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ABSTRACT: 
 
The demand for accurate spatial data has been increasing rapidly in recent years. Mobile laser scanning (MLS) systems have become 
a mainstream technology for measuring 3D spatial data. In a MLS point cloud, the point clouds densities of captured point clouds of 
interest features can vary: they can be sparse and heterogeneous or they can be dense. This is caused by several factors such as the 
speed of the carrier vehicle and the specifications of the laser scanner(s). The MLS point cloud data needs to be processed to get 
meaningful information e.g. segmentation can be used to find meaningful features (planes, corners etc.) that can be used as the inputs 
for many processing steps (e.g. registration, modelling) that are more difficult when just using the point cloud. Planar features are 
dominating in manmade environments and they are widely used in point clouds registration and calibration processes. There are 
several approaches for segmentation and extraction of planar objects available, however the proposed methods do not focus on 
properly segment MLS point clouds automatically considering the different point densities. This research presents the extension of 
the segmentation method based on planarity of the features. This proposed method was verified using both simulated and real MLS 
point cloud datasets. The results show that planar objects in MLS point clouds can be properly segmented and extracted by the 
proposed segmentation method. 
 
 

1. INTRODUCTION 

The demand for accurate spatial data has been increasing 
rapidly in recent years. Thanks to Global Navigation Satellite 
System, laser scanning, imaging and information technologies, 
mobile mapping technology has rapidly developed since the late 
1980s. A mobile laser scanning (MLS) system allows us to 
observe 3D measurements of objects at a close range from a 
vehicle. Its allow users to collect precise point cloud data at 
normal road speed and  capture scenes and details of objects 
more comprehensively than traditional satellite mapping or 
surveying. Therefore, MLSs have become a mainstream 
technology for measuring 3D spatial data.  
 
Point cloud segmentation is the process of grouping spatially 
connected points that have similar characteristics. The outcomes 
are a number of separate segments or extracted features from 
the point clouds. Segmentation is a crucial step for many 
applications such as modelling features, registration or 
calibration. Because planar features are dominate in manmade 
environments, they are widely used in point clouds registration 
and calibration processes (Chan et al., 2013; Rabbani et al., 
2007). Therefore, this paper focuses on the segmenting of 
planar features in MLS point clouds.  
 
A number of different approaches have been proposed to 
segment planar features in laser point clouds. They can be  
divided into five groups: edge based (Huang & Menq, 2001), 
robust model fitting  (Fischler & Bolles, 1981; Hough, 1962; 
Oesau et al., 2016; Vosselman & Maas, 2010), scan line based 
(Jiang & Bunke, 1994; Sithole & Vosselman, 2003) and 
region/surface growing based (Nurunnabi et al., 2012; 
Nurunnabi et al., 2015; Oesau et al., 2016; Rabbani, van den 
Heuvel, & Vosselmann, 2006; Vosselman & Maas, 2010). 
 
*  Corresponding author 

 
 
In edge based approaches, the edges and boundary points have 
to be determined first. Then, points inside the boundaries are 
group into region.  However, finding closed boundaries is not 
always feasible due to noise, sampling, complex surfaces.  
 
In robust model fitting groups, RANSAC is possibly the most 
popular method in extracting planar objects in point clouds data 
due to the simplicity and robustness,. However, one the 
parameters required for RANSAC is highly dependent on the 
magnitude of noise which cannot always be predicted. 
Furthermore, depending on this threshold points near the 
boundary of two adjacent objects may be labelled to either of 
these two objects. Deschaud and Goulette (2010) drew the 
conclusion that while RANSAC provides a very good outcome 
for the detection of large planes in noisy point clouds, it is not 
efficient in detecting small planes in large point clouds.  
 
Scan line base segmentation breaks each scan line into smaller 
scan profiles and then merge scan profiles of the same surface 
based on certain criteria. An approach for segmenting range 
images into planar patches was proposed by Jiang and Bunke 
(1994). Sithole and Vosselman (2003) proposed a method to 
segment Air-borne Laser Scanning (ALS) point clouds. This 
method uses 2D profiles sampled in different directions. These 
profiles are generated by connecting points that satisfy some 
conditions. However, connecting points by comparing their 
height or slope is not suitable to form line segments of vertical 
planar objects, which are dominate in MLS point clouds. .  
 
