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Abstract

We show how to transform any semantically secure encryption scheme into a non-malleable
one, with a black-box construction that achieves a quasi-linear blow-up in the size of the
ciphertext. This improves upon the previous non-black-box construction of Pass, Shelat
and Vaikuntanathan (Crypto ’06). Our construction also extends readily to guarantee non-
malleability under a bounded-CCA2 attack, thereby simultaneously improving on both results
in the work of Cramer et al. (Asiacrypt ’07).

Our construction departs from the oft-used paradigm of re-encrypting the same message with
different keys and then proving consistency of encryption. Instead, we encrypt an encoding
of the message; the encoding is based on an error-correcting code with certain properties of
reconstruction and secrecy from partial views, satisfied, e.g., by a Reed-Solomon code.

1 Introduction

The most basic security requirement for public key encryption (PKE) schemes is that an
eavesdropping adversary does not learn anything about the plaintext underlying a communicated
ciphertext (equivalently, cannot distinguish an encryption of one plaintext from another). This
notion is denoted IND-CPA (for indistinguishability under chosen plaintext attack), and is often
referred to as “semantic security” [GM84]. In many applications, however, this indistinguishability
guarantee is not sufficient, and a PKE satisfying the stronger notion of non-malleability [DDN00]
is required. Roughly, non-malleability requires that it is infeasible for an adversary to modify a
ciphertext into one, or many, other ciphertexts of messages related to the original plaintext. As one
example for the importance of non-malleability, consider the use of PKE in auctions. Buyers place
their bids for an item to a seller, encrypted under the seller’s public key, and the seller sells the
item to the buyer with the highest bid. We certainly want to rule out adversaries who consistently
bid exactly one dollar more than the previous bidders. This motivates the following question.

Is it possible to immunize any semantically secure encryption scheme, transforming it
into a scheme that is non-malleable?
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We focus on this question for a passive adversary, and when we refer to “non-malleable encryption”
we mean, by default, non-malleability under chosen plaintext attack (NM-CPA). Later, we will also
discuss the implications of our results to the active case, where the adversary can mount a limited
chosen ciphertext attack.

Prior to our work, Pass, Shelat, and Vaikuntanathan [PSV06] studied this question and answered
it affirmatively, providing a beautiful construction of a non-malleable encryption scheme from any
semantically secure one (building on [DDN00]). However, this PSV construction – as with previous
constructions achieving non-malleability from general assumptions [DDN00, Sah99, Lin06] – suffers
from the curse of inefficiency arising from the use of general NP-reductions. In this paper we
overcome this problem and answer the above question affirmatively using a black-box reduction.
Before explaining our results, we provide some background and motivation.

Black-Box Complexity of Cryptographic Primitives. Much of the modern work in
foundations of cryptography rests on general cryptographic assumptions like the existence of one-
way functions and trapdoor permutations. General assumptions provide an abstraction of the
functionalities and hardness we exploit in specific assumptions such as hardness of factoring and
discrete log without referring to any specific underlying algebraic structure. Constructions based
on general assumptions may use the primitive guaranteed by the assumption in one of two ways:

• Black-box usage. A construction is black-box if it refers only to the input/output behavior
of the underlying primitive; we would typically also require that in the proof of security,
we can use an adversary breaking the security of the construction as an oracle to break the
underlying primitive (this is called a fully black-box reduction – see [RTV04] and references
within for more details).

• Non-black-box usage. A construction is non-black-box if it uses the code computing the
functionality of the primitive.

Motivated by the fact that the majority of constructions in cryptography are black-box, a rich and
fruitful body of work initiated in [IR89] seeks to understand the power and limitations of black-
box constructions in cryptography, resulting in a fairly complete picture of the relations amongst
many cryptographic primitives with respect to black-box constructions. Recent work (including this
paper), has turned to tasks for which the only constructions we have are non-black-box, yet the
existence of a black-box construction is not ruled out. A notable example is general secure multi-
party computation against a dishonest majority, for which the recent works of [IKLP06, Hai08]
show a black-box construction from the minimal primitive of semi-honest oblivious transfer. Other
examples include [GLOV12, GOSV14, Wee10a].

The question of whether we can securely realize a task via black-box access to a general primitive
is of theoretical interest, towards a better understanding of the complexity and minimal assumptions
necessary, as well as of practical significance, since black-box (thus, modular) constructions are
typically simpler and more efficient. Indeed, non-black-box constructions tend to be less efficient
due to the typical use of general NP reductions to order to prove statements in zero knowledge;
this impacts both computational complexity as well as communication complexity (which we
interpret broadly to mean message lengths for protocols and key size and ciphertext size for
encryption schemes). Moreover, if resolved in the affirmative, the solution can provide new insights
and techniques for circumventing the use of NP reductions and zero knowledge in the known
constructions.
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1.1 Our Contributions

Non-Malleability against Chosen Plaintext Attacks. As mentioned above, in this paper we
provide a black-box construction of non-malleable encryption from semantically-secure encryption,
where previous work achieved it only through a non-black-box construction [PSV06], or prior to
that, only using additional assumptions [DDN00].

Main theorem (informal) There exists a (fully) black-box construction of a non-
malleable encryption scheme from any semantically secure one.

That is, we provide a “wrapper program” that given any subroutines for computing a semantically
secure encryption scheme, computes a non-malleable encryption scheme. While this is interesting
in and of itself, our construction also compares favorably with previous work in several regards:

• Improved parameters. We improve on the computational complexity of previous constructions
based on general assumptions. In particular, we do not have to do an NP-reduction in
either encryption or decryption, although we do have to pay the price of the running time
of error correcting code alogrithms (e.g., Berlekamp-Welch algorithm [BW86]). The running
time incurs a multiplicative overhead that is quasi-linear in the security parameter, over the
running time of the underlying CPA secure scheme. Moreover, the sizes of public keys and
ciphertext are independent of the computational complexity of the underlying scheme.

• Conceptual simplicity/clarity. Our scheme (and the analysis) is arguably much simpler than
many of the previous constructions, and unlike [PSV06], entirely self-contained (apart from
some basic tools from coding theory). We do not need to appeal to notions of zero-knowledge
[GMR89, GMW91], nor do we touch upon subtle technicalities like adaptive vs non-adaptive
NIZK. Our construction may be covered in an introductory graduate course on cryptography
without requiring zero knowledge as a pre-requisite.

• Ease of implementation. Our scheme is easy to describe and can be easily implemented in a
modular fashion.

• Robustness. Our construction achieves non-malleability as is even when instantiated with
an encryption scheme with negligible decryption error. This is in contrast to the [DDN00]
and [PSV06] constructions, which require that the underlying encryption scheme be first
“immunized” against decryption errors (c.f. [DNR04]); these constructions are otherwise
susceptible to an attack described by Dwork, Naor and Reingold [DNR04].

Our Techniques. At a high level, we follow the cut-and-choose approach for consistency checks
from [PSV06], wherein the randomness used for cut-and-choose is specified in the secret key. A
crucial component of our construction is a message encoding scheme based on a “reconstructable
probabilistic encoding scheme” (an extension of probabilistic encoding schemes introduced by
[DGR99]). Reconstructable probabilistic encoding schemes can correct a constant fraction of
errors, and they have a secrecy property which allows a large number of positions in the outputted
codeword to be revealed, without leaking any information about the encoded message; in addition,
given a message and a partial codeword for it, the schemes allow the reconstruction of the whole
codeword consistent with them. Similar properties of encoding via low-degree polynomials have
been exploited in the early work on secure multi-party computation with malicious adversaries

3



IND-CPA NM-CPA

IND-q-CCA NM-q-CCA

IND-CCA2 = NM-CCA2

Figure 1: Summary of our positive results.

[BGW88]. We think this technique may be useful in eliminating general NP-reductions in other
constructions in cryptography (outside of public-key encryption). Indeed, this has already proven
true in several subsequent works (see Section 1.4).

Implications for Chosen Ciphertext Attacks. While the notion of (passive) non-malleability
is important and interesting in its own right, it is also interesting as an intermediate notion between
semantic security and fully active chosen ciphertext attacks, where the adversary is allowed to query
the decryption oracle as well. Recall that in CCA1 attacks, the adversary may access the decryption
oracle only before seeing the challenge, while in the stronger CCA2, adaptive decryption queries
(after seeing the challenge) are also allowed, except for the challenge itself (cf., [Gol04, NY90, RS92,
DDN00]).1 Finally, of particular relevance to us is the notion of bounded CCA2 attack, introduced
by Cramer et al. [CHH+07], which is a relaxation of the CCA2 attack (and incomparable to CCA1).
Here, the adversary is only allowed make an a priori bounded number of queries q to the decryption
oracle, where q is fixed prior to choosing the parameters of the encryption scheme. We will consider
both the indistinguishability and non-malleability security guarantees; while these are equivalent
under a CCA2 attack (namely every IND-CCA2 secure scheme is also NM-CCA2 secure)[DDN00],
the latter is a strictly stronger security notion than the former under a bounded CCA2 attack, i.e.,
every NM-q-CCA2 secure encryption is also IND-q-CCA2 secure, but the converse is not necessarily
true [CHH+07].

