDPh�, s1, s2, di reveals d symbols of first part, all symbols of second part
IMIh�, n, di each symbol revealed independently with probability p

IMNh�, n, di reveals through noisy channel
IMLh⌃, vi reveals through a length shrinking function
IMLPh�, n, a+ k, vi reveals a length shrinking function on first part, full second part

Table 1: Di↵erent specializations of Mh⌃, , ⇢,i that allow one to erase data.

often be completely recovered with specialized tools (at least until the blocks are re-used). We
then describe perfectly erasable memory. Such a memory could be implemented by specialized
hardware, such as smartcards, but often will have only limited capacity. Large perfectly erasable
memories are often not directly available in reality. We are thus interested in the construction
of such memories from resources with lesser guarantees. Each of the latter can be influenced
through World-events separately, hence we will describe both a variant of the perfectly erasable
memory that accepts a single type of World-event (easier to describe) and a variant that accepts
an arbitrary number of events. Finally we describe imperfectly erasable memories, i.e., memories
with security guarantees between the two extremes just discussed. Such memories leak partial
information if the adversary is granted access by World after an erasure. In reality, often not
all the data is actually removed during an erasure: on magnetic storage, overwritten data can
still be partially recovered with specialized equipment [12]. Similarly, often parts of the data
were copied to a di↵erent medium (swap space, backup, file system journal, etc.) before the
erasure and the copies were not fully erased themselves. One can thus easily imagine that the
adversary can deduce a constant number of bits that were stored, or obtains a noisy version of
the data that was stored. For simplicity, we consider imperfectly erasable memories which ignore
the parameter of weaken (only a single World-event can be modelled), and only leak once (no
adaptive leakage). We now describe these categories of memory in detail. Table 1 provides an
overview of these and further specialization of them that we consider in the following sections.

Non-erasable Memory. To model non-erasable memory, we let ⇢ return true if weaken was
called irrespective of erase. (In fact, the erase command could be dropped entirely.) The
memory does not leak, hence  always returns false and is irrelevant. The only relevant
parameter is the alphabet ⌃ and thus we denote this resource by NMh⌃i.
Perfectly Erasable Memory. To model perfectly erasable memory, we let ⇢ return true only
if weaken was called (perhaps multiple times with specific parameters) before erase was called.3

This memory does not leak, hence  always returns false and is irrelevant. We describe two
versions of the resource: PMh⌃i fixes ⇢ to return true if weaken appears in the history earlier
than or without erase, hence only a single World-event can be modelled. PMWh⌃, ⇢i lets one

3 In this paper, we chose to consider monotone ⇢’s. We chose to model the memory resource in such a way that
it only responds on the same interface it was activated, hence it is not possible for the adversary to be notified
of an event that causes the memory to become readable. To simplify the modelling of simulators, we consider
the adversary to be eager and trying to read the memory as soon as possible and then placing the resulting
data in an “intermediate bu↵er” that can then be collected through the Eve-interface at a later point.

8

specify a custom ⇢, allowing the modelling of many World-events. Figure 6 in the next section
shows examples of ⇢ in the case where there are two relevant World-events.

Imperfectly Erasable Memory. To model imperfectly erasable memory, we fix ⇢ and split
 into two predicates, a fixed predicate that checks only the history and a freely specifiable
predicate ⌅ that checks only the adversary’s choice ⇠. The other parameters ⌃ and can be
freely specified. We denote this resource by IMh⌃, ,⌅i. We consider only resources allowing
for a single World-event. The predicate ⇢ returns true only if the first recorded event in the
history is a weaken command (as opposed to an erase command). The fixed predicate returns
true if the first two recorded events in the history are an erase command followed by a weaken

command (if weaken was called first, the adversary should call read and not leak), and no leak
query succeeded previously. Thus, we consider only resources allowing for a single World-event.
The predicate  returns true if the fixed predicate does so and ⌅ accepts ⇠. In the next section,
when we discuss erasability amplification, we further specialize this resource.

4 Constructing Better Memory Resources

In this section we consider constructions of memory resources with stronger security properties
from memory resources with weaker ones. We start by showing how to use our memory resources
in protocol constructions and then explain the issues that arise when doing so. Thereafter, we
describe several specializations of the imperfectly erasable memory resource IMh·i presented in
the previous section and then show how to construct memory resources with stronger properties
from ones with weaker properties. For example, we show how to construct perfectly erasable
memories from memories that leak a certain number of bits. Finally, we consider the construction
of a large perfectly erasable memory from a small one plus a large non-erasable memory.

4.1 Admissible Converters for Constructions using Erasable Memory

As stated previously, one of our reasons to model memory is to be able to analyse cryptographic
protocols where the adversary at some point obtains access to the memory. This means that
one needs to restrict converters to use only our memory resources for storage. Assuming that an
adversary in a real environment may typically not be able to get access to processor registers,
we still allow a converter to store temporary values locally and use a memory resource only
for persistent storage. Let us now formalize the distinction between persistent and temporary
storage and the restrictions we put on converters.

The computation done by a converter is divided in computation phases. A phase starts when
a converter is activated outside of a computation phase. Informally, a phase ends as soon as the
converter responds to that activation or makes a request that is not guaranteed to be answered
immediately, i.e., where there is a chance that the adversary is activated before the request
completes. For example, a computation phase ends if the converter makes a request that goes
over an unreliable communication network, but does not end if the converter asks to store or
retrieve data from a memory resource.

In this paper, all our resources always respond on the same interface they were activated. It is
then easy to define a computation phase of a converter: the phase starts as soon as the converter’s
outer interface is activated, and stops as soon as the converter writes on its outer interface. That
is, activations of the inner interface do not interrupt the phase. However, in a more general
setting, resources may respond on a di↵erent interface than the one they were activated on,
and thereby activate a di↵erent party or the adversary. The definition of computation phase of
converters must therefore be adjusted to take this into account.

State that is discarded at the end of a computation phase is temporary. State that must per-
sist between two or more computation phases is persistent. (Converters must keep all persistent
state in memory resources.) This distinction ensures that whenever the adversary has control,

9

the entire internal state of a protocol is inside memory resources, and thus subject to attack.

Discussion. Other models, notably Canetti et al. and Lim [6,16], also make a distinction between
storage needed during computation and persistent storage. However they do it in a way that
does not cleanly separate the various layers of abstraction: they assume the existence of a
constant number of “processor registers” that are perfectly erasable and place no restriction on
the amount of time that data can remain in such a register. For example, their model therefore
does not exclude reserving a part of the CPU registers to permanently store a cryptographic key,
and use a crypto paging technique [24, 25] to have as much (computationally secure) perfectly
erasable memory as required. Thus, to ensure a meaningful analysis, a similar restriction would
have to be used in their approach.

4.2 Memory Erasability Amplification

We now describe several variants of imperfectly erasable memory that are relevant for practice,
namely memory that leaks a constant number of bits, memory that leaks bits with a certain
probability, memory that leaks a noisy version of the data, and memory that leaks the output
of a length-shrinking function of the data. We then show how to construct memories which
leak less information from each of these variants, in other words, we show how to amplify the
erasability of each variant.

4.2.1 Amplifying Memory Leaking Exactly d Symbols

On many file systems, unlinked files are not necessarily immediately erased in their entirety.
For instance, on most SSDs deleted data persists until the flash translation layer flashes the
corresponding erase block. Furthermore, data may survive erasure if it was copied to another
medium, such as cache, swap space, or backups. An adversary could therefore potentially recover
parts of data that were believed to be erased. In full generality, the adversary may not obtain the
entire data but still have an influence on which parts of the data she obtains in an attack, e.g.,
because she can steal just one backup tape, because of the cost of the attack or time constrains
forcing her to choose the most juicy parts of the data, or because the adversary could influence
the system beforehand to some degree and ensure that the parts of the data she is interested in
were backed-up/swapped/cached.