Region/surface growing based approaches are normally used for 
segmentation of MLS point clouds. These methods segment 
connected points that have similar characteristics into the same 
regions. They are more robust to noise and perform better than 
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the edge based approaches (Nurunnabi et al., 2015). Oesau et al. 
(2016) proposed a method for planar object detection for 
unorganized point clouds. Their method uses the K-nearest 
neighbour (KNN) for determining the neighbours for normal 
vectors estimation. As discussed in Nguyen et al. (2015) KNN 
is not suitable for this task when applying to MLS sparse point 
clouds. Rabbani et al. (2006) proposed a segmentation method 
for terrestrial laser scanning point clouds using smoothness 
constraints. This method groups connected points based on their 
direction vectors. Principal Component Analysis (PCA) is used 
to estimate the normal vectors of points from their neighbours. 
Neighbouring points are determining by using k-nearest 
neighbour (KNN) or fixed distance neighbour (FDN) algorithm. 
Seed points for region growing are selected based on their 
residuals. As PCA is very sensitive to outliers, Nurunnabi et al. 
(2015) proposed the Robust and Diagnostic PCA (RDPCA) 
method to detect outliers and then estimate local saliency 
features from the clean subset. A robust segmentation method 
based on the estimated local saliency features was proposed to 
segment dense and homogeneous mobile laser scanning point 
clouds. However, the robust segmentation method based on 
RDPCA fails in segmenting sparse and heterogeneous MLS 
point clouds (Nguyen et al., 2015). 
 
Nguyen et al. (2015) proposed two approaches for segmentation 
of sparse and heterogeneous MMS point clouds: (1) 
segmentation method based on scan profile and RDPCA, and 
(2) Region Growing based on the Planarity of Scan profiles 
(RGPL). Although, the outcomes of these two methods give 
promising results, they can only be applied for MLS point 
clouds under certain conditions which are not met for all MLS 
point cloud datasets. Furthermore, these two approaches were 
only verified by using the point clouds of a pre-designed target.  
 
The robust segmentation method based on RDPCA proposed by 
Nurunnabi et al. (2015) could be used for dense MLS point 
clouds, and the two approaches proposed by Nguyen et al. 
(2015) could be used for the spare and heterogeneous MLS 
point clouds. However, there are no guidelines concerning the 
range of point cloud densities that each of the approaches can 
handle so as to determine which is best to apply. 
 
This research proposes a new segmentation method that can be 
applied to all types of captured point clouds from MLS systems 
with 2D laser scanners. This research extends the work of 
Nguyen et al. (2015) by improving the neighbourhood selection 
method for direction vectors estimation (e.g. by considering the 
scan line indices), improving the scan profiles growing process 
to deal with some problems (e.g. two different scan profiles that 
have similar direction vectors) that were not take into account in 
the original version. Then, a method is proposed for solving the 
case of changing vehicle speeds. Finally, the extension will be 
validated using both simulated and new real datasets. The 
RGPL method was compared with the segmentation method 
based on RDPCA in Nguyen et al. (2015). Instead, this paper 
focuses only on the extent RGPL method and its applicability 
for all type of MLS point clouds without to compare the 
performance of this method with other segmentation methods.  
 
This paper is organized as follows, section 2 presents the 
background of this research, and section 3 presents the 
extension of the RGPL. Next, a description of the datasets that 
are used to verify the propose method and the results are 
presented in section 4, along with discussions. The paper closes 
with the conclusion and possible future work.  
 

2. BACKGROUND 

2.1 Point density of a MLS point cloud 

Traditionally, point density of a point cloud is defined as the 
number of points per some area unit. The captured 3D point 
clouds of a MLS system (MLSs) that uses 2D laser scanner(s) 
as the imaging sensor(s) are derived by utilising the movement 
of the carrier vehicle. A scan line is a full circle of scan. A scan 
profile or segment contains a group of points of the same scan 
line on the same surface. Scan profiles of the same planar 
surface are normally parallel with each other. According to 
Cahalane et al. (2014) and (Nguyen et al., 2015) different 
surfaces in the same point cloud may have different point 
densities. Point densities of a surface in the same point clouds 
can be defined as the distance between two adjacent scan 
profiles or profile spacing and the distance between two 
adjacent points of the same scan profile or point spacing (Figure 
1).  
 