Cramer et. al. [CHH+07] obtained two constructions, starting from any semantically secure
(IND-CPA) encryption:

• an encryption scheme that achieves indistinguishability under a bounded-CCA2 attack via a
black-box construction, wherein the size of the public key and ciphertext are quadratic in q;
and

• an encryption scheme that is non-malleable under a bounded-CCA2 attack via a non-black-
box construction, wherein the size of the public key and ciphertext are linear in q.

Combining their approach for the latter construction with our main result, we obtain a result that
simultaneously improves over both the above.

Corollary (informal) There exists a (fully) black-box construction of an encryption
scheme that is non-malleable under a bounded CCA2 attack (NM-q-CCA2) from any

1We note that non-malleability against a passive CPA attack is equivalent to indistinguishability against a CCA2
attack that allows only a single adaptive stage (with possibly many parallel queries) after seeing the challenge.
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Figure 2: Known relations among generic encryption primitives, and our results. Solid lines indicate
black box constructions, and dotted lines indicate non-black-box constructions (c.f. [BHSV98,
DDN00, PSV06, CHH+07, PW08]). Arrows with the ‘|’ symbol (resp., the ‘∼’ symbol) in the
middle indicate the separations with respect to black-box reductions (resp., black box shielding
reductions, c.f. [GMR01, GMM07]). Our contributions are indicated with the thick arrows.

semantically secure (IND-CPA) encryption scheme. Moreover, for this construction, the
size of the public key and ciphertext are linear in the number of queries q.

Our positive results are summarized in Figure 1.

We also use our construction to obtain a negative (separation) result between non-malleability
and CCA security. Our main construction has the additional property that the decryption algorithm
does not query the encryption functionality of the underlying scheme. Gertner, Malkin and Myers
[GMM07] referred to such constructions as “shielding” and they showed that there is no shielding
black-box construction of IND-CCA1 secure encryption schemes from semantically secure ones.
Combined with the fact that any shielding construction when composed with our construction is
again shielding, this yields the following:

Corollary (informal) There exists no shielding black-box construction of a IND-
CCA1, NM-CCA1, or CCA2 encryption scheme from non-malleable (NM-CPA)
encryption.

This corollary for IND-CCA1 follows from combining [GMM07] with our result, and immediately
implies the same separation for NM-CCA1 and CCA2, as both these notions trivially imply IND-
CCA1 security. Our results, as well as other known relationships between relevant primitives, are
summarized in Figure 2.

We believe that our work and techniques provide useful insight towards constructions of CCA2-
secure schemes. First, our work can be viewed as guiding potential approaches towards answering
the open problem of whether CCA2-secure schemes can be constructed from CPA ones (directing
the efforts towards constructions of CCA2 schemes from non-malleable schemes, either in a non-
black-box, or in a black-box non-shielding way). Second, our techniques may be useful towards a
black-box construction of CCA2-secure encryptions from enhanced trapdoor permutations [Gol04]
(rather than the non-black-box transformation of [DDN00] via NIZK). More generally, our work
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indicates that the barrier towards CCA2-security may not lie in black-box vs non-black-box use of
the underlying primitive (specifically, previous constructions are all non-black-box and do not shed
any light on this issue). We discuss this in more detail (as well as discussing some related work)
next.

1.2 Overview of Our Construction

Recall the DDN [DDN00] and PSV [PSV06] constructions: to encrypt a message, one (a) generates k
encryptions of the same message under independent keys, (b) gives a non-interactive zero-knowledge
proof that all resulting ciphertexts are encryptions of the same message, and (c) signs the entire
bundle with a one-time signature. It is in step (b) that a general NP-reduction is used, which in
return makes the construction non-black-box. In the proof of security, we exploit that fact that for
a well-formed ciphertext, we can recover the message if we know the secret key for any of the k
encryptions.

How do we guarantee that a tuple of k ciphertexts are encryptions of the same plaintext without
using a zero-knowledge proof and without revealing any information about the underlying plaintext?
Naively, one would like to use a cut-and-choose approach (as has been previously used in [LP07] to
eliminate zero-knowledge proofs in the context of secure two-party computation), namely decrypt
and verify that some constant fraction, say k/2 of the ciphertexts are indeed consistent. There are
two issues with this approach:

• First, if only a constant number of ciphertexts are inconsistent, then we are unlikely to detect
the inconsistency. To circumvent this problem, we could decrypt by outputting the majority
of the remaining k/2 ciphertexts.

• The second issue is more fundamental: decrypting any of the ciphertexts will immediately
reveal the underlying message, whereas it is crucial for the proof that we can enforce
consistency while learning nothing about the underlying message.

We circumvent both issues by using a more sophisticated encoding of the message m based on
reconstructable probabilistic encoding schemes, instead of merely making k copies of the message
as in the above schemes. Specifically, let E be the encoding algorithm of the reconstructable
probabilistic encoding scheme with output of length 2k (over the alphabet of the scheme). We
first obtain an encoding w of m (i.e., w ← E(m)) and then generates k encryptions of the same
w. Thus, we construct a k × 2k matrix such that entry (i, j) holds wj . To verify consistency, we
will decrypt a random subset of k columns, and check that all the entries in each of these columns
are the same; the random subset will be chosen in key generation and embedded into the private
key. The issue that only a tiny number of ciphertexts are inconsistent is now handled using the
error-correcting properties of the encoding scheme. The second issue is addressed since, due to
the secrecy properties of the encoding scheme, learning a random subset of k columns in a valid
encoding reveals nothing about the underlying message m. We note that encoding m using a secret-
sharing scheme appears in the earlier work of Cramer et al. [CHH+07], but they do not consider
redundancy or error-correction.

As before, we encrypt all the entries of the matrix using independent keys and then sign the
entire bundle with a one-time signature. It is important that the encoding also provides a robustness
guarantee similar to that of repeating the message k times: we are able to recover the message for
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a valid encryption if we can decrypt any row in the matrix. Indeed, this is essentially our entire
scheme with two technical caveats:

• As with previous schemes, we will associate one pair of public/secret key pairs with each
entry of the matrix, and we will select the public key for encryption based on the verification
key of the one-time signature scheme.

• To enforce consistency, we will need a codeword check (checking if the first row has only a
small number of errors) in addition to the column check outlined above. The reason for this
is fairly subtle and we will highlight the issue in the formal exposition of our construction.

Decreasing ciphertext size. To encrypt an n-bit message with security parameter k, our
construction yields O(k2) encryptions of n-bit messages in the underlying scheme. It is easy to
see that this may be reduced to O(k log2 k) encryptions while maintaining security against ppt
adversaries, by reducing the number of columns to O(log2 k).

1.3 Towards Full CCA2 Security?

One of the biggest open problems remaining in the area is the construction of CCA2-secure encryp-
tion via black-box access to a low-level general primitive (e.g., enhanced trapdoor permutations),
or the construction (whether black-box or not) of CCA2-secure encryption from semantically secure
encryption. Below we describe the perspective on achieving full CCA2 security, both pre and post
publication of our original work, [CDMW08], at TCC 2008.

[CDMW08] and prior works. Early works pertaining to this open problem were limited to
non-black-box constructions of CCA2-secure encryption from enhanced trapdoor permutations
[DDN00, Sah99, Lin06]. A different line of work focused on (very) efficient constructions of CCA2-
secure encryptions under specific number-theoretic assumptions (c.f. [CS98, CS04, CHK04]). Apart
from the construction based on identity-based encryption [CHK04], all these constructions can
be described under the following framework (c.f. [BFM88, NY90, RS92, ES02]). Start with some
cryptographic hardness assumption that allows us to build a semantically secure encryption scheme,
and then prove/verify that several ciphertexts satisfy certain relations in one of two ways:

• exploiting algebraic relations from the underlying assumption to deduce additional structure
in the encryption scheme (e.g. homomorphic, reusing randomness) [CS98, CS04];

• apply a general NP reduction to prove in non-interactive zero knowledge (NIZK) statements
that relate to the primitive [DDN00, Sah99, Lin06].

These previous approaches do not yield black-box constructions under general assumptions and,
indeed, our work does not use the above framework.