To model such a scenario, we define the memory resource IMDh�, n, di storing n symbols of
an alphabet � and where the adversary can obtain exactly d symbols of his choice when the
memory leaks. This resource is a specialization of IMh⌃, ,⌅i, where ⌃ = �n, is the identity
function, and ⌅ accepts any function that reads at most d symbols from ldat. In a real setting,
depending on the nature of the attack, the adversary may obtain less than d symbols or might
not have full control over which symbols she obtains.

A memory resource in such a setting can be perfectly constructed from IMDh�, n, di with
the identity converter. (A memory resource where the adversary can obtain more than d sym-
bols with a small probability ✏ can also be constructed from IMDh�, n, di, albeit with an error
probability equal to ✏; see, e.g., Section 4.2.2.) The converter I2P shown in Figure 3 constructs
PMh�ki from IMDh�, n, di. This converter is parametrized by an AoNT (cf. Section 2.4). In a
nutshell, I2P just applies the AoNT encoding algorithm aenc(·) to the incoming data before
storing it in IMDh·i; and decodes the encoded data stored in IMDh·i using adec(·) before out-
putting it. The erasure command is transmitted to IMDh·i directly. The privacy property of the
AoNT guarantees that if the adversary obtains d symbols of the encoded data, she obtains no
meaningful information about the original data. Thus, we obtain the following theorem.

Theorem 1. If (aenc, adec) is an ✏-secure (�, n, d, k)-AoNT, then

IMDh�, n, di ⇡,�,✏
PMh�ki ,

10

The converter I2Ph�, k, aenc, adeci:
Behavior:

– Outer(store, µ 2 �k): Inner $ (store, aenc(µ)). Inner! (). Outer ().
– Outer(retrieve): Inner (retrieve). Inner! �.

If � 6= (): Outer adec(�). Else: Outer ().
– Outer(erase): Inner (erase). Inner! (). Outer ().

Fig. 3: The converter I2P constructing PMh�ki from IMDh�, n, di. The converter is parametrized
by a (�, n, d, k)-AoNT (aenc, adec).

The simulator SI2Ph�, n, d, k, aenci:
Internal state and initial values: leaked = 0.
Behavior:

– Outer(gethist): Inner (gethist). Inner! �. Outer �.
– Outer(read): upon error in the following, abort with Outer ().

Inner (read). Inner! µ 2 �k. Outer $ aenc(µ).
– Outer(leak, ⇠ 2 (x 7! [x]L with L 2 2{1,...,n} \ Nd)): upon error in the following, abort with Outer ().

If leaked = 0: Inner (gethist); Inner! (“e”, “W”); leaked 1; Outer $ ⇠(aenc(0k)).

Fig. 4: The simulator SI2P for the construction of PMh�ki from IMDh�, n, di using a (�, n, d, k)-
AoNT (aenc, adec).

where ⇡ = I2Ph�, k, aenc, adeci (Figure 3) and � = SI2Ph�, n, d, k, aenci (Figure 4).

A similar theorem can be stated for the computational case.

Proof. We now prove that all distinguishers have at most advantage ✏ in distinguishing
I2Ph�, n, aenc, adeciIMDh�, n, di (the “real world”) from PMh�kiSI2Ph�, k, d, n, aenci (the “ideal
world”).

Consider a system W that interacts with any distinguisher D and that behaves like the
ideal world except that instead of outputting ⇠(aenc(0k)) during a leak, W plays the AoNT
distinguishing game with ⇠ and 0k and the message µ that was stored in the memory, obtains
(0k, µ,!) from that game, and outputs ! on leak. W outputs the same value as D. If D never
triggers a leak, W outputs a random bit.

It is easy to see that if leakage output by the AoNT privacy game corresponds to the message
0k, the behavior of W is exactly the same as the ideal world for D; and the distribution output
by the AoNT privacy game corresponds to µ, the behavior of W is exactly the same as the
real world for D. W’s advantage in the AoNT distinguishing game is thus not less than the
distinguishing advantage of D. ut

Multi-part leakage. It is sometimes the case that the memory is segmented into multiple inde-
pendent parts, e.g., over two di↵erent file systems on di↵erent partitions of the same physical
disc and that each part reacts di↵erently to an attack.

We define a multi-part memory resource IMDPh�, s1, s2, di storing data in �s1+s2 . The mem-
ory is divided in two parts, the first part consisting of the first s1 symbols and the second of
the other s2 symbols. The first part of the memory leaks similarly to IMDh�, s1, di, while the
second one leaks the entire data. When attacking the memory, the adversary must submit the
choice of leakage for the first part before obtaining the leakage of the second part. We get the
following theorem, the proof of which is similar to the one of Theorem 1 and is omitted.

Theorem 2. If (aenc, adec) is an ✏-secure (�, s1 + s2, d, k)-AoNT with public part s2, then

IMDPh�, s1, s2, di
⇡,�,✏

PMh�ki ,

where ⇡ = I2Ph�, k, aenc, adeci (Figure 3) and � = SI2P (Figure 4).

11

The simulator SE2Rhn, d, pi:
Internal state and initial values: leaked = 0.
Behavior:

– Outer(gethist): Inner (gethist). Inner! �. Outer �.
– Outer(read): Inner (read). Inner! µ. Outer µ.
– Outer(leak): Inner (gethist). Inner! �.

if leaked = 0 ^ � = (“e”, “W”):
leaked 1; b 0n; ! (?, . . . ,?) with |!| = n;
for i 2 {1, . . . , n}, set bi 1 with probability p;
if
P

i bi > d, then abort with Outer ();

⇠ {i | bi = 1}; add additional indices to ⇠ until ⇠ 2 (2{1,...,n} \ Nd);
Inner (leak, ⇠); Inner! �;
for all i where bi = 1, set !i to the corresponding value in �; Outer !.

Fig. 5: The simulator SE2R for the construction of IMDh�, n, di from IMIh�, n, pi.

A similar theorem can be stated for the computational case.

Choice of alphabet. The most suitable choice of � depends on the application. Possible values
are GF(2) when bits can be leaked independently, e.g., because the adversary must read them
one by one from the surface of a disc; GF(2512·8) to GF(24096·8) when the smallest leakable unit
is a file system block; or even GF(2128·1024·8) to GF(28192·1024·8) when the smallest leakable unit
is an erase blocks of an SSD. In the latter two cases, it is also possible to design the system
in such a way that only parts of a block are written to before proceeding with the next one,
thereby reducing the alphabet size and limiting the amount of exposure per leaked block.

4.2.2 Amplifying Memory Leaking Symbols with Probability p

Above, we modelled an adversary who chooses which symbols leak from the imperfect memory.
In practice, the adversary may not have this much power: for example, some parts of a deleted
file might still be present in the journal, but the adversary has no control over which ones. To
model this, let us now consider an adversary who obtains each symbol of the data uniformly and
independently at random with a certain probability p during a leakage. We denote a memory
with such a behaviour by IMIh�, n, di. This resource is a specialization of IMh⌃, ,⌅i where
⌃ = �n, acts like an erasure channel with erasure probability (1 � p) (i.e., each symbol of
the data is transmitted correctly with probability p and otherwise is replaced with “?”), and
⌅ accepts only the identity function.

One can treat IMIh·i similarly to IMDh·i in constructions with just a small statistical error,
as the following observation shows. Constructing PMh�ki from IMIh�, n, pi directly without first
constructing IMDh�, n, di might be more e�cient (better parameters, less statistical error), but
such a direct construction is out of the scope of this paper.