Currently, a number of MLSs are available on the market. 
Several MLSs have been reviewed in Puente et al. (2012). They 
have different configurations as well as scanning patterns. With 
regard to scanning patterns, MLSs can be categorised into two 
classes: MLSs that have laser head(s) placed perpendicular 
(type 1) and MLSs that have laser scanner(s) placed oblique 
(type 2) to the trajectory of the carrier vehicle. Point clouds 
captured by two different MLS classes have different scan line 
patterns. This research focuses on scanners of type 1. 
Furthermore, point clouds of the same feature collected at the 
same speed by different MLSs will have different densities due 
to the different configurations of different MLSs. For instance 
the MDL Dynascan S250 (Renishaw, 2015) has a single laser 
head with  a low scanner rate (e.g. 20 Hz) and a low scanner 
pulse rate (e.g. 36000 pts /sec). Meanwhile, the RIEGL VQ-450 
(RIEGL, 2015) is equipped with a laser head with a high 
scanner rate (e.g. 200 Hz) and a high scanner pulse rate (e.g. up 
to 550000 points / sec). The specifications of MDL Dynascan 
S250 and RIEGL VQ-450 are shown in Table 1. Consequently, 
at the same speed the profile spacing of the point cloud of the 
same object collected by RIEGL VQ-450 can be ten times 
narrower than the profile spacing of the point cloud captured by 
MDL Dynascan S250. The point spacing of the same object at 
the same distance captured by RIEGL VQ-450 can be fifteen 
times smaller than the one collected by MDL Dynascan S250.  
 

 
Figure 1. Scan profiles patterns of type 1 MLS   

 MDL Dyanscan 
S250 

RIEGL VQ-450 

Range up to 250 m up to 800 m 
Scanner rate up to 20 Hz up to 200 Hz 
Scanner pulse rate  36,000 pps 550,000 pps 
Accuracy 1 cm 8 mm 

Table 1. MDL Dynascan S250 and RIEGL VQ-450   
specifications 
 

Scan 
profile 
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To conclude, depending on the speed of the vehicle when 
scanning, the specifications of the MLS and the several factors 
mentioned above, captured point clouds of the interest features 
can be sparse or dense. The point spacing can be smaller or can 
be bigger than the profile spacing. 
 

3. METHODOLOGY 

In this section the extension of the RGPL segmentation method 
applicable to all type of captured point clouds from MLS system 
with 2D laser scanners is introduced. Unlike other region 
growing methods, the RGPL utilizes the direction vectors of 
points instead of normal vectors of points, then using planarity 
value to group points of the same surface. The direction vector 
of a point is defined as the vector that is parallel with the 
direction of the scan profile this point belongs to. It can be 
estimated via the eigenvector corresponding to the biggest 
eigenvalue of the covariance matrix formed by a point and its 
neighbours of the same scan profile. The details of the RGPL is 
described in (Nguyen et al., 2015). In this paper, the RGPL is 
improved by proposing a new neighbouring selection method 
for direction vectors estimation, developing method for solving 
the case of changing speeds, and solving the issue with complex 
structures. 
 
3.1 Breaking scan lines into scan profiles 

According to Nguyen et al. (2015) point clouds can be broken 
into scan profiles based on the direction vectors of points. As 
different objects in the same point cloud may have different 
point densities, the K-nearest neighbour algorithm is not 
suitable for selecting neighbouring points for direction vectors 
estimation. In order to estimate direction vectors of points, 
neighbours need to be selected from the same scan profile. If the 
points spacing of all interest features are much smaller than 
their profiles spacing and the profile spacing is stable during the 
scan, in the original RGPL (Nguyen et al., 2015) Fixed distance 
neighbour (FDN) is proposed to obtain neighbouring points for 
estimating direction vectors. However, this FDN cannot be 
applied when the velocity of the carrier vehicle is changed 
during the scans or the scan line spacing is not much bigger than 
the points spacing. In order to solve this problem, this paper 
proposes a new approach for breaking point clouds into 
different scan profiles by first splitting them into scan lines 
(section 3.1.1). Then, neighbouring points of each point are 
determined. After that a modified RANSAC line fitting method 
is applied in order to determine the ‘clean’ subset (section 
3.1.2). Based on this subset, the direction vector of each point is 
calculated by using PCA (Figure 2 (b)). Finally a scan profiles 
growing process (section 3.1.4) is performed leading to the 
segmented scan lines and remove outliers (e.g. 9th and 13th 
points) (Figure 2 (c)).  
   
3.1.1 Splitting point clouds into scan lines: Normally, with 
some MLS systems, the final output includes the information 
about the scan line and captures time of each point. In this case, 
points on different scan lines can be easily split into different 
groups. However, with some systems (e.g. MDL Dynascan 
S250) this information is not readily provided. Fortunately, 
points in a collected point cloud are often stored in sequence of 
capture. Hence, if the scanner positions of each scan are also 
stored in the captured point clouds, each scan line can be split 
based on these scanner positions (Figure 2 (a)). The scanner 
positions are the X, Y, Z coordinates of the centre of the laser 
scanner at the scanning epoch.  
 