Peikert and Waters [PW08] (who also do not use the above framework), made substantial
progress towards the open problem. They constructed CCA2-secure encryption schemes via black-
box access to a new primitive they introduced called lossy trapdoor functions, and in addition,
gave constructions of this primitive from number-theoretic and worst-case lattice assumptions.2

2Note that our results are incomparable, since we start from weaker assumptions (any semantically secure
encryption, or any poly-to-1 trapdoor function, rather than lossy trapdoor functions), but derive a weaker security
guarantee (non-malleability, rather than CCA2 security).
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Unfortunately, their work does not provide a black-box construction of CCA2-secure encryption
from enhanced trapdoor permutations.

Our work may be viewed as a step towards solving this gap (and a small step in the more
general research agenda of understanding the power of black-box constructions). Specifically, the
security guarantee provided by non-malleability lies between semantic security and CCA2 security,
and we show how to derive non-malleability in a black-box manner from the minimal assumption
possible, i.e., semantic security. In the process, we show how to enforce consistency of ciphertexts
in a black-box manner. This issue arises in black-box constructions of both CCA2-secure and non-
malleable encryptions. However, our consistency checks only satisfy a weaker notion of non-adaptive
soundness, which is sufficient for non-malleability but not for CCA2-security (c.f. [PSV06]). Indeed,
the main obstacle towards achieving full CCA2 security from either semantically secure encryptions
or enhanced trapdoor permutations using our approach (and also the [PSV06] approach) lies
in guaranteeing soundness of the consistency checks against an adversary that can adaptively
determine its queries depending on the outcome of previous consistency checks. It seems conceivable
that using a non-shielding construction (as in [Ms09, HLW12]) that uses re-encryption may help
overcome this obstacle.

Subsequent works. Recently there has been significant, renewed effort on constructing CCA2-
secure encryption from new assumptions. Notably, all of these subsequent works deviate from
the classic encrypt-and-prove paradigm discussed above. We next discuss several of these recent
works. Rosen and Segev [RS09] introduced a new assumption of trapdoor functions secure under
correlated products, showed that this assumption is weaker than the assumption of lossy trapdoor
functions, and presented a simple, black-box construction of CCA2-secure encryption under this
assumption. Kiltz, Mohassel and O’Neill [KMO10] formalized an even weaker assumption called
adaptive trapdoor functions, and showed that it is sufficient for black-box constructions of CCA2-
secure encryption. Hofheinz and Kiltz [HK09] presented the first construction of CCA2-secure
encryption from hardness of factoring. Wee [Wee10b] abstracted their construction and introduced
a new primitive, extractable hash proofs, which is sufficient for CCA2-secure encryption. Moreover,
[Wee10b] showed a construction of extractable hash proofs from the CDH assumption, which yields
the first construction of CCA2-secure encryption from CDH. Other works such as [Ms09, HLW12]
showed how to obtain multi-bit CCA2-secure encryption from single-bit CCA2-secure encryption.
Another line of research (c.f. [MH14, MSs12, Dac14]) focused on black-box constructions of CCA2-
secure encryption from various non-falsifiable assumptions.

1.4 Applications of Our Techniques in Subsequent Works

Since the publication of this work at TCC 2008, the encoding scheme introduced here has been
used in a number of follow-up works. There have been black-box constructions of non-malleable
commitments [PW09], set intersection protocols from homomorphic encryptions [DMRY09], and
a CCA2-secure encryption scheme for strings starting from one for bits [Ms09]. The works
of [Wee10a, LP12, KMO14, Kiy14] used our encoding in the context of black-box, round-efficient
secure computation. The works of [GLOV12, GOSV14] generalized our approach to proving
relations beyond equality using VSS and the paradigm of MPC-in-the-head.
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2 Preliminaries and Definitions

Notation. We adopt the notation used in [PSV06]. We use [n] to denote {1, 2, . . . , n}. If A
is a probabilistic polynomial time (hereafter, ppt) algorithm that runs on input x, A(x) denotes
the random variable according to the distribution of the output of A on input x. We denote
by A(x; r) the output of A on input x and random coins r. Computational indistinguishability

between two ensembles A and B is denoted by A
c
≈ B, and statistical indistinguishability between

two distributions A and B is denoted by A
s
≈ B. Given two strings v, w of length ` over an alphabet

Σ, we say that v and w are δ-far if they disagree in greater than δ · ` positions, where 0 ≤ δ ≤ 1;
we say that v and w are δ-close if they agree in greater than δ · ` positions.

2.1 Semantically Secure Encryption

Definition 1 (Encryption scheme). A triple (Gen,Enc,Dec) is an encryption scheme, if Gen and
Enc are ppt algorithms and Dec is a deterministic polynomial-time algorithm which satisfies the
following property:

Correctness. There exists a negligible function µ(·) such that for all sufficiently large
k, we have that with probability 1 − µ(k) over (pk, sk) ← Gen(1k): for all m,
Pr[Decsk(Encpk(m)) = m] = 1.

Definition 2 (Semantic security). Let Π = (Gen,Enc,Dec) be an encryption scheme and let the
random variable INDb(Π, A, k), where b ∈ {0, 1}, A = (A1, A2) are ppt algorithms and k ∈ N,
denote the result of the following probabilistic experiment:

INDb(Π, A, k) :
(pk, sk)← Gen(1k)
(m0,m1, stateA)← A1(pk) s.t. |m0| = |m1|
y ← Encpk(mb)
D ← A2(y, stateA)
Output D

(Gen,Enc,Dec) is indistinguishable under a chosen-plaintext (CPA) attack, or semantically secure, if for
any ppt algorithms A = (A1, A2) the following two ensembles are computationally indistinguishable:{

IND0(Π, A, k)
}
k∈N

c
≈

{
IND1(Π, A, k)

}
k∈N

It follows from a straight-forward hybrid argument that semantic security implies indistinguisha-
bility of multiple encryptions under independently chosen keys:

Proposition 1. Let Π = (Gen,Enc,Dec) be a semantically secure encryption scheme and let the
random variable mINDb(Π, A, k, `), where b ∈ {0, 1}, A = (A1, A2) are ppt algorithms and k ∈ N,
denote the result of the following probabilistic experiment:

mINDb(Π, A, k, `) :
For i = 1, . . . , `: (pki, ski)← Gen(1k)
(〈m1

0, . . . ,m
`
0〉, 〈m1

1, . . . ,m
`
1〉, stateA)← A1(〈pk1, . . . ,pk`〉)

s.t. |m1
0| = |m1

1| = · · · = |m`
0| = |m`

1|

9



For i = 1, . . . , `: yi ← Encpki(m
i
b)

D ← A2(y1, . . . , y`, stateA)
Output D

then for any ppt algorithms A = (A1, A2) and for any polynomial p(k) the following two ensembles
are computationally indistinguishable:{

mIND0(Π, A, k, p(k))
}
k∈N

c
≈

{
mIND1(Π, A, k, p(k))

}
k∈N

2.2 Non-malleable Encryption

Definition 3 (Non-malleable encryption [PSV06]). Let Π = (Gen,Enc,Dec) be an encryption
scheme and let the random variable NMEb(Π, A, k, `) where b ∈ {0, 1}, A = (A1, A2) are ppt
algorithms and k, ` ∈ N denote the result of the following probabilistic experiment:

NMEb(Π, A, k, `) :
(pk, sk)← Gen(1k)
(m0,m1, stateA)← A1(pk) s.t. |m0| = |m1|
y ← Encpk(mb)
(ψ1, . . . , ψ`)← A2(y, stateA)

Output (d1, . . . , d`) where di =

{
⊥ if ψi = y

Decsk(ψi) otherwise

(Gen,Enc,Dec) is non-malleable under a chosen plaintext (CPA) attack if for any ppt algorithms
A = (A1, A2) and for any polynomial p(k), the following two ensembles are computationally
indistinguishable: {

NME0(Π, A, k, p(k))
}
k∈N

c
≈

{
NME1(Π, A, k, p(k))

}
k∈N

It was shown in [PSV06] that an encryption that is non-malleable (under Definition 3) remains
non-malleable even if the adversary A2 receives several encryptions under many different public
keys (the formal experiment is the analogue of mIND for non-malleability).

2.3 Bounded-CCA2 Non-Malleability

The definition of Bounded-CCA2 Non-Malleability is almost identical to the definition of Non-
Malleability except here, we allow the adversary to query Dec at most q times in the non-malleability
experiment (but it must not query Dec on the challenge ciphertext).