Observation 1 For all (n, d) 2 N2
, p 2 [0, 1], and fields � we have that

IMIh�, n, pi id,�,✏
IMDh�, n, di, where id is the identity converter, � = SE2R (Figure 5), and

✏ = (1� BinomialCDF(d;n, p)) =
Pn

i=d+1

�
n
i

�
pi · (1� p)n�i

.

Proof. It needs to be shown that IMIh�, n, pi and IMDh�, n, di composed with SE2Rhn, d, pi can
be distinguished with advantage at most (1� BinomialCDF(d;n, p)).

It is easy to see that if the simulator does not abort, then the simulation is perfect. Since
the number of bits of b set to 1 follows a binomial distribution with parameters n and p, the
probability of an abort is (1 � BinomialCDF(d;n, p)). Hence the maximal advantage of any
distinguisher is (1� BinomialCDF(d;n, p)). ut

12

4.2.3 Amplifying Memory with Noisy Leakage

Another possible setting is that the data is written to and erased from magnetic storage, and
the adversary, who has physical access to the storage medium, must make an educated guess
for each bit of the data [12]. One can model this as if the data was transmitted through a
noisy binary symmetric channel. We denote such a memory by IMNh�, n, di. This resource is a
specialization of IMh⌃, ,⌅i where ⌃ = �n, acts like a noisy |�|-ary channel with crossover
probability (1 � p)/|�| (i.e., each symbol of the data is transmitted correctly with probability
p and otherwise is replaced with a symbol drawn uniformly at random from �), and ⌅ accepts
only the identity function.

Observation 2 For all (n, d) 2 N2
, p 2 [0, 1], and fields � we have that

IMNh�, n, pi ⇡,�,0
IMIh�, n, pi, where ⇡ = id is the identity converter and � is the simulator

that replaces all erased symbols in the leakage by random symbols.

4.2.4 Amplifying Memory with Limited Leakage Output

Another possible setting is that the adversary does not obtain individual symbols of the data
but rather a function of the data. For example, with a cache-timing attack [2], she might deduce
some information about the data without recovering it completely. In general, one can consider
an adversary that obtains any length-shrinking function of the contents of the memory. We
denote such a memory by IMLh⌃, vi. This resource is a specialization of IMh⌃, ,⌅i, where is
the identity function and ⌅ accepts only functions that have at most v di↵erent output values.

For any non-trivial parameters, it is not possible to construct a perfectly erasable memory
from IMLh·i, because the adversary can submit a leakage function ⇠ 2 ⌅ that runs the decoding
logic of the converter. The reason for this is as follows. Let v � 2, |⌃0| � 2, |⌃| � 2, and let
⇡ be a converter that constructs PMh⌃0i from IMLh⌃, vi. We now show that this construction
has a statistical error of at least 1

2 . The distinguisher chooses two distinct messages a0, a1 2 ⌃0,
flips a coin b $ {0, 1}, and stores ab. He then makes the memory weak by setting the relevant
flags on the World-interface and submits a leakage function ⇠ that returns 0 i↵ a0 was encoded
in IMLh·i by using the decoding logic of ⇡—recall that the distinguisher may depend on ⇡. The
distinguisher then outputs 1 i↵ ⇠ outputs b. No simulator will be able to properly simulate that
scenario with probability more than 1

2 as it does not know if the distinguisher stored a0 or a1.
However, one can obtain a meaningful construction by starting from a memory resource with

multi-part leakage. Let IMLPh�, s1, s2, vi be analogous to IMDPh�, s1, s2, di defined previously,
except that the first part leaks similarly to IMLh�s1 , vi. Here it is crucial to note that the
function ⇠ submitted by the adversary can read only the first part of the memory. In particular,
given a universal hash function h : �a ⇥ �n 7! �k, one can construct the resource PMh�ki
from IMLPh�, n, a+ k, vi, by using I2P with an AoNT obtained from a universal hash function
(see A.3). The construction is (2v2(k�n)/2)-secure [5,7]. This construction is essentially the one
proposed by Canetti et al. [6] and Lim [16].

4.3 Constructing a Large Perfectly Erasable Memory from a Small One

We now discuss how a small perfectly erasable memory can be used together with a large,
possibly non-erasable memory to construct a large perfectly erasable memory. The basic idea
underlying this construction is that of Yee et al.’s crypto paging [24, 25]: one stores a cryp-
tographic key in the small perfectly erasable memory, encrypts the data with that key, and
stores the resulting ciphertext in the large, possibly non-erasable memory. The resulting re-
source PMWahGF(2`(⌘))i will allow the adversary to read the stored data if the resource is
weakened by the environment before the user erases the key. The specification of this resource
is given in Figure 6a and the protocol XPM for the construction is provided in Figure 7.

13

(a) The resource PMWah⌃i
denotes PMWh⌃, {K, C}, ⇢ai,
where ⇢a(hist) is true i↵: hist starts
with
(K) or (C).

s

R R s

s s

s s

K C

e

C

C

K

K

(b) The resource PMWbh⌃i
denotes PMWh⌃, {K, C}, ⇢bi,
where ⇢b(hist) is true i↵: hist
starts with
(K, C), (K, “e”, C), or (C, K).

s

R

R

s

s s

s s

K C

e

C

C

C

C

K

K

K

K

ee

R

s s

s s

s

(c) The resource PMWch⌃i
denotes PMWh⌃, {K, C}, ⇢ci,
where ⇢c(hist) is true i↵: hist starts
with
(K, C), (K, “e”, C), or (C).

s

R

R

s

s s

s s

K C

e

C

C

C

C

K

K

e

Rs

s

Fig. 6: Several variants of a perfectly erasable memory resource with two World-flags. The prefix
decision trees visualize whether the adversary has read access to the memory depending on the
event history hist. A branch labelled “e” represents an erasure event, and branches labelled “K”
(key) or “C” (ciphertext) represent the setting of the corresponding flags on the World-interface.
An “R” node means that the memory is readable (and allows the adversary to collect the data
at any time from then on), and an “s” (secure) node means that it does not.

The converter XPMh`, prgi:
Behavior:

– Outer(store, µ 2 GF(2`(⌘))): sk $ GF(2⌘). � prg(sk) + µ. Inner (PM, store, sk).
Inner! (). Inner (NM, store, �). Inner! (). Outer ().

– Outer(retrieve): upon error in the following, abort with Outer ().
Inner (PM, retrieve). Inner! sk 2 GF(2⌘).
Inner (NM, retrieve). Inner! �. µ � � prg(sk). Outer µ.

– Outer(erase): Inner (PM, erase); Inner! (). Outer ().

Fig. 7: The converter XPM constructing a large perfectly erasable memory PMWahGF(2`(⌘))i
or PMWchGF(2`(⌘))i using a small perfectly erasable memory PMhGF(2⌘)i and a large non-
erasable memory NMhGF(2`(⌘))i. The converter is parametrized by an `-PRG prg, and the
implicit security parameter ⌘.

The resource just constructed allows the adversary to read the stored data if either the
small erasable or the large non-erasable memory become weak before the user erases the key.
Thus, this resource is weaker than what one would expect, i.e., it should be the case that the
adversary can only read the data if both underlying resources become weak before the user erases
the key. The corresponding resource PMWbhGF(2`(⌘))i is depicted in Figure 6b. Unfortunately,
the realization of this resource would require a non-committing and non-interactive encryption
scheme, which can only be constructed in the random oracle model but not in the standard
model.

However, it is possible to construct the somewhat better resource PMWchGF(2`(⌘))i, shown
in Figure 6c. Here the adversary can read the stored data if the memory storing the ciphertext
becomes weak before the user calls delete. It is not hard to see that PMWchGF(2`(⌘))i implies
PMWahGF(2`(⌘))i, essentially the simulator attached to the Eve interface of PMWahGF(2`(⌘))i
has to hold back the leaked data until the non-erasable memory becomes leakable.