 

           
 (a)          (b) 

 
(c) 

Figure 2. Breaking a scan line into different scan profiles: (a) 
points on a scan line; (b) direction vectors of each point and (c) 
the final outcome (different symbols indicate different scan 
profiles) 

3.1.2 Direction vector estimation: There are two steps 
required in order to estimate direction vector of a point.  They 
are described as follows: 
 
Step 1 - Local neighbourhood selection: FDN is not suitable 
in directly applying to the MLS point clouds collected at 
different speeds to determine neighbour for direction vector 
estimation as the direction vector of a point needs to be 
estimated from neighbours on the same scan profile with this 
point. However when the point clouds are split into scan lines, 
the KNN or FDN algorithm can be applied on each scan line to 
determine the neighbours of each point that belong to the same 
scan line. Selecting neighbours only from the same scan profile 
with the selected point is impossible when this point is near an 
intersection of two different scan profiles. If KNN or FDN is 
used the number of neighbours lie on the same scan profile with 
the selected point may be less than those on other scan profile 
depending on the profile spacing’s of the two different scan 
profiles. This may cause a problem when estimating the 
direction vector of this point. Therefore, a more suitable 
selection method needs to be applied. Because captured points 
of a scan line are normally stored in sequence it can be assured 
that at least half of the neighbours will be selected from the 
same scan profiles with the selected point by utilizing the 
indices of the captured points. As a result the number of inliers 
is always bigger than the number of outliers. Furthermore, 
changing the number of neighbours will not impact on the 
results of direction vectors estimation process significantly. For 
instance, neighbours can be selected from five neighbouring 
points captured before and after the selected point.   
 
Step 2 - Modified RANSAC: Due to the possible presence of 
outliers, the direction vector of the selected point should not be 
directly estimated from the selected point and its neighbours 
resulted from 3.1.3. Outliers have to be removed before 
calculating the direction vector. A modified RANSAC 
algorithm was proposed to solve this problem. The workflow of 
this algorithm is outlined in Figure 3. The details of this 
modified RANSAC algorithm can be found in (Nguyen et al., 
2015). One of the different between this modified RANSAC 
and the original RANSAC is the final consensus must contain 
the query point.  There are 2 parameters have to be pre-defined 
for this algorithm: the RANSAC threshold Tr and the number of 
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iteration T. The Tr can be set based on the accuracy of the 
scanner. The number of required iterations to ensure a good 
solution is not as significant as the original RANSAC. This is 
because the random selections of points are constrained. For 
points not near the intersection of two different scan profiles, 
any two sample points, except noise points, can be used to 
determine the consensus set for direction vector estimation. 
However, for points near the intersection, it can belong to either 
one of the two scan profiles. Therefore, the query point and the 
closest points captured before are used for the first iteration. 
The query point and the points captured after are used as 
random samples for the second iteration. However, to prevent 
the case where these two closest points are influenced by noise, 
more iteration steps are needed to produce a good direction 
value. Random samples for each of these additional iterations 
are selected from either neighbouring points captured after or 
before. 
  
3.1.3 Scan profiles growing: After the direction vectors of 
all points are calculated (section 3.1.3), a scan profile growing 
process is performed to group points of the same profile based 
on their direction vectors. This process is as follows: P denotes 
all the points in the point cloud, and the point Pi that has the 
smallest point index is selected as the seed point for the new 
scan profile. It is added to the seed point group Sc and the 
current scan profile SPc, and removed from P. If two neighbour 
points belong to the same scan profile, they must not only have 
the same direction vector, but also belong to the line going 
though one point and parallel to the direction vector. In fact, in 
most of the case using the first two thresholds is enough to 
determine the scan profiles.  
 
However, in order to prevent the case when two surfaces that 
have the same plane equation and adjacent to each other in 
horizontal direction, a maximum distance between two 
neighbour points of the same scan profile is also needed to be 
set. Theoretically, as the distances between any two adjacent 
points on the same scan profile is identical, this threshold 
should be set equal twice the distance between two first seed 
point of the scan profile (i.e. the point spacing of this scan 
profile). However, this parameter should be set to be equal four 
times the point spacing due to possibility of the presence of 
noise and the imperfect measurements from the scanner. 
Therefore, the angle between the direction vector of Pi and Pi+1, 
the distance DLi from Pi+1 to the straight line that goes though Pi 
and parallel to the direction vector of Pi, and the distance Di 
between Pi and Pi+1 are calculated.  
 