Definition 4 (Bounded-CCA2 non-malleable encryption [CHH+07]). Let Π = (Gen,Enc,Dec) be
an encryption scheme and let the random variable NME-q-CCAb(Π, A, k, `) where b ∈ {0, 1}, A =
(A1, A2) are ppt algorithms and k, ` ∈ N denote the result of the following probabilistic experiment:

NME-q-CCAb(Π, A, k, `) :
(pk, sk)← Gen(1k)
(m0,m1, stateA)← AO1

1 (pk) s.t. |m0| = |m1|
y ← Encpk(mb)
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(ψ1, . . . , ψ`)← AO2
2 (y, stateA)

Output (d1, . . . , d`) where di =

{
⊥ if ψi = y

Decsk(ψi) otherwise

(Gen,Enc,Dec) is non-malleable under a bounded-CCA2 attack for a function q(k) : N→ N if ∀ ppt
algorithms A = (A1, A2) which make q(k) total queries to the oracles and for any polynomial p(k),
the following two ensembles are computationally indistinguishable:{

NME-q-CCA0(Π, A, k, p(k))
}
k∈N

c
≈

{
NME-q-CCA1(Π, A, k, p(k))

}
k∈N

The oracle O1 = Decsk(·) is the decryption oracle. O2 = Decysk(·) is the decryption oracle except
that O2 returns ⊥ when queried on y.

2.4 (Strong) One-Time Signature Schemes

Informally, a (strong) one-time signature scheme (GenSig, Sign,VerSig) is an existentially unforge-
able signature scheme, with the restriction that the signer signs at most one message with any key.
This means that an efficient adversary, upon seeing a signature on a message m of his choice, cannot
generate a valid signature on a different message, or a different valid signature on the same message
m. Such schemes can be constructed in a black-box way from one-way functions [Rom90, Lam79],
and thus from any semantically secure encryption scheme (Gen,Enc,Dec) using black-box access
only to Gen.

2.5 Reconstructable Probabilistic Encoding Scheme

Informally, reconstructable probabilistic encoding (RPE) schemes can correct a constant fraction
of errors, and they have a secrecy property which allows a large number of positions in the output
codeword to be revealed, without leaking any information about the encoded message. In addition,
given a message and a partial codeword for it, the schemes allow the reconstruction of the whole
codeword consistent with them.

Definition 5 (Reconstructable probabilistic encoding). We say a triple (E,D,R) is a recon-
structable probabilistic encoding scheme with parameters (n, `, δ, t,Σ), where n, `, t ∈ N, 0 < δ < 1,
and Σ is an alphabet, if it satisfies the following properties:

1. Error correction. E : {0, 1}n → Σ` is an efficient probabilistic procedure, which maps a
message m ∈ {0, 1}n to a distribution over Σ`. If we let W denote the support of E, any two
strings in W are δ-far. Moreover, D is an efficient procedure that given any w′ ∈ Σ` that is
(1− δ/2)-close to some string w in W, outputs w along with a consistent m.

2. Secrecy of partial views. For all m ∈ {0, 1}n and all sets S ⊂ [`] of size t, the projection
of E(m) onto the coordinates in S, as denoted by E(m)|S, is identically distributed to the
uniform distribution over Σt.

3. Reconstruction from partial views. R is an efficient procedure that given any set S ⊂ [`]
of size t, any (α1, . . . , αt) ∈ Σt, and any m ∈ {0, 1}n, samples from the distribution E(m)
with the constraint E(m)|S = (α1, . . . , αt).
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We can construct an RPE scheme with a Reed-Solomon code. We note the construction is implicit
in [BGW88].

Lemma 1. For any n, t ∈ N and any constant δ such that 0 < δ < 1, there is an RPE scheme with
parameters (n, d t

1−δ e, δ, t,GF(2n)).

Proof. We will implicitly identify {0, 1}n with the field GF(2n); an integer i with 0 ≤ i < 2n will
also be implicitly encoded into a field element in GF(2n). Set ` = d t

1−δ e and Σ = GF(2n). We
construct an RPE scheme (E,D,R) as follows:

• E(m): Choose a random degree-t polynomial q over GF(2n) such that q(0) = m and output
w = (q(1), q(2), . . . , q(`)).

• D(w′): Decode w′ using the Berlekamp-Welch algorithm and output (w,m), where w is the
corrected codeword, and m is the original message.

• R(S, (α1, . . . , αt),m): Let S = {i1, . . . , it}. Determine the degree-t polynomial q such that
q(0) = m, q(i1) = α1, q(i2) = α2, . . . , q(it) = αt. Output (q(1), . . . , q(`)).

Property (1) holds since we simply use the Reed-Solomon code W in encoding and decoding,
where

W = { (q(1), . . . , q(`)) | q is a degree t polynomial }.

Note that W is a code over the alphabet GF(2n) with minimum relative distance δ, which means
we may efficiently correct up to δ/2 fraction errors. Properties (2) and (3) hold since the codeword
(q(1), . . . , q(`)) is a (t + 1)-out-of-` secret-sharing of m using Shamir’s secret-sharing scheme, and
(m,α1, . . . , αt) allows the reconstruction of the (one and only) degree-t polynomial.

3 Construction

Given an encryption scheme (Gen,Enc,Dec), we construct a new encryption scheme Π =
(NMGenGen,NMEncGen,Enc,NMDecGen,Dec), summarized in Figure 3, and described as follows.

Encryption. For simplicity we assume the security parameter k is a power of two. Let (E,D,R) be
an RPE scheme with parameters (n, 2t, 0.5, t,GF(2n)) according to Lemma 1, where t = log2 k. The
public key for Π comprises 4kt public keys from Gen indexed by a triplet (i, j, b) ∈ [k]× [2t]×{0, 1};
there are two keys corresponding to each entry of a k×2t matrix. To encrypt a message m ∈ {0, 1}n,
we (a) compute (s1, . . . , s2t) ← E(m), (b) generate (sksig,vksig) for a one-time signature, (c)
compute a k × 2t matrix ~c = (ci,j) of ciphertexts where ci,j = Encpkvi

i,j
(sj), and (d) sign ~c using

sksig. 
Encpkv1

1,1
(s1) Encpkv1

1,2
(s2) · · · Encpkv1

1,2t
(s2t)

Encpkv2
2,1

(s1) Encpkv2
2,2

(s2) · · · Encpkv2
2,2t

(s2t)

...
...

. . .
...

Encpkvk
k,1

(s1) Encpkvk
k,2

(s2) · · · Encpkvk
k,2t

(s2t)
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Let (Gen,Enc,Dec) be an encryption scheme, (GenSig,Sign,VerSig) be a strong one-time signature
scheme, and (E,D,R) be a reconstructable probabilistic encoding scheme with parameters
(n, 2t, 0.5, t,GF(2n)) where t = log2 k.

NMGen(1k):

1. For i ∈ [k], j ∈ [2t], b ∈ {0, 1}, run Gen(1k) to generate key-pairs (pkb
i,j , sk

b
i,j).

2. Pick a random subset S ⊂ [2t] of size t.

3. Set pk =
{

(pk0
i,j ,pk

1
i,j) | i ∈ [k], j ∈ [2t]

}
and sk =

{
S, (sk0

i,j , sk
1
i,j) | i ∈ [k], j ∈ [2t]

}
.

NMEncpk(m):

1. Compute (s1, . . . , s2t)← E(m), where m ∈ {0, 1}n.

2. Run GenSig(1k) to generate (sksig,vksig). Let (v1, . . . , vk) be the binary representation of
vksig.

3. Compute the ciphertext ci,j ← Encpkvi
i,j

(sj), for i ∈ [k], j ∈ [2t].

4. Compute the signature σ ← Signsksig(~c) where ~c = (ci,j).

5. Output the tuple [~c,vksig, σ].

NMDecsk([~c,vksig, σ]):

1. (sig-check) Verify the signature with VerSigvksig[~c, σ].

2. (decoding-check) Let ~c = (ci,j) and vksig = (v1, . . . , vk). Compute sj = Decskv1
1,j

(c1,j), j =

1, . . . , 2t. Compute ((w1, . . . , w2t),m) ← D(s1, . . . , s2t). If the decoding fails or (w1, . . . , w2t) is
not 0.9-close to (s1, . . . , s2t), then output ⊥.

3. (column-check) For all j ∈ S, check that Decskv1
1,j

(c1,j) = Decskv2
2,j

(c2,j) = · · · = Decskvk
k,j

(ck,j).

4. (codeword-check) For all j ∈ S, check that sj = wj .

5. If all the checks accept, output the message m corresponding to the codeword w; else, output ⊥.

Figure 3: The Non-Malleable Encryption Scheme Π
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Consistency Checks. A valid ciphertext in Π satisfies two properties: (1) the first row is
an encryption of a codeword in W and (2) every column comprises k encryptions of the same
plaintext. We want to design consistency checks that reject ciphertexts that are “far” from being
valid ciphertexts under Π. For simplicity, we will describe the consistency checks as applied to the
underlying matrix of plaintexts. The checks depend on a random subset S of t columns chosen
during key generation.