Theorem 3. If prg is a secure `-PRG, then

⇥
PMhGF(2⌘)i,NMhGF(2`(⌘))i

⇤ ⇡,�,✏
PMWchGF(2`(⌘))i ,

14

The simulator SXPMh`, prg, ⇢i:
Internal state and initial values: ct = ?, sk = ?.
Behavior:

– Outer(PM, gethist): Inner (gethist). Inner! �.
Remove any “C” from �. Outer �.

– Outer(NM, gethist): Inner (gethist). Inner! �.
Remove any “K” and “e” from �. Outer �.

– Outer(PM, read): Inner (gethist). Inner! �.
If � does not start with (“K”) nor (“C”, “K”): abort with Outer ().
If sk = ?: sk $ GF(2⌘).
Outer sk.

– Outer(NM, read): Inner (gethist). Inner! �.
If “C” 62 �: abort with Outer ().
If sk = ?: sk $ GF(2⌘).
If ct = ? ^ ⇢(�): Inner (read); Inner! µ; ct µ+ prg(sk).
If ct = ?: ct $ GF(2`(⌘)).
Outer ct.

Fig. 8: The simulator SXPM in the proof of the construction of PMWchGF(2`(⌘))i from
PMhGF(2⌘)i and NMhGF(2`(⌘))i using the converter XPMh`, prgi and with ⇢ := ⇢c. The same
simulator with ⇢ := ⇢a can be used in the construction of PMWahGF(2`(⌘))i.

where ⇡ = XPMh`, prgi (Figure fig:ext:protocol), � = SXPM (Figure 8), and ✏ is a negligible

function.

Proof. For the sake of contradiction, let us assume the existence of an e�-
cient distinguisher D that has non-negligible advantage in distinguishing between
the “real world” XPMh`, prgi[PMhGF(2⌘)i,NMhGF(2`(⌘))i] and the “ideal world”
PMWchGF(2`(⌘))iSXPMh`, prg, ⇢ai. (We assume that the di↵erence on the World-interface
is implicitly taken care of.) We show how to construct an e�cient distinguisher W with
non-negligible advantage for the PRG distinction game.

W behaves like the ideal world, except that, when asked to leak the non-erasable memory
when the “C” World-flag was set after the data was erased but before the “K” World-flag was
set (in the sequel, we call this the (“e”, “C”)-event), W obtains a challenge c from the PRG
distinction game and outputs (c + µ). W then outputs the same thing as D. If D terminates
without having provoked the (“e”, “C”)-event, then W outputs a random bit.

Notice that W is constructed in such a way that:

– If the (“e”, “C”)-event does not happen, then the real and ideal worlds are perfectly
indistinguishable.

– If the PRG distinction game outputs c = prg(sk), then W behaves exactly like the real
world to D.

– If the PRG distinction game outputs a random c, then W behaves exactly like the ideal
world to D.

Hence WD has the same non-negligible advantage in the PRG distinction game than D has
in distinguishing the real and ideal world. ut

As stated above, XPM also constructs PMWahGF(2`(⌘))i from the same resources. Further-
more, in the random oracle model, a protocol that is identical to XPM except that calls to
prg are replaced by calls to the random oracle, constructs PMWbhGF(2`(⌘))i from the same
resources.

Let us discuss our the memory resources just discussed in light of some secure memory
constructions in the literature. As mentioned, Yee et al. introduce crypto paging [24,25] to let a

15

The algorithm C2Ah�, n, k,⇡i:
Behavior:

– aenc(µ 2 �k): ⇡.Outer (store, µ).
While true:

If ⇡.Inner! (store,� 2 �n): return �.
Else if anything is sent by ⇡.Inner: ⇡.Inner ().
Else: abort by returning ?.

– adec(� 2 �n): ⇡.Outer (retrieve).
While true:

If ⇡.Inner! (retrieve): ⇡.Inner �.
Else if ⇡.Outer! µ 2 �k: return µ.
Else if ⇡.Inner! (erase): abort by returning ?.
Else if anything is sent by ⇡.Inner: ⇡.Inner ().
Else: abort by returning ?.

Fig. 9: The algorithm C2A that realizes a (�, n, d, k)-AoNT from a converter ⇡, where ⇡ con-
structs PMh�ki from IMDh�, n, di.

secure co-processor encrypt its virtual memory before paging it out to its host’s physical memory
or hard disk. Translated to our setting, this means that the non-erasable memory is weak from
the beginning. Therefore, to get meaningful guarantees, only the resource PMWbhGF(2`(⌘))i
can be used in their setting, the other two would allow the adversary to always read the data.
Thus, to realize their system, Yee et al. require a non-committing and non-interactive encryption
scheme (and hence random oracles).

Di Crescenzo et al. [9] consider a memory resource that allows one to update the stored
data such that when the resource becomes weak the adversary can only read the data stored
last. They then provide a construction for a large such resource from a small one and a large
non-erasable memory. Again they assume that for both resources the data can be updated and
that the non-erasable one leaks all data ever stored in it. None of our resources does allow for
such updates but, as already discussed, resources that allow this can be constructed by using
several of our respective resources in parallel. Thus, their security definition and construction
can be indeed modelled and analysed with the memory resources we define, however, doing this
is out of scope of this extended abstract.

5 New Realizations of All-or-Nothing Transforms

In Section 4 we saw the importance of AoNTs for constructing perfectly erasable memory from
certain types of imperfectly erasable ones. In this section we present several novel AoNTs.
We start by showing the dual of the I2P protocol: any protocol that constructs PMh�ki from
IMDh�, n, di can be used to realize a (�, n, k, d)-AoNT. We then present a perfect AoNT with
better parameters than what is found in the literature, based on the novel concept of ramp

minimum distance of a matrix. We then show that one can combine several AoNTs to achieve
an AoNT over a small field but with a large message space and a good privacy threshold d.
Finally, we provide a computationally-secure AoNT over a large field that has a very large
privacy threshold.

5.1 AoNT from a Protocol that Constructs PMh�ki from IMDh�, n, di
Section 4.2.1 described the protocol I2P, parametrized by an AoNT, that constructs a perfectly
erasable memory PMh�ki from an imperfectly erasable one IMDh�, n, di. As the following the-
orem states, any protocol ⇡ (not necessarily one based on an AoNT) that constructs PMh�ki
from IMDh�, n, di can be used to construct an AoNT using the algorithm C2A, albeit one where
adec is a probabilistic algorithm and where decoding might fail with a small probability.

16

The distinguisher Dhµ, xi:
Upon error in any of the following, abort and return 1.

Do x times: Y.Alice (retrieve); Y.Alice! ().
Y.Alice (store, µ). Y.Alice! ().
Do x+ 1 times: Y.Alice (retrieve); Y.Alice! µb.
Y.Alice (erase). Y.Alice! ().
Do x times: Y.Alice (retrieve); Y.Alice! ().
Return 0.

Fig. 10: The distinguisher for the correctness condition of Theorem 4.

Theorem 4. If (⇡,�, ✏) are such that IMDh�, n, di ⇡,�,✏
PMh�ki, then the algorithm

C2Ah�, n, k,⇡i is a 6✏-secure (�, n, d, k)-AoNT with a probabilistic adec and where decoding

may fail with probability less than 2✏.

One can make an analogous statement in the computational case.

Proof. We first consider correctness and then privacy.