Next, if all of the three calculated values are smaller or equal 
than thresholds, Pi+1 is added to the seed point group Sc and the 
current scan profile SPc, and removed from P. if one of the 
calculated value is bigger than predetermined thresholds, it 
means Pi+1 and Pi do not belong to the same scan profile. Then, 
SPc will be saved, and SPc and Sc will be cleared. After a 
complete scan profile is formed, the seed point for the next scan 
profile is selected from the remaining points in P that has the 
smallest point index. The process is repeated until all points are 
assigned to different scan profiles. As shown in Figure 2 (c), 
noise (e.g. 9th and 13th points Figure 2 (c)) can be removed by 
the direction vectors of points. This process can be summarized 
in Algorithm 1 as follows. 
 
 
 
 
 
 

Algorithm 1: 
Input: X, Y, Z coordinates of points in point clouds P and their 
direction vectors DP 
1. while P is not empty do 
2. Find initial seed point Pi from P which has the smallest 

index 
3.    Insert Pi into SPc and Sc, remove form P. 
4.     for each seed point in Sc do 

   5.  Calculate the angle Ai between DPi and DPi+1, the 
distance DLi+1 between Pi+1 and the line go though Pi 
and parallel with DPi and the distance Di between Pi and 
Pi                       

6.  if (Ai <= a threshold) & DLi+1 <= a threshold  
    & (Di <= a threshold) 
7.  insert Pi+1 into SP c and Sc, remove form P. 
8.  end if 
9.    end for 
    insert SPc to SP 
10.    clear SPc and Sc     
11. end while 
Output: a scan profile list SP 
 
 
3.2 Grouping Scan profiles 

In MLS point clouds, if different profiles belong to the same 
planar surface, they are parallel. However, if two scan profiles 
are parallel, it does not mean they belong to the same planar 
surface. They can belong to different planar surface that have 
similar orientation with the ground surface. Therefore, the 
outcomes of this step are considered as grouping the scan 
profiles that potentially belong to the same surface. This can be 
done by checking the angle between direction vectors of 
different scan profiles with each other. In theory, due to 
imperfect measurements of the scanner, two scan profiles of the 
same surface will also not be perfectly parallel. Furthermore, as 
the carrier vehicle trajectory is not always straight, therefore, a 
threshold is needed to be set. If the calculated angle between the 
direction vectors of two scan profiles is smaller than a 
threshold, they are considered as parallel with each other.  
 
3.3 Segmentation method based on planarity RGPL 

RGPL chooses seed scan profiles based on the number of 
neighbours. Hence, in case a point cloud is collected at different 
speeds, a fixed radius parameter cannot be applied for the whole 
group of scan profiles determined from section 3.2. These 
groups must be once again split into smaller different groups. If 
the information about the speeds and the time stamps for the 
collected point are known, these groups can be split based on 
this information. However, with some systems, such as the 
MDL Dynascan S250, this information is not provided. 
Consequently, users have to manually split the point cloud into 
smaller sub-point clouds that are collected at similar speeds. In 
order to alleviate this problem, this paper proposes a method to 
split these groups of scan profiles based on the distances 
between the scan profiles.  
 
3.3.1 Group Scan profiles into groups based on the 
distances between the means: Theoretically, the distance 
between two scan profiles is considered as the distance between 
the two closest points from these two scan profiles. However, in 
many cases, the number of points in each scan profile is large 
meaning the process of finding this distance value can be 
computational expensive. Hence, instead of calculating this 
value, in this research, the distance between two scan profiles is 
considered as the distance between the means of each scan 
profile. Then scan profiles are once again grouped as follows. 
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First, all the distances of the scan profile to its closest scan 
profiles are calculated. They can be derived by a simple KNN 
algorithm. In a sparse point cloud, a thin pole can be 
represented by a single scan profile, hence a threshold can be set 
to prevent surface with only one Scan profile being produced. 
As a result, they can be removed from the group. As the aim is 
to group scan profiles scanned from high to low speed, and the 
faster the speed, the longer the profile spacing, this approach 
starts by determining the seed scan profile which has the longest 
distance to its closest neighbour. Then, the number of 
neighbours of each scan profile, with the radius smaller than the 
longest distance can be calculated by a simple FDN algorithm. 
Scan profiles that have less than three neighbours are put into a 
new group and removed from the original group. The reason for 
this is that if scan profiles have more than two neighbours, they 
definitely are collected at a much lower speed. All of the scan 
profiles in the new group are considered to be collected at 
similar speeds. As discussed in section 2, the scan profile 
spacing of different surfaces captured at the same speed can be 
different. Therefore, the outcomes of this process is not only to 
split the scan lines collected at different speeds but also to 
separate the scan profiles of different surfaces that do not have 
similar orientations into different groups. 
 