Decoding Check (decoding-check): We find a codeword w that is 0.9-close to
the first row of the matrix; the check fails if no such w exists. Recall that the
underlying RPE has parameters (n, 2t, 0.5, t,GF(2n)), so it can correct up to 0.25
fraction errors.

Column Check (column-check): We check that each of the columns in S comprises
entirely of the same value.

Codeword Check (codeword-check): We check that the first row of the matrix
agrees with w at the positions indexed by S.

The codeword check reassures that with high probability, the first row of the matrix is (1− o(1))-
close to w. We explain its significance after describing the alternative decryption algorithm in the
analysis.

Decryption. To decrypt, we (a) verify the signature and run both consistency checks, and (b)
if all the checks accept, decode the codeword w and output the result, otherwise output ⊥. Note
that to decrypt we only need the 4t secret keys corresponding to the first row of the matrix and
2t(k − 1) additional secret keys corresponding to columns in S.

Note that the decryption algorithm may be stream-lined, for instance, by running the codeword
check only if the column check succeeds. We choose to present the algorithm as is in order to keep
the analysis simple; in particular, we will run both consistency checks independent of the outcome
of the other.

4 Analysis

Having presented our construction, we now formally state and prove our main result:

Theorem 1. (Main Theorem, restated). Assume there exists an encryption scheme E =
(Gen,Enc,Dec) that is semantically secure under a CPA attack. Then there exists an encryption
scheme Π = (NMGenGen,NMEncGen,Enc,NMDecGen,Dec) that is non-malleable under a CPA attack.

We establish the theorem (as in [DDN00, PSV06], etc) via a series of hybrid arguments and
deduce indistinguishability of the intermediate hybrid experiments from the semantic security of
the underlying encryption scheme under some set of public keys Γ. To do so, we will need to
implement an alternative decryption algorithm NMDec∗ that is used in the intermediate experiments
to simulate the actual decryption algorithm NMDec in the non-malleability experiment. We need
NMDec∗ to achieve two conflicting requirements:

• NMDec∗ and NMDec must agree on essentially all inputs, including possibly malformed
ciphertexts;

14



• We can implement NMDec∗ without having to know the secret keys corresponding to the
public keys in Γ.

Of course, designing NMDec∗ is difficult precisely because NMDec uses the secret keys corresponding
to the public keys in Γ.

Here is a high-level (but extremely inaccurate) description of how NMDec∗ works: Γ is the set
of public keys corresponding to the first row of the k × 2t matrix. To implement NMDec∗, we
will decrypt the i’th row of the matrix of ciphertexts, for some i > 1, which the column check (if
successful) guarantees to agree with the first row in most positions; error correction takes care of
the tiny fraction of disagreements.

4.1 Alternative Decryption Algorithm NMDec∗

Let vksig∗ = (v∗1, . . . , v
∗
k) denote the verification key in the challenge ciphertext given to the

adversary in the non-malleability experiment, and let vksig = (v1, . . . , vk) denote the verification
key in (one of) the ciphertext(s) generated by the adversary. First, we modify the signature check
to also output ⊥ if there is a forgery, namely vksig = vksig∗. Next, we modify the consistency
checks (again, as applied to the underlying matrix of plaintexts) as follows:

Decoding Check (decoding-check∗): Let i be the smallest value such that vi 6= v∗i
(which exists because vksig 6= vksig∗). We find a codeword w that is 0.8-close to
the i’th row of the matrix (note agreement threshold is smaller than before); the
check fails if so such w exists.

Column Check (column-check∗): This is exactly as before; we check that the each
of the columns in S comprises entirely of the same value.

Codeword Check (codeword-check∗): This is exactly before; we check that the
first row of the matrix agrees with w at the positions indexed by S.

To decrypt, run the modified signature and consistency checks, and if all the checks accept, decode
the codeword w and output the result, otherwise output ⊥. To implement the modified consistency
checks and decryption algorithm, we need the 3t secret keys for each row of the matrix, that is, 2t
keys for the decryption of the entire row indexed by vksig∗ and t keys for the decryption of the
columns of S in the row indexed by vksig∗.

Remark on the Codeword Check. At first, the codeword check may seem superfluous.
Suppose we omit the codeword check, and as before, define w to be a codeword that is 0.9-close
to the first row and 0.8-close to the i’th row in the respective decryption algorithms; the gap is
necessary to take into account inconsistencies not detected by the column check. Now, consider a
malformed ciphertext ψ for Π where in the underlying matrix of plaintexts, each row is the same
corrupted codeword that is 0.15-far from a valid codeword. Without the codeword checks, ψ will be
an invalid ciphertext according to NMDec and a valid ciphertext according to NMDec∗ and can be
used to distinguish the intermediate hybrid distributions in the analysis; with the codeword checks,
ψ is an invalid ciphertext according to both. It is also easy to construct a problematic malformed
ciphertext for the case where both agreement thresholds are set to the same value (say 0.9-close).
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4.2 A Promise Problem

Recall the guarantees we would like from NMDec and NMDec∗:

• On input a ciphertext that is an encryption of a message m under Π, both NMDec and
NMDec∗ will output m with probability 1.

• On input a ciphertext that is “close” to an encryption of a message m under Π, both NMDec
and NMDec∗ will output m with the same probability (the exact probability is immaterial)
and ⊥ otherwise.

• On input a ciphertext that is “far” from any encryption, then both NMDec and NMDec∗

output ⊥ with high probability.

To quantify and establish these guarantees, we consider the following promise problem (ΠY ,ΠN )
that again refers to the underlying matrix of plaintexts. An instance is a matrix of k by 2t each
entry of which lies in {0, 1}n ∪ ⊥.

ΠY (yes instances) — for some w ∈ W, every row equals w.

ΠN (no instances) — either there exist two rows that are 0.1-far, or the first row is 0.1-far from
every codeword in W.

Valid encryptions correspond to the yes instances, while no instances will correspond to “far”
ciphertexts. To analyze the success probability of an adversary, we examine each ciphertext ψ it
outputs with some underlying matrix ~M of plaintexts (which may be a yes or a no instance or
neither) and show that both NMDec and NMDec∗ agree on ψ with high probability. To facilitate
the analysis, we consider two cases:

• If ~M ∈ ΠN , then it fails the column/codeword checks in both decryption algorithms with
high probability, in which case both decryption algorithms output ⊥. Specifically, if there
are two rows that are 0.1-far, then column check rejects ~M with probability 1− 0.9t. On the
other hand, if the first row is 0.1-far from every codeword, then the decoding check in NMDec
rejects ~M with probability 1 and the codeword check in NMDec∗ rejects ~M with probability
at least 1−0.9t; that is, with probability at least 1−2 ·0.9t, both codeword checks in NMDec
and NMDec∗ rejects ~M .

• If ~M /∈ ΠN , then both decryption algorithms always output the same answer for all choices
of the set S, provided there is no forgery. Fix ~M /∈ ΠN and a set S. The first row is 0.9-close
to codeword w ∈ W and we know in addition that every other row is 0.9-close to the first row
and thus 0.8-close to w. Since the underlying RPE has parameters (n, 2t, 0.5, t,GF(2n)) and
thereby corrects up to 0.25 fraction errors, we will recover the same codeword w and message
m whether we decode the first row within distance 0.1, or any other row within distance 0.2.
This means that the codeword checks in both decryption algorithms compare the first row
with the same codeword w. As such, both decryption algorithms output ⊥ with exactly the
same probability, and whenever they do not output ⊥, they output the same message m.
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4.3 Proof of Main Theorem

In the hybrid argument, we consider the following variants of NMEb as applied to Π, where vksig∗

denotes the verification key in the ciphertext y = NMEncpk(mb):

Experiment NME
(1)
b : NME

(1)
b proceeds exactly like NMEb, except we replace sig-check in

NMDec with sig-check∗:

(sig-check∗) Verify the signature with VerSigvksig[~c, σ]. Output ⊥ if the signature fails
to verify or if vksig = vksig∗.

Experiment NME
(2)
b : NME

(2)
b proceeds exactly like NME

(1)
b except we replace NMDec with

NMDec∗:

NMDec∗sk([~c,vksig, σ]):

1. (sig-check∗) Verify the signature with VerSigvksig[~c, σ]. Output ⊥ if the signature
fails to verify or if vksig = vksig∗.

2. (decoding-check∗) Let ~c = (ci,j) and vksig = (v1, . . . , vk). Let i be the smallest
value such that vi 6= v∗i . Compute sj = Decskvi

i,j
(ci,j), j = 1, . . . , 2t. Compute

w = (w1, . . . , w2t) ∈ W that is at least 0.8-close to (s1, . . . , s2t). If no such codeword
exists, output ⊥.