Correctness. We first show that if there exists a message µ such that encoding and decoding fails
with probability at least 2✏, then the distinguisher D shown in Figure 10 distinguishes between
the “real world” ⇡IMDh�, n, di and the “ideal world” PMh�ki� with advantage at least ✏ for
any �, which would be a contradiction. Let Y denote the system D is interacting with. Let x be
an integer such that (14)

x < ✏.
Notice that � is never activated, hence D works for all simulators.
It is clear that if D interacts with the ideal world, D always outputs 0. When interacting

with the real world, intuitively, D outputs 1 if encoding or decoding failed, i.e., with probability
2✏. However, one has to take possible “malicious behavior” of ⇡ into account: it is possible that
C2Ah�, n, k,⇡i fails because ⇡ issued an erase command during retrieval or because ⇡ never
stored anything in the memory, but D outputs 0 anyway.

Recall that ⇡ cannot keep state between phases, hence if ⇡ issued an erase command during
the first retrieval in the second loop, ⇡ cannot distinguish between any of the retrieval phases
in the second and third loop. Let y denote the probability that ⇡ returns µ if faced with an
empty memory. The probability that no error happens in D if the memory was erased during
the first retrieve by ⇡, is thus at most yx · (1� y)x < (14)

x < ✏. A similar argument shows that if
⇡ never stored anything in the memory during the store command, then ⇡ cannot distinguish
any of the retrieval phases in the first and second loop. The probability that no error happens
is thus also smaller than ✏. Hence the distinguishing advantage is at least 2✏� ✏ = ✏.

Privacy. We now show that if there exists a distinguisher W for the AoNT distinguishing game
with advantage at least 6✏ on a set ⇠ with messages µ0 and µ1, then the distinguisher D shown
in Figure 11 that distinguishes between the “real world” ⇡IMDh�, n, di and the “ideal world”
PMh�ki� has distinguishing advantage at least ✏ for any �, which would be a contradiction. Let
Y denote the system D is interacting with. Let x be an integer such that (14)

x  ✏.
It is clear that D never aborts in the first part if it interacts with the ideal world (recall that

� was never activated up to now).
It is also clear that if D interacts with the real world and if something was stored in the

memory and the memory has been erased D never aborts in the second part (recall that D
doesn’t interact with ⇡ in the second part).

Let us calculate the probability that ⇡ did not erase the memory and that no error happened
during the first part. Recall that ⇡ does not keep state between phases. Since ⇡ does not erase the
memory in any of the 2x retrieve queries following the store command, the memory behaves
identically in all queries, and thus ⇡ cannot determine which query number it is currently

17

The distinguisher Dhµ0, µ1, ⇠, x,Wi:
Upon error in the following “first part”, abort and return 1.

Do x times: Y.Alice (retrieve); Y.Alice! ().
b $ {0, 1}. Y.Alice (store, µb). Y.Alice! ().
Do x times: Y.Alice (retrieve); Y.Alice! µb.
Y.Alice (erase). Y.Alice! ().
Do x times: Y.Alice (retrieve); Y.Alice! ().
Y.World (weaken). Y.World! ().

Upon error in the following “second part”, abort and return 0.
Y.Eve (leak, ⇠). Y.Eve! � 2 �d.

W (µ0, µ1,�). W! g. If b = g: return 1. Else: return 0.

Fig. 11: The distinguisher for the privacy condition of Theorem 4.

servicing. Hence for a given µb, there must be a constant probability y that ⇡ returns µb in a
retrieve phase. Also, ⇡ must return µb as expected in all x queries of the second loop (probability
= yx) and return () as expected in all x queries of the third loop (probability at most (1� y)x).
The probability is thus (y · (1� y))x  (14)

x.
If no error occurred in D, and D interacted with the ideal world, it is clear that the leakage �

is independent of the chosen bit b, hence W cannot have any advantage in the AoNT distinction
game.

If D interacted with the real world, and if the memory contains the value that would have

been returned by C2A.aenc, W will output the correct guess with probability at least 1
2 + 3✏.

Similar to the correctness condition, it is possible that ⇡ did not store anything in the memory
during the store command: this happens with probability at most (14)

x. Thus if D interacted
with the real world, and no error occurred, then the probability that W outputs the correct
guess will be at least 1

2 + 3✏� (14)
x.

To conclude, the distinguishing advantage of D is at least 3✏� 2 · (14)
x � ✏, as required. ut

5.2 Perfectly Secure AoNT Based on Matrices with Ramp Minimum Distance

This subsection shows how one can improve the standard realization of AoNTs based on linear
block codes of Canetti et al. [5] by using our novel concept of ramp minimum distance.

The standard realization. Let G be the k ⇥ n generator matrix with elements in GF(q) of
a linear block code with minimum distance d. The encoding function of the perfectly secure
(GF(q), (n+ k), d, k)-AoNT is as follows:

aenc(a 2 GF(q)k) : b $ GF(q)n;y

In 0
G Ik

� 
b

a

�
; return y.

Further details are given in Appendix A.2.
Let us now show how to use the concept of ramp minimal distance to construct better

AoNTs.

Definition 5. A k⇥ n matrix G with elements in GF(q) has ramp minimum distance d if for

every r 2 {1, . . . , k}, every r ⇥ (n� (d� r)) submatrix of G has rank r.

Note that the concept of (regular) minimum distance comes from coding theory, and requires
that all k ⇥ (n � (d � 1)) sub-matrices of G have rank k (which is equivalent to saying that
for every r 2 {1, . . . , k}, all r ⇥ (n � (d � 1)) sub-matrices of G have rank r), where G is the
generator matrix of a linear block code. A matrix with minimum distance d also has a ramp

minimum distance d (the converse is obviously not true).

18

Here is an example of 6 ⇥ 24 matrix over GF(2) with Ramp Minimum Distance 12 found
using exhaustive search:

G =

2

6666664

111101101110000010111000
111111001111010101011111
011100111010001100001111
100110010110110011011010
110001100110100011000111
111110010100001001100110

3

7777775
.

Now, from a generator matrix with ramp minimum distance, we can construct an AoNT
and thus obtain the following theorem.

Theorem 5. The standard realization of an AoNT (sketched above and detailed in Ap-

pendix A.2), parametrized by a k ⇥ n matrix G with elements in GF(q) with ramp (instead

of regular) minimum distance d, is a perfectly secure (GF(q), (n+ k), d, k)-AoNT.

Proof. We now show that the privacy threshold of the AoNT is at least d. For any set L of size
d, let r denote the number of elements of x output by the AoNT distinguishing game (therefore
d � r elements of b are output by the game). Let k

b denote the sub-vector of b of size d � r
containing all elements of b that are output by the AoNT distinguishing game, and let u

b denote
the sub-vector of size n + r � d containing the elements that are not output. Similarly, let k

x

denote the sub-vector of x of size r that is output by the AoNT distinguishing game, and let
u
x denote the sub-vector of size k � r containing the elements that are not output. Let P be
the permutation matrix such that:

P


b

x

�
=

2

664

u
b

k
b

k
x

u
x

3

775 .

Let ku
G, kk

G, uu
G, uk

G be sub-matrices of G, and let k
a and u

a be the sub-vectors of a such
that: 2

664

In+r�d 0 0 0
0 Id�r 0 0
ku
G

kk
G Ir 0

uu
G

uk
G 0 Ik�r

3

775 := PMP

T and

2

664

u
b

k
b

k
a

u
a

3

775 := P


b

a

�
.

We thus have:

2

664

u
b

k
b

k
x

u
x

3

775 = P


b

x

�
= PM


b

a

�
= PMP

T
P


b

a

�
=

2

664

In+r�d 0 0 0
0 Id�r 0 0
ku
G

kk
G Ir 0

uu
G

uk
G 0 Ik�r

3

775

2

664

u
b

k
b

k
a

u
a

3

775 =

2

664

u
b

k
b

ku
G

u
b+ kk

G

k
b+ k

a

uu
G

u
b+ uk

G

k
b+ u

a

3

775 .