3.3.2 RGPL: RGPL aims to segment point clouds by 
checking the planarity between different scan profiles instead of 
checking normal vectors of each point like other region growing 
methods (Nurunnabi et al., 2012; Rabbani et al., 2007). In 
addition, the assumption is made that each planar feature in the 
point clouds has at least two scan profiles. This assumption is 
needed because at least two scan profiles of features are 
required to detect planar features. Based on this, each group of 
Scan profiles is segmented based on pre-defined rules. This 
method’s workflow is shown in Figure 3.  
 
After grouping scan profiles that were collected at similar 
speeds, the RGPL process can be applied to segment point 
clouds. The RGPL process is summarized as follows. RGPL 
starts by determining a seed scan profile which has one 
neighbouring scan profile. The number of neighbours of each 
scan profile in each group can be considered as the 
neighbourhood size of the mean point of the selected Scan 
profile, with mean points of other Scan profiles within a pre-
defined range. It can be calculated by a simple FDN algorithm 
with the radius close to twice the scan line spacing. If the 
selected scan profile has only one neighbouring scan profile 
within a distance less than twice the scan line spacing, and as a 
planar surface has to have at least two scan profiles, then these 
two parallel scan profiles will be assigned to the same planar 
surface. If it has two neighbours, the planarity of points on these 
three scan profiles will be checked by using PCA. The planarity 
of a group of points is considered as the smallest eigenvalue of 
the covariance matrix formed by those points. A perfectly 
smooth planar surface will have its planarity value equal to 
zero. However, in reality, most planar surfaces are not perfectly 
smooth. Furthermore, the planarity value is also influenced by 
the accuracy of the scanner. Therefore, a threshold for checking 
the planarity needs to be set. If the calculated planarity is 
smaller than a pre-defined threshold, they will belong to the 
same plane.  
 
For good segmentation results, scan profiles near the boundaries 
of different surfaces need to be analysed carefully. In a real 
point cloud, it may be the case that one of the collected scan 
profiles lies very close to the boundary of two adjacent planar 
surfaces that have similar orientations to the ground surface. 
Scan profiles of these two adjacent planar surfaces are assigned 
in the same group (3.2). The planarity calculated from points on 
this scan profile and other point from the two adjacent surfaces 

may both be smaller than the predefined threshold. 
Consequently, this scan profile can belong to both of the two 
surfaces. Changing the value of the threshold to be bigger than 
one value and smaller than the other could be a solution for this 
problem. However, determining a threshold that works for every 
case in the same collected point clouds is almost impossible. In 
addition to this, setting the planarity threshold too small may 
lead to over-segmentation cases. Hence this planarity threshold 
needs to be carefully set. Depending on the users’ requirements, 
this threshold should be set to be big enough to recognize the 
required most rough surfaces. Then, if a segmented surface – 
surface A have an adjacent surface – surface B, the planarity of 
the surface formed by surface B and the last scan profile of 
surface A will be calculated. Finally, this value will be 
compared with the planarity of surface A. If this value is smaller 
than the planarity of surface A, the last scan profile of surface A 
will assigned to belong to surface B.  
 

 
 
 
3.3.3 Problem when using mean points to determining 
neighbouring scan profile: Using distances between mean 
points of scan profiles instead of ‘true distance’ between scan 
profiles can reduce the processing time. However, this approach 
also has drawbacks. For example, if there are some objects (e.g. 
cars, phone boxes) in front of building facades. Points on these 
objects occlude the facades meaning points are missing from the 
scan lines for these facades. Consequently, mean points of those 
scan profiles will change. If a wall has windows or some objects 
on it, the scan profiles of the wall for this area will be broken 
into several scan profiles. This will also lead to changes in 
distances between mean points of different scan profiles. 
Therefore, neighbouring scan profiles of the same object may be 
not considered as neighbours of each other. Consequently, they 
are labelled as different regions.  
 