3. (column-check∗) For all j ∈ S, check that Decskv1
1,j

(c1,j) = Decskv2
2,j

(c2,j) = · · · =

Decskvk
k,j

(ck,j).

4. (codeword-check∗) For all j ∈ S, check that Decskv1
1,j

(c1,j) = wj .

If all the checks accept, output the message m corresponding to the codeword w; else,
output ⊥.

Claim 1. For b ∈ {0, 1}, we have
{
NMEb(Π, A, k, p(k))

}
c
≈

{
NME

(1)
b (Π, A, k, p(k))

}
Proof. This follows readily from the security of the signature scheme.

Claim 2. For b ∈ {0, 1}, we have
{
NME

(1)
b (Π, A, k, p(k))

}
s
≈

{
NME

(2)
b (Π, A, k, p(k))

}
Proof. We will show that both distributions are statistically close for all possible coin tosses in both
experiments (specifically, those of NMGen, A and NMEnc) except for the choice of S in NMGen. Once
we fix all the coin tosses apart from the choice of S, the output (ψ1, . . . , ψp(k)) of A2 are completely
determined and identical in both experiments. We claim that with probability 1− 2 · p(k) · 0.9t =

1− 2 · p(k) · 0.9log2 k = 1− negl(k) over the choice of S, the decryptions of (ψ1, . . . , ψp(k)) agree in
both experiments. This follows from the analysis of the promise problem in Section 4.2.

Claim 3. For every ppt machine A, there exists a ppt machine B such that for b ∈ {0, 1},{
NME

(2)
b (Π, A, k, p(k))

}
≡

{
mINDb(E,B, k, k · t)

}
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Proof. The machine B is constructed as follows: B participates in the experiment mINDb (the

“outside”) while internally simulating A = (A1, A2) in the experiment NME
(2)
b .

• (pre-processing) Pick a random subset S = {u1, . . . , ut} of [2t] and run GenSig(1k) to generate
(sksig∗,vksig∗) and set (v∗1, . . . , v

∗
k) = vksig∗. Let φ be a bijection identifying {(i, j) | i ∈

[k], j ∈ [2t] \ S} with [k · t].

• (key generation) B receives 〈pk1, . . . ,pkk·2t〉 from the outside and simulates NMGen as follows:
for all i ∈ [k], j ∈ [2t], β ∈ {0, 1},

(pkβi,j , sk
β
i,j) =

{
(pkφ(i,j),⊥) if β = v∗i and j /∈ S
Gen(1k) otherwise

• (message selection) Let (m0,m1) be the pair of messages A1 returns. B chooses (α1, . . . , αt)←
GF(2n)t uniformly at random. and then computes (w0

1, . . . , w
0
2t) ← R(S, (α1, . . . , αt),m0),

(w1
1, . . . , w

1
2t) ← R(S, (α1, . . . , αt),m1). Recall that R is the reconstruction algorithm of the

underlying RPE scheme, and for j ∈ S, we have w0
j = w1

j whose value is a member of

{α1, . . . , αt}. For j ∈ S, let γj = w0
j = w1

j .

B sets mb
φ(i,j) = wbj , for i ∈ [k], j ∈ [2t] \ S and forwards (〈m0

1, . . . ,m
0
k·t〉, 〈m1

1, . . . ,m
1
k·t〉) to

the outside.

• (ciphertext generation) B receives 〈y1, . . . , yk·t〉 from the outside (according to the distribution
Encpk1(mb

1), . . . ,Encpkk·t(m
b
k·t)) and generates a ciphertext [~c,vksig∗, σ] as follows:

ci,j =

yφ(i,j) if j /∈ S
Enc

pk
v∗
i

i,j

(γj) otherwise

B then computes the signature σ ← Signsksig∗(~c) and forwards [~c,vksig∗, σ] to A2. It is
straight-forward to verify that [~c,vksig∗, σ] is indeed a random encryption of mb under Π.

• (decryption) Upon receiving a sequence of ciphertexts (ψ1, . . . , ψp(k)) from A2, B decrypts

these ciphertexts using NMDec∗ as in NME
(2)
b . Note that to simulate NMDec∗, it suffices for

B to possess the secret keys {skβi,j | β = 1− v∗i or j ∈ S}, which B generated by itself.

Combining the three claims, we conclude that for every ppt adversary A, there is a ppt adversary
B such that for b ∈ {0, 1},{

NMEb(Π, A, k, p(k))
}

c
≈

{
NME

(1)
b (Π, A, k, p(k))

}
s
≈

{
NME

(2)
b (Π, A, k, p(k))

}
≡

{
mINDb(E,B, k, k · t)

}
By Proposition 1, mIND0(E,B, k, k · t)

c
≈ mIND1(E,B, k, k · t), which concludes the proof of

Theorem 1.
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5 Achieving Bounded-CCA2 Non-Malleability

We describe how our scheme may be modified to achieve non-malleability under a bounded-CCA2
attack. Informally, an encryption scheme is non-malleable against a q-bounded CCA2 attack if the
adversary is allowed to query Dec at most q(k) times in the non-malleable experiment (but it must
not query Dec on the challenge ciphertext). The modification is the straight-forward analogue of
the [CHH+07] modification of the [PSV06] scheme: We change the parameter (n, 2t, 0.5, t,GF(2n))
of the underlying RPE scheme such that t = 8(log2 k + q(k)). See Figure 4 for more details.

We analyze security of the encryption scheme using the hybrid argument. We define the
following hybrid experiments as before.

• Experiment NME-q-CCA
(1)
b : NME

(1)
b proceeds exactly like NME-q-CCAb, except we replace

sig-check in NMDec with sig-check∗:

(sig-check∗) Verify the signature with VerSigvksig[~c, σ]. Output ⊥ if the signature
fails to verify or if vksig = vksig∗.

• Experiment NME-q-CCA
(2)
b : NME

(2)
b proceeds exactly like NME-q-CCA

(1)
b except we replace

NMDec with NMDec∗:

NMDec∗sk([~c,vksig, σ]):

1. (sig-check∗) Verify the signature with VerSigvksig[~c, σ]. Output ⊥ if the
signature fails to verify or if vksig = vksig∗.

2. (decoding check∗) Let ~c = (ci,j) and vksig = (v1, . . . , vk). Let i be the
smallest value such that vi 6= v∗i . Compute sj = Decskvi

i,j
(ci,j), j = 1, . . . , 2t

and w = (w1, . . . , w2t) ∈ W that is at least 0.8-close to (s1, . . . , s2t). If no such
codeword exists, output ⊥.

3. (column-check∗) For all j ∈ S, check that Decskv1
1,j

(c1,j) = Decskv2
2,j

(c2,j) =

· · · = Decskvk
k,j

(ck,j).

4. (codeword-check∗) For all j ∈ S, check that Decskv1
1,j

(c1,j) = wj .

If all the checks accept, output the message m corresponding to the codeword w;
else, output ⊥.

We note that
{
NME-q-CCAb(Π, A, k, p(k))

}
and

{
NME-q-CCA

(1)
b (Π, A, k, p(k))

}
are computaionally

indistinguishable for each b ∈ {0, 1}, which can be argued based on security of the signature scheme

as in Claim 1. Moreover,
{
NME-q-CCA

(2)
b (Π, A, k, p(k))

}
and

{
mINDb(E,B, k, k ·t)

}
are identically

distributed for each b ∈ {0, 1}, which can be shown using the reduction in the proof of Claim 3.
(Recall that the value p(k) in the various NME-q-CCA experiments corresponds to the number of
(mauled) ciphertexts that the adversary would come up with, after given the challenge ciphertext.)
Therefore, we are only left to show the following claim to conclude the analysis.

Claim 4. For b ∈ {0, 1}, we have{
NME-q-CCA

(1)
b (Π, A, k, p(k))

}
s
≈

{
NME-q-CCA

(2)
b (Π, A, k, p(k))

}
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Let (Gen,Enc,Dec) be an encryption scheme, (GenSig,Sign,VerSig) be a strong one-time signature
scheme, and (E,D,R) be a reconstructable probabilistic encoding scheme with parameters
(n, 2t, 0.5, t,GF(2n)) where t = 8(log2 k + q(k)).

NMGen(1k):

1. For i ∈ [k], j ∈ [2t], b ∈ {0, 1}, run Gen(1k) to generate key-pairs (pkb
i,j , sk

b
i,j).