Since G has ramp minimum distance d, the r⇥(n�(d�r)) sub-matrix ku
G has rank r, thus

ku
G

u
b is uniformly distributed. Therefore


k
b

k
x

�
, which is the output of the AoNT distinction

game, is uniformly distributed and independent from a. This concludes the proof. ut

19

It remains to find a matrix with a desired ramp minimum distance. One way it so chose a
random matrix, as shown by the following theorem.

Theorem 6. For all (n, k, d) 2 N3
, and all prime powers q, a k ⇥ n matrix where all elements

were chosen independently and uniformly at random over GF(q), has ramp minimum distance

d with probability at least

1�
kX

i=1

✓
k

i

◆
(q � 1)iq(Hq(d�i

n)�1)n ,

where Hq (x) :=

⇢
0 if x = 0 or x = 1;
x logq(q�1)� x logq(x)� (1�x) logq(1�x) if 0<x<1.

Proof. Let HW(w) “Hamming weight” denote the number of non-zero entries of a vector w.
Let HBq(n, r) “Hamming ball” denote the set of vectors of length n in GF(q) which have a
Hamming weight of at most r.

Further, let MCq(k) “minimal codewords” be the set of row vectors of length k in GF(q)
whose leading non-zero entry is 1.

From the definition of ramp minimum distance, it follows that a (GF(q), n, k)-linear block
code with generator matrix G has ramp minimum distance d if:

8w 2 MCq(k) : wG 62 HBq(n, d�HW(w)) .

Since the coe�cients of G are chosen independently and uniformly at random, the codeword
wG is distributed uniformly. The probability that wG is in some Hamming ball of radius r
thus is:

Pr [wG 2 HBq(n, r)] =
|HBq(n, r)|

qn
=

Pr
i=0

�
n
i

�
(q � 1)i

qn
 qHq(r

n)·n

qn
= q(Hq(r

n)�1)·n .

Using the union bound (Boole’s inequality):

Pr [9w 2 MCq(k) : wG 2 HBq(n, d�HW(w))] 
X

w2MCq(k)

Pr [wG 2 HBq(n, d�HW(w))]


X

w2MCq(k)

q

⇣
Hq

⇣
d�HW(w)

n

⌘
�1

⌘
·n

=
kX

i=1

✓
k

i

◆
(q � 1)iq(Hq(d�i

n)�1)·n .

The probability that G has ramp minimum distance d is therefore at least:

Pr [G has ramp minimum distance d] = Pr [8w 2 MCq(k) : wG 62 HBq(n, d�HW(w))]

= 1� Pr [9w 2 MCq(k) : wG 2 HBq(n, d�HW(w))]

� 1�
kX

i=1

✓
k

i

◆
(q � 1)iq(Hq(d�i

n)�1)·n .

ut

20

Unfortunately, we do not know of any e�cient method to check whether a random matrix has
a given ramp minimum distance. For practical parameters, however, it is feasible to generate
and test such matrices with small values of k and d (e.g., less than 20).

Better AoNTs using our realization. Given a fixed size, it is sometimes possible to find matrices
with a given ramp minimum distance but no matrix with the same (regular) minimum distance.
Hence AoNTs based on matrices with a ramp minimum distance can achieve better parameters
than previously known realizations. We now illustrate this fact with a numerical example. Let us
determine the best message length k that a perfect AoNT with fixed parameters n = 30, d = 12,
and q = 2 can achieve with both our realization and the standard realization. Both realizations
will require a matrix with (30� k) rows and (ramp or regular, respectively) minimum distance
d = 12. First, observe that there exists a 6⇥24 matrix over GF(2) with ramp minimum distance
12 (see Appendix ??). Hence using our realization, we can achieve k = 6. Plotkin [19] showed
that a binary code with block length 2d and distance d can have at most 4d codewords. Hence
there cannot exist a 6⇥24 matrix with (regular) minimum distance d = 12 (as it would generate
a code with 26 = 64 codewords, which is more than 4d = 48). The best AoNT one can hope for
using the standard realization thus has k = 5.

Statistical security. Theorem 6 stated that by choosing a random generator matrix, one can
achieve a certain ramp minimum distance with a certain probability (1 � ✏). If one uses our
realization, but without checking that the matrix actually has the required ramp minimum
distance, then the resulting AoNT will be perfectly secure with probability (1� ✏). (Note that
this is di↵erent from saying that the AoNT is ✏-secure, as the randomness used to generate the
AoNT is not part of the distinguishing experiment.) In practice, one can make ✏ very small,
e.g., ✏ < 2�⌘, and it might be acceptable to chose a random matrix and not check its properties
to realize an AoNT.

5.3 Realizing a Perfectly Secure AoNT over a Small Field by Combining AoNTs

Designing perfectly-secure AoNTs over very small fields, e.g., GF(2), is hard. The previous
realization does not scale well to large message lengths k and large privacy thresholds d; and
realizations based on Shamir’s secret sharing scheme are always over large fields—using such
a (GF(2a), n, d, k)-AoNT unmodified over GF(2) instead would result in a (GF(2), an, d, ak)-
AoNT with a poor privacy threshold d. The leakage of any GF(2) element means that the entire
original GF(2a) element is compromised. We now show how to combine the two approaches to
realize a perfectly secure AoNT over a small field but with large k and d.

Our realization requires two AoNTs, a “fine-grained” one and a “coarse-grained” one, op-
erating over a small field S and a large field L, respectively. We require that the number of
elements of L be a power of that of S and that ks = log(|L|)/ log(|S|) be true. We need to
interpret a string of k`ks elements from S as a string of k` elements of L, an operation we
denote by S.L. The converse operation is denoted L.S.

The encoding function of our combined AoNT then works as follows. One first applies the
coarse-grained AoNT to the whole data vector and then applies the fine-grained AoNT to each
element of the result:

aenc(a 2 Sksk`) : x $ aenc`(S.L(a)); 8j 2 {1, . . . , n`} : b[j] $ aencs(L.S(x[j])); return b.

It’s easy to see how the decoding function adec of the combined AoNT works and it is thus
omitted.

Theorem 7. Given a perfectly secure (S, ns, ds, ks)-AoNT (aencs, adecs) and a perfectly secure

(L, n`, d`, k`)-AoNT (aenc`, adec`) such that ks = log(|L|)/ log(|S|), the AoNT (aenc, adec) de-

scribed above is a perfectly secure (S, nsn`, (ds + 1)(d` + 1)� 1, ksk`)-AoNT.

21

Proof. We now show that the combined scheme is secure. For any set E of at most (ds +

1)(d` + 1) � 1 elements of {1, . . . , ksk`}, and any two challenge messages a1,a2 2 Sksk` ; let
E0 be the following set: E0 contains the integer i 2 {1, . . . , n`} if at least (ds + 1) elements of
{(i� 1)ns + 1, . . . , ins} are contained in E. Notice that E0 has at most d` elements.

We now show 2n` + 2 distributions, where any two consecutive distributions are perfectly
indistinguishable. The first and the last distributions correspond to the two possible outputs of
the AoNT distinguishing game; hence proving the claim.

Distribution i 2 {1, . . . , 2n` + 2} is [b]E , where b is calculated as follows:

x $
⇢
aenc`(S.L(a1)) if i  n` + 1
aenc`(S.L(a2)) otherwise.

8j 2 {1, . . . , n`} : x0[j]
⇢
0 if j 62 E0 ^ j + 1  i  j + 1 + n`

x[j] otherwise.

8j 2 {1, . . . , n`} : b[j] $ aencs(L.S(x0[j])) .