3.3.4 Merge over-segmented regions: In addition to the 
means distance problem, if a surface is collected at different 
speeds, its scan profiles may be split into different group in step 
3.3.1. Furthermore, there is also the case that the carrier vehicle 
does not go straight (e.g. to avoid obstacles on the road or the 
road is not straight). In this case, scan profiles of the same 
surface may not be grouped (section 3.2). As the original RGPL 
does not take into account these problems, we propose a 
merging process into RGPL to solve these over-segmentation 
problems as follows. Neighbouring regions that have similar 
normal vectors may have the potential to belong to the same 
object. Hence, the merging process starts by grouping different 
regions that have similar normal vectors. As two scan profiles 
of the same object must belong to two adjacent scan lines, the 

Figure 3. RGPL Segmentation method planarity workflow 
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indexes of the beginning and ending scan line of each region 
need to be determined. Two regions are considered as 
neighbours of each other if the ending scan line of one region is 
adjacent to the beginning scan line of the other. Finally, the 
planarity of these two regions is calculated. If this value is 
smaller than a threshold, they will be merged. Then, the 
beginning and ending scan line indexes of this new region are 
recalculated. This process is iteratively performed until all the 
regions are checked. The planarity threshold can be set equal to 
the planarity threshold of the RGLP. By performing this 
process, a threshold (e.g. 10 degrees) for grouping different scan 
profiles as discuss in section 3.2 can be fixed for all point 
clouds. 
 

4. RESULTS AND DISCUSSION 

4.1 Datasets 

Two datasets are used in order to verify the proposed 
segmentation method. The first dataset is an errorless simulated 
point cloud of a house facade with a window and a door. The 
dataset has heterogeneous point density with the profile 
spacing’s vary from 0.008 to 0.095 metre and point spacing’s 
vary from 0.01 to 0.014 (Figure 5 (a)). The second dataset is the 
point cloud captured near a supermarket near the Curtin 
University Bentley campus in Australia using the MDL 
Dynascan S250. There are 8 planar surfaces in this area (Figure 
6(a)), including three surfaces of the target that are used for 
registration (1, 2 and 3), two phone boxes (4 and 5), 1 façade of 
the supermarket building (6), 1 small planar object (7) that has 
different surface normal vector and adjacent to supermarket 
façade, and 1 façade of an air condition (8) near the 
supermarket. Surface 8 has similar surface normal vector with 
surface 6. Nguyen et al. (2015) claimed that the robust 
segmentation based on RDPCA (see section 1) fails in 
segmenting the sparse point clouds of this target (surfaces 1, 2 
and 3).  
 
4.2 Evaluation of the proposed segmentation method 

4.2.1 Evaluation of splitting point clouds into scan lines: 
In this research, the captured point clouds were split into 
different scan lines based on the laser positions. By using laser 
position points as “break points”, captured point clouds can be 
segmented into different scan lines.  
 
4.2.2 Evaluation of breaking scan lines into different scan 
profiles: Theoretically, the angle threshold should be set to be 
small (e.g. 5 degrees). In order to investigate the influence of 
the three (e.g. the neighbourhood size, the angle threshold and 
the number of iteration) of five required parameters to the 
outcomes of this process, different value of these parameters 
were applied. For instance, the neighbourhood size parameter is 
set to 10 (i.e. 5 points captured before and 5 points captured 
after), 12 and 14; the angle threshold were set 5, 7 and 10 
degrees as in reality, the angle between two vertically adjacent 
surfaces is normally smaller than 10 degrees; the threshold Di 
for maximum distance between two points of the same scan 
profile is set to three, four, five times the point spacing; and the 
number of iterations T was set to 5, 7 and 10 for both datasets. 
The threshold for the modified RANSAC line fitting, Tr and DLi 
was set to 0.02 metre, twice the range accuracy of the MDL 
Dynascan S250 mobile laser scanning (0.01 metre) (Table 1); 
As dataset 1 is free of noise and error, with different parameters 
values, the outcomes of this process are identical. While with 
dataset 2, they are not identical but very similar to each other. 
Figures 5 (b) shows examples of the outcomes of dataset 1 after 
breaking into different scan profiles. 
 

4.2.3 Evaluation of grouping line segments: As discussed 
in section 3.3.4, the angle threshold for grouping scan profiles 
was set 10.0 degrees for both dataset2 1 and 2. However, three 
different values (7, 10 and 15 degree) were applied to validate 
the discussion in 3.3.4. In fact, parallelism is just one of the 
required conditions to group different scan profiles into the 
same surface. Furthermore, two scan profiles close together are 
normally parallel (i.e. they belong to the same surface)/ 
Therefore, changing the values of this parameter will cause 
almost no change to the final result of RGPL. Figure 5 (c) 
shows the outcome of grouping process of the dataset 1 with the 
angle threshold was set to 10 degrees. Scan profiles that have 
similar direction vectors are put into the same group.  
 