2. Pick a random subset S ⊂ [2t] of size t.

3. Set pk =
{

(pk0
i,j ,pk

1
i,j) | i ∈ [k], j ∈ [2t]

}
and sk =

{
S, (sk0

i,j , sk
1
i,j) | i ∈ [k], j ∈ [2t]

}
.

NMEncpk(m):

1. Compute (s1, . . . , s2t)← E(m), where m ∈ {0, 1}n.

2. Run GenSig(1k) to generate (sksig,vksig). Let (v1, . . . , vk) be the binary representation of
vksig.

3. Compute the ciphertext ci,j ← Encpkvi
i,j

(sj), for i ∈ [k], j ∈ [2t].

4. Compute the signature σ ← Signsksig(~c) where ~c = (ci,j).

5. Output the tuple [~c,vksig, σ].

NMDecsk([~c,vksig, σ]):

1. (sig-check) Verify the signature with VerSigvksig[~c, σ].

2. (decoding-check) Let ~c = (ci,j) and vksig = (v1, . . . , vk). Compute sj = Decskv1
1,j

(c1,j), j =

1, . . . , 2t. Compute ((w1, . . . , w2t),m) ← D(s1, . . . , s2t). If the decoding fails or (w1, . . . , w2t) is
not 0.9-close to (s1, . . . , s2t), then output ⊥.

3. (column-check) For all j ∈ S, check that Decskv1
1,j

(c1,j) = Decskv2
2,j

(c2,j) = · · · = Decskvk
k,j

(ck,j).

4. (codeword-check) For all j ∈ S, check that sj = wj .

5. If all the checks accept, output the message m corresponding to the codeword w; else, output ⊥.

Figure 4: The Bounded-CCA2 Non-Malleable Encryption Scheme Π
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Proof. Let q = q(k) and for a ciphertext c, let ~Mc denote the underlying plaintext matrix of c.

As before, we will show that both distributions are statistically close for all possible coin tosses
in both experiments (specifically, those of NMGen, A and NMEnc) except for the choice of S in
NMGen. Fix all the coin tosses apart from the choice of S. Here, however, unlike the case of chosen
plaintext attacks, we cannot immediately deduce that the outputs of A2 in both experiments are
completely determined and identical, since they depend on the adaptively chosen queries to NMDec,
and the answers depend on S. Still, the choice of S only affects whether the consistency checks
accept or not; therefore, for each query, the number of possible responses of NMDec is at most
two (since we fixed all the coin tosses except S). Moreover, if a query c is such that ~Mc ∈ ΠN ,
NMDec will give only one response of ⊥ with overwhelming probability, according to the analysis
in Section 4.2.

This leads us to consider a binary tree of depth q that corresponds informally to “unrolling”

the q adaptive queries that A makes to NMDec in the experiment NME-q-CCA
(1)
b . The root node of

the tree corresponds to the first query A makes to NMDec, and each edge from a node to its child
is labeled with the answer of NMDec to the node’s query. In particular, the tree is inductively built
as follows:

• When Amakes a query c with ~Mc ∈ ΠN , we only consider the computation path corresponding
to NMDec responding with ⊥.

• When A makes a query c with ~Mc 6∈ ΠN , we consider two computation paths, that is, one case
of NMDec responding with a valid decryption (in which case the value returned is independent
of S) and the other case of NMDec responding with ⊥.

• The query at an internal node (except the root) corresponds to the query that A makes when
following the computation path from the root to the node while NMDec’s answers correspond
to the labels of the edges in the path. Each leaf node contains p(k) ciphertexts output by A
at the end of the experiment.

Observe that the construction of the computation tree is completely deterministic and independent
of the choice of S. Moreover, since A makes at most q adaptive queries to NMDec, the total number
of ciphertexts in the tree is at most 2q+1p(k). The claim follows from combining the following two
observations:

• Let good(S) be an event in which given the choice S, for every ciphertext c in the tree such
that ~Mc ∈ ΠN , both NMDec and NMDec∗ output ⊥. We have

Pr
S

[good(S)] ≥ 1− 2 · (2q+1 · p(k)) · 0.9t = 1− 2q+2 · p(k) · 0.98(log
2 k+q) = 1− negl(k).

This follows from a union bound over these ciphertexts in the tree and the analysis in
Section 4.2.

• For every S such that good(S) is true, the outputs in both experiments are the same. This
follows readily by induction on the queries made by A, and using the fact both NMDec and
NMDec∗ always output the same answer for any ~M 6∈ ΠN as explained in Section 4.2.

21



Remark on achieving (full) CCA2 security. It should be clear from the preceding analysis
that the barrier to obtaining full CCA2 security lies in handling queries outside ΠN . Specifically,
with even just a (full) CCA1 attack, an adversary could query NMDec on a series of adaptively
chosen ciphertexts corresponding to matrices outside ΠN to learn the set S upon which it could
readily break the security of our construction.
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Goldreich for pointing out [DGR99], and for other helpful suggestions.

References

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and
its applications. In Proceedings of the Twentieth Annual ACM Symposium on Theory
of Computing, pages 103–112, 1988.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation. In Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing, pages 1–10, 1988.

[BHSV98] Mihir Bellare, Shai Halevi, Amit Sahai, and Salil P. Vadhan. Many-to-one trapdoor
functions and their relation to public-key cryptosystems. In Advances in Cryptology
- CRYPTO ’98, volume 1462 of Lecture Notes in Computer Science, pages 283–298,
1998.

[BW86] Elwyn R. Berlekamp and Lloyd R. Welch. Error correction for algebraic block codes,
1986. US Patent 4,633,470.

[CDMW08] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Black-box
construction of a non-malleable encryption scheme from any semantically secure one.
In Proceedings of the 5th Theory of Cryptography Conference, TCC 2008, volume 4948
of Lecture Notes in Computer Science, pages 427–444, 2008.

[CHH+07] Ronald Cramer, Goichiro Hanaoka, Dennis Hofheinz, Hideki Imai, Eike Kiltz, Rafael
Pass, Abhi Shelat, and Vinod Vaikuntanathan. Bounded CCA2-secure encryption.
In Advances in Cryptology - ASIACRYPT 2007, volume 4833 of Lecture Notes in
Computer Science, 2007.

[CHK04] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from
identity-based encryption. In Advances in Cryptology - EUROCRYPT 2004, volume
3027 of Lecture Notes in Computer Science, pages 207–222, 2004.

[CS98] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In Advances in Cryptology - CRYPTO ’98,
volume 1462 of Lecture Notes in Computer Science, pages 13–25, 1998.

22



[CS04] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for
adaptive chosen ciphertext secure public-key encryption. In Advances in Cryptology -
EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages 45–64,
2004.

[Dac14] Dana Dachman-Soled. A black-box construction of a CCA2 encryption scheme from a
plaintext aware (sPA1) encryption scheme. In PKC 2014: 17th International Workshop
on Theory and Practice in Public Key Cryptography, volume 8383 of Lecture Notes in
Computer Science, pages 37–55. Springer, 2014.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM
Journal on Computing, 30(2):391–437, 2000.

[DGR99] Scott E. Decatur, Oded Goldreich, and Dana Ron. Computational sample complexity.
SIAM Journal on Computing, 29(3):854–879, 1999.

[DMRY09] Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Moti Yung. Efficient
robust private set intersection. In Applied Cryptography and Network Security, 7th
International Conference, ACNS 2009, volume 5536 of Lecture Notes in Computer
Science, 2009.

[DNR04] Cynthia Dwork, Moni Naor, and Omer Reingold. Immunizing encryption schemes from
decryption errors. In Advances in Cryptology - EUROCRYPT 2004, volume 3027 of
Lecture Notes in Computer Science, pages 342–360, 2004.

[ES02] Edith Elkind and Amit Sahai. A unified methodology for constructing public-key
encryption schemes secure against adaptive chosen-ciphertext attack. Cryptology
ePrint Archive, Report 2002/024, 2002. http://eprint.iacr.org/.

[GLOV12] Vipul Goyal, Chen-Kuei Lee, Rafail Ostrovsky, and Ivan Visconti. Constructing
non-malleable commitments: A black-box approach. In 53rd Annual Symposium on
Foundations of Computer Science, pages 51–60. IEEE Computer Society Press, 2012.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer
and System Sciences, 28(2):270–299, 1984.

[GMM07] Yael Gertner, Tal Malkin, and Steven Myers. Towards a separation of semantic
and CCA security for public key encryption. In Proceedings of the 4th Theory of
Cryptography Conference, TCC 2007, volume 4392 of Lecture Notes in Computer
Science, pages 434–455, 2007.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.
Preliminary Version in 17th STOC, 1985.

[GMR01] Yael Gertner, Tal Malkin, and Omer Reingold. On the impossibility of basing trapdoor
functions on trapdoor predicates. In The 42th Annual Symposium on Foundations of
Computer Science, pages 126–135, 2001.