It is easy to see that all two consecutive distributions except (n` + 1) to (n` + 2) are indis-
tinguishable by the security property of the fine-grained scheme and since at most ds elements
of b a↵ect the output. The distributions (n` + 1) and (n` + 2) are indistinguishable because of
the security property of the coarse-grained scheme and since at most d` elements of x a↵ect the
output. ut

Numerical example. Let us suppose that we are interested in a perfect AoNT that operates over
S = GF(2) and that can store a cryptographic key of size k = 256 bits using at most n = 8192
bits (a kilobyte) of memory.

If we use a (GF(210), 819, 793, 26)-AoNT built according to Franklin and Yung [10] unmod-
ified over the field GF(2), we get a (GF(2), 8190, 793, 260)-AoNT. This AoNT has a privacy
threshold d of only 793 bits.

By combining a (GF(2), 32, 11, 8)-AoNT (which can be found by exhaustive search)
with a (GF(28), 255, 223, 32)-AoNT built according to Franklin and Yung [10], one gets a
(GF(2), 8160, 2687, 256)-AoNT. This AoNT has a much better privacy threshold d of 2687,
i.e., 2687 arbitrary bits may leak to the adversary.

5.4 Computationally Secure AoNT over a Large Field from a PRG

We now present a realization of a computationally secure AoNTs over a large field GF(2⌘),
where ⌘ is the security parameter. Our realization is optimal in the sense that it achieves both
an optimal message length k = n� 1 (thus an optimal rate (n� 1)/n) and an optimal privacy
threshold d = n � 1. That is, the AoNT needs just a single additional element to encode a
message and remains private even if the adversary obtains all but any one element.

Definition 6. An `-PRG where the output length is a multiple of the input length, i.e.,

prg : GF(2⌘) 7! GF(2⌘)`(⌘)/⌘, is KD-secure, if for all i = 1, . . . , `(⌘)/⌘, these ensembles are

computationally indistinguishable:

– {(x1, . . . , xi�1, x
0
i, xi+1, . . . , x`(⌘)/⌘)}1⌘ , where sk $ GF(2⌘), x prg(sk), and x0i

xi + sk.

– {x}1⌘ where x $ GF(2⌘)`(⌘)/⌘.

Note that this property is somewhat reminiscent of the KDM-CCA2 security of encryption
functions [4].

Our realization, somewhat reminiscent of the OAEP realization of Canetti et al. [5], is as follows:

22

aenc(m 2 GF(2⌘)`(⌘)/⌘) : sk $ GF(2⌘);x prg(sk); y x+m;

return y||
�
sk +

P`(⌘)/⌘
i=1 yi

�
.

adec(y||z) : return y � prg(z �
P`(⌘)/⌘

i=1 yi).

Theorem 8. Given an `-PRG that is both secure and KD-secure, the realization above yields

a secure (GF(2⌘), 1 + `(⌘)/⌘, `(⌘)/⌘, `(⌘)/⌘)-AoNT.

Proof. Recall that we need to prove that the output of the AoNT distinguishing game is com-
putationally indistinguishable for any set L of size exactly `(⌘)/⌘. Let i denote the index that
is missing from L. We treat now the two cases i = `(⌘)/⌘+1 and i 2 {1, . . . , `(⌘)/⌘} separately.

Case i = `(⌘)/⌘ + 1. For any two challenge messages m and m

0, we consider the ensembles
{y}1⌘ computed as follows:

1. sk $ GF(2⌘) and y m+ prg(sk).
2. y $ GF(2⌘)`(⌘)/⌘.
3. sk $ GF(2⌘) and y m

0 + prg(sk).

Ensembles 1 and 2 on the one hand, and ensembles 2 and 3 on the other hand are computation-
ally indistinguishable because the PRG is secure. Therefore ensembles 1 and 3, corresponding
to the two ensembles output by the AoNT distinction game, are also computationally indistin-
guishable.

Case i 2 {1, . . . , `(⌘)/⌘}. For any two challenge messages m and m

0 we consider the ensembles
{(y1, . . . , yi�1, yi+1, . . . , y`(⌘)/⌘, z)}1⌘ computed as follows:

1. sk $ GF(2⌘); x prg(sk); y m+ x; z sk +
P

j yj .
2. Idem, except that z $ GF(2⌘).
3. Idem, except that y $ GF(2⌘)`(⌘)/⌘.
4. Idem, except that y m

0 + x.
5. Idem, except that z sk +

P
j yj .

Ensembles 1 and 2 are computationally indistinguishable because the PRG is KD-secure.
Indeed, for index i, let {(x1, . . . , xi�1, e, xi+1, . . . , x`(⌘)/⌘)}1⌘ be the ensemble output from the
PRG KD distinction game. Consider the ensemble {(y1, . . . , yi�1, yi+1, . . . , y`(⌘)/⌘, z)}1⌘ where
for j 6= i : yj xj + mj and z

P
j 6=i yj + e + mi. If e is equal to xi + sk , this is exactly

ensemble 1; if e is random, this is exactly ensemble 2.
Ensembles 2 and 3 are computationally indistinguishable because the PRG is secure. In-

deed, let {e}1⌘ be the ensemble output by the PRG security game. Consider the ensemble
{(y1, . . . , yi�1, yi+1, . . . , y`(⌘)/⌘, z)}1⌘ where for j 6= i : yj ej + mj and z $ GF(2⌘). If e is
equal to x, this is exactly ensemble 2; if e is random, this is exactly ensemble 3.

Ensembles 3 and 4 are computationally indistinguishable because the PRG is secure. In-
deed, let {e}1⌘ be the ensemble output by the PRG security game. Consider the ensemble
{(y1, . . . , yi�1, yi+1, . . . , y`(⌘)/⌘, z)}1⌘ where for j 6= i : yj ej + m0

j and z $ GF(2⌘). If e is
random, this is exactly ensemble 3; if e is equal to x, this is exactly ensemble 4.

Ensembles 4 and 5 are computationally indistinguishable because the PRG is KD-secure.
Indeed, for index i, let {(x1, . . . , xi�1, e, xi+1, . . . , x`(⌘)/⌘)}1⌘ denote the ensemble output by
the PRG security game. Consider the ensemble {(y1, . . . , yi�1, yi+1, . . . , y`(⌘)/⌘, z)}1⌘ where for
j 6= i : yj xj +m0

j and z
P

j 6=i yj + e+m0
i. If e is random, this is exactly ensemble 4; if e

is equal to xi + sk , this is exactly ensemble 5.
Hence ensembles 1 and 5, corresponding to the ensembles output by the AoNT distinction

game, are computationally indistinguishable. ut

23

In Appendix A.4 we observe that Canetti et al.’s [5] computationally-secure AoNT built by
combining an exposure resilient function (ERF) with a pseudo-random generator (PRG) can
have an essentially arbitrarily high message length k and message rate k/n, but cannot achieve
a very high privacy threshold d.

References

1. C. H. Bennett, G. Brassard, C. Crépeau, and U. M. Maurer. Generalized privacy amplification. IEEE
Transactions on Information Theory, 41(6):1915–1923, 1995.

2. D. J. Bernstein. Cache-timing attacks on AES. Manuscript, April 2005.
3. G. R. Blakley and C. Meadows. Security of ramp schemes. In CRYPTO’84, vol. 196 of LNCS, pp. 242–268.

Springer, Aug. 1984.
4. J. Camenisch, N. Chandran, and V. Shoup. A public key encryption scheme secure against key dependent

chosen plaintext and adaptive chosen ciphertext attacks. In EUROCRYPT 2009, vol. 5479 of LNCS, pp.
351–368. Springer, Apr. 2009.