4.2.4 Evaluation of the RGPL method: For the RGPL 
method, the threshold for checking the planarity is depended on 
the roughness of the surface of the planar feature and the 
accuracy of the scanning system. As dataset 1 is errorless the 
planarity threshold can be set equal to zero. Empirically, the 
planarity parameter was set to 0.0002 for dataset 2. The 
planarity threshold for dataset 2 was also applied for dataset 1 to 
investigate its influence. In dataset 1, as the points density of 
this dataset is heterogeneous – different profile spacing. The 
points on the same features are assigned into different regions. 
In dataset 2, most of the features were successfully segmented 
except the façade of the supermarket building. Due to the 
present of the two phone boxes and the target in front of the 
façade of the supermarket building, points on this surface were 
assigned into different regions. These over-segmented problems 
occur due to the reasons discussed in section 3.3.3 and 3.3.4. 
 

Parameters Values Comments 

Neighbourhood size 10, 12, 14 Can be fixed for all 
point clouds 

Angle for scan profile 
growing 

5, 7 and 
10 degrees 

Can be fixed for all 
point clouds 

Modified RANSAC 
Tr 

0.02 metre Depending on the 
accuracy of the scanner 

Line Fitting 0.02 metre Depending on the 
accuracy of the scanner 

Distance for scan 
profiles growing 

3, 4 and 5 
times  

Can be fixed for all 
point clouds 

Number of Iteration 5, 7 and 
10 

Can be fixed for all 
point clouds 

Angel threshold for 
group 

7, 10 and 
15 degrees 

Can be fixed for all 
point clouds 

Planarity value 0.0002 Defined by experiment 

 Table 2. Used Parameters for RGPL 

The planarity thresholds for the merging process for both 
datasets were set equal to the planarity threshold of RGLP. A 
single planarity threshold was applied for both point clouds, the 
results show that in both datasets, over-segmented regions were 
properly merged. From the Figure 5 (d) all the points in dataset 
1 are perfectly assigned to their surfaces. Meanwhile, as can be 
seen from Figure 6 (b), RGPL can properly segment two 
complex objects in the scanning area (e.g. the target (surfaces 1, 
2 and 3) and two small surfaces (surfaces 7 and 8) adjacent to 
big surface (surface 6)). Outliers in the scan profiles that are 
close to the surface (e.g. four small scan profiles near the two 
phone boxes (surfaces 4 and 5) are also detected. All the planar 
surfaces were properly segmented without any over or under-
segmented regions. All scan profiles are labelled into their true 
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surfaces. A conclusion can be drawn from these results that a 
planarity threshold can be applied for a whole point cloud. All 
used parameters of RGPL are summarized in Table 2. All but 
one can be easily automatically determined. However, the 
planarity value needs to be empirically determined to recognize 
the roughest surface in the scan area. 
 

5. CONCLUSION AND OUTLOOK 

The point density of captured point clouds depends on several 
factors that are important when extracting features. It can be 
sparse or can be dense.  The point spacing can be smaller or can 
be bigger than the profile spacing. This paper proposes an 
extension of the RGPL segmentation method. The proposed 
method was verified with both a simulated dataset and a real 
dataset captured by MDL Dynascan S250. The segmentation 
results show that this proposed segmentation method is 
successful in segmenting MLS point clouds. Although, only 
point clouds for a type 1 scanner are used to verify, the 

proposed approach is suitable for segmenting point clouds 
captured by type 2 scanners once the different geometry is 
accounted for. Nine parameters are required in this 
segmentation method, five of them (e.g. the angle threshold for 
scan profile growing, the number of neighbours, the number of 
iteration, the maximum distance for scan profiles growing and 
the angle threshold for grouping) do not give significant impact 
to the results. Therefore standard values for these five 
parameters as described in Table can be used for all point 
clouds. Meanwhile RANSAC threshold and line fitting 
threshold can be defined based on the accuracy of the scanner.  
 
Future work will investigate the possibility of dynamic 
definition for the planarity threshold and extend the proposed 
methods to segment others features (e.g. cylinders, spheres). 
Finally, this proposed method should be validated on other 
datasets from MLSs that have oblique scanner(s) (e.g. the MDL 
Dynascan S250X). 

       

                               
                              (a)     (b)          (c)                   (d)  
Figure 4. RGPL result for dataset 1: (a) point cloud; (b) different scan profiles; (c) group of parallel scan profiles; (d) final result. 
Different regions are indicated by different colours 

        
   (a)       (b) 

Figure 5. RGPL result for dataset 2: (a) point cloud; (b) final result. Different regions are indicated by different colours 
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