23



[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity for all languages in np have zero-knowledge proof systems. Journal of ACM,
38(3):691–729, 1991. Preliminary Version in 27th FOCS, 1986.

[Gol04] Oded Goldreich. Foundations of Cryptography: Volume II, Basic Applications.
Cambridge University Press, 2004.

[GOSV14] Vipul Goyal, Rafail Ostrovsky, Alessandra Scafuro, and Ivan Visconti. Black-box non-
black-box zero knowledge. In 46th Annual ACM Symposium on Theory of Computing,
pages 515–524. ACM Press, 2014.

[Hai08] Iftach Haitner. Semi-honest to malicious oblivious transfer - the black-box way. In
Proceedings of the Fifth Theory of Cryptography Conference, TCC 2008, volume 4948
of Lecture Notes in Computer Science, pages 412–426, 2008.

[HK09] Dennis Hofheinz and Eike Kiltz. Practical chosen ciphertext secure encryption from
factoring. In Advances in Cryptology – EUROCRYPT 2009, volume 5479 of Lecture
Notes in Computer Science, pages 313–332. Springer, 2009.

[HLW12] Susan Hohenberger, Allison B. Lewko, and Brent Waters. Detecting dangerous
queries: A new approach for chosen ciphertext security. In Advances in Cryptology
– EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages 663–
681. Springer, 2012.

[IKLP06] Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. Black-box
constructions for secure computation. In Proceedings of the 38th Annual ACM
Symposium on Theory of Computing, pages 99–108, 2006.

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-
way permutations. In Proceedings of the Twenty-First Annual ACM Symposium on
Theory of Computing, pages 44–61, 1989.

[Kiy14] Susumu Kiyoshima. Round-efficient black-box construction of composable multi-party
computation. In Advances in Cryptology – CRYPTO 2014, Part II, volume 8617 of
Lecture Notes in Computer Science, pages 351–368. Springer, 2014.

[KMO10] Eike Kiltz, Payman Mohassel, and Adam O’Neill. Adaptive trapdoor functions and
chosen-ciphertext security. In Advances in Cryptology – EUROCRYPT 2010, volume
6110 of Lecture Notes in Computer Science, pages 673–692. Springer, 2010.

[KMO14] Susumu Kiyoshima, Yoshifumi Manabe, and Tatsuaki Okamoto. Constant-round
black-box construction of composable multi-party computation protocol. In TCC 2014:
11th Theory of Cryptography Conference, volume 8349 of Lecture Notes in Computer
Science, pages 343–367. Springer, 2014.

[Lam79] Leslie Lamport. Constructing digital signatures from a one-way function. Technical
Report SRI-CSL-98, SRI International Computer Science Laboratory, 1979.

[Lin06] Yehuda Lindell. A simpler construction of CCA2-secure public-key encryption under
general assumptions. Journal of Cryptology, 19(3):359–377, 2006.

24



[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party
computation in the presence of malicious adversaries. In Advances in Cryptology -
EUROCRYPT 2007, volume 4515 of Lecture Notes in Computer Science, pages 52–78,
2007.

[LP12] Huijia Lin and Rafael Pass. Black-box constructions of composable protocols without
set-up. In Advances in Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in
Computer Science, pages 461–478. Springer, 2012.

[MH14] Takahiro Matsuda and Goichiro Hanaoka. Chosen ciphertext security via point
obfuscation. In TCC 2014: 11th Theory of Cryptography Conference, volume 8349
of Lecture Notes in Computer Science, pages 95–120. Springer, 2014.

[Ms09] Steven Myers and abhi shelat. Bit encryption is complete. In 50th Annual Symposium
on Foundations of Computer Science, pages 607–616. IEEE Computer Society Press,
2009.

[MSs12] Steven Myers, Mona Sergi, and abhi shelat. Blackbox construction of a more than
non-malleable CCA1 encryption scheme from plaintext awareness. In SCN 12: 8th
International Conference on Security in Communication Networks, volume 7485 of
Lecture Notes in Computer Science, pages 149–165. Springer, 2012.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In Proceedings of the Twenty Second Annual ACM Symposium on
Theory of Computing, pages 427–437, 1990.

[PSV06] Rafael Pass, Abhi Shelat, and Vinod Vaikuntanathan. Construction of a non-malleable
encryption scheme from any semantically secure one. In Advances in Cryptology -
CRYPTO 2006, volume 4117 of Lecture Notes in Computer Science, pages 271–289,
2006.

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications.
In Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pages
187–196, 2008.

[PW09] Rafael Pass and Hoeteck Wee. Black-box constructions of two-party protocols from
one-way functions. In Proceedings of the 6th Theory of Cryptography Conference, TCC
2009, volume 5444 of Lecture Notes in Computer Science, pages 403–418, 2009.

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures. In
Proceedings of the Twenty Second Annual ACM Symposium on Theory of Computing,
pages 387–394, 1990.

[RS92] Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of
knowledge and chosen ciphertext attack. In Advances in Cryptology - CRYPTO ’91,
volume 576 of Lecture Notes in Computer Science, pages 433–444, 1992.

[RS09] Alon Rosen and Gil Segev. Chosen-ciphertext security via correlated products. In
TCC 2009: 6th Theory of Cryptography Conference, volume 5444 of Lecture Notes in
Computer Science, pages 419–436. Springer, 2009.

25



[RTV04] Omer Reingold, Luca Trevisan, and Salil Vadhan. Notions of reducibility between
cryptographic primitives. In Proceedings of the First Theory of Cryptography
Conference, TCC 2004, volume 2951 of Lecture Notes in Computer Science, pages
1–20, 2004.

[Sah99] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In The 40th Annual Symposium on Foundations of Computer
Science, page 543, 1999.

[Wee10a] Hoeteck Wee. Black-box, round-efficient secure computation via non-malleability
amplification. In 51st Annual Symposium on Foundations of Computer Science, pages
531–540. IEEE Computer Society Press, 2010.

[Wee10b] Hoeteck Wee. Efficient chosen-ciphertext security via extractable hash proofs. In
Advances in Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes in Computer
Science, pages 314–332. Springer, 2010.

A Non-Malleable Encryption with Reed-Solomon Code

We describe a non-malleable encryption scheme Π = (NMGenGen,NMEncGen,Enc,NMDecGen,Dec),
where (Gen,Enc,Dec) is a semantically secure encryption scheme by directly using a Reed-Solomon
code instead of using an RPE scheme. We summarize the description in Figure 5.
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Let (Gen,Enc,Dec) be an encryption scheme, (GenSig,Sign,VerSig) be a strong one-time signature
scheme. Let k be the security parameter and t = log2 k.

NMGen(1k):

1. For i ∈ [k], j ∈ [2t], b ∈ {0, 1}, run Gen(1k) to generate key-pairs (pkb
i,j , sk

b
i,j).

2. Pick a random subset S ⊂ [2t] of size t.

3. Set pk =
{

(pk0
i,j ,pk

1
i,j) | i ∈ [k], j ∈ [2t]

}
, sk =

{
S, (sk0

i,j , sk
1
i,j) | i ∈ [k], j ∈ [2t]

}
.

NMEncpk(m):

1. Pick random α1, . . . , αt ∈ GF(2n) and set p(x) = m0 +α1x+ . . .+αtx
t. Set sj = p(j) for j ∈ [2t].

2. Run GenSig(1k) to generate (sksig,vksig). Let (v1, . . . , vk) be the binary representation of
vksig.

3. Compute the ciphertext ci,j ← Encpkvi
i,j

(sj), for i ∈ [k], j ∈ [2t].

4. Compute the signature σ ← Signsksig(~c) where ~c = (ci,j).

5. Output the tuple [~c,vksig, σ].

NMDecsk([~c,vksig, σ]):

1. (sig-check) Verify the signature with VerSigvksig[~c, σ].

2. (decoding-check) Let ~c = (ci,j) and vksig = (v1, . . . , vk). Compute sj = Decskv1
1,j

(c1,j) for

j = 1, . . . , 2t. Compute the codeword w = (w1, . . . , w2t) ∈ W that agrees with (s1, . . . , s2t) in at
least 1.8t positions. If no such codeword exists, output ⊥.

3. (column-check) For all j ∈ S, check that Decskv1
1,j

(c1,j) = Decskv2
2,j

(c2,j) = · · · = Decskvk
k,j

(ck,j).

4. (codeword-check) For all j ∈ S, check that sj = wj .

5. If all checks accept, output the message m corresponding to the codeword w; else, output ⊥.

Figure 5: The Non-Malleable Encryption Scheme with a Reed-Solomon Code
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