5. R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz, and A. Sahai. Exposure-resilient functions and all-or-nothing
transforms. In EUROCRYPT 2000, vol. 1807 of LNCS, pp. 453–469. Springer, May 2000.

6. R. Canetti, D. Eiger, S. Goldwasser, and D.-Y. Lim. How to protect yourself without perfect shredding. In
ICALP 2008, Part II, vol. 5126 of LNCS, pp. 511–523. Springer, July 2008.

7. R. Canetti, D. Eiger, S. Goldwasser, and D.-Y. Lim. How to protect yourself without perfect shredding.
Cryptology ePrint Archive, Report 2008/291, 2008. http://eprint.iacr.org/2008/291.

8. H. Chen and R. Cramer. Algebraic geometric secret sharing schemes and secure multi-party computations
over small fields. In CRYPTO 2006, vol. 4117 of LNCS, pp. 521–536. Springer, Aug. 2006.

9. G. Di Crescenzo, N. Ferguson, R. Impagliazzo, and M. Jakobsson. How to forget a secret. In STACS 99, pp.
500–509. Springer, 1999.

10. M. K. Franklin and M. Yung. Communication complexity of secure computation (extended abstract). In
24th ACM STOC, pp. 699–710. ACM Press, May 1992.

11. P. Gaži, U. Maurer, and B. Tackmann. Manuscript.
12. P. Gutmann. Secure deletion of data from magnetic and solid-state memory. In Proceedings of the Sixth

USENIX Security Symposium, San Jose, CA, vol.1̃4, 1996.
13. C. Hazay, Y. Lindell, and A. Patra. Adaptively secure computation with partial erasures. Cryptology ePrint

Archive, Report 2015/450, 2015. http://eprint.iacr.org/2015/450.
14. S. Jarecki and A. Lysyanskaya. Adaptively secure threshold cryptography: Introducing concurrency, removing

erasures. In EUROCRYPT 2000, vol. 1807 of LNCS, pp. 221–242. Springer, May 2000.
15. J. Katz and Y. Lindell. Introduction to modern cryptography. CRC Press, 2015.
16. D.-Y. Lim. The paradigm of partial erasures. PhD thesis, Massachusetts Institute of Technology, 2008.
17. U. Maurer. Constructive cryptography – a new paradigm for security definitions and proofs. In Theory

of Security and Applications (TOSCA 2011), vol. 6993 of Lecture Notes in Computer Science, pp. 33–56.
Springer-Verlag, Apr. 2011.

18. U. Maurer and R. Renner. Abstract cryptography. In ICS 2011, pp. 1–21. Tsinghua University Press, Jan.
2011.

19. M. Plotkin. Binary codes with specified minimum distance. Information Theory, IRE Transactions on,
6(4):445–450, 1960.

20. J. Reardon, D. A. Basin, and S. Capkun. SoK: Secure data deletion. In 2013 IEEE Symposium on Security
and Privacy, pp. 301–315. IEEE Computer Society Press, May 2013.

21. J. Reardon, S. Capkun, and D. Basin. Data node encrypted file system: E�cient secure deletion for flash
memory. In Proceedings of the 21st USENIX conference on Security symposium, pp. 17–17. USENIX Asso-
ciation, 2012.

22. J. Reardon, H. Ritzdorf, D. A. Basin, and S. Capkun. Secure data deletion from persistent media. In ACM
CCS 13, pp. 271–284. ACM Press, Nov. 2013.

23. R. L. Rivest. All-or-nothing encryption and the package transform. In FSE’97, vol. 1267 of LNCS, pp.
210–218. Springer, Jan. 1997.

24. B. Yee. Using secure coprocessors. PhD thesis, CMU, 1994.
25. B. Yee and J. D. Tygar. Secure coprocessors in electronic commerce applications. In Proceedings of The

First USENIX Workshop on Electronic Commerce, New York, New York, 1995.

24

A Known Constructions of AoNT

In this section we summarize a couple of known constructions of AoNTs that are relevant to
this paper.

A.1 Perfect AoNTs based on Shamir’s Secret Sharing

Blakely and Meadows’s secret sharing scheme [3] can be used to directly realize a perfect (�, (k+
d), d, k)-AoNT for all (k, d) 2 N2, all fields �, and where (2k+ d) < |�|. It is based on Shamir’s
secret sharing scheme.

Franklin and Young’s ramp secret sharing scheme [10] can be used to directly realize an
AoNT with the same parameters, but the bound on the field size is now improved to (k+d) < |�|.
Their scheme uses polynomial interpolation over GF(|�|). In a nutshell, their scheme works as
follows. To encode a message: choose a polynomial of degree (k + d � 1) over GF(|�|); set the
first k coe�cients to be equal to the message, and the other d coe�cients randomly. Evaluate
the polynomial at (k+ d) distinct non-zero locations. To decode, use Lagrange interpolation to
recover the coe�cients of the polynomial.

Working in small fields. The two schemes above require the field size |�| to depend on the
parameters k and d. If one needs an AoNT that operates on a smaller field ⌃, e.g., GF(2),
one can simply encode each element of � as multiple elements of ⌃. Thereby one immediately
gets an ✏-secure (⌃, (↵ · (k + d)), d,↵k)-AoNT from an ✏-secure (�, (k + d), d, k)-AoNT where
↵ = log(|�|)/ log(|⌃|) 2 N. Notice that the realized AoNT only achieves a privacy threshold of
d and not ↵d: intuitively, if parts of a symbol is leaked, one must consider the whole symbol to
be compromised.

There exist more complex secret sharing scheme’s that can be use to realize AoNTs with
better parameters, such as Chen and Cramer’s ramp secret sharing scheme [8] based on curves
of high genus. We do not consider their results further in this paper.

A.2 Perfect AoNTs from Linear Block Codes

Linear block codes can be used to create perfect ERFs, and thus by using the standard trans-
formation by Canetti et al. [5], can be used to create perfect AoNTs.

Let G be the k ⇥ n matrix with elements in GF(q) with minimum distance d (i.e., G is the
generator matrix of a linear block code with minimum distance d).

Let M be the following (n+ k)⇥ (n+ k) matrix:

M :=


In 0
G Ik

�
.

To encode the data column-vector a 2 GF(q)k, aenc(a) selects a random column-vector b
GF(q)n, and returns the vector

y M


b

a

�
=


b

Gb+ a

�
:=


b

x

�
.

To reconstruct the data, adec(y) computes


b

a

�
 M

�1
y =


b

x�Gb

�

and outputs a. Hence this AoNT is a perfect (�, (n+ k), d, k)-AoNT.

25

A.3 Statistical AoNTs from Universal Hash Functions

Universal hash functions can be used to create very good statistical ERFs, and hence (using
the standard transformation) very good AoNTs [1,5, 6, 16]. Given a {0, 1}⌫ ⇥ {0, 1}n 7! {0, 1}k
universal hash function h, one can realize the following ({0, 1}, n + (⌫ + k), d, k)-AoNT with a
(⌫ + k)-public part:

– aenc(a) : Choose b $ {0, 1}n and k $ {0, 1}⌫ . Set x h(k, b)+a. Return b||k||x. (Here
k and x are in the public part.)

– adec(b||k||x) 7! x� h(k, b).

The AoNT is (2 · 2(k+d�n)/2)-secure [5, 7].

A.4 Computational AoNTs

Canetti et al. [5] showed how to stretch the output of an ERF with a PRG to obtain an
ERF with larger output size (but the privacy threshold will remain unchanged). Let erf be a
computationally secure (�, n, d, k)-ERF and let prg be a secure (�, k,m)-PRG. Then the ERF:
b 7! prg(erf(b)) is a computationally secure (�, n, d,m)-ERF. From that, one can realize a
computationally secure AoNT.

